1
|
Xiang Y, Hou J, Ren L, Xiong J, Wan B, Wang M, Tan W, Kappler A. Spontaneous Abiotic Reduction of Arsenate to Arsenite Mediated by Structural Fe(II) Resulting from Abundant Oxygen Vacancy Clusters in Poorly Crystalline Ferrihydrite in Drought Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5191-5201. [PMID: 40043151 DOI: 10.1021/acs.est.4c10674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The reduction of As(V) to As(III) has been proposed as an undesirable process, increasing the mobility and toxicity of arsenic. Although most studies revealed that As(V) reduction occurs in the aqueous phase, it remains unclear whether abiotic As(V) reduction driven by minerals in drought environments also exists. In this study, we examined the transformation of As(V) to As(III) mediated by ferrihydrite during drying processes using high-resolution X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) spectroscopy analyses. The results revealed that nearly 40.8% of ferrihydrite-sorbed As(V) was transformed to As(III) after placing the As(V)-adsorbed ferrihydrite solids in a drought-tolerant environment for 7 days. As(V) reduction occurred under both oxic and anoxic conditions, with the reduction rate being higher in an anoxic atmosphere than in oxygen and air. Chemical analysis revealed the presence of structural Fe(II) in ferrihydrite, which was attributed to the abundance of oxygen vacancy clusters, as evidenced by positron annihilation lifetime (PAL) analysis. Fe L-edge XANES analysis and DFT calculations demonstrated that structural Fe(II) in dried ferrihydrite played a vital role in As(V) reduction, inducing electron transfer from Fe to As atoms. The findings of this study highlight a potentially important but long-overlooked As(V) reduction pathway at mineral surfaces under drought conditions in dried soils.
Collapse
Affiliation(s)
- Yongjin Xiang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Biao Wan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
2
|
Xu X, Mansor M, Li G, Chiu TH, Haderlein SB, Kappler A, Joshi P. Size-Dependent Reduction Kinetics of Iron Oxides in Single and Mixed Mineral Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2519-2530. [PMID: 39878302 PMCID: PMC11823449 DOI: 10.1021/acs.est.4c08032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Iron(III) (oxyhydr)oxide minerals with varying particle sizes commonly coexist in natural environments and are susceptible to both chemical and microbial reduction, affecting the fate and mobility of trace elements, nutrients, and pollutants. The size-dependent reduction behavior of iron (oxyhydr)oxides in single and mixed mineral systems remains poorly understood. In this study, we used microbial and mediated electrochemical reduction approaches to investigate the reduction kinetics and extents of goethite and hematite. We found that small particles were preferentially reduced relative to their large counterparts in single and mixed mineral systems regardless of microbial or electrochemical treatments, which is attributed to the combined effect of higher thermodynamic favorability and greater surface availability. In mixed mineral systems, small particles were reduced slightly faster, whereas large particles were reduced notably slower and less extensively than solely predicted from single mineral systems. Specifically, when reduced alone, small particles showed Fe(III) reduction rate constants that were 1.5- to 3.6-fold higher than large particles, while when reduced together, the reduction rate constants for small particles were 6- to 21-fold higher than the rate constants for large particles. These collective findings provide new insights into the pivotal role of nanoparticulate iron (oxyhydr)oxides in environmental redox reactions.
Collapse
Affiliation(s)
- Xiyang Xu
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | - Muammar Mansor
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | - Guoxiang Li
- Environmental
Chemistry and Mineralogy, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Tsz Ho Chiu
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | - Stefan B. Haderlein
- Environmental
Chemistry and Mineralogy, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence: EXC 2124: Controlling Microbes to Fight Infection, 72076 Tübingen, Germany
| | - Prachi Joshi
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Liu J, Hou J, Xiong J, Ren L, Wang M, Tan W, Kappler A. Quantitative Enhancement of Arsenate Immobilization Induced by Vacancy Defects on Various Exposed Lattice Facets of Hematite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2802-2814. [PMID: 39886836 DOI: 10.1021/acs.est.4c11344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Defects are common features in hematite that arise from deviations from the perfect mineral crystal structure. Vacancy defects have been shown to significantly enhance arsenate (As) immobilization by hematite. However, the contributions from vacancy defects on different exposed facets of hematite have not been fully quantified. In this study, hematite samples with various morphologies were pretreated with sodium borohydride (NaBH4) to generate oxygen vacancy defects (OVDs), analyzed quantitatively using extended X-ray absorption fine structure (EXAFS) and thermogravimetric analysis (TG). Batch experiments revealed that the OVDs on different exposed facets showed significant variations in improving arsenate adsorption, i.e., the quantitative enhancement of arsenate adsorption amount per unit OVD concentration (ΔQm/Cdefect) followed the sequence of (110) facet (80.05 μmol/mmoldef) > (001) facet (31.85 μmol/mmoldef) > (012) facet (13.14 μmol/mmoldef). The underlying mechanism by which OVDs affect arsenate adsorption across different exposed facets of hematite was studied. The results reveal that the tremendous improvement of arsenate adsorption caused by OVDs on the (110) facet compared to (001) and (012) facets was attributed to their stronger bonding strength of As to under-coordinated Fe atoms, thus significantly promoting the immobilization of arsenate. The findings of this study enhance our ability to precisely understand the migration and fate of As while also aiding in the design of highly efficient iron mineral materials for mitigating As pollution.
Collapse
Affiliation(s)
- Juan Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
4
|
Emerson HP, Szecsody JE, Halter C, Robinson JL, Thomle JN, Bowden ME, Qafoku O, Resch CT, Slater LD, Freedman VL. Spectral induced polarization of corrosion of sulfur modified Iron in sediments. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104439. [PMID: 39368220 DOI: 10.1016/j.jconhyd.2024.104439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Spectral induced polarization (SIP) responses are not well understood within the context of remediation applications at contaminated sites. Systematic SIP studies are needed to gain further insights into the complex electrical response of dynamic, biogeochemical states to enable the use of SIP for subsurface site characterization and remediation monitoring. Although SIP measurements on zero valent iron have been previously published, the SIP response for sulfur modified iron (SMI), a similar potential subsurface reductive amendment, has not yet been reported. Hence, the purpose of this laboratory-scale study was to evaluate SIP for nonintrusive monitoring of SMI under relevant subsurface conditions. SMI was separately mixed with silica sand or sediments from the Hanford Site (Washington, USA) and then packed into columns for geochemical and SIP analysis for up to 77 days under fully saturated conditions. SMI exhibited distinguishable phase peaks between 0.1 and 1.0 Hz, which changed in magnitude based on content and were detected as low as 0.3 wt%. In the initial days, the complex conductivity, phase maxima, and chargeability increased while the peak locations shifted to higher frequency (decreasing relaxation times), suggesting an initial increase in polarization and concurrent decrease in the length scales (potentially due to changes in particle size and mineralogy). Then, after 77 days, the phase maxima and chargeability decreased with a concurrent increase in relaxation times, suggesting that over longer periods, less polarizable phases are forming and particle size or connectivity of polarizable phases is increasing. These results demonstrated a unique SIP response to SMI transformations that might be applied to monitoring of SMI emplaced as a subsurface barrier or injected in the field.
Collapse
Affiliation(s)
- Hilary P Emerson
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States of America.
| | - James E Szecsody
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States of America
| | - Christopher Halter
- Eastern Washington University, 526 5(th) Street, Cheney, WA 99004, United States of America
| | - Judy L Robinson
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States of America
| | - Jonathan N Thomle
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States of America
| | - Mark E Bowden
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States of America
| | - Odeta Qafoku
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States of America
| | - C Tom Resch
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States of America
| | - Lee D Slater
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States of America; Rutgers University Newark, 195 University Ave, Newark, NJ 07102, United States of America
| | - Vicky L Freedman
- Sealaska, 3200 George Washington Way, Richland, WA 99364, United States of America
| |
Collapse
|
5
|
An C, Hong W, Jiang X, Sun Y, Li X, Shen F, Zhu T. Catalytic Ozonation of Low Concentration Toluene over MnFeO x-USY Catalyst: Effects of Interactions between Catalytic Components and Introduction of Gas Phase NO x. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39088742 DOI: 10.1021/acs.est.4c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
A series of Mn and Fe metal oxide catalysts loaded onto USY, as well as single metal oxides, were prepared and characterized. The effects of interactions between the catalytic components and the introduction of gas phase NO on the catalytic ozonation of toluene were investigated. Characterization showed that there existed strong interactions between MnOx, FeOx, and USY, which enhanced the content of oxygen vacancies and acid sites of the catalysts and thus boosted the generation of reactive oxygen species and the adsorption of toluene. The MnFeOx-USY catalyst with MnOx and FeOx dimetallic oxides exhibited the most excellent performance of catalytic ozonation of toluene. On the other hand, the presence of NOx in reaction gas mixtures significantly promoted both toluene conversion and mineralization, which was attributed to the formation of nitrate species on the catalysts surface and thus the increase of both acid sites and toluene oxidation sites. Meanwhile, the reaction mechanism between O3 and C7H8 was modified in which the strong interactions between MnOx, FeOx, and USY accelerated the reaction progress based on the L-H route. In addition, the formation of the surface nitrate species not only promoted reaction progress following the L-H route but also resulted in the occurrence of the reaction via the E-R route.
Collapse
Affiliation(s)
- Chenguang An
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Wei Hong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xinxin Jiang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ye Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Tianle Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
6
|
Dong F, Zhu J, Lou J, Chen Z, He Z, Song S, Zhu L, Crittenden JC. Unveiling the Mechanism and Kinetics of Pollutant Attenuation by Free Radicals Triggered from Goethite in Water Distribution Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12664-12673. [PMID: 38953777 DOI: 10.1021/acs.est.4c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Investigating the fate of persistent organic pollutants in water distribution systems (WDSs) is of great significance for preventing human health risks. The role of iron corrosion scales in the migration and transformation of organics in such systems remains unclear. Herein, we determined that hydroxyl (•OH), chlorine, and chlorine oxide radicals are generated by Fenton-like reactions due to the coexistence of oxygen vacancy-related Fe(II) on goethite (a major constituent of iron corrosion scales) and hypochlorous acid (HClO, the main reactive chlorine species of residual chlorine at pH ∼ 7.0). •OH contributed mostly to the decomposition of atrazine (ATZ, model compound) more than other radicals, producing a series of relatively low-toxicity small molecular intermediates. A simplified kinetic model consisting of mass transfer of ATZ and HClO, •OH generation, and ATZ oxidation by •OH on the goethite surface was developed to simulate iron corrosion scale-triggered residual chlorine oxidation of organic compounds in a WDS. The model was validated by comparing the fitting results to the experimental data. Moreover, the model was comprehensively applicable to cases in which various inorganic ions (Ca2+, Na+, HCO3-, and SO42-) and natural organic matter were present. With further optimization, the model may be employed to predict the migration and accumulation of persistent organic pollutants under real environmental conditions in the WDSs.
Collapse
Affiliation(s)
- Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, Peoples Republic of China
| | - Jiani Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, Peoples Republic of China
| | - Jinxiu Lou
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, Peoples Republic of China
| | - Zefang Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiqiao He
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, Peoples Republic of China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, Peoples Republic of China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Peoples Republic of China
| | - John C Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Sheng H, Liu W, Wang Y, Ye L, Jing C. Incorporation of Shewanella oneidensis MR-1 and goethite stimulates anaerobic Sb(III) oxidation by the generation of labile Fe(III) intermediate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124008. [PMID: 38641038 DOI: 10.1016/j.envpol.2024.124008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Dissimilatory iron-reducing bacteria (DIRB) affect the geochemical cycling of redox-sensitive pollutants in anaerobic environments by controlling the transformation of Fe morphology. The anaerobic oxidation of antimonite (Sb(III)) driven by DIRB and Fe(III) oxyhydroxides interactions has been previously reported. However, the oxidative species and mechanisms involved remain unclear. In this study, both biotic phenomenon and abiotic verification experiments were conducted to explore the formed oxidative intermediates and related processes that lead to anaerobic Sb(III) oxidation accompanied during dissimilatory iron reduction. Sb(V) up to 2.59 μmol L-1 combined with total Fe(II) increased to 188.79 μmol L-1 when both Shewanella oneidensis MR-1 and goethite were present. In contrast, no Sb(III) oxidation or Fe(III) reduction occurred in the presence of MR-1 or goethite alone. Negative open circuit potential (OCP) shifts further demonstrated the generation of interfacial electron transfer (ET) between biogenic Fe(II) and goethite. Based on spectrophotometry, electron spin resonance (ESR) test and quenching experiments, the active ET production labile Fe(III) was confirmed to oxidize 94.12% of the Sb(III), while the contribution of other radicals was elucidated. Accordingly, we proposed that labile Fe(III) was the main oxidative species during anaerobic Sb(III) oxidation in the presence of DIRB and that the toxicity of antimony (Sb) in the environment was reduced. Considering the prevalence of DIRB and Fe(III) oxyhydroxides in natural environments, our findings provide a new perspective on the transformation of redox sensitive substances and build an eco-friendly bioremediation strategy for treating toxic metalloid pollution.
Collapse
Affiliation(s)
- Huamin Sheng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Wenjing Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Li Ye
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
8
|
Li H, Deng J, Jia Q, Zhu L, Huang LZ. Enhanced Fe(OH) 2-driven reductive Dechlorination via shortened Fe-O bonds and colloidal medium. WATER RESEARCH 2024; 256:121589. [PMID: 38608620 DOI: 10.1016/j.watres.2024.121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Fe2+ is usually adsorbed to the surface of iron-bearing clay, and iron (hydr)oxide in groundwater. However, the reductive activity of Fe(OH)2, a prevalent intermediate during the transformation of Fe2+, remains unclear. In this study, high-purity Fe(OH)2 was synthesized and tested for its activity in the degradation of carbon tetrachloride (CT). XRD data confirm that the synthesized material is a pure Fe(OH)2 crystal, exhibiting sharp peaks of (001) and (100) facets. Zeta potential analysis confirms that the off-white Fe(OH)2 is a colloidal suspension with a positive charge of ∼+35-50 mV. FTIR spectra reveal the formation of a coordination compound Fe2+ with OH-/OD-, derived from NaOH/OD. SEM and HRTEM results demonstrate that the Fe(OH)2 crystal has a regular octahedral structure with a size of ∼30-70 nm and average lattice spacings of 2.58 Å. Mössbauer spectrum verifies that the Fe2+ in Fe(OH)2/Fe(OD)2 is hexacoordinated with six Fe-O bonds. XAFS data demonstrate that the Fe-O bonds become shorter as the OH-:Fe(II) ratios increase. DFT results indicate that the (100) crystal face of Fe(OH)2 more readily transfers electrons to CT. In addition to being adsorbed to iron compounds, structural Fe2+ compounds such as Fe(OH)2 could also accelerate the electron transfer from Fe2+ to CT through shortened Fe-O bonds. The rate constant of CT reduction by Fe(OH)2 is as high as 0.794 min-1 when the OH-:Fe(II) ratio is 2.5 in water. This study aims to enhance our understanding of the structure-reactivity relationship of Fe2+ compounds in groundwater, particularly in relation to electron transfer mechanisms.
Collapse
Affiliation(s)
- Huafeng Li
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, China
| | - Jia Deng
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, China
| | - Qianqian Jia
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, China
| | - Liandong Zhu
- School of Resources and Environmental Science, Wuhan University, Wuhan, PR China
| | - Li-Zhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, China.
| |
Collapse
|
9
|
de Alwis C, Wahr K, Perrine KA. Influence of Cations on Direct CO 2 Capture and Mineral Film Formation: The Role of KCl and MgCl 2 at the Air/Electrolyte/Iron Interface. J Phys Chem A 2024; 128:4052-4067. [PMID: 38718205 DOI: 10.1021/acs.jpca.4c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Uncovering the mechanisms associated with CO2 capture through mineralization is vital for addressing rising CO2 levels. Iron in planetary soils, the mineral cycle, and atmospheric dust react with CO2 through complex surface chemistry. Here, the effect of cations on the growth of carbonate films on iron surfaces was investigated. In situ polarized modulated infrared reflection absorption spectroscopy was used to measure CO2 adsorption and oxidation of iron in MgCl2(aq) and KCl(aq), compared to FeCl2(aq) at the air/electrolyte/iron interface. The cation was found to influence the film composition and growth rates, as corroborated by infrared and photoelectron spectroscopy. In MgCl2(aq), a mixture of hydromagnesite, magnesite, and a Mg hydroxy carbonate film was grown on iron, while in KCl(aq), a potassium-rich bicarbonate film was grown. The cations were found to affect the rates of hydroxylation and carbonation, confirming a specific cation effect on carbonate film growth. In the submerged region, a heterogeneous mixture of lepidocrocite and iron hydroxy carbonate was produced, suggesting that Fe2+ dominates the surface products. Surface roughness measurements from in situ atomic force microscopy indicate iron initially corrodes faster in MgCl2(aq) than KCl(aq), due to the Cl- ions that initiate pitting and corrosion. In this region, cations were not found to affect the morphologies. This study shows surface corrosion is necessary to provide nucleation sites for film growth and that the cations influence the carbonate film, relevant for CO2 capture and planetary processes.
Collapse
Affiliation(s)
- Chathura de Alwis
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Kayleigh Wahr
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Kathryn A Perrine
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
10
|
Xiang Y, Liu J, Chen Y, Zhang H, Ren L, Ye B, Tan W, Andreas K, Hou J. The change of coordination environments induced by vacancy defects in hematite leads to a contrasting difference between cation Pb(II) and oxyanion As(V) immobilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123318. [PMID: 38218545 DOI: 10.1016/j.envpol.2024.123318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Hematite is an iron oxide commonly found in terrestrial environments and plays an essential role in controlling the migration of heavy metal(loid)s in groundwater and sediments. Although defects were shown to exist both in naturally occurring and laboratory-synthesized hematite, their influences on the immobilization of heavy metal(loid)s remain poorly understood. In this study, hematite samples with tunable vacancy defect concentrations were synthesized to evaluate their adsorption capacities for the cation Pb(II) and for the oxyanion As(V). The defects in hematite were characterized using XRD, TEM-EDS mapping, position annihilation lifetime spectroscopy, and XAS. The surface charge characteristics in defective hematite were investigated using zeta potential measurements. We found that Fe vacancies were the primary defect type in the hematite structure. Batch experiments confirmed that Fe vacancies in hematite promoted As(V) adsorption, while they decreased Pb(II) adsorption. The reason for the opposite effects of Fe vacancies on Pb(II) and As(V) immobilization was investigated using DFT calculations and EXAFS analysis. The results revealed that Fe vacancies altered As-Fe coordination from a monodentate to a bidentate complex and increased the length of the Pb-Fe bond on the hematite surface, thereby leading to an increase in As(V) bonding strength, while decreasing Pb(II) adsorption affinity. In addition, the zeta potential analysis demonstrated that the presence of Fe vacancies led to an increase in the isoelectric point (IEP) of hematite samples, which therefore decreased the attraction for the cation Pb(II) and increased the attraction for the oxyanion As(V). The combination of these two effects caused by defects contributed to the contrasting difference between cation Pb(II) and oxyanion As(V) immobilization by defective hematite. Our study therefore provides new insights into the migration and fate of toxic heavy metal(loid)s controlled by iron minerals.
Collapse
Affiliation(s)
- Yongjin Xiang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen Chen
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kappler Andreas
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen, 72076, Germany
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Ledingham GJ, Fang Y, Catalano JG. Irreversible Trace Metal Binding to Goethite Controlled by the Ion Size. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2007-2016. [PMID: 38232091 DOI: 10.1021/acs.est.3c06516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The dynamics of trace metals at mineral surfaces influence their fate and bioaccessibility in the environment. Trace metals on iron (oxyhydr)oxide surfaces display adsorption-desorption hysteresis, suggesting entrapment after aging. However, desorption experiments may perturb the coordination environment of adsorbed metals, the distribution of labile Fe(III), and mineral aggregation properties, influencing the interpretation of labile metal fractions. In this study, we investigated irreversible binding of nickel, zinc, and cadmium to goethite after aging times of 2-120 days using isotope exchange. Dissolved and adsorbed metal pools exchange rapidly, with half times <90 min, but all metals display a solid-associated fraction inaccessible to isotope exchange. The size of this nonlabile pool is the largest for nickel, with the smallest ionic radius, and the smallest for cadmium, with the largest ionic radius. Spectroscopy and extractions suggest that the irreversibly bound metals are incorporated in the goethite structure. Rapid exchange of labile solid-associated metals with solution demonstrates that adsorbed metals can sustain the dissolved pool in response to biological uptake or fluid flow. Trace metal fractions that irreversibly bind following adsorption provide a contaminant sequestration pathway, limit the availability of micronutrients, and record metal isotope signatures of environmental processes.
Collapse
Affiliation(s)
- Greg J Ledingham
- Department of Earth, Environmental, and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yihang Fang
- Department of Earth, Environmental, and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jeffrey G Catalano
- Department of Earth, Environmental, and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
12
|
Chi J, Ou Y, Li F, Zhang W, Zhai H, Liu T, Chen Q, Zhou X, Fang L. Cooperative roles of phosphate and dissolved organic matter in inhibiting ferrihydrite transformation and their distinct fates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168376. [PMID: 37952664 DOI: 10.1016/j.scitotenv.2023.168376] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Phosphate and dissolved organic matter (DOM) mediate the crystalline transformation of ferrihydrite catalyzed by Fe(II) in subsurface environments such as soils and groundwater. However, the cooperative mechanisms underlying the mediation of phosphate and DOM in crystalline transformation of ferrihydrite and the feedback effects on their own distribution and speciation remain unresolved. In this study, solid characterization indicates that phosphate and DOM can collectively inhibit the crystalline transformation of ferrihydrite to lepidocrocite and thus goethite, via synergetic effects of inhibiting recrystallization and electron transfer. Phosphate can be retained on the surface or transformed to a nonextractable form within Fe oxyhydroxides; DOM is either released into the solution or preserved in an extractable form, while it is not incorporated or retained in the interior. Element distribution and DOM composition analysis on Fe oxyhydroxides reveals even distribution of phosphate on the newly formed Fe oxyhydroxides, while the distribution of DOM depends on its specific species. Electrochemical and dynamic force spectroscopic results provide molecular-scale thermodynamic evidence explaining the inhibition of electron transfer between Fe(II) and ferrihydrite by phosphate and DOM, thus influecing the crystalline transformation of ferrihydrite and the distribution of phosphate and DOM. This study provides new insights into the coupled biogeological cycle of Fe with phosphate and DOM in aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yanan Ou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hang Zhai
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
13
|
Latta D, Rosso KM, Scherer MM. Tracking Initial Fe(II)-Driven Ferrihydrite Transformations: A Mössbauer Spectroscopy and Isotope Investigation. ACS EARTH & SPACE CHEMISTRY 2023; 7:1814-1824. [PMID: 37876661 PMCID: PMC10591510 DOI: 10.1021/acsearthspacechem.2c00291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/22/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
Transformation of nanocrystalline ferrihydrite to more stable microcrystalline Fe(III) oxides is rapidly accelerated under reducing conditions with aqueous Fe(II) present. While the major steps of Fe(II)-catalyzed ferrihydrite transformation are known, processes in the initial phase that lead to nucleation and the growth of product minerals remain unclear. To track ferrihydrite-Fe(II) interactions during this initial phase, we used Fe isotopes, Mössbauer spectroscopy, and extractions to monitor the structural, magnetic, and isotope composition changes of ferrihydrite within ∼30 min of Fe(II) exposure. We observed rapid isotope mixing between aqueous Fe(II) and ferrihydrite during this initial lag phase. Our findings from Mössbauer spectroscopy indicate that a more magnetically ordered Fe(III) phase initially forms that is distinct from ferrihydrite and bulk crystalline transformation products. The signature of this phase is consistent with the early stage emergence of lepidocrocite-like lamellae observed in previous transmission electron microscopy studies. Its signature is furthermore removed by xylenol extraction of Fe(III), the same approach used to identify a chemically labile form of Fe(III) resulting from Fe(II) contact that is correlated to the ultimate emergence of crystalline product phases detectable by X-ray diffraction. Our work indicates that the mineralogical changes in the initial lag phase of Fh transformation initiated by Fe(II)-Fh electron transfer are critical to understanding ferrihydrite behavior in soils and sediments, particularly with regard to metal uptake and release.
Collapse
Affiliation(s)
- Drew Latta
- Department
of Civil and Environmental Engineering/IIHR, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kevin M. Rosso
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99345, United States
| | - Michelle M. Scherer
- Department
of Civil and Environmental Engineering/IIHR, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
14
|
Cárdenas-Hernández PA, Hickey K, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Linear Free Energy Relationship for Predicting the Rate Constants of Munition Compound Reduction by the Fe(II)-Hematite and Fe(II)-Goethite Redox Couples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13646-13657. [PMID: 37610109 DOI: 10.1021/acs.est.3c04714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Abiotic reduction by iron minerals is arguably the most important fate process for munition compounds (MCs) in subsurface environments. No model currently exists that can predict the abiotic reduction rates of structurally diverse MCs by iron (oxyhydr)oxides. We performed batch experiments to measure the rate constants for the reduction of three classes of MCs (poly-nitroaromatics, nitramines, and azoles) by hematite or goethite in the presence of aqueous Fe2+. The surface area-normalized reduction rate constant (kSA) depended on the aqueous-phase one-electron reduction potential (EH1) of the MC and the thermodynamic state (i.e., pe and pH) of the iron oxide-Feaq2+ system. A linear free energy relationship (LFER), similar to that reported previously for nitrobenzene, successfully captures all MC reduction rate constants that span 6 orders of magnitude: log ( k S A ) = ( 1.12 ± 0.04 ) [ 0.53 E H 1 59 m V - ( p H + p e ) ] + ( 5.52 ± 0.23 ) . The finding that the rate constants of all the different classes of MCs can be described by a single LFER suggests that these structurally diverse nitro compounds are reduced by iron oxide-Feaq2+ couples through a common mechanism up to the rate-limiting step. Multiple mechanistic implications of the results are discussed. This study expands the applicability of the LFER model for predicting the reduction rates of legacy and emerging MCs and potentially other nitro compounds.
Collapse
Affiliation(s)
- Paula A Cárdenas-Hernández
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kevin Hickey
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Liu X, Wang Y, Xiang H, Wu J, Yan X, Zhang W, Lin Z, Chai L. Unveiling the crucial role of iron mineral phase transformation in antimony(V) elimination from natural water. ECO-ENVIRONMENT & HEALTH 2023; 2:176-183. [PMID: 38074990 PMCID: PMC10702924 DOI: 10.1016/j.eehl.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 06/24/2024]
Abstract
Antimony (Sb) in natural water has long-term effects on both the ecological environment and human health. Iron mineral phase transformation (IMPT) is a prominent process for removing Sb(V) from natural water. However, the importance of IMPT in eliminating Sb remains uncertain. This study examined the various Sb-Fe binding mechanisms found in different IMPT pathways in natural water, shedding light on the underlying mechanisms. The study revealed that the presence of goethite (Goe), hematite (Hem), and magnetite (Mag) significantly affected the concentration of Sb(V) in natural water. Elevated pH levels facilitated higher Fe content in iron solids but impeded the process of removing Sb(V). To further our understanding, polluted natural water samples were collected from various locations surrounding Sb smelter sites. Results confirmed that converting ferrihydrite (Fhy) to Goe significantly reduced Sb levels (<5 μg/L) in natural water. The emergence of secondary iron phases resulted in greater electrostatic attraction and stabilized surface complexes, which was the most likely cause of the decline of Sb concentration in natural water. The comprehensive findings offer new insights into the factors governing IMPT as well as the Sb(V) behavior control.
Collapse
Affiliation(s)
- Xiaoyun Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yunyan Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Hongrui Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jiahui Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
16
|
Liu J, Xiang Y, Chen Y, Zhang H, Ye B, Ren L, Tan W, Kappler A, Hou J. Quantitative Contribution of Oxygen Vacancy Defects to Arsenate Immobilization on Hematite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12453-12464. [PMID: 37561149 DOI: 10.1021/acs.est.3c03441] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Hematite is a common iron oxide in natural environments, which has been observed to influence the transport and fate of arsenate by its association with hematite. Although oxygen vacancies were demonstrated to exist in hematite, their contributions to the arsenate immobilization have not been quantified. In this study, hematite samples with tunable oxygen vacancy defect (OVD) concentrations were synthesized by treating defect-free hematite using different NaBH4 solutions. The vacancy defects were characterized by positron annihilation lifetime spectroscopy, Doppler broadening of annihilation radiation, extended X-ray absorption fine structure (EXAFS), thermogravimetric mass spectrometry (TG-MS), electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS). The results revealed that oxygen vacancy was the primary defect type existing on the hematite surface. TG-MS combined with EPR analysis allowed quantification of OVD concentrations in hematite. Batch experiments revealed that OVDs had a positive effect on arsenate adsorption, which could be quantitatively described by a linear relationship between the OVD concentration (Cdef, mmol m-2) and the enhanced arsenate adsorption amount caused by defects (ΔQm, μmol m-2) (ΔQm = 20.94 Cdef, R2 = 0.9813). NH3-diffuse reflectance infrared Fourier transform (NH3-DRIFT) analysis and density functional theory (DFT) calculations demonstrated that OVDs in hematite were beneficial to the improvement in adsorption strength of surface-active sites, thus considerably promoting the immobilization of arsenate.
Collapse
Affiliation(s)
- Juan Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongjin Xiang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiwen Chen
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Chen C, Dong Y, Thompson A. Electron Transfer, Atom Exchange, and Transformation of Iron Minerals in Soils: The Influence of Soil Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449758 DOI: 10.1021/acs.est.3c01876] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Despite substantial experimental evidence of electron transfer, atom exchange, and mineralogical transformation during the reaction of Fe(II)aq with synthetic Fe(III) minerals, these processes are rarely investigated in natural soils. Here, we used an enriched Fe isotope approach and Mössbauer spectroscopy to evaluate how soil organic matter (OM) influences Fe(II)/Fe(III) electron transfer and atom exchange in surface soils collected from Luquillo and Calhoun Experimental Forests and how this reaction might affect Fe mineral composition. Following the reaction of 57Fe-enriched Fe(II)aq with soils for 33 days, Mössbauer spectra demonstrated marked electron transfer between sorbed Fe(II) and the underlying Fe(III) oxides in soils. Comparing the untreated and OM-removed soils indicates that soil OM largely attenuated Fe(II)/Fe(III) electron transfer in goethite, whereas electron transfer to ferrihydrite was unaffected. Soil OM also reduced the extent of Fe atom exchange. Following reaction with Fe(II)aq for 33 days, no measurable mineralogical changes were found for the Calhoun soils enriched with high-crystallinity goethite, while Fe(II) did drive an increase in Fe oxide crystallinity in OM-removed LCZO soils having low-crystallinity ferrihydrite and goethite. However, the presence of soil OM largely inhibited Fe(II)-catalyzed increases in Fe mineral crystallinity in the LCZO soil. Fe atom exchange appears to be commonplace in soils exposed to anoxic conditions, but its resulting Fe(II)-induced recrystallization and mineral transformation depend strongly on soil OM content and the existing soil Fe phases.
Collapse
Affiliation(s)
- Chunmei Chen
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yanjun Dong
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Aaron Thompson
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Fan X, Liu N, Yang J, Yu Y, Xu Y, Song C, Liu Y. Boosting peroxymonosulfate activation by iron-based dual active site for efficient sulfamethoxazole degradation: synergism of Fe and N-doped carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27391-6. [PMID: 37156954 DOI: 10.1007/s11356-023-27391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Persulfate activation is emerged as an alternative applied in environment remediation, but it is still a great challenge to develop highly active catalysts for efficient degradation of organic pollutants. Herein, a heterogeneous iron-based catalyst with dual-active sites was synthesized by embedding Fe nanoparticles (FeNPs) onto the nitrogen-doped carbon, which was used to activate peroxymonosulfate (PMS) for antibiotics decomposition. The systematic investigation indicated the optimal catalyst exhibited a significant and stable degradation efficiency of sulfamethoxazole (SMX), in which the SMX can be completely removed in 30 min even after 5 cycle tests. Such satisfactory performance was mainly attributed to the successful construction of electron-deficient C centers and electron-rich Fe centers via the short C-Fe bonds. These short C-Fe bonds accelerated electrons to shuttle from SMX molecules to electron-rich Fe centers with a low transmission resistance and short transmission distance, enabling Fe (III) to receive electrons to promote the regeneration of Fe (II) for durable and efficient PMS activation during SMX degradation. Meanwhile, the N-doped defects in the carbon also provided reactive bridges that accelerated the electron transfer between FeNPs and PMS, ensuring the synergistic effects toward Fe (II)/Fe (III) cycle to some extent. The quenching tests and electron paramagnetic resonance (EPR) indicated O2·- and 1O2 were the dominant active species during the SMX decomposition. As a result, this work provides an innovative method to construct a high-performance catalyst to active sulfate for organic contaminant degradation.
Collapse
Affiliation(s)
- Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Na Liu
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Jia Yang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Yueling Yu
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Yuanlu Xu
- College of Transport Engineering, Dalian Maritime University, Dalian, 116026, China.
- Centre for Ports and Maritime Safety, Dalian Maritime University, Dalian, 116026, China.
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, University of Technology, DalianDalian, 116024, China
| |
Collapse
|
19
|
Zhang X, Fu Q, Hu H, Zhu J, Liu Y. Effects of Fe(II) on As(III) oxidation in Fe(II)-As(III) co-oxidation: Limiting and driving roles. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130790. [PMID: 36669406 DOI: 10.1016/j.jhazmat.2023.130790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The co-oxidation of Fe(II) and As(III) occurs under aerobic conditions, and Fe(II) may largely determine the fate of As(III), but the effect of Fe(II) on the As(III) oxidation is barely explored. In this research, the limiting and driving roles of Fe(II) in As(III) oxidation were systematically studied through batch kinetic studies in combination with X-ray photoelectron spectroscopy (XPS) depth profiling, scanning electron microscopy and energy dispersive X-ray spectrometry (SEM-EDS), and quenching experiments. The results showed that As(III) oxidation efficiency increased with the increase of Fe/As molar ratio (from 63.1% to 98.3%), but decreased with the increase of pH (from 96.0% to 44.2%) and the increase of air flow rate (from 88.1% to 75.1%). The Fe(II) oxidation rate increased with the increase of pH and air flow rate. When Fe(II) was oxidized rapidly, As(III) was more likely to be immobilized in the "inner sphere" of formed Fe (hydr)oxides, limiting As(III) oxidation. On the other hand, Fe(II) was oxidized to produce Fe (hydr)oxides to adsorb or fix As(III); meanwhile, the ROS generated by Fenton-like reaction of Fe(II) promoted As(III) oxidation, especially, •O2- and H2O2 were important ROS that drove the As(III) oxidation. These findings might provide a new insight for Fe(II) and As(III) geochemistry cycling in naturally occurring environment.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
20
|
Liu R, Kong S, Shao Y, Cai D, Bai B, Wei X, Root RA, Gao X, Li C, Chorover J. Mechanisms and health implications of toxicity increment from arsenate-containing iron minerals through in vitro gastrointestinal digestion. GEODERMA 2023; 432:116377. [PMID: 37928070 PMCID: PMC10624400 DOI: 10.1016/j.geoderma.2023.116377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Inadvertent oral ingestion is an important exposure pathway of arsenic (As) containing soil and dust. Previous researches evidenced health risk of bioaccessible As from soil and dust, but it is unclear about As mobilization mechanisms in health implications from As exposure. In this study, we investigated As release behaviors and the solid-liquid interface reactions toward As(V)-containing iron minerals in simulated gastrointestinal bio-fluids. The maximum As release amount was 0.57 mg/L from As-containing goethite and 0.82 mg/L from As-containing hematite at 9 h, and the As bioaccessibility was 10.8% and 21.6%, respectively. The higher exposure risk from hematite-sorbed As in gastrointestinal fluid was found even though goethite initially contained more arsenate than hematite. Mechanism analysis revealed that As release was mainly coupled with acid dissolution and reductive dissolution of iron minerals. Proteases enhanced As mobilization and thus increased As bioaccessibility. The As(V) released and simultaneously transformed to high toxic As(III) by gastric pepsin, while As(V) reduction in intestine was triggered by pancreatin and freshly formed Fe(II) in gastric digests. CaCl2 reduced As bioaccessibility, indicating that calcium-rich food or drugs may be effective dietary strategies to reduce As toxicity. The results deepened our understanding of the As release mechanisms associated with iron minerals in the simulated gastrointestinal tract and supplied a dietary strategy to alleviate the health risk of incidental As intake.
Collapse
Affiliation(s)
- Ruiqi Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Shuqiong Kong
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Yixian Shao
- Zhejiang Institute of Geological Survey, Hangzhou 311203, Zhejiang, PR China
| | - Dawei Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Bing Bai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Xiaguo Wei
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Robert A. Root
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, United States
| | - Xubo Gao
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Chengcheng Li
- State Key of Biogeology and Environmental Geology Laboratory, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
21
|
Fang L, Hong Z, Borch T, Shi Q, Li F. Iron Vacancy Accelerates Fe(II)-Induced Anoxic As(III) Oxidation Coupled to Iron Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2175-2185. [PMID: 36693009 DOI: 10.1021/acs.est.2c07833] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemical oxidation of As(III) by iron (Fe) oxyhydroxides has been proposed to occur under anoxic conditions and may play an important role in stabilization and detoxification of As in subsurface environments. However, this reaction remains controversial due to lack of direct evidence and poorly understood mechanisms. In this study, we show that As(III) oxidation can be facilitated by Fe oxyhydroxides (i.e., goethite) under anoxic conditions coupled with the reduction of structural Fe(III). An excellent electron balance between As(V) production and Fe(III) reduction is obtained. The formation of an active metastable Fe(III) phase at the defective surface of goethite due to atom exchange is responsible for the oxidation of As(III). Furthermore, the presence of defects (i.e., Fe vacancies) in goethite can noticeably enhance the electron transfer (ET) and atom exchange between the surface-bound Fe(II) and the structural Fe(III) resulting in a two time increase in As(III) oxidation. Atom exchange-induced regeneration of active goethite sites is likely to facilitate As(III) coordination and ET with structural Fe(III) based on electrochemical analysis and theoretical calculations showing that this reaction pathway is thermodynamically and kinetically favorable. Our findings highlight the synergetic effects of defects in the Fe crystal structure and Fe(II)-induced catalytic processes on anoxic As(III) oxidation, shedding a new light on As risk management in soils and subsurface environments.
Collapse
Affiliation(s)
- Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Zebin Hong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Thomas Borch
- Department of Soil and Crop Sciences and Department of Chemistry, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado80523, United States
| | - Qiantao Shi
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, New Jersey07030, United States
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| |
Collapse
|
22
|
Hong Z, Li F, Borch T, Shi Q, Fang L. Incorporation of Cu into Goethite Stimulates Oxygen Activation by Surface-Bound Fe(II) for Enhanced As(III) Oxidative Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2162-2174. [PMID: 36703566 DOI: 10.1021/acs.est.2c07065] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The dark production of reactive oxygen species (ROS) coupled to biogeochemical cycling of iron (Fe) plays a pivotal role in controlling arsenic transformation and detoxification. However, the effect of secondary atom incorporation into Fe(III) oxyhydroxides on this process is poorly understood. Here, we show that the presence of oxygen vacancy (OV) as a result of Cu incorporation in goethite substantially enhances the As(III) oxidation by Fe(II) under oxic conditions. Electrochemical and density functional theory (DFT) evidence reveals that the electron transfer (ET) rate constant is enhanced from 0.023 to 0.197 s-1, improving the electron efficiency of the surface-bound Fe(II) on OV defective surfaces. The cascade charge transfer from the surface-bound Fe(II) to O2 mediated by Fe(III) oxyhydroxides leads to the O-O bond of O2 stretching to 1.46-1.48 Å equivalent to that of superoxide (•O2-), and •O2- is the predominant ROS responsible for As(III) oxidation. Our findings highlight the significant role of atom incorporation in changing the ET process on Fe(III) oxyhydroxides for ROS production. Thus, such an effect must be considered when evaluating Fe mineral reactivity toward changing their surface chemistry, such as those noted here for Cu incorporation, which likely determines the fates of arsenic and other redox sensitive pollutants in the environments with oscillating redox conditions.
Collapse
Affiliation(s)
- Zebin Hong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Thomas Borch
- Department of Soil and Crop Sciences and Department of Chemistry, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado80523, United States
| | - Qiantao Shi
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, New Jersey07030, United States
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| |
Collapse
|
23
|
Robinson T, Latta DE, Leddy J, Scherer MM. Redox Potentials of Magnetite Suspensions under Reducing Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17454-17461. [PMID: 36394877 PMCID: PMC9730839 DOI: 10.1021/acs.est.2c05196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Predicting the redox behavior of magnetite in reducing soils and sediments is challenging because there is neither agreement among measured potentials nor consensus on which Fe(III) | Fe(II) equilibria are most relevant. Here, we measured open-circuit potentials of stoichiometric magnetite equilibrated over a range of solution conditions. Notably, electron transfer mediators were not necessary to reach equilibrium. For conditions where ferrous hydroxide precipitation was limited, Nernstian behavior was observed with an EH vs pH slope of -179 ± 4 mV and an EH vs Fe(II)aq slope of -54 ± 4 mV. Our estimated EHo of 857 ± 8 mV closely matches a maghemite|aqueous Fe(II) EHo of 855 mV, suggesting that it plays a dominant role in poising the solution potential and that it's theoretical Nernst equation of EH[mV] = 855 - 177 pH - 59 log [Fe2+] may be useful in predicting magnetite redox behavior under these conditions. At higher pH values and without added Fe(II), a distinct shift in potentials was observed, indicating that the dominant Fe(III)|Fe(II) couple(s) poising the potential changed. Our findings, coupled with previous Mössbauer spectroscopy and kinetic data, provide compelling evidence that the maghemite/Fe(II)aq couple accurately predicts the redox behavior of stoichiometric magnetite suspensions in the presence of aqueous Fe(II) between pH values of 6.5 and 8.5.
Collapse
Affiliation(s)
- Thomas
C. Robinson
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa52242, United States
| | - Drew E. Latta
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa52242, United States
| | - Johna Leddy
- Department
of Chemistry, University of Iowa, Iowa City, Iowa52242, United States
| | - Michelle M. Scherer
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa52242, United States
| |
Collapse
|
24
|
Le AV, Muehe EM, Drabesch S, Lezama Pacheco J, Bayer T, Joshi P, Kappler A, Mansor M. Environmental Risk of Arsenic Mobilization from Disposed Sand Filter Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16822-16830. [PMID: 36351078 DOI: 10.1021/acs.est.2c04915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Arsenic (As)-bearing water treatment residuals (WTRs) from household sand filters are usually disposed on top of floodplain soils and may act as a secondary As contamination source. We hypothesized that open disposal of these filter-sands to soils will facilitate As release under reducing conditions. To quantify the mobilization risk of As, we incubated the filter-sand, the soil, and a mixture of the filter-sand and soil in anoxic artificial rainwater and followed the dynamics of reactive Fe and As in aqueous, solid, and colloidal phases. Microbially mediated Fe(III)/As(V) reduction led to the mobilization of 0.1-4% of the total As into solution with the highest As released from the mixture microcosms equaling 210 μg/L. Due to the filter-sand and soil interaction, Mössbauer and X-ray absorption spectroscopies indicated that up to 10% Fe(III) and 32% As(V) were reduced in the mixture microcosm. Additionally, the mass concentrations of colloidal Fe and As analyzed by single-particle ICP-MS decreased by 77-100% compared to the onset of reducing conditions with the highest decrease observed in the mixture setups (>95%). Overall, our study suggests that (i) soil provides bioavailable components (e.g., organic matter) that promote As mobilization via microbial reduction of As-bearing Fe(III) (oxyhydr)oxides and (ii) As mobilization as colloids is important especially right after the onset of reducing conditions but its importance decreases over time.
Collapse
Affiliation(s)
- Anh Van Le
- Geomicrobiology, Department of Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - E Marie Muehe
- Plant Biogeochemistry, Department of Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
- Plant Biogeochemistry, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Soeren Drabesch
- Geomicrobiology, Department of Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Juan Lezama Pacheco
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Timm Bayer
- Geomicrobiology, Department of Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Prachi Joshi
- Geomicrobiology, Department of Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tuebingen, 72076 Tuebingen, Germany
| | - Muammar Mansor
- Geomicrobiology, Department of Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
25
|
Hou J, Tan X, Xiang Y, Zheng Q, Chen C, Sha Z, Ren L, Wang M, Tan W. Insights into the underlying effect of Fe vacancy defects on the adsorption affinity of goethite for arsenic immobilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120268. [PMID: 36167163 DOI: 10.1016/j.envpol.2022.120268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Goethite is a commonly found iron (hydr)oxide in soils and sediments that has been proven to possess abundant defects in structures. However, the underlying impact of these defects in goethite on arsenic immobilization remains unclear. In this study, goethite samples with abundant, moderate, and sparse defects were synthesized to evaluate their arsenic adsorption capacities. The characteristics of the defects in goethite were investigated by extended X-ray absorption fine structure (EXAFS), high angle annular dark field-scanning transmission electron microscopy-energy dispersion spectrum (HAADF-STEM-EDS) mapping, vibrating-sample magnetometry (VSM), and electron spin resonance (ESR). The characterization analysis revealed that the defects in as-synthesized goethite primarily existed in the form of Fe vacancies. Batch experiments demonstrated that the adsorption capacities of defect-rich goethite for As(V) and As(III) removal were 10.2 and 22.1 times larger than those of defect-poor goethite, respectively. The origin of the impact of Fe defects on arsenic immobilization was theoretically elucidated using density functional theory (DFT) calculations. The enhanced adsorption of goethite was attributed to the improvement of the arsenic affinity due to the Fe vacancy defect, thus considerably promoting arsenic immobilization. The findings of this study provide important insight into the migration and fate of arsenic in naturally occurring iron (hydr)oxides.
Collapse
Affiliation(s)
- Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoke Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjin Xiang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Zheng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenjie Sha
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
26
|
Fang L, Gao B, Li F, Liu K, Chi J. The nature of metal atoms incorporated in hematite determines oxygen activation by surface-bound Fe(II) for As(III) oxidation. WATER RESEARCH 2022; 227:119351. [PMID: 36399840 DOI: 10.1016/j.watres.2022.119351] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The incorporation of secondary metal atoms into iron oxyhydroxides may regulate the surface chemistry of mediating electron transfer (ET) and, therefore, the biogeochemical pollutant processes such as arsenic (As) in the subsurface and soils. The influence of incorporating two typical metals (Cu and Zn) into a specific {001} hematite facet on O2 activation by surface-bound Fe(II) was addressed. The results showed that Cu-incorporated hematite enhances As(III) oxidation in the presence of Fe(II) under oxic conditions and increases with increasing Cu content. Conversely, Zn incorporation leads to the opposite trend. The As(III) oxidation induced by surface-bound Fe(II) is positively related to the Fe(II) content and is favorable under acidic conditions. Reactive oxygen species (ROS), such as superoxide (·O2-) and H2O2, predominantly contribute to As(III) oxidation as a result of 1-electron transfer from bound Fe(II) to surface O2 on hematite and radical propagation. Electrochemical analysis demonstrates that Cu incorporation significantly lower the oxidation potential of Fe(II) on hematite, whereas Zn led to a higher reaction potential for Fe(II) oxidation. Subsequently, distinct surface reactivities of hematite for the activation of O2 to form ROS by surface-bound Fe(II) are evidenced by metal incorporation. Our study provides a new understanding of the changes in the surface chemistry of iron oxyhydroxides because of incorporating metals (Zn and Cu), and therefore impact the biogeochemical processes of pollutants in soils and subsurface environments.
Collapse
Affiliation(s)
- Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Baolin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
27
|
Notini L, ThomasArrigo LK, Kaegi R, Kretzschmar R. Coexisting Goethite Promotes Fe(II)-Catalyzed Transformation of Ferrihydrite to Goethite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12723-12733. [PMID: 35998342 PMCID: PMC9454240 DOI: 10.1021/acs.est.2c03925] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 05/13/2023]
Abstract
In redox-affected soil environments, electron transfer between aqueous Fe(II) and solid-phase Fe(III) catalyzes mineral transformation and recrystallization processes. While these processes have been studied extensively as independent systems, the coexistence of iron minerals is common in nature. Yet it remains unclear how coexisting goethite influences ferrihydrite transformation. Here, we reacted ferrihydrite and goethite mixtures with Fe(II) for 24 h. Our results demonstrate that with more goethite initially present in the mixture more ferrihydrite turned into goethite. We further used stable Fe isotopes to label different Fe pools and probed ferrihydrite transformation in the presence of goethite using 57Fe Mössbauer spectroscopy and changes in the isotopic composition of solid and aqueous phases. When ferrihydrite alone underwent Fe(II)-catalyzed transformation, Fe atoms initially in the aqueous phase mostly formed lepidocrocite, while those from ferrihydrite mostly formed goethite. When goethite was initially present, more goethite was formed from atoms initially in the aqueous phase, and nanogoethite formed from atoms initially in ferrihydrite. Our results suggest that coexisting goethite promotes formation of more goethite via Fe(II)-goethite electron transfer and template-directed nucleation and growth. We further hypothesize that electron transfer onto goethite followed by electron hopping onto ferrihydrite is another possible pathway to goethite formation. Our findings demonstrate that mineral transformation is strongly influenced by the composition of soil solid phases.
Collapse
Affiliation(s)
- Luiza Notini
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Laurel K. ThomasArrigo
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstraße 133, CH-8600 Dübendorf, Switzerland
| | - Ruben Kretzschmar
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| |
Collapse
|
28
|
Zhang S, Zhang R, Wu P, Zhang Y, Fu Y, An L, Zhang Y. Study on the precipitation of iron and the synchronous removal mechanisms of antimony and arsenic in the AMD under the induction of carbonate rocks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55161-55173. [PMID: 35316491 DOI: 10.1007/s11356-022-19728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The ecological environment can be severely polluted and destroyed by the acid mine drainage (AMD) generated during the exploration and utilization of minerals. However, neutralized by carbonate rocks (a natural material in Karst regions), the AMD secondary iron flocs containing a large number of iron oxides or hydroxide can be precipitated in AMD. The metal ions, such as antimony (Sb) and arsenic (As), can be effectively removed by these neutralizing products. In this paper, the neutralization reaction of different acid solutions in an iron-antimony-arsenic system was induced by carbonate rocks to explore the removal effect of metals during this neutralization process. Meanwhile, taking the release amounts of iron (Fe), Sb, and As as well as the phase transformation of minerals at different pH levels as stability indexes, we quantitatively analyzed the chemical stability of AMD neutralizing products (secondary iron flocs) containing Sb and As under the typical acid-base environment (pH = 3.0 ~ 9.0) of AMD and other waters. Results showed that the neutralization reaction with carbonate rocks induced the co-precipitation of Fe with Sb and As. When the concentration ratio of Fe, Sb, and As was 30:1:1, the pH of AMD raised from 3.0 to 7.28 within 72 h, and the three elements were removed by 99%, 85%, and 90%, respectively. After soaking the AMD secondary iron flocs in an acid environment (pH = 3.0) for 30 days, the release amount of Fe reached its peak of 0.070 mg/g. Then, when the pH value increased to 4.0, the As and Sb showed their maximum release amounts of 14.90 µg/g and 19.19 µg/g, respectively. In addition, under acidic conditions, these AMD secondary iron flocs were easily transformed into the goethite with better crystallinity and higher structural stability. This study could help reveal the development of the secondary mineral during the treatment of AMD by carbonate rocks and understand the release characteristics of metals from AMD secondary products containing Sb and As, which sheds light on and provides theoretical foundations for the passive treatment of AMD containing these two elements in the future.
Collapse
Affiliation(s)
- Shihong Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Ruixue Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Yahui Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yuran Fu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Li An
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yuhao Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
29
|
Xie S, Li C, Liao P, Wang J, Chen J, Qian A, Zhang Y, Wei T, Cheng D, Jia M. Experimental and modeling evidence of hydroxyl radical production in iron electrocoagulation as a new mechanism for contaminant transformation in bicarbonate electrolyte. WATER RESEARCH 2022; 220:118662. [PMID: 35640510 DOI: 10.1016/j.watres.2022.118662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/24/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Iron electrocoagulation is designed for sustainable high-efficiency and high-flexibility water purification applications. Recent advances reported that hydroxyl radicals (•OH)-based oxidative transformation of organic contaminants can occur in iron electrocoagulation. However, there is still a lack of mechanistic understanding the production of •OH in bicarbonate electrolyte, which presents a critical knowledge gap in the optimization of iron electrocoagulation technology towards practical application. Combined with contaminant degradation, radical quenching experiments, and spectroscopic techniques, we found that •OH was produced at rate of 16.1 μM∙h - 1 during 30-mA iron electrocoagulation in bicarbonate electrolyte through activation of O2 by Fe(II) under pH-neutral conditions. High yield of •OH occurred at pH 8.5, likely due to high adsorbed Fe(II) that can activate O2 to enhance •OH production. Mössbauer and X-ray photoelectron spectroscopy measurements substantiated that Fe(II)-adsorbed lepidocrocite was the dominant solid Fe(II) species at pH 8.5. A process-based kinetic modeling was developed to describe the dynamic of •OH production, Fe(II) oxidation, and contaminant degradation processes in iron electrocoagulation. Findings of this study extend the functionality of electrocoagulation from phase separation to •OH-based advanced oxidation process, which provides a new perspective for the development of electrocoagulation-based next generation sustainable water purification technology.
Collapse
Affiliation(s)
- Shiwei Xie
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chang Li
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ao Qian
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, China
| | - Yan Zhang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Taoyuan Wei
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Dong Cheng
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, China
| | - Mengqi Jia
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
30
|
Chen N, Geng M, Huang D, Tan M, Li Z, Liu G, Zhu C, Fang G, Zhou D. Hydroxyl radical formation during oxygen-mediated oxidation of ferrous iron on mineral surface: Dependence on mineral identity. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128861. [PMID: 35405609 DOI: 10.1016/j.jhazmat.2022.128861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/08/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Many studies have examined the redox behavior of ferrous ions (Fe(II)) sorbed to mineral surfaces. However, the associated hydroxyl radical (•OH) formation during Fe(II) oxidation by O2 was rarely investigated at circumneutral pH. Therefore, we examined •OH formation during oxygenation of adsorbed Fe(II) (Fe(II)sorbed) on common minerals. Results showed that 16.7 ± 0.4-25.6 ± 0.3 μM of •OH was produced in Fe(II) and α/γ-Al2O3 systems after oxidation of 24 h, much more than in systems with dissolved Fe(II) (Fe2+aq) alone (10.3 ± 0.1 μM). However, •OH production in Fe(II) and α-FeOOH/α-Fe2O3 systems (6.9 ± 0.1-8.3 ± 0.1 μM) slightly decreased compared to Fe2+aq only. Further analyses showed that enhanced oxidation of Fe(II)sorbed was responsible for the increased •OH production in the Fe(II)/Al2O3 systems. In comparison, less Fe(II) was oxidized in the α-FeOOH/α-Fe2O3 systems, which was probably ascribed to the quick electron-transfer between Fe(II)sorbed and Fe(III) lattice due to their semiconductor properties and induced formation of high-crystalline Fe(II) phases that hindered Fe(II) oxidation and •OH formation. The types of minerals and solution pH strongly affected Fe(II) oxidation and •OH production, which consequently impacted phenol degradation. This study highlights that the properties of minerals exert great impacts on surface-Fe(II) oxidation and •OH production during water/soil redox fluctuations.
Collapse
Affiliation(s)
- Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Mengyuan Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Mengxi Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zipeng Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Guangxia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
31
|
Deng Y, Zhang B, Liu C, Li F, Fang L, Dang Z, Yang C, Xiong Y, He C. Tetracycline-Induced Release and Oxidation of As(III) Coupled with Concomitant Ferrihydrite Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9453-9462. [PMID: 35700062 DOI: 10.1021/acs.est.2c02227] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cocontamination with tetracycline (TC) and arsenic (As) is very common in paddy fields. However, the process and underlying mechanism of arsenite (As(III)) transformation on iron mineral surfaces in the presence of antibiotic contaminants remain unclear. In this study, the release and oxidation of As(III) on ferrihydrite (Fh) surfaces and Fh transformation in the presence of TC under both aerobic and anaerobic conditions were investigated. Our results indicated that the TC-induced reductive dissolution of Fh (Fe(II) release) and TC competitive adsorption significantly promote the release of As, especially under anaerobic conditions. The release of As was increased with increasing TC concentration, whereas it decreased with increasing pH. Interestingly, under both aerobic and anaerobic conditions, the addition of TC enhanced the oxidation of As(III) by Fh and induced the partial transformation of Fh to lepidocrocite. Under aerobic conditions, the adsorbed Fe(II) activated the production of reactive oxygen species (·OH and 1O2) from dissolved O2, with Fe(IV) being responsible for As(III) oxidation. Under anaerobic conditions, the abundant oxygen vacancies of Fh affected the oxidation of As(III) during Fh recrystallization. Thus, this study provided new insights into the role of TC on the migration and transformation of As coupled with Fe in soils.
Collapse
Affiliation(s)
- Yurong Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bijie Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chengshuai Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chen Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yu Xiong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chunfeng He
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
Pan W, Catalano JG, Giammar DE. Redox-Driven Recrystallization of PbO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7864-7872. [PMID: 35654758 DOI: 10.1021/acs.est.1c08767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lead(IV) oxide (PbO2) is one of the lead corrosion products that forms on the inner surface of lead pipes used for drinking water supply. It can maintain low dissolved Pb(II) concentrations when free chlorine is present. When free chlorine is depleted, PbO2 and soluble Pb(II) will co-occur in these systems. This study used a stable lead isotope (207Pb) as a tracer to examine the interaction between aqueous Pb(II) and solid PbO2 at conditions with no net change in dissolved Pb concentration. While the dissolved Pb(II) concentration remained unchanged, significant isotope exchange occurred that indicated that substantial amounts (24.3-35.0% based on the homogeneous recrystallization model) of the Pb atoms in the PbO2 solids had been exchanged with those in solution over 264 h. Neither α-PbO2 nor β-PbO2 displayed a change in mineralogy, particle size, or oxidation state after reaction with aqueous Pb(II). The combined isotope exchange and solid characterization results indicate that redox-driven recrystallization of PbO2 had occurred. Such redox-driven recrystallization is likely to occur in water that stagnates in lead pipes that contain PbO2, and this recrystallization may alter the reactivity of PbO2 with respect to its stability and susceptibility to reductive dissolution.
Collapse
Affiliation(s)
- Weiyi Pan
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Campus Box 1180, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daniel E Giammar
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Campus Box 1180, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
33
|
Li J, Shi C, Zeng W, Wang Y, Hong Z, Ma Y, Fang L. Distinct roles of pH and organic ligands in the dissolution of goethite by cysteine. J Environ Sci (China) 2022; 113:260-268. [PMID: 34963535 DOI: 10.1016/j.jes.2021.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 06/14/2023]
Abstract
Electron shuttles such cysteine play an important role in Fe cycle and its availability in soils, while the roles of pH and organic ligands in this process are poorly understood. Herein, the reductive dissolution process of goethite by cysteine were explored in the presence of organic ligands. Our results showed that cysteine exhibited a strong reactivity towards goethite - a typical iron minerals in paddy soils with a rate constant ranging from 0.01 to 0.1 hr-1. However, a large portion of Fe(II) appeared to be "structural species" retained on the surface. The decline of pH was favorable to generate more Fe(II) ions and enhancing tendency of Fe(II) release to solution. The decline of generation of Fe(II) by increasing pH was likely to be caused by a lower redox potential and the nature of cysteine pH-dependent adsorption towards goethite. Interestingly, the co-existence of oxalate and citrate ligands also enhanced the rate constant of Fe(II) release from 0.09 to 0.15 hr-1; nevertheless, they negligibly affected the overall generation of Fe(II) in opposition to the pH effect. Further spectroscopic evidence demonstrated that two molecules of cysteine could form disulfide bonds (S-S) to generate cystine through oxidative dehydration, and subsequently, inducing electron transfer from cysteine to the structural Fe(III) on goethite; meanwhile, those organic ligands act as Fe(II) "strippers". The findings of this work provide new insights into the understanding of the different roles of pH and organic ligands on the generation and release of Fe induced by electron shuttles in soils.
Collapse
Affiliation(s)
- Ji Li
- Faculty of Material Sciences and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chenlu Shi
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Wenbin Zeng
- Faculty of Material Sciences and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yaru Wang
- Faculty of Material Sciences and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zebin Hong
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Yibing Ma
- Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Machao, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| |
Collapse
|
34
|
Stagg O, Morris K, Lam A, Navrotsky A, Velázquez JM, Schacherl B, Vitova T, Rothe J, Galanzew J, Neumann A, Lythgoe P, Abrahamsen-Mills L, Shaw S. Fe(II) Induced Reduction of Incorporated U(VI) to U(V) in Goethite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16445-16454. [PMID: 34882383 DOI: 10.1021/acs.est.1c06197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over 60 years of nuclear activities have resulted in a global legacy of radioactive wastes, with uranium considered a key radionuclide in both disposal and contaminated land scenarios. With the understanding that U has been incorporated into a range of iron (oxyhydr)oxides, these minerals may be considered a secondary barrier to the migration of radionuclides in the environment. However, the long-term stability of U-incorporated iron (oxyhydr)oxides is largely unknown, with the end-fate of incorporated species potentially impacted by biogeochemical processes. In particular, studies show that significant electron transfer may occur between stable iron (oxyhydr)oxides such as goethite and adsorbed Fe(II). These interactions can also induce varying degrees of iron (oxyhydr)oxide recrystallization (<4% to >90%). Here, the fate of U(VI)-incorporated goethite during exposure to Fe(II) was investigated using geochemical analysis and X-ray absorption spectroscopy (XAS). Analysis of XAS spectra revealed that incorporated U(VI) was reduced to U(V) as the reaction with Fe(II) progressed, with minimal recrystallization (approximately 2%) of the goethite phase. These results therefore indicate that U may remain incorporated within goethite as U(V) even under iron-reducing conditions. This develops the concept of iron (oxyhydr)oxides acting as a secondary barrier to radionuclide migration in the environment.
Collapse
Affiliation(s)
- Olwen Stagg
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Katherine Morris
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Andy Lam
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California 95616, United States
| | - Alexandra Navrotsky
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Jesús M Velázquez
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Bianca Schacherl
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Tonya Vitova
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Jörg Rothe
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Jurij Galanzew
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Anke Neumann
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Paul Lythgoe
- Manchester Analytical Geochemistry Unit, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | | | - Samuel Shaw
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
35
|
HASSEN J, SILVER J. Reduction of the Structural Iron in Montmorillonite by Electron Transfer from Catechol and its Derivatives. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.908713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
36
|
Robinson TC, Latta DE, Notini L, Schilling KE, Scherer MM. Abiotic reduction of nitrite by Fe(II): a comparison of rates and N 2O production. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1531-1541. [PMID: 34515719 DOI: 10.1039/d1em00222h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Abiotic reduction of nitrite (NO2-) by Fe(II) species (i.e., chemodenitrification) has been demonstrated in a variety of natural environments and laboratory studies, and is a potentially significant source of atmospheric nitrous oxide (N2O) emissions. It is, however, unclear how chemodenitrification rates and N2O yields vary among heterogeneous Fe(II) species under similar conditions and whether abiotic reduction competes with biological NO2- reduction. Here, we measured rates of NO2- reduction and extents of N2O production by several Fe(II) species under consistent, environmentally relevant conditions (i.e., pH 7.0, bicarbonate buffer, and 0.1 mM NO2-). Nitrite reduction rates varied significantly among the heterogeneous Fe(II) species with half-lives (t1/2) ranging from as low as an hour to over two weeks following the trend of goethite/Fe(II) ∼ hematite/Fe(II) ∼ magnetites > maghemite/Fe(II) > sediment/Fe(II). Interestingly, we observed no clear trend of increasing NO2- reduction rates with higher magnetite stoichiometry (x = Fe2+/Fe3+). Nitrogen recovery as N2O also varied significantly among the Fe species ranging from 21% to 100% recovery. We further probed both chemodenitrification and biological denitrification in the absence and presence of added aqueous Fe(II) with a sediment collected from the floodplain of an agricultural watershed. While abiotic NO2- reduction by the sediment + Fe(II) was much slower than the laboratory Fe(II) species, we found near complete mass N balance during chemodenitrification, as well as evidence for both abiotic and biological NO2- reduction potentially occurring in the sediment under anoxic conditions. Our results suggest that in redox active sediments and soils both chemodenitrification and biological denitrification are likely to occur simultaneously, and that agricultural watersheds may be significant sources of N2O emissions.
Collapse
Affiliation(s)
- Thomas C Robinson
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| | - Drew E Latta
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| | - Luiza Notini
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| | - Keith E Schilling
- Iowa Geological Survey, 300 Trowbridge Hall, Iowa City, IA 52242-1319, USA
| | - Michelle M Scherer
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
37
|
Dhakal P, Coyne MS, McNear DH, Wendroth OO, Vandiviere MM, D'Angelo EM, Matocha CJ. Reactions of nitrite with goethite and surface Fe(II)-goethite complexes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146406. [PMID: 33839658 DOI: 10.1016/j.scitotenv.2021.146406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 05/22/2023]
Abstract
Chemodenitrification-the abiotic (chemical) reduction of nitrite (NO2-) by iron (II)-plays an important role in nitrogen cycling due in part to this process serving as a source of nitrous oxide (N2O). Questions remain about the fate of NO2- in the presence of mineral surfaces formed during chemodenitrification, such as iron(III) (hydr) oxides, particularly relative to dissolved iron(II). In this study, stirred-batch kinetic experiments were conducted under anoxic conditions (to mimic iron(III)-reducing conditions) from pH 5.5-8 to investigate NO2- reactivity with goethite (FeOOH(s)) and Fe(II)-treated goethite using wet chemical and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Nitrite removal from solution by goethite was more rapid at pH 5.5 than at pH 7 and 8. Spectral changes upon nitrite adsorption imply an inner-sphere surface interaction (monodentate and bidentate) at pH 5.5 based on ATR-FTIR spectra of the nitrite-goethite interface over time. In iron(II)-amended experiments at pH 5.5 with high aqueous Fe(II) in equilibrium with goethite, nitrous oxide was generated, indicating that nitrite removal involved a combination of sorption and reduction processes. The presence of a surface complex resembling protonated nitrite (HONO) with an IR peak near ~1258 cm-1 was observed in goethite-only and iron(II)-goethite experiments, with a greater abundance of this species observed in the latter treatment. These results might help explain gaseous losses of nitrogen where nitrite and iron(II)/goethite coexist, with implications for nutrient cycling and release of atmospheric air pollutants.
Collapse
Affiliation(s)
- P Dhakal
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - M S Coyne
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - D H McNear
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - O O Wendroth
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - M M Vandiviere
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - E M D'Angelo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - C J Matocha
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
38
|
Huang J, Jones A, Waite TD, Chen Y, Huang X, Rosso KM, Kappler A, Mansor M, Tratnyek PG, Zhang H. Fe(II) Redox Chemistry in the Environment. Chem Rev 2021; 121:8161-8233. [PMID: 34143612 DOI: 10.1021/acs.chemrev.0c01286] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron (Fe) is the fourth most abundant element in the earth's crust and plays important roles in both biological and chemical processes. The redox reactivity of various Fe(II) forms has gained increasing attention over recent decades in the areas of (bio) geochemistry, environmental chemistry and engineering, and material sciences. The goal of this paper is to review these recent advances and the current state of knowledge of Fe(II) redox chemistry in the environment. Specifically, this comprehensive review focuses on the redox reactivity of four types of Fe(II) species including aqueous Fe(II), Fe(II) complexed with ligands, minerals bearing structural Fe(II), and sorbed Fe(II) on mineral oxide surfaces. The formation pathways, factors governing the reactivity, insights into potential mechanisms, reactivity comparison, and characterization techniques are discussed with reference to the most recent breakthroughs in this field where possible. We also cover the roles of these Fe(II) species in environmental applications of zerovalent iron, microbial processes, biogeochemical cycling of carbon and nutrients, and their abiotic oxidation related processes in natural and engineered systems.
Collapse
Affiliation(s)
- Jianzhi Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Adele Jones
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiling Chen
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaopeng Huang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Muammar Mansor
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Paul G Tratnyek
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
39
|
Quinone-mediated dissimilatory iron reduction of hematite: Interfacial reactions on exposed {0 0 1} and {1 0 0} facets. J Colloid Interface Sci 2021; 583:544-552. [DOI: 10.1016/j.jcis.2020.09.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/23/2022]
|
40
|
Bagus PS, Nelin CJ, Brundle CR, Vincent Crist B, Lahiri N, Rosso KM. Covalency in Fe 2O 3 and FeO: Consequences for XPS satellite intensity. J Chem Phys 2020; 153:194702. [PMID: 33218235 DOI: 10.1063/5.0030350] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The covalent character of the interaction between the metal cation and the oxygen ligands has been examined for two Fe oxides with different nominal oxidation states, Fe(II)O, and Fe(III)2O3. The covalent character is examined for the initial, ground state configuration and for the ionic states involving the removal of a shallow core, Fe 3p, and a deep core, Fe 2p, electron. The covalency is assessed based on novel theoretical analyses of wave functions for the various cases. It is found that the covalency is considerably different for different oxidation states and for different ionized and non-ionized configurations. The changes in covalency for the ions are shown to be responsible for important changes in relaxation energies for X-Ray Photoelectron Spectroscopy (XPS) spectra and in the intensity lost from main XPS peaks to shake satellites. While these consequences are not observables themselves, they are important for the interpretation of the XPS spectra, in particular, for efforts to extract stoichiometries of these iron oxides from XPS data. This is a finding likely applicable across various 3d transition metal oxide materials.
Collapse
Affiliation(s)
- Paul S Bagus
- Department of Chemistry, University of North Texas, Denton, Texas 76203-5017, USA
| | | | - C R Brundle
- C. R. Brundle and Associates, Soquel, California 95073, USA
| | | | - N Lahiri
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
41
|
Cai X, Yin N, Wang P, Du H, Liu X, Cui Y. Arsenate-reducing bacteria-mediated arsenic speciation changes and redistribution during mineral transformations in arsenate-associated goethite. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122886. [PMID: 32512445 DOI: 10.1016/j.jhazmat.2020.122886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The fate of Fe(III)-(oxyhydr)oxides-bound As was generally regulated by dissimilatory As(V)-reduction. However, the impact of pH and bacterial conditions on the coupled processes of microbially-mediated As speciation changes and Fe-mineral transformation remains unclear. Our study therefore incubated As(V)-associated goethite with different As(V)-reducing bacteria at a range of pH. Results show that As reduction was most prominent at pH 7 as the bacterial growth was optimal. However, aqueous As concentration was the lowest (0.8-3.7 mg/L), due to rapid microbial Fe(II) formation at pH 7 triggered secondary mineralization and significant As-readsorption. Our study provides the first spectroscopic evidence for mineral-phase temporal evolution, and indicates in the presence of phosphate, vivianite will precipitate first and adsorb large amount of As(III) (40-44% of solid As). Thereafter, continuously increased Fe(II) may catalyze lepidocrocite and eventually magnetite formation, which further sequestrate aqueous As(III). Conversely, at pH 5 and 9, bacterial growth was inhibited, the corresponding lower microbially-derived Fe(II) concentrations caused no secondary minerals formation. Released As(III) was therefore largely remained in solution (6-9.7 mg/L). Our study demonstrates that As-bound Fe(III)-(oxyhydr)oxides could pose greater risks under acidic or alkaline conditions in biotic reactions. Additionally, bacterial species could strongly impact Fe-mineral transformation pathways and As solid-solution redistribution.
Collapse
Affiliation(s)
- Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| |
Collapse
|
42
|
Cheng D, Neumann A, Yuan S, Liao W, Qian A. Oxidative Degradation of Organic Contaminants by FeS in the Presence of O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4091-4101. [PMID: 32142604 DOI: 10.1021/acs.est.9b07012] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reductive transformation of organic contaminants by FeS in anoxic environments has been documented previously, whereas the transformation in oxic environments remains poorly understood. Here we show that phenol can be efficiently oxidized in oxic FeS suspension at circumneutral pH value. We found that hydroxyl radicals (•OH) were the predominant reactive oxidant and that a higher O2 content accelerated phenol degradation. Phenol oxidation depended on •OH production and utilization efficiency, i.e., phenol degraded per •OH produced. Low FeS contents (≤1 g/L) produced less •OH but higher utilization efficiency, while high contents produced more •OH but lower utilization efficiency. Consequently, the most favorable conditions for phenol oxidation occurred during the long-term interaction between dissolved O2 and low levels of FeS (i.e., ≤1 g/L). Mössbauer spectroscopy suggests that FeS oxidation to lepidocrocite initially produced an intermediate Fe(II) phase that could be explained by the apparent preferential oxidation of structural S(-II) relative to Fe(II), rendering a higher initial •OH yield upon unit of Fe(II) oxidation. Trichloroethylene can be also oxidized under similar conditions. Our results demonstrate that oxidative degradation of organic contaminants during the oxygenation of FeS can be a significant but currently underestimated pathway in both natural and engineered systems.
Collapse
Affiliation(s)
- Dong Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| | - Anke Neumann
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| | - Wenjuan Liao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| | - Ao Qian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| |
Collapse
|
43
|
Bylaska EJ, Catalano JG, Mergelsberg ST, Saslow SA, Qafoku O, Prange MP, Ilton ES. Association of Defects and Zinc in Hematite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13687-13694. [PMID: 31689102 DOI: 10.1021/acs.est.9b04323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zn is an essential micronutrient that is often limited in tropical, lateritic soils in part because it is sequestered in nominally refractory iron oxide phases. Stable phases such as goethite and hematite, however, can undergo reductive recrystallization without a phase change under circumneutral pH conditions and release metal impurities such as Zn into aqueous solutions. Further, the process appears to be driven by Fe vacancies. In this contribution, we used ab initio molecular dynamics informed extended X-ray absorption fine structure spectra to show that Zn incorporated in the structure of hematite is associated with coupled O-Fe and protonated Fe vacancies, providing a potential link between crystal chemistry and the bioavailability of Zn.
Collapse
Affiliation(s)
- Eric J Bylaska
- Pacific Northwest National Laboratory , Richland Washington 99352 , United States
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences , Washington University , St. Louis , Missouri 63130 , United States
| | | | - Sarah A Saslow
- Pacific Northwest National Laboratory , Richland Washington 99352 , United States
| | - Odeta Qafoku
- Pacific Northwest National Laboratory , Richland Washington 99352 , United States
| | - Micah P Prange
- Pacific Northwest National Laboratory , Richland Washington 99352 , United States
| | - Eugene S Ilton
- Pacific Northwest National Laboratory , Richland Washington 99352 , United States
| |
Collapse
|
44
|
Huang X, Chen Y, Walter E, Zong M, Wang Y, Zhang X, Qafoku O, Wang Z, Rosso KM. Facet-Specific Photocatalytic Degradation of Organics by Heterogeneous Fenton Chemistry on Hematite Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10197-10207. [PMID: 31397154 DOI: 10.1021/acs.est.9b02946] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hematite nanoparticles are abundant in the photic zone of aquatic environments, where they play a prominent role in photocatalytic transformations of bound organics. Here, we examine the photocatalytic degradation of rhodamine B by visible light using two different structurally well-defined hematite nanoparticle morphologies. In addition to detailed solid characterization and aqueous kinetics measurements, we also exploit species-selective scavengers in electron paramagnetic resonance spectroscopy to sequester specific reaction channels and thereby assess their impact. The photodegradation rates for nanoplates dominated by {001} facets and nanocubes dominated by {012} facets were 0.13 and 0.7 h-1, respectively, and the turnover frequencies for the active sites on {001} and {012} were 7.89 × 10-3 and 3.07× 10-3 s-1, yielding apparent activation energies of 17.13 and 24.94 kcal/mol within the energetic span model, respectively. Facet-specific differences appear to be directly not linked with the simple aerial cation site density but instead with their extent of undercoordination. By establishing this linkage, the findings lay a foundation for predicting the photocatalytic degradation efficiency for the myriad of possible hematite nanoparticle morphologies and more broadly help unveil key reactions at the interface that may govern photocatalytic organic transformations in natural and engineered aquatic environments.
Collapse
Affiliation(s)
- Xiaopeng Huang
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Ying Chen
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Eric Walter
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Meirong Zong
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Yang Wang
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Xin Zhang
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Odeta Qafoku
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Zheming Wang
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Kevin M Rosso
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| |
Collapse
|
45
|
Notini L, Byrne JM, Tomaszewski EJ, Latta DE, Zhou Z, Scherer MM, Kappler A. Mineral Defects Enhance Bioavailability of Goethite toward Microbial Fe(III) Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8883-8891. [PMID: 31284712 DOI: 10.1021/acs.est.9b03208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface defects have been shown to facilitate electron transfer between Fe(II) and goethite (α-FeOOH) in abiotic systems. It is unclear, however, whether defects also facilitate microbial goethite reduction in anoxic environments where electron transfer between cells and Fe(III) minerals is the limiting factor. Here, we used stable Fe isotopes to differentiate microbial reduction of goethite synthesized by hydrolysis from reduction of goethite that was further hydrothermally treated to remove surface defects. The goethites were reduced by Geobacter sulfurreducens in the presence of an external electron shuttle, and we used ICP-MS to distinguish Fe(II) produced from the reduction of the two types of goethite. When reduced separately, goethite with more defects has an initial rate of Fe(III) reduction about 2-fold higher than goethite containing fewer defects. However, when reduced together, the initial rate of reduction is 6-fold higher for goethite with more defects. Our results suggest that there is a suppression of the reduction of goethite with fewer defects in favor of the reduction of minerals with more defects. In the environment, minerals are likely to contain defects and our data demonstrates that even small changes at the surface of iron minerals may change their bioavailability and determine which minerals will be reduced.
Collapse
Affiliation(s)
- Luiza Notini
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - James M Byrne
- Geomicrobiology Group, Centre for Applied Geosciences (ZAG) , University of Tübingen , Sigwartstrasse 10 , D-72076 , Tübingen , Germany
| | - Elizabeth J Tomaszewski
- Geomicrobiology Group, Centre for Applied Geosciences (ZAG) , University of Tübingen , Sigwartstrasse 10 , D-72076 , Tübingen , Germany
| | - Drew E Latta
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Zhe Zhou
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Michelle M Scherer
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Andreas Kappler
- Geomicrobiology Group, Centre for Applied Geosciences (ZAG) , University of Tübingen , Sigwartstrasse 10 , D-72076 , Tübingen , Germany
| |
Collapse
|
46
|
Yuan K, Lee SS, Cha W, Ulvestad A, Kim H, Abdilla B, Sturchio NC, Fenter P. Oxidation induced strain and defects in magnetite crystals. Nat Commun 2019; 10:703. [PMID: 30741943 PMCID: PMC6370877 DOI: 10.1038/s41467-019-08470-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/08/2019] [Indexed: 11/09/2022] Open
Abstract
Oxidation of magnetite (Fe3O4) has broad implications in geochemistry, environmental science and materials science. Spatially resolving strain fields and defect evolution during oxidation of magnetite provides further insight into its reaction mechanisms. Here we show that the morphology and internal strain distributions within individual nano-sized (~400 nm) magnetite crystals can be visualized using Bragg coherent diffractive imaging (BCDI). Oxidative dissolution in acidic solutions leads to increases in the magnitude and heterogeneity of internal strains. This heterogeneous strain likely results from lattice distortion caused by Fe(II) diffusion that leads to the observed domains of increasing compressive and tensile strains. In contrast, strain evolution is less pronounced during magnetite oxidation at elevated temperature in air. These results demonstrate that oxidative dissolution of magnetite can induce a rich array of strain and defect structures, which could be an important factor that contributes to the high reactivity observed on magnetite particles in aqueous environment.
Collapse
Affiliation(s)
- Ke Yuan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Sang Soo Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Wonsuk Cha
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Andrew Ulvestad
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hyunjung Kim
- Department of Physics, Sogang University, Seoul, 04107, Korea
| | - Bektur Abdilla
- Department of Geological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Neil C Sturchio
- Department of Geological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Paul Fenter
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| |
Collapse
|
47
|
Visualizing the iron atom exchange front in the Fe(II)-catalyzed recrystallization of goethite by atom probe tomography. Proc Natl Acad Sci U S A 2019; 116:2866-2874. [PMID: 30733289 DOI: 10.1073/pnas.1816620116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The autocatalytic redox interaction between aqueous Fe(II) and Fe(III)-(oxyhydr)oxide minerals such as goethite and hematite leads to rapid recrystallization marked, in principle, by an atom exchange (AE) front, according to bulk iron isotopic tracer studies. However, direct evidence for this AE front has been elusive given the analytical challenges of mass-resolved imaging at the nanoscale on individual crystallites. We report successful isolation and characterization of the AE front in goethite microrods by 3D atom probe tomography (APT). The microrods were reacted with Fe(II) enriched in tracer 57Fe at conditions consistent with prior bulk studies. APT analyses and 3D reconstructions on cross-sections of the microrods reveal an AE front that is spatially heterogeneous, at times penetrating several nanometers into the lattice, in a manner consistent with defect-accelerated exchange. Evidence for exchange along microstructural domain boundaries was also found, suggesting another important link between exchange extent and initial defect content. The findings provide an unprecedented view into the spatial and temporal characteristics of Fe(II)-catalyzed recrystallization at the atomic scale, and substantiate speculation regarding the role of defects controlling the dynamics of electron transfer and AE interaction at this important redox interface.
Collapse
|
48
|
Zhou Z, Latta DE, Noor N, Thompson A, Borch T, Scherer MM. Fe(II)-Catalyzed Transformation of Organic Matter-Ferrihydrite Coprecipitates: A Closer Look Using Fe Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11142-11150. [PMID: 30189730 DOI: 10.1021/acs.est.8b03407] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ferrihydrite is a common Fe mineral in soils and sediments that rapidly transforms to secondary minerals in the presence of Fe(II). Both the rate and products of Fe(II)-catalyzed ferrihydrite transformation have been shown to be significantly influenced by natural organic matter (NOM). Here, we used enriched Fe isotope experiments and 57Fe Mössbauer spectroscopy to track the formation of secondary minerals, as well as electron transfer and Fe mixing between aqueous Fe(II) and ferrihydrite coprecipitated with several types of NOM. Ferrihydrite coprecipitated with humic acids transformed primarily to goethite after reaction with Fe(II). In contrast, ferrihydrite coprecipitated with fulvic acids and Suwannee River NOM (SRNOM) resulted in no measurable formation of secondary minerals. Despite no secondary mineral transformation, Mössbauer spectra indicated electron transfer still occurred between Fe(II) and ferrihydrite coprecipitated with fulvic acid and SRNOM. In addition, isotope tracer experiments revealed that a significant fraction of structural Fe in the ferrihydrite mixed with the aqueous phase Fe(II) (∼85%). After reaction with Fe(II), Mössbauer spectroscopy indicated some subtle changes in the crystallinity, particle size, or particle interactions in the coprecipitate. Our observations suggest that ferrihydrite coprecipitated with fulvic acid and SRNOM remains a highly dynamic phase even without ferrihydrite transformation.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Civil & Environmental Engineering , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Drew E Latta
- Department of Civil & Environmental Engineering , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Nadia Noor
- Department of Crop & Soil Sciences , The University of Georgia , Athens , Georgia 30602 , United States
| | - Aaron Thompson
- Department of Crop & Soil Sciences , The University of Georgia , Athens , Georgia 30602 , United States
| | - Thomas Borch
- Department of Soil & Crop Sciences , Colorado State University , Fort Collins , Colorado 80523 , United States
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Michelle M Scherer
- Department of Civil & Environmental Engineering , The University of Iowa , Iowa City , Iowa 52242 , United States
| |
Collapse
|
49
|
Cr Release from Cr-Substituted Goethite during Aqueous Fe(II)-Induced Recrystallization. MINERALS 2018. [DOI: 10.3390/min8090367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The interaction between aqueous Fe(II) (Fe(II)aq) and iron minerals is an important reaction of the iron cycle, and it plays a critical role in impacting the environmental behavior of heavy metals in soils. Metal substitution into iron (hydr)oxides has been reported to reduce Fe atom exchange rates between Fe(II)aq and metal-substituted iron (hydr)oxides and inhibit the recrystallization of iron (hydr)oxides. However, the environmental behaviors of the substituted metal during these processes remain unclear. In this study, Fe(II)aq-induced recrystallization of Cr-substituted goethite (Cr-goethite) was investigated, along with the sequential release behavior of substituted Cr(III). Results from a stable Fe isotopic tracer and Mössbauer characterization studies show that Fe atom exchange occurred between Fe(II)aq and structural Fe(III) (Fe(III)oxide) in Cr-goethites, during which the Cr-goethites were recrystallized. The Cr substitution inhibited the rates of Fe atom exchange and Cr-goethite recrystallization. During the recrystallization of Cr-goethites induced by Fe(II)aq, Cr(III) was released from Cr-goethite. In addition, Cr-goethites with a higher level of Cr-substituted content released more Cr(III). The highest Fe atom exchange rate and the highest amount of released Cr(III) were observed at a pH of 7.5. Under reaction conditions involving a lower pH of 5.5 or a higher pH of 8.5, there were substantially lower rates of Fe atom exchange and Cr(III) release. This trend of Cr(III) release was similar with changes in Fe atom exchange, suggesting that Cr(III) release is driven by Fe atom exchange. The release and reincorporation of Cr(III) occurred simultaneously during the Fe(II)aq-induced recrystallization of Cr-goethites, especially during the late stage of the observed reactions. Our findings emphasize an important role for Fe(II)aq-induced recrystallization of iron minerals in changing soil metal characteristics, which is critical for the evaluation of soil metal activities, especially those in Fe-rich soils.
Collapse
|