1
|
Feng Y, Lau SS, Mitch WA, Russell C, Pope G, Gu AZ. Impacts of disinfection methods in a granular activated carbon (GAC) treatment system on disinfected drinking water toxicity. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137737. [PMID: 40037194 DOI: 10.1016/j.jhazmat.2025.137737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
The efficacy of implementing granular activated carbon (GAC) treatment in combination with pre- or post-chlorination for mitigating disinfection byproducts (DBPs) in drinking water has been promising, yet its impact on water toxicity remains unclear, necessitating cost-effective and informative effect-based toxicity assessment. This study, using recently developed yeast toxicogenomic and human cell RT-qPCR assays targeting DNA and oxidative stress, compares the toxicity level and nature of water treated through a pilot-scale GAC system with post-chlorination (GAC/Cl2) or pre-chlorination upstream of GAC (Cl2/GAC/Cl2), with water treated by chloramination (Cl2/NH2Cl). Experiments were conducted at environmentally relevant bromide and iodide levels across three GAC beds. The post-chlorination with GAC generally reduces genotoxicity and oxidative stress more effectively than Cl2/NH2Cl or Cl2 treatment at ambient halide concentrations. However, pre-chlorination with GAC was inconsistent in lowering the effluent toxicity in comparison to the post-chlorination-GAC treatment, especially at high halide levels, where no toxicity reduction was observed compared to non-GAC-treated water. Correlation analysis of detected DBPs and toxicity quantifiers, along with maximum cumulative ratio analysis identifies top DBPs that contribute to the toxicity and their cumulative risks, pointing the iodinated DBPs (I-DBPs) and nitrogenous DBPs (N-DBPs) as the significant contributors to DNA and oxidative stress. The results highlight that unregulated DBPs play a critical role in water toxicity, and whole water toxicity monitoring in complement to regulated DBPs detection is needed for treatment strategies efficacy assessment to address unregulated DBPs and their health risks.
Collapse
Affiliation(s)
- Yinmei Feng
- School of Civil and Environmental Engineering, College of Engineering, Cornell University, 220 Hollister Hall, 527 College Ave, Ithaca, NY 14853, United States
| | - Stephanie S Lau
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Caroline Russell
- Carollo Engineers, Inc., 8911 Capital of Texas Hwy North, Suite 2200, Austin, TX 78759, United States
| | - Greg Pope
- Carollo Engineers, Inc., 8911 Capital of Texas Hwy North, Suite 2200, Austin, TX 78759, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, College of Engineering, Cornell University, 220 Hollister Hall, 527 College Ave, Ithaca, NY 14853, United States.
| |
Collapse
|
2
|
Choi Y, Lee Y, Liou SY, Son H, Lee Y. In vitro bioanalytical assessment of the occurrence and variation of nine bioactivities in a drinking water treatment plant in Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179070. [PMID: 40086352 DOI: 10.1016/j.scitotenv.2025.179070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Organic micropollutants in drinking water can pose a public health risk. Chemical analysis alone cannot capture the full range of contaminants or assess their associated risks, promoting the growing use of bioanalytical tools as a complementary approach. This study assessed a drinking water treatment plant in the Nakdong River basin, Korea, using in vitro bioassays targeting nine endpoints. The highest estrogen receptor (ERα) activity was observed in the influent and significantly decreased throughout treatment. Bioactivities related to xenobiotic metabolism (PAH, PPARγ, and PXR) and oxidative stress response (Nrf2) initially increased during pre-oxidation but decreased in later treatment stages. An increase in p53 activity was also noted during treatment. Both season and treatment processes were found to affect the bioactivity variation for most endpoints, based on correlation analysis. The bioactivities observed were consistent with those reported for treated drinking waters in other countries. PAH, PPARγ, PXR, and Nrf2 activities in the final treated waters exceeded some effect-based trigger (EBT) values, indicating potential risks, although uncertainty remain regarding the EBT values for PPARγ and PXR. Additionally, the bioanalytical equivalent concentrations of volatile disinfection byproducts detected after pre- and post-chlorination were lower than the measured Nrf2 activities by factors of 7.5 and 5.5, respectively. This study highlights the importance of monitoring of bioactive chemicals to safeguard public health and ecosystems, underscoring the value of in vitro bioassays in water quality assessment.
Collapse
Affiliation(s)
- Yegyun Choi
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yujin Lee
- Water Quality Institute, Busan Water Authority, Kimhae 50804, Republic of Korea
| | - Sin-Yi Liou
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Heejong Son
- Water Quality Institute, Busan Water Authority, Kimhae 50804, Republic of Korea
| | - Yunho Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
3
|
Jin Y, Xue B, Zhou X. Protein Biomarkers of DNA Damage in Yeast Cells for Genotoxicity Screening. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:250-258. [PMID: 40144325 PMCID: PMC11934195 DOI: 10.1021/envhealth.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 03/28/2025]
Abstract
Providing an unbiased and comprehensive view of the DNA damage response in cells is critical in genotoxicity screening to identify substances that cause diverse types of DNA damage. Considering that S. cerevisiae is one of the most well-characterized model organisms in molecular and cellular biology, we created a map of the DNA damage response network containing the reported signaling pathways in yeast cells programmed to constitutively respond to DNA damage. A collection of GFP-fused S. cerevisiae yeast strains treated with typical genotoxic agents illuminated the cellular response to DNA damage, thereby identifying 15 protein biomarkers encompassing all eight documented DNA damage response pathways. Three statistical and one deep learning models were proposed to interpret the quantitative molecular toxicity end point, i.e. protein effect level index (PELI), by introducing weights of 15 biomarkers in genotoxicity assessment. The method based on standard deviation exhibited the best performance, with an R 2 of 0.916 compared to the SOS/umu test and an R 2 of 0.989 compared to the comet assay. The GFP-fused yeast-based proteomic assay has minute-level resolution of pathway activation data. It provides a concise alternative for fast, efficient, and mechanistic genotoxicity screening for various environmental and health applications.
Collapse
Affiliation(s)
- Yushi Jin
- Center for Sensor Technology of Environment
and Health, School of Environment, Tsinghua
University, Beijing 100084, China
| | - Boyuan Xue
- Center for Sensor Technology of Environment
and Health, School of Environment, Tsinghua
University, Beijing 100084, China
| | - Xiaohong Zhou
- Center for Sensor Technology of Environment
and Health, School of Environment, Tsinghua
University, Beijing 100084, China
| |
Collapse
|
4
|
Wang Y, Qiu X, Xu W, Yang H, Yang F, Liu Y, Wu W, Zhou X, Zheng X. Mechanisms of anthraquinone dye Vat Blue 4 biodegradation by Pseudomonas aeruginosa WYT and genotoxicity assessment of its transformation products. BIORESOURCE TECHNOLOGY 2025; 418:131978. [PMID: 39681272 DOI: 10.1016/j.biortech.2024.131978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Dye biodegradation products may cause genotoxicity, raising concerns about the safety of bioremediated water. The underlying biotransformation mechanism and related genotoxicity during anthraquinone degradation remain unclear. In this study, we employed Pseudomonas aeruginosa WYT (PaWYT) to investigate the biotransformation of Vat Blue 4 (VB4), a dye with a typical anthraquinone structure and low bioavailability. The genotoxicity of the resulting degradation products was also assessed. Novel mechanisms for VB4 biotransformation were identified, including piperazine cleavage, chromophore loss, and the formation of smaller molecular products. A real-time genotoxicity assay showed that VB4 induced oxidative and general stresses to microorganisms, while the total genotoxicity across five stress categories (oxidative, protein, membrane, DNA, and general stresses) gradually decreased as the dye degradation progressed. Overall, capturing and understanding the toxicity dynamics during VB4 bioremediation supports the reliability of this biodegradation method and its potential for treating VB4-contaminated wastewater.
Collapse
Affiliation(s)
- Yangtao Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaopeng Qiu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Weiqing Xu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Heyun Yang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Feifan Yang
- Department of Civil Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yang Liu
- School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Wei Wu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaode Zhou
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China.
| | - Xing Zheng
- School of Environment and Natural Resource, Zhejiang University of Science and Technology, Hangzhou 310018, China; National Supervision & Inspection Center of Environmental Protection Equipment Quality, Yixing, Jiangsu 214205, China.
| |
Collapse
|
5
|
Yang S, Fang M, Jin L, Shao Z, Zhang X, Han Y, Du B, Yang D, Gu AZ, Chen Y, Li D, Chen J. In Situ and Rapid Toxicity Assessment of Air Pollution by Self-Assembly Passive Colonization Hydrogel. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18109-18121. [PMID: 39248495 DOI: 10.1021/acs.est.4c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Air pollution is a leading environmental health risk factor, and in situ toxicity assessment is urgently needed. Bacteria-based bioassays offer cost-effective and rapid toxicity assessments. However, the application of these bioassays for air toxicity assessment has been challenging, due to the instability of bacterial survival and functionality when directly exposed to air pollutants. Here, we developed an approach employing self-assembly passive colonization hydrogel (SAPCH) for in situ air toxicity assessment. The SAPCH features a core-shell structure, enabling the quantitatively immobilization of bacteria on its shell while continuously provides nutrients from its core. An antimicrobial polyelectrolyte layer between the core and shell confines bacteria to the air-liquid interface, synchronizing bacterial survival with exposure to air pollutants. The SAPCH immobilized a battery of natural and recombinant luminescent bacteria, enabling simultaneous detection of various toxicological endpoints (cytotoxicity, genotoxicity and oxidative stress) of air pollutants within 2 h. Its sensitivity was 3-5 orders of magnitude greater than that of traditional liquid-phase toxicity testing, and successfully evaluating the toxicity of volatile organic compounds and combustion smoke. This study presents a method for in situ, rapid, and economical toxicity assessment of air pollution, making a significant contribution to future air quality monitoring and control.
Collapse
Affiliation(s)
- Shuo Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Mingliang Fang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077 Kowloon, Hong Kong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 99907 Kowloon, Hong Kong
| | - Zhiwei Shao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Han
- Department of Civil and Environmental Engineering, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077 Kowloon, Hong Kong
| | - Banghao Du
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, 271018 Tai'an, China
| | - Dayong Yang
- Department of Chemistry, Fudan University, 200438 Shanghai, China
| | - April Z Gu
- Atkinson Center for a Sustainable Future Faculty Fellow Civil and Environmental Engineering, Cornell University, Ithaca, New York State 14853, United States
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Qiu M, Yang L, Jiang Z, Chen Y, Liu Q, Wang X, Qu W. Mixed exposure to haloacetaldehyde disinfection by-products exacerbates lipid aggregation in the liver of mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123971. [PMID: 38641033 DOI: 10.1016/j.envpol.2024.123971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Haloacetaldehyde disinfection by-products (HAL-DBPs) are among the top three unregulated DBPs found in drinking water. The cytotoxicity and genotoxicity of HALs are much higher than that of the regulated trihalomethanes and haloacetic acids. Previous studies have mainly focused on the toxic effects of single HAL, with few examining the toxic effects of mixed exposures to HALs. The study aimed to observe the effects of mixed exposures of 1∼1000X the realistic level of HALs on the hepatotoxicity and lipid metabolism of C57BL/6J mice, based on the component and concentration of HALs detected in the finished water of Shanghai. Exposure to realistic levels of HALs led to a significant increase in phosphorated acetyl CoA carboxylase 1 (p-ACC1) in the hepatic de novo lipogenesis (DNL) pathway. Additionally, exposure to 100X realistic levels of HALs resulted in significant alterations to key enzymes of DNL pathway, including ACC1, fatty acid synthase (FAS), and diacylglycerol acyltransferase 2 (DGAT2), as well as key proteins of lipid disposal such as carnitine palmitoyltransferase 1 (CPT-1) and peroxisome proliferator activated receptor α (PPARα). Exposure to 1000X realistic levels of HALs significantly increased hepatic and serum triglyceride levels, as well as total cholesterol, low-density lipoprotein, alanine aminotransferase, aspartate transaminase, alkaline phosphatase, and lactate dehydrogenase levels, significantly decreased high-density lipoprotein. Meanwhile, histopathological analysis demonstrated that HALs exacerbated tissue vacuolization and inflammatory cell infiltration in mice livers, which showed the typical phenotypes of non-alcoholic fatty liver disease (NAFLD). These results suggested that the HALs mixture is a critical risk factor for NAFLD and is significantly highly toxic to C57BL/6J mice.
Collapse
Affiliation(s)
- Meiyue Qiu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Lili Yang
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Zhiqiang Jiang
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Yu Chen
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Qinxin Liu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Xia Wang
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Weidong Qu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Du Y, Liu T, Yang LL, Song ZM, Dai X, Wang WL, Lai B, Wu QY. Ferrate(VI) assists in reducing cytotoxicity and genotoxicity to mammalian cells and organic bromine formation in ozonated wastewater. WATER RESEARCH 2024; 253:121353. [PMID: 38401473 DOI: 10.1016/j.watres.2024.121353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Ozonation of wastewater containing bromide (Br-) forms highly toxic organic bromine. The effectiveness of ozonation in mitigating wastewater toxicity is minimal. Simultaneous application of ozone (O3) (5 mg/L) and ferrate(VI) (Fe(VI)) (10 mg-Fe/L) reduced cytotoxicity and genotoxicity towards mammalian cells by 39.8% and 71.1% (pH 7.0), respectively, when the wastewater has low levels of Br-. This enhanced reduction in toxicity can be attributed to increased production of reactive iron species Fe(IV)/Fe(V) and reactive oxygen species (•OH) that possess higher oxidizing ability. When wastewater contains 2 mg/L Br-, ozonation increased cytotoxicity and genotoxicity by 168%-180% and 150%-155%, respectively, primarily due to the formation of organic bromine. However, O3/Fe(VI) significantly (p < 0.05) suppressed both total organic bromine (TOBr), BrO3-, as well as their associated toxicity. Electron donating capacity (EDC) measurement and precursor inference using Orbitrap ultra-high resolution mass spectrometry found that Fe(IV)/Fe(V) and •OH enhanced EDC removal from precursors present in wastewater, inhibiting electrophilic substitution and electrophilic addition reactions that lead to organic bromine formation. Additionally, HOBr quenched by self-decomposition-produced H2O2 from Fe(VI) also inhibits TOBr formation along with its associated toxicity. The adsorption of Fe(III) flocs resulting from Fe(VI) decomposition contributes only minimally to reducing toxicity. Compared to ozonation alone, integration of Fe(VI) with O3 offers improved safety for treating wastewater with varying concentrations of Br-.
Collapse
Affiliation(s)
- Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Tong Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Lu-Lin Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhi-Min Song
- Michigan Technological University, 1400 Townsend Drive Houghton, MI 49931, United States
| | - Xin Dai
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bo Lai
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
8
|
Marques Dos Santos M, Li C, Jia S, Thomas M, Gallard H, Croué JP, Carato P, Snyder SA. Formation of halogenated forms of bisphenol A (BPA) in water: Resolving isomers with ion mobility - mass spectrometry and the role of halogenation position in cellular toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133229. [PMID: 38232544 DOI: 10.1016/j.jhazmat.2023.133229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 01/19/2024]
Abstract
Halogenated BPA (XBPA) forms resulting from water chlorination can lead to increased toxicity and different biological effects. While previous studies have reported the occurrence of different XBPAs, analytical limitation have hindered the analysis and differentiation of the many potential isomeric forms. Using online solid-phase extraction - liquid chromatography - ion-mobility - high-resolution mass spectrometry (OSPE-LC-IM-HRMS), we demonstrated a rapid analysis method for the analysis of XBPA forms after water chlorination, with a total analysis time of less than 10 min including extraction and concentration and low detection limits (∼5-80 ng/L range). A multi in-vitro bioassay testing approach for the identified products revealed that cytotoxicity and bioenergetics impacts were largely associated with the presence of halogen atoms at positions 2 or 2' and the overall number of halogens incorporated into the BPA molecule. Different XBPA also showed distinct impacts on oxidative stress, peroxisome proliferator-activated receptor gamma - PPARγ, and inflammatory response. While increased DNA damage was observed for chlorinated water samples (4.14 ± 1.21-fold change), the additive effect of the selected 20 XBPA studied could not explain the increased DNA damage observed, indicating that additional species or synergistic effects might be at play.
Collapse
Affiliation(s)
- Mauricius Marques Dos Santos
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Caixia Li
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Shenglan Jia
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Mikael Thomas
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Hervé Gallard
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Pascal Carato
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, France; INSERM CIC1402, Université de Poitiers, IHES Research Group, Poitiers, France
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore.
| |
Collapse
|
9
|
Huo Y, Li M, An Z, Jiang J, Zhou Y, Ma Y, Xie J, Wei F, He M. Effect of pH on UV/H 2O 2-mediated removal of single, mixed and halogenated parabens from water. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132818. [PMID: 37879281 DOI: 10.1016/j.jhazmat.2023.132818] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/23/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Adjusting pH values in aqueous environments can significantly improve the efficiency by which parabens and halo-parabens are removed. In this study, 20 neutral and deprotonated species were selected as models to investigate their pH-dependent removal mechanisms and kinetics by a UV/H2O2 process using density functional theory (DFT). Compared to neutral species, deprotonated species exhibit higher reactivity to HO• due to their high electron cloud density. H atom abstraction (HAA) reactions on the substitution groups are the most favorable pathways for neutral species, while radical adduct formation (RAF) reactions are the most favorable for deprotonated species. Single electron transfer (SET) reactions can be neglected for neutral species, while these reactions become a viable route for deprotonated molecules. The total reaction rate constants range from 1.63 × 109 to 3.74 × 1010 M- 1 s- 1 at pH 7.0, confirming the experimental results. Neutral and weakly alkaline conditions are favorable for the degradation of MeP and halo-parabens in the UV/H2O2 process. The order of removal efficiency at optimum pH is dihalo-parabens > mono-halo-parabens ≈ F, F-MeP > MeP. Furthermore, the transformation products must undergo oxidative degradation due to their high toxicity. Our findings provide new insights into the removal of parabens and their halogenated derivatives from wastewater.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, PR China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Fenghua Wei
- Assets and Laboratory Management Office, Shandong University, Qingdao 266237, PR China.
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
10
|
Zhang X, Liu L, Wang J, Liang L, Wang X, Wang G, He Z, Cui X, Du H, Pang B, Li J. The alternation of halobenzoquinone disinfection byproduct on toxicogenomics of DNA damage and repair in uroepithelial cells. ENVIRONMENT INTERNATIONAL 2024; 183:108407. [PMID: 38150806 DOI: 10.1016/j.envint.2023.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Halobenzoquinones (HBQs) were recently discovered as an emerging class of drinking water disinfection byproducts with carcinogenic concern. However, the molecular mechanism underlying HBQs-induced DNA damage is not clear. In this study, we integrated in vitro genotoxicity, computational toxicology, and the quantitative toxicogenomic analysis of HBQs on DNA damage/repair pathways in human bladder epithelial cells SV-HUC-1. The results showed that HBQs could induce cytotoxicity with the descending order as 2,6-DIBQ > 2,6-DCBQ ≈ 2,6-DBBQ. Also, HBQs can increase DNA damage in SV-HUC-1 cells and thus generate genotoxicity. However, there is no significant difference in genotoxicity among the three HBQs. The results of molecular docking and molecular dynamics simulation further confirmed that HBQs had high binding fractions and stability to DNA. Toxicogenomic analysis indicated that HBQs interfered with DNA repair pathways, mainly affecting base excision repair, nucleotide excision repair and homologous recombination repair. These results have provided new insights into the underlying molecular mechanisms of HBQs-induced DNA damage, and contributed to the understanding of the relationship between exposure to DBPs and risks of developing bladder cancer.
Collapse
Affiliation(s)
- Xu Zhang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Lifang Liu
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jun Wang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Lanqian Liang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Xu Wang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China; College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Gaihua Wang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ziqiao He
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Xueting Cui
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Haiying Du
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Bo Pang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
11
|
Escher BI, Blanco J, Caixach J, Cserbik D, Farré MJ, Flores C, König M, Lee J, Nyffeler J, Planas C, Redondo-Hasselerharm PE, Rovira J, Sanchís J, Schuhmacher M, Villanueva CM. In vitro bioassays for monitoring drinking water quality of tap water, domestic filtration and bottled water. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:126-135. [PMID: 37328620 PMCID: PMC10907286 DOI: 10.1038/s41370-023-00566-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Location-specific patterns of regulated and non-regulated disinfection byproducts (DBPs) were detected in tap water samples of the Barcelona Metropolitan Area. However, it remains unclear if the detected DBPs together with undetected DPBs and organic micropollutants can lead to mixture effects in drinking water. OBJECTIVE To evaluate the neurotoxicity, oxidative stress response and cytotoxicity of 42 tap water samples, 6 treated with activated carbon filters, 5 with reverse osmosis and 9 bottled waters. To compare the measured effects of the extracts with the mixture effects predicted from the detected concentrations and the relative effect potencies of the detected DBPs using the mixture model of concentration addition. METHODS Mixtures of organic chemicals in water samples were enriched by solid phase extraction and tested for cytotoxicity and neurite outgrowth inhibition in the neuronal cell line SH-SY5Y and for cytotoxicity and oxidative stress response in the AREc32 assay. RESULTS Unenriched water did not trigger neurotoxicity or cytotoxicity. After up to 500-fold enrichment, few extracts showed cytotoxicity. Disinfected water showed low neurotoxicity at 20- to 300-fold enrichment and oxidative stress response at 8- to 140-fold enrichment. Non-regulated non-volatile DBPs, particularly (brominated) haloacetonitriles dominated the predicted mixture effects of the detected chemicals and predicted effects agreed with the measured effects. By hierarchical clustering we identified strong geographical patterns in the types of DPBs and their association with effects. Activated carbon filters did not show a consistent reduction of effects but domestic reverse osmosis filters decreased the effect to that of bottled water. IMPACT STATEMENT Bioassays are an important complement to chemical analysis of disinfection by-products (DBPs) in drinking water. Comparison of the measured oxidative stress response and mixture effects predicted from the detected chemicals and their relative effect potencies allowed the identification of the forcing agents for the mixture effects, which differed by location but were mainly non-regulated DBPs. This study demonstrates the relevance of non-regulated DBPs from a toxicological perspective. In vitro bioassays, in particular reporter gene assays for oxidative stress response that integrate different reactive toxicity pathways including genotoxicity, may therefore serve as sum parameters for drinking water quality assessment.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany.
- Eberhard Karls University Tübingen, Environmental Toxicology, Department of Geosciences, Tübingen, Germany.
| | - Jordi Blanco
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Caixach
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Dora Cserbik
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, UPF, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Maria J Farré
- Catalan Institute for Water Research, ICRA, Girona, Spain
- University of Girona, Girona, Spain
| | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Maria König
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany
| | - Jungeun Lee
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany
| | - Jo Nyffeler
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany
| | - Carles Planas
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Paula E Redondo-Hasselerharm
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, UPF, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
- IMDEA Water, Madrid, Spain
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
- Environmental Engineering Laboratory, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Sanchís
- Catalan Institute for Water Research, ICRA, Girona, Spain
- University of Girona, Girona, Spain
- Catalan Water Agency, Barcelona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Universitat Rovira i Virgili, Tarragona, Spain
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, UPF, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
- Hospital del Mar Medical Research Institute, IMIM, Barcelona, Spain
| |
Collapse
|
12
|
Wu T, Karimi-Maleh H, Dragoi EN, Puri P, Zhang D, Zhang Z. Traditional methods and biosensors for detecting disinfection by-products in water: A review. ENVIRONMENTAL RESEARCH 2023; 237:116935. [PMID: 37625534 DOI: 10.1016/j.envres.2023.116935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
In recent years, pollution caused by disinfection by-products (DBPs) has become a global concern. Initially, there were fewer contaminants, and the mechanism of their generation was unclear; however, the number of contaminants has increased exponentially as a result of rapid industrialization and numerous economic activities (e.q., during the outbreak of COVID-19 a surge in the use of chlorinated disinfectants was observed). DBP toxicity results in various adverse health effects and organ failure in humans. In addition, it profoundly affects other forms of life, including animals, plants, and microorganisms. This review comprehensively discusses the pre-treatment methods of traditional and emerging DBPs and the technologies applied for their detection. Additionally, this paper provides a detailed discussion of the principles, applicability, and characteristics of traditional large-scale instrumentation methods (such as gas/liquid/ion chromatography coupled with mass spectrometry) for detecting DBPs based on their respective detection techniques. At the same time, the design, functionality, classification, and characteristics of rapid detection technologies (such as biosensors) are also detailed and analyzed.
Collapse
Affiliation(s)
- Tao Wu
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Elena Niculina Dragoi
- Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University, Bld. D Mangeron no 700050, Iasi, Romania
| | - Paridhi Puri
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Dongxing Zhang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen, Guangdong, 518110, China.
| | - Zhouxiang Zhang
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| |
Collapse
|
13
|
Xue B, Yang Q, Jin Y, Zhu Q, Lan J, Lin Y, Tan J, Liu L, Zhang T, Chirwa EMN, Zhou X. Genotoxicity Assessment of Haloacetaldehyde Disinfection Byproducts via a Simplified Yeast-Based Toxicogenomics Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16823-16833. [PMID: 37874250 DOI: 10.1021/acs.est.3c04956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Haloacetaldehydes (HALs) represent the third-largest category of disinfection byproducts (DBPs) in drinking water in terms of weight. As a subset of unregulated DBPs, only a few HALs have undergone assessment, yielding limited information regarding their genotoxicity mechanisms. Herein, we developed a simplified yeast-based toxicogenomics assay to evaluate the genotoxicity of five specific HALs. This assay recorded the protein expression profiles of eight Saccharomyces cerevisiae strains fused with green fluorescent protein, including all known DNA damage and repair pathways. High-resolution real-time pathway activation data and protein expression profiles in conjunction with clustering analysis revealed that the five HALs induced various DNA damage and repair pathways. Among these, chloroacetaldehyde and trichloroacetaldehyde were found to be positively associated with genotoxicity, while dichloroacetaldehyde, bromoacetaldehyde, and tribromoacetaldehyde displayed negative associations. The protein effect level index, which are molecular end points derived from a toxicogenomics assay, exhibited a statistically significant positive correlation with the results of traditional genotoxicity assays, such as the comet assay (rp = 0.830 and p < 0.001) and SOS/umu assay (rp = 0.786 and p = 0.004). This yeast-based toxicogenomics assay, which employs a minimal set of gene biomarkers, can be used for mechanistic genotoxicity screening and assessment of HALs and other chemical compounds. These results contribute to bridging the knowledge gap regarding the molecular mechanisms underlying the genotoxicity of HALs and enable the categorization of HALs based on their distinct DNA damage and repair mechanisms.
Collapse
Affiliation(s)
- Boyuan Xue
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qian Yang
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yushi Jin
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qian Zhu
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaqi Lan
- State Key Laboratory of Bioactive Substance and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yishan Lin
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jisui Tan
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanhua Liu
- School of Ecology & Environmental Science, Zhengzhou University, Zhengzhou 450001, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Tao Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | | | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Wu S, Fujii M, Yang X, Fu QL. Characterization of halogenated organic compounds by the Fourier transform ion cyclotron resonance mass spectrometry: A critical review. WATER RESEARCH 2023; 246:120694. [PMID: 37832250 DOI: 10.1016/j.watres.2023.120694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Halogenated organic compounds (HOCs), widely present in various environments, are generally formed by natural processes (e.g., photochemical halogenation) and anthropogenic activities (e.g., water disinfection and anthropogenic discharge of HOCs), posing health and environmental risks. Therefore, in-depth knowledge of the molecular composition, transformation, and fate of HOCs is crucial to regulate and reduce their formation. Because of the extremely complex nature of HOCs and their precursors, the molecular composition of HOCs remains largely unknown. The Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers the most powerful resolution and mass accuracy for the simultaneous molecular-level characterization of HOCs and their precursors. However, there is still a paucity of reviews regarding the comprehensive characterization of HOCs by FT-ICR MS. Based on the FT-ICR MS, the formation mechanism, sample pretreatment, and analysis methods were summarized for two typical HOCs classes, namely halogenated disinfection byproducts and per- and polyfluoroalkyl substances in this review. Moreover, we have highlighted data analysis methods and some typical applications of HOCs using FT-ICR MS and proposed suggestions for current issues. This review will deepen our understanding of the chemical characterization of HOCs and their formation mechanisms and transformation at the molecular level in aquatic systems, facilitating the application of the state-of-the-art FT-ICR MS in environmental and geochemical research.
Collapse
Affiliation(s)
- Shixi Wu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-Ku, Tokyo 152-8550, Japan
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing-Long Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
15
|
Liu YJ, Yang HY, Hu YY, Li ZH, Yin H, He YT, Zhong KQ, Yuan L, Zheng X, Sheng GP. Face mask derived micro(nano)plastics and organic compounds potentially induce threat to aquatic ecosystem security revealed by toxicogenomics-based assay. WATER RESEARCH 2023; 242:120251. [PMID: 37356160 DOI: 10.1016/j.watres.2023.120251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Micro(nano)plastics widely detected in aquatic environments have caused serious threat to water quality security. However, as a potential important source of micro(nano)plastics in surface water during the COVID-19 pandemic, the ecological risks of face mask waste to aquatic environments remain poorly understood. Herein, we comprehensively characterized the micro(nano)plastics and organic compounds released from four daily used face masks in aqueous environments and further evaluated their potential impacts on aquatic ecosystem safety by quantitative genotoxicity assay. Results from spectroscopy and high-resolution mass spectrum showed that plastic microfibers/particles (∼11%-83%) and leachable organic compounds (∼15%-87%) were dominantly emitted pollutants, which were significantly higher than nanoplastics (< ∼5%) based on mass of carbon. Additionally, a toxicogenomics approach using green fluorescence protein-fused whole-cell array revealed that membrane stress was the primary response upon the exposure to micro(nano)plastics, whereas the emitted organic chemicals were mainly responsible for DNA damage involving most of the DNA repair pathways (e.g., base/nucleotide excision repair, mismatch repair, double-strand break repair), implying their severe threat to membrane structure and DNA replication of microorganisms. Therefore, the persistent release of discarded face masks derived pollutants might exacerbate water quality and even adversely affect aquatic microbial functions. These findings would contribute to unraveling the potential effects of face mask waste on aquatic ecosystem security and highlight the necessity for more developed management regulations in face mask disposal.
Collapse
Affiliation(s)
- Yan-Jun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - He-Yun Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yan-Yun Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Hao Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yun-Tian He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Keng-Qiang Zhong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
16
|
Hao Y, Zhou R, Wang S, Ding X, Zhu J, Yang L, Li Y, Ding X. Quantitative determination of bromochloroacetamide in mice urine by gas chromatography combined with salting-out assisted dispersive liquid-liquid microextraction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37401339 DOI: 10.1039/d3ay00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Bromochloroacetamide (BCAcAm) is the main haloacetamide (HAcAm) detected in drinking water in different regions and exhibits strong cytotoxicity and genotoxicity. However, there is no appropriate method for detecting BCAcAm in urine or other biological samples, and thus, the internal exposure level in the population cannot be accurately assessed. In this study, a gas chromatography-electron capture detector (GC-ECD) was combined with salting-out assisted dispersive liquid-liquid microextraction (SA-DLLME) to develop a rapid and robust method for BCAcAm detection in urine of mice continuously exposed to BCAcAm. The factors influencing the pre-treatment procedure, including the type and volume of extraction and disperser solvents, extraction and standing time, and the amount of salt, were evaluated systematically. Under the optimised conditions, the analyte achieved good linearity in the spiked concentration range of 1.00-400.00 μg L-1, and the correlation coefficient was higher than 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.17 μg L-1 and 0.50 μg L-1, respectively. The recoveries ranged from 84.20% to 92.17%. The detection of BCAcAm at three different calibration levels using this method afforded an intra-day precision of 1.95-4.29%, while the inter-day precision range was 5.54-9.82% (n = 6). This method has been successfully applied to monitor the concentration of BCAcAm in mouse urine in toxicity experiments and can provide technical support for assessing human internal exposure levels and health risks in later studies.
Collapse
Affiliation(s)
- Yamei Hao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Run Zhou
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Shunan Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Xingwang Ding
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingying Zhu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Li Yang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Yao Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Xinliang Ding
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| |
Collapse
|
17
|
Zhou Y, Zhuang T, Cao H, Li M, Huo Y, Jiang J, Ma Y, Xie J, He M. Efficient removal of Cl-DBPs by direct-indirect continuous hydrodechlorination reduction reaction on Ti 3C 2X 2 surface: A theoretical calculation. CHEMOSPHERE 2023:139062. [PMID: 37253402 DOI: 10.1016/j.chemosphere.2023.139062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
Degradation of Chlorine-containing disinfection by-products(Cl-DBPs) on surface by electrocatalytic hydrodechlorination(EHDC) is considered a promising advanced water treatment method. Cl-DBPs have ecological toxicity and health risks so that it is urgent to degrade DBPs. We designed and verified the degradation performance of the EHDC of 18 kinds of DBPs (TAAs, TANs, TALs, TNMs, TAcAms, THMs) with different substituents led by the Ti3C2X2(X = O/OH) system by the first-principles. On the surface of Ti3C2(OH)2, DBPs react with atomic hydrogen (*H) by a direct-indirect continuous reduction mechanism to eliminate the Cl atom in turn. Dissociative adsorption of DBPs on the surface of Ti3C2(OH)2 simultaneously realizes the first electron transfer step and forms H vacancy, which makes its electrocatalytic activity superior to that of Ti3C2O2. Removing the six types of DBPs only needs to add -0.1 V of applied potential. In addition, we investigated the impact of substituents and chlorination degree on the reactivity of DBPs removal. The strong electron-withdrawing group is more conducive to the dechlorination reaction. Dehalogenation is much favorable in thermodynamics as the increase in chlorination degree. This study provides important insights and efficient catalysts for the degradation of DBPs and shows the potential of MXenes in eliminating chloride in water.
Collapse
Affiliation(s)
- Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Tao Zhuang
- Jinan Environmental Research Academy, Jinan, 250014, PR China.
| | - Haijie Cao
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
18
|
Yang H, Li X, Cao X, Lu S, Zheng X. The toxicity assessment of 14 biocides for industrial circulating cooling water system by damage/repair pathway profiling analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104156. [PMID: 37217027 DOI: 10.1016/j.etap.2023.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
The toxicity of 14 biocides commonly used in circulating cooling water systems were evaluated. Results showed that biocide exposure can induce complex damage/repair pathways, including DNA, oxidative, protein, general, and membrane stress. All damages enhanced with increasing concentrations. Among them, MTC exhibited toxicity at concentrations as low as 1.00×10-17mg/L, and TELItotal reached 1.60. We derived molecular toxicity endpoints based on dose-response curves to compare the normalized toxicity of biocides. Total-TELI1.5 exhibited that THPS, MTC, and DBNPA have the lowest toxic exposure concentrations, which are 2.180×10-27, 1.015×10-14, and 3.523×10-6 mg/L. TBTC, MTC, and 2,4-DCP had the highest Total-TELImax values, which are 861.70, 526.30, and 248.30. Moreover, there was a high correlation (R2=0.43~0.97) between biocides' molecular structure and toxicity. And, biocide exposure combinations were found to increase toxicity pathways and enhance toxic effects, with a similar toxicity mechanism observed as in single-component exposure.
Collapse
Affiliation(s)
- Heyun Yang
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an, 710048, China; School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xiaoliang Li
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xin Cao
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Sijia Lu
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an, 710048, China; School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; National Supervision & Inspection Center of Environmental Protection Equipment Quality, Jiangsu, Yixing 214205, China.
| |
Collapse
|
19
|
Zhai J, Huang F, Yang Y, Liu X, Luan T, Deng J. Development of a Repair Enzyme Fluorescent Probe to Reveal the Intracellular DNA Damage Induced by Benzo[a]pyrene in Living Cells. Anal Chem 2023; 95:7788-7795. [PMID: 37130082 DOI: 10.1021/acs.analchem.3c01251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pollutant exposure causes a series of DNA damage in cells, resulting in the initiation and progression of diseases and even cancers. An investigation of the DNA damage induced by pollutants in living cells is significant to evaluate the cytotoxicity, genotoxicity, and carcinogenicity of environmental exposure, providing critical insight in the exploration of the etiologies of diseases. In this study, we develop a repair enzyme fluorescent probe to reveal the DNA damage caused by an environmental pollutant in living cells by single-cell fluorescent imaging of the most common base damage repair enzyme named human apurinic/apyrimidinic endonuclease 1 (APE1). The repair enzyme fluorescent probe is fabricated by conjugation of an APE1 high affinity DNA substrate on a ZnO2 nanoparticle surface to form a ZnO2@DNA nanoprobe. The ZnO2 nanoparticle serves as both a probe carrier and a cofactor supplier, releasing Zn2+ to activate APE1 generated by pollutant exposure. The AP-site in the DNA substrate of the fluorescent probe is cleaved by the activated APE1, releasing fluorophore and generating fluorescent signals to indicate the position and degree of APE1-related DNA base damage in living cells. Subsequently, the developed ZnO2@DNA fluorescent probe is applied to investigate the APE1-related DNA base damage induced by benzo[a]pyrene (BaP) in living human hepatocytes. Significant DNA base damage by BaP exposure is revealed, with a positive correlation of the damage degree with exposure time in 2-24 h and the concentration in 5-150 μM, respectively. The experimental results demonstrate that BaP has a significant effect on the AP-site damage, and the degree of DNA base damage is time-dependent and concentration-dependent.
Collapse
Affiliation(s)
- Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fanglin Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Xiaoxin Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
20
|
Zhang M, Deng YL, Liu C, Lu WQ, Zeng Q. Impacts of disinfection byproduct exposures on male reproductive health: Current evidence, possible mechanisms and future needs. CHEMOSPHERE 2023; 331:138808. [PMID: 37121289 DOI: 10.1016/j.chemosphere.2023.138808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Disinfection byproducts (DBPs) are a class of ubiquitous chemicals in drinking water and inevitably result in widespread human exposures. Potentially adverse health effects of DBP exposures, including reproductive and developmental outcomes, have been increasing public concerns. Several reviews have focused on the adverse pregnancy outcomes of DBPs. This review summarized current evidence on male reproduction health upon exposure to DBPs from toxicological and epidemiological literature. Based on existing experimental studies, there are sufficient evidence showing that haloacetic acids (HAAs) are male reproductive toxicants, including reduced epididymal weight, decreased semen parameters and sperm protein 22, and declined testosterone levels. However, epidemiological evidence remains insufficient to support a link of DBP exposures with adverse male reproductive outcomes, despite that blood and urinary DBP biomarkers are associated with decreased semen quality. Eight potential mechanisms, including germ/somatic cell dysfunction, oxidative stress, genotoxicity, inflammation, endocrine hormones, folate metabolism, epigenetic alterations, and gut microbiota, are likely involved in male reproductive toxicity of DBPs. We also identified knowledge gaps in toxicological and epidemiological studies to enhance future needs.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
21
|
Abd-Allah ER, Fouad NY, Ghareeb AEWE, Eldebss TMA. Chloroacetonitrile reduces rat prenatal bone length and induces oxidative stress, apoptosis, and DNA damage in rat fetal liver. Birth Defects Res 2023; 115:614-632. [PMID: 36751045 DOI: 10.1002/bdr2.2155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
One of the disinfection byproducts of chlorinating drinking water is chloroacetonitrile (CAN). Thirty-six female rats were used and distributed equally into four groups. The low dose treated group received CAN at a dose of 5.5 mg/kg body weight/day (1/40 LD50 ) orally from the 6th to 12th day of gestation. The high dose treated group received 11 mg/kg body weight/day (1/20 LD50 ) of CAN orally for the same period, the vehicle control group received 1 mL of corn oil, and the water control group received 1 mL of distilled water orally for the same period. High dose exposure to CAN significantly reduced gravid uterine weight, fetal body weights, and length, and caused obvious skeletal deformities, weak mineralization. Fetal tibial growth plates displayed histopathologic changes. Induced oxidative stress and redox imbalance in fetal liver tissues was evidenced by significantly decreased in catalase and superoxide dismutase activity, and elevated malondialdehyde levels. Histopathological, glycogen content changes, and DNA damage were observed in the fetal liver of high dose treated group. Additionally, administration of high dose of CAN induced apoptosis, evidenced by increased caspase-3 concentration in fetal liver. Thus, extensive exposure to CAN induces poor pregnancy outcomes. CAN levels in water should be monitored regularly.
Collapse
Affiliation(s)
- Entsar R Abd-Allah
- Department of Zoology, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Nourhan Y Fouad
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Taha M A Eldebss
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
22
|
Wang Y, Xiang Y, Marques Dos Santos M, Wei G, Jiang B, Snyder S, Shang C, Croué JP. UV/chlorine and chlorination of effluent organic matter fractions: Tracing nitrogenous DBPs using FT-ICR mass spectrometry. WATER RESEARCH 2023; 231:119646. [PMID: 36709566 DOI: 10.1016/j.watres.2023.119646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
UV/chlorine process is a promising advanced treatment to eliminate pathogen and remove refractory micropollutants for reclamation of municipal secondary effluent. However, effluent organic matter (EfOM) featuring high organic nitrogen content serves as a potential precursor for nitrogenous disinfection byproducts (N-DBPs) of health concern. The molecular-level alteration of a hydrophobic (HPO) EfOM fraction and a transphilic (TPI) EfOM fraction isolated from the same municipal effluent and the formation of N-DBPs in the UV/chlorine were tracked by ultrahigh-resolution mass spectrometry. Compared with chlorination, UV/chlorine induced a significantly greater modification on the molecular composition of EfOM and resulted in formation of unique formulae and chlorinated molecules with higher degree of oxidation, lower aromaticity, and less carbon number due to the involvement of reactive radical species. For both EfOM fractions, UV/chlorine formed more diverse DBPs with higher intensity and Cl-incorporation than chlorination. The TPI fraction of EfOM characterized by higher O/C and N/C ratios generated more N-DBPs with higher intensity clustered in the high O/C region than the HPO fraction of EfOM by both UV/chlorine and chlorination. Totally, 207 and 117 nitrogen-containing chlorinated formulae were recorded after UV/chlorine treatment of TPI and HPO, respectively. Precursor tracking found a greater number of DBPs were originated from raw EfOM through electrophilic substitution pathway rather than chlorine addition. Toxicity bioassays demonstrated that DBPs can trigger oxidative stress-induced DNA damage, while HPO fraction of EfOM dominated the induction of cytotoxicity. However, no correlation could be established between the diversity/abundance of N-DBPs and the level of DNA damage. A total of 22 DBPs with a significant rank correlation with DNA damage were identified, while C8H6O5NCl was found as the N-DBP with the strongest correlation. The potential toxic chlorine-containing formula with the most abundant intensity was assigned to C5HO3Cl3. This study suggests that the character and transformation of EfOM and associated toxicity is critical to evaluate the UV/chlorine process toward practical application.
Collapse
Affiliation(s)
- Yuru Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yingying Xiang
- Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, France; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | - Gaoling Wei
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bin Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shane Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, France.
| |
Collapse
|
23
|
Li X, Yang H, Pan J, Liu T, Cao X, Ma H, Wang X, Wang YF, Wang Y, Lu S, Tian J, Gao L, Zheng X. Variation of the toxicity caused by key contaminants in industrial wastewater along the treatment train of Fenton-activated sludge-advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159856. [PMID: 36374753 DOI: 10.1016/j.scitotenv.2022.159856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Industrial wastewater contains a mixture of refractory and hazardous pollutants that have comprehensive toxic effects. We investigated the treatment of a long-chain industrial wastewater treatment train containing Fenton, biological anoxic/oxic (AO), and heterogeneous ozone catalytic oxidation (HOCO) processes, and evaluated their detoxification effect based on the analysis of the genic toxicity of some key contaminants. The results showed that although the effluent met the discharge standard in terms of traditional quality parameters, the long-chain treatment process could not effectively detoxify the industrial wastewater. The analysis results of summer samples showed that the Fenton process increased the total toxicity and genotoxicity of the organics, concerned metals, and non-volatile pollutants, whereas the A/O process increased the toxicity of the organics and non-volatile pollutants, and the HOCO process led to higher toxicity caused by metals and non-volatile pollutants. The outputs of the winter samples indicated that the Fenton process reduced the total toxicity and genotoxicity caused by non-volatile pollutants but increased that of the organics and concerned metals. The effect of the A/O process on the effluent toxicity in winter was the same as that in summer, whereas the HOCO process increased the total toxicity and genotoxicity of the metals in winter samples. Correlation analysis showed that various toxicity stresses were significantly correlated with the variation of these key pollutants in wastewater. Our results could provide a reference for the optimization of industrial wastewater treatment plants (IWTPs) by selecting more suitable treatment procedures to reduce the toxicity of different contaminants.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Heyun Yang
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Jian Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tong Liu
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xin Cao
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Hao Ma
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xingliang Wang
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Yi-Fan Wang
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Yifan Wang
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Sijia Lu
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Lei Gao
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China; Resource Recovery and Low-carbon Environmental Protection Engineering Center in Coal Chemical Industry, Yulin, Shaanxi, China.
| |
Collapse
|
24
|
Bu L, Chen X, Wu Y, Zhou S. Enhanced formation of 2,6-dichloro-4-nitrophenol during chlorination after UV/chlorine process: free amino acid versus oligopeptide. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Finlayson KA, van de Merwe JP, Leusch FDL. Review of ecologically relevant in vitro bioassays to supplement current in vivo tests for whole effluent toxicity testing - Part 2: Non-apical endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158094. [PMID: 35987232 DOI: 10.1016/j.scitotenv.2022.158094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Whole effluent toxicity (WET) testing uses whole animal exposures to assess the toxicity of complex mixtures, like wastewater. These assessments typically include four apical endpoints: mortality, growth, development, and reproduction. In the last decade, there has been a shift to alternative methods that align with the 3Rs to replace, reduce, and refine the use of animals in research. In vitro bioassays can provide a cost-effective, high-throughput, ethical alternative to in vivo assays. In addition, they can potentially include additional, more sensitive, environmentally relevant endpoints than traditional toxicity tests. However, the ecological relevance of these endpoints must be established before they are adopted into regulatory frameworks. This is Part 2 of a two-part review that aims to identify in vitro bioassays that are linked to ecologically relevant endpoints that could be included in WET testing. Part 2 of this review focuses on non-apical endpoints that should be incorporated into WET testing. In addition to the four apical endpoints addressed in Part 1, this review identified seven additional toxic outcomes: endocrine disruption, xenobiotic metabolism, carcinogenicity, oxidative stress, inflammation, immunotoxicity and neurotoxicity. For each, the response at the molecular or cellular level measured in vitro was linked to the response at the organism level through a toxicity pathway. Literature from 2015 to 2020 was used to identify suitable bioassays that could be incorporated into WET testing.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
26
|
Wang HS, Wang XY, Ding HT, Hu XY, Li J, Cheng C, Zheng F. Oral Metal-Organic Gel Protected Whole-Cell Biosensor for in Situ Monitoring Nitrosamines in the Gastrointestinal Tract. NANO LETTERS 2022; 22:8688-8694. [PMID: 36264028 DOI: 10.1021/acs.nanolett.2c03418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nitrite, a type of food additive, has been proved convertible to genotoxic nitrosamines in the gastrointestinal tract by intestinal flora. There is no appropriate method for in situ detection of nitrosamines. Herein, plasmid-introduced Saccharomyces cerevisiae, which can respond to nitrosamine-induced DNA damage and activate pMAG1-based DNA damage repair (DDR), was designed as whole-cell biosensors (WCBs) for monitoring the in situ generated nitrosamines by a reporter gene expressing enhanced green fluorescent protein (EGFP). In order to protect the validity of WCBs (pMAG1 yeast) from the gastric acid environment, a type of metal-organic gel (MOG), coordinated by Fe3+ and 2,2'-thiodiacetic acid (TDA), was prepared to embed the WCBs. The MOG(Fe-TDA) is gastric acid resistant and can deliver the pMAG1 yeast to the gut without compromising the performance of pMAG1 yeast to detect in situ generated nitrosamines. The genotoxicity of nitrosamines converted from nitrite was successfully detected in the gastrointestinal tract of mice.
Collapse
Affiliation(s)
- Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Yu Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Tian Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Yuan Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| | - Jie Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| | - Chen Cheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| | - Feng Zheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
27
|
Yang H, Li X, Zheng X, Zhi H, Tang G, Ke Y, Liu B, Ma H. Comparing the toxicity of iodinated X-ray contrast media on eukaryote- and prokaryote-based quantified microarray assays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113678. [PMID: 35653977 DOI: 10.1016/j.ecoenv.2022.113678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
This study compared the toxicity mechanisms of four X-ray-based iodinated contrast media (ICM) on Escherichia coli (E. coli) and yeast microarray assays, aiming to determine the diverse toxicity mechanisms among different exposed organisms and the relationship between toxicity and their physical and chemical characteristics. The conventional phenotypic endpoint cytotoxicity and the change in reactive oxygen species (ROS) level were employed in conjunction with toxicogenomics to quantify changes in the gene/protein biomarker level in the regulation of different damage/repair pathways. The results showed that molecular toxicity endpoints, named transcriptional effect level index (TELI) and protein effect level index (PELI) for E. coli and yeast, respectively, correlated well with the phenotypic endpoints. Temporal altered gene/protein expression profiles revealed dynamic and complex damage/toxic mechanisms. In particular, compared with E. coli cells, yeast cells exposed to ICM exhibited significantly higher stress intensity and diverse stress types, resulting in stress or damage to the organism. The toxic mechanisms of ICM are concentration/property-dependent and relevant to the cellular structure and defense systems in prokaryotes and eukaryotes. In particular, the toxicity of ionic ICM is higher than that of non-ionic ICM, and eukaryotes are more susceptible than prokaryotes to ICM exposure.
Collapse
Affiliation(s)
- Heyun Yang
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaoliang Li
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China.
| | - Hegang Zhi
- College of Agricultural and Environmental Sciences, University of California, Davis 95616, United States
| | - Gang Tang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yanchun Ke
- Aerospace Kaitian environmental technology co. ltd., Changsha 410100, China
| | - Bao Liu
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Hao Ma
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
28
|
Sha Y, Wu H, Guo Y, Liu X, Mo Y, Yang Q, Wei S, Long K, Lu D, Xia Y, Zheng W, Su Z, Wei X. Effects of iodoacetic acid drinking water disinfection byproduct on the gut microbiota and its metabolism in rats. J Environ Sci (China) 2022; 117:91-104. [PMID: 35725093 DOI: 10.1016/j.jes.2022.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 06/15/2023]
Abstract
Iodoacetic acid (IAA) is an unregulated disinfection byproduct in drinking water and has been shown to exert cytotoxicity, genotoxicity, tumorigenicity, and reproductive and developmental toxicity. However, the effects of IAA on gut microbiota and its metabolism are still unknown, especially the association between gut microbiota and the metabolism and toxicity of IAA. In this study, female and male Sprague-Dawley rats were exposed to IAA at 0 and 16 mg/kg bw/day daily for 8 weeks by oral gavage. Results of 16S rRNA gene sequencing showed that IAA could alter the diversity, relative abundance and function of gut microbiota in female and male rats. IAA also increased the abundance of genes related to steroid hormone biosynthesis in the gut microbiota of male rats. Moreover, metabolomics profiling revealed that IAA could significantly disturb 6 and 13 metabolites in the feces of female and male rats, respectively. In female rats, the level of androstanediol increased in the IAA treatment group. These results were consistent with our previous findings, where IAA was identified as an androgen disruptor. Additionally, the perturbed gut microbiota and altered metabolites were correlated with each other. The results of this study indicated that IAA could disturb gut microbiota and its metabolism. These changes in gut microbiota and its metabolism were associated with the reproductive and developmental toxicity of IAA.
Collapse
Affiliation(s)
- Yujie Sha
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Huan Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yue Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xi Liu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yan Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qiyuan Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shumao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Du Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ying Xia
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
29
|
Sui S, Liu H, Yang X. Research Progress of the Endocrine-Disrupting Effects of Disinfection Byproducts. J Xenobiot 2022; 12:145-157. [PMID: 35893263 PMCID: PMC9326600 DOI: 10.3390/jox12030013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Since 1974, more than 800 disinfection byproducts (DBPs) have been identified from disinfected drinking water, swimming pool water, wastewaters, etc. Some DBPs are recognized as contaminants of high environmental concern because they may induce many detrimental health (e.g., cancer, cytotoxicity, and genotoxicity) and/or ecological (e.g., acute toxicity and development toxicity on alga, crustacean, and fish) effects. However, the information on whether DBPs may elicit potential endocrine-disrupting effects in human and wildlife is scarce. It is the major objective of this paper to summarize the reported potential endocrine-disrupting effects of the identified DBPs in the view of adverse outcome pathways (AOPs). In this regard, we introduce the potential molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs) associated with exposure to specific DBPs. The present evidence indicates that the endocrine system of organism can be perturbed by certain DBPs through some MIEs, including hormone receptor-mediated mechanisms and non-receptor-mediated mechanisms (e.g., hormone transport protein). Lastly, the gaps in our knowledge of the endocrine-disrupting effects of DBPs are highlighted, and critical directions for future studies are proposed.
Collapse
|
30
|
Gmurek M, Borowska E, Schwartz T, Horn H. Does light-based tertiary treatment prevent the spread of antibiotic resistance genes? Performance, regrowth and future direction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153001. [PMID: 35031375 DOI: 10.1016/j.scitotenv.2022.153001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The common occurrence of antibiotic-resistance genes (ARGs) originating from pathogenic and facultative pathogenic bacteria pose a high risk to aquatic environments. Low removal of ARGs in conventional wastewater treatment processes and horizontal dissemination of resistance genes between environmental bacteria and human pathogens have made antibiotic resistance evolution a complex global health issue. The phenomenon of regrowth of bacteria after disinfection raised some concerns regarding the long-lasting safety of treated waters. Despite the inactivation of living antibiotic-resistant bacteria (ARB), the possibility of transferring intact and liberated DNA containing ARGs remains. A step in this direction would be to apply new types of disinfection methods addressing this issue in detail, such as light-based advanced oxidation, that potentially enhance the effect of direct light interaction with DNA. This study is devoted to comprehensively and critically review the current state-of-art for light-driven disinfection. The main focus of the article is to provide an insight into the different photochemical disinfection methods currently being studied worldwide with respect to ARGs removal as an alternative to conventional methods. The systematic comparison of UV/chlorination, UV/H2O2, sulfate radical based-AOPs, photocatalytic processes and photoFenton considering their mode of action on molecular level, operational parameters of the processes, and overall efficiency of removal of ARGs is presented. An in-depth discussion of different light-dependent inactivation pathways, influence of DBP and DOM on ARG removal and the potential bacterial regrowth after treatment is presented. Based on presented revision the risk of ARG transfer from reactivated bacteria has been evaluated, leading to a future direction for research addressing the challenges of light-based disinfection technologies.
Collapse
Affiliation(s)
- M Gmurek
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland; Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany; Karlsruhe Institute of Technology, Institute of Functional Interfaces, Microbiology/Molecular Biology Department, Eggenstein-Leopoldshafen, Germany.
| | - E Borowska
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany
| | - T Schwartz
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Microbiology/Molecular Biology Department, Eggenstein-Leopoldshafen, Germany
| | - H Horn
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany; DVGW German Technical and Scientific Association for Gas and Water Research Laboratories, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
31
|
Rahman SM, Lan J, Kaeli D, Dy J, Alshawabkeh A, Gu AZ. Machine learning-based biomarkers identification from toxicogenomics - Bridging to regulatory relevant phenotypic endpoints. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127141. [PMID: 34560480 PMCID: PMC9628282 DOI: 10.1016/j.jhazmat.2021.127141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 05/30/2023]
Abstract
One of the major challenges in realization and implementations of the Tox21 vision is the urgent need to establish quantitative link between in-vitro assay molecular endpoint and in-vivo regulatory-relevant phenotypic toxicity endpoint. Current toxicomics approach still mostly rely on large number of redundant markers without pre-selection or ranking, therefore, selection of relevant biomarkers with minimal redundancy would reduce the number of markers to be monitored and reduce the cost, time, and complexity of the toxicity screening and risk monitoring. Here, we demonstrated that, using time series toxicomics in-vitro assay along with machine learning-based feature selection (maximum relevance and minimum redundancy (MRMR)) and classification method (support vector machine (SVM)), an "optimal" number of biomarkers with minimum redundancy can be identified for prediction of phenotypic toxicity endpoints with good accuracy. We included two case studies for in-vivo carcinogenicity and Ames genotoxicity prediction, using 20 selected chemicals including model genotoxic chemicals and negative controls, respectively. The results suggested that, employing the adverse outcome pathway (AOP) concept, molecular endpoints based on a relatively small number of properly selected biomarker-ensemble involved in the conserved DNA-damage and repair pathways among eukaryotes, were able to predict both Ames genotoxicity endpoints and in-vivo carcinogenicity in rats. A prediction accuracy of 76% with AUC = 0.81 was achieved while predicting in-vivo carcinogenicity with the top-ranked five biomarkers. For Ames genotoxicity prediction, the top-ranked five biomarkers were able to achieve prediction accuracy of 70% with AUC = 0.75. However, the specific biomarkers identified as the top-ranked five biomarkers are different for the two different phenotypic genotoxicity assays. The top-ranked biomarkers for the in-vivo carcinogenicity prediction mainly focused on double strand break repair and DNA recombination, whereas the selected top-ranked biomarkers for Ames genotoxicity prediction are associated with base- and nucleotide-excision repair The method developed in this study will help to fill in the knowledge gap in phenotypic anchoring and predictive toxicology, and contribute to the progress in the implementation of tox 21 vision for environmental and health applications.
Collapse
Affiliation(s)
- Sheikh Mokhlesur Rahman
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA; Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - David Kaeli
- Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Jennifer Dy
- Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Akram Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA; School of Civil and Environmental Engineering, Cornell University, 263 Hollister Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
32
|
Carere M, Antoccia A, Buschini A, Frenzilli G, Marcon F, Andreoli C, Gorbi G, Suppa A, Montalbano S, Prota V, De Battistis F, Guidi P, Bernardeschi M, Palumbo M, Scarcelli V, Colasanti M, D'Ezio V, Persichini T, Scalici M, Sgura A, Spani F, Udroiu I, Valenzuela M, Lacchetti I, di Domenico K, Cristiano W, Marra V, Ingelido AM, Iacovella N, De Felip E, Massei R, Mancini L. An integrated approach for chemical water quality assessment of an urban river stretch through Effect-Based Methods and emerging pollutants analysis with a focus on genotoxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113549. [PMID: 34543968 DOI: 10.1016/j.jenvman.2021.113549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/04/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The impact of emerging chemical pollutants, on both status and functionality of aquatic ecosystems is worldwide recognized as a relevant issue of concern that should be assessed and managed by researchers, policymakers, and all relevant stakeholders. In Europe, the Reach Regulation has registered more than 100.000 chemical substances daily released in the environment. Furthermore, the effects related to the mixture of substances present in aquatic ecosystems may not be predictable on the basis of chemical analyses alone. This evidence, coupled with the dramatic effects of climate changes on water resources through water scarcity and flooding, makes urgent the application of innovative, fast and reliable monitoring methods. In this context, Effect-Based Methods (EBMs) have been applied in the urban stretch of the Tiber River (Central Italy) with the aim of understanding if detrimental pressures affect aquatic environmental health. In particular, different eco-genotoxicological assays have been used in order to detect genotoxic activity of chemicals present in the river, concurrently characterized by chemical analysis. Teratogenicity and embryo-toxicity have been studied in order to cover additional endpoints. The EBMs have highlighted the presence of diffuse chemical pollution and ecotoxicological effects in the three sampling stations, genotoxicological effects have been also detected through the use of different tests and organisms. The chemical analyses confirmed that in the aquatic ecosystems there is a diffuse presence, even at low concentrations, of emerging contaminants such as pharmaceuticals, not routinely monitored pesticides, personal care products, PFAS. The results of this study can help to identify an appropriate battery of EBMs for future studies and the application of more appropriate measures in order to monitor, mitigate or eliminate chemical contamination and remediate its adverse/detrimental effects on the ecosystem health.
Collapse
Affiliation(s)
- Mario Carere
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy.
| | - Antonio Antoccia
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Annamaria Buschini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, 43124, Parma, Italy
| | - Giada Frenzilli
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Francesca Marcon
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Cristina Andreoli
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Gessica Gorbi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, 43124, Parma, Italy
| | - Antonio Suppa
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, 43124, Parma, Italy
| | - Serena Montalbano
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, 43124, Parma, Italy
| | - Valentina Prota
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Francesca De Battistis
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Patrizia Guidi
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Margherita Bernardeschi
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Mara Palumbo
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Vittoria Scarcelli
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Marco Colasanti
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Veronica D'Ezio
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Tiziana Persichini
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Massimiliano Scalici
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Antonella Sgura
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Federica Spani
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Ion Udroiu
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Martina Valenzuela
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Ines Lacchetti
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Kevin di Domenico
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Walter Cristiano
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Valentina Marra
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Anna Maria Ingelido
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Nicola Iacovella
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Elena De Felip
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Riccardo Massei
- UFZ - Helmholtz Centre for Environmental Research, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318, Leipzig, Germany
| | - Laura Mancini
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| |
Collapse
|
33
|
Jiang T, Amadei CA, Lin Y, Gou N, Rahman SM, Lan J, Vecitis CD, Gu AZ. Dependence of Graphene Oxide (GO) Toxicity on Oxidation Level, Elemental Composition, and Size. Int J Mol Sci 2021; 22:ijms221910578. [PMID: 34638921 PMCID: PMC8508828 DOI: 10.3390/ijms221910578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The mass production of graphene oxide (GO) unavoidably elevates the chance of human exposure, as well as the possibility of release into the environment with high stability, raising public concern as to its potential toxicological risks and the implications for humans and ecosystems. Therefore, a thorough assessment of GO toxicity, including its potential reliance on key physicochemical factors, which is lacking in the literature, is of high significance and importance. In this study, GO toxicity, and its dependence on oxidation level, elemental composition, and size, were comprehensively assessed. A newly established quantitative toxicogenomic-based toxicity testing approach, combined with conventional phenotypic bioassays, were employed. The toxicogenomic assay utilized a GFP-fused yeast reporter library covering key cellular toxicity pathways. The results reveal that, indeed, the elemental composition and size do exert impacts on GO toxicity, while the oxidation level exhibits no significant effects. The UV-treated GO, with significantly higher carbon-carbon groups and carboxyl groups, showed a higher toxicity level, especially in the protein and chemical stress categories. With the decrease in size, the toxicity level of the sonicated GOs tended to increase. It is proposed that the covering and subsequent internalization of GO sheets might be the main mode of action in yeast cells.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
| | - Carlo Alberto Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (C.A.A.); (C.D.V.)
| | - Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
- Correspondence: (Y.L.); (A.Z.G.)
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sheikh Mokhlesur Rahman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (C.A.A.); (C.D.V.)
| | - April Z. Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (Y.L.); (A.Z.G.)
| |
Collapse
|
34
|
Yeung CS, Tse HY, Lau CY, Guan J, Huang J, Phillips DL, Leu SY. Insights into unexpected photoisomerization from photooxidation of tribromoacetic acid in aqueous environment using ultrafast spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126214. [PMID: 34102359 DOI: 10.1016/j.jhazmat.2021.126214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Haloacetic acids are carcinogenic disinfection by-products (DPBs) and their photo-decomposition pathways, especially for those containing bromine and iodine, are not fully understood. In this study, femtosecond transient absorption (fs-TA) spectroscopy experiments were introduced for the first time to investigate the photochemistry of tribromoacetic acid. The fs-TA experiments showed that a photoisomerization intermediate species HOOCCBr2-Br (iso-TBAA) was formed within several picoseconds after the excitation of TBAA. The absorption wavelength of the iso-TBAA was supported by time-dependent density calculations. With the Second-order Møller-Plesset perturbation theory, the structures and thermodynamics of the OH-insertion reactions of iso-TBAA were elucidated when water molecules were involved in the reaction complex. The calculations also revealed that the isomer species were able to react with water with its reaction dynamics dramatically catalyzed by the hydrogen bonding network. The proposed water catalyzed OH-insertion/HBr elimination mechanism predicted three major photoproducts, namely, HBr, CO and CO2, which was consistent with the photolysis experiments with firstly reported CO formation rate and mass conversion yield as 0.096 min-1 and 0.75 ± 0.1 respectively. The spectroscopic technique, numerical tool and disclosed mechanisms provided insights on photodecomposition and subsequent reactions of polyhalo-DPBs contain heavy atom(s) (e.g., Br, I) with water, aliphatic alcohols or other nucleophiles.
Collapse
Affiliation(s)
- Chi Shun Yeung
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Ho-Yin Tse
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chun Yin Lau
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jianyu Guan
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Shao-Yuan Leu
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
35
|
Jiang T, Lin Y, Amadei CA, Gou N, Rahman SM, Lan J, Vecitis CD, Gu AZ. Comparative and mechanistic toxicity assessment of structure-dependent toxicity of carbon-based nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126282. [PMID: 34111749 PMCID: PMC10631494 DOI: 10.1016/j.jhazmat.2021.126282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
The wide application of carbon-based nanomaterials (CNMs) has resulted in the ubiquity of CNMs in the natural environment and they potentially impose adverse consequences on ecosystems and human health. In this study, we comprehensively evaluated and compared potential toxicological effects and mechanisms of seven CNMs in three representative types (carbon blacks, graphene nanoplatelets, and fullerenes), to elucidate the correlation between their physicochemical/structural properties and toxicity. We employed a recently-developed quantitative toxicogenomics-based toxicity testing system with GFP-fused yeast reporter library targeting main cellular stress response pathways, as well as conventional phenotype-based bioassays. The results revealed that DNA damage, oxidative stress, and protein stress were the major mechanisms of action for all the CNMs at sub-cytotoxic concentration levels. The molecular toxicity nature were concentration-dependent, and they exhibited both similarity within the same structural group and distinctiveness among different CNMs, evidencing the structure-driven toxicity of CNMs. The toxic potential based on toxicogenomics molecular endpoints revealed the remarkable impact of size and structure on the toxicity. Furthermore, the phenotypic endpoints derived from conventional phenotype-based bioassays correlated with quantitative molecular endpoints derived from the toxicogenomics assay, suggesting that the selected protein biomarkers captured the main cellular effects that are associated with phenotypic adverse outcomes.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Carlo Alberto Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States; School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853, United States
| | - Sheikh Mokhlesur Rahman
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States; Department of Civil Engineering, Bangladesh University of Engineering and Technology, BUET Central Road, Dhaka 1000, Bangladesh
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chad D Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853, United States.
| |
Collapse
|
36
|
Cui H, Chen B, Jiang Y, Tao Y, Zhu X, Cai Z. Toxicity of 17 Disinfection By-products to Different Trophic Levels of Aquatic Organisms: Ecological Risks and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10534-10541. [PMID: 34132094 DOI: 10.1021/acs.est.0c08796] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intensified disinfection of wastewater during the COVID-19 pandemic increased the release of toxic disinfection by-products (DBPs). However, studies relating to the ecological impacts of DBPs on the aquatic environment remain insufficient. In this study, we comparatively investigated the toxicities and ecological risks of 17 typical, halogenated DBPs to three trophic levels of organisms in the freshwater ecosystem, including phytoplankton (Scenedesmus sp.), zooplankton (Daphnia magna), and fish (Danio rerio). Toxicity of DBPs was found to be species-specific: Scenedesmus sp. was the most sensitive to haloacetic acids, while D. magna was the most sensitive to haloacetonitriles and trihalomethanes. Specific to each DBP, toxicities were also related to their classes and substituted halogen atoms. Damage to photosystems and oxidative stress served as the potential mechanisms for DBPs toxicity to microalgae. The different sensitivities to DBPs indicate that a battery of bioassays with organisms at different trophic levels is necessary to determine the ecotoxicity of DBPs. Furthermore, the ecological risks of DBPs were assessed by calculating the risk quotients (RQs) based on toxicity data from multiple bioassays. The cumulative RQs of DBPs to all the organisms were greater than 1.0, indicating high ecological risks of DBPs in wastewater effluents.
Collapse
Affiliation(s)
- Huijun Cui
- State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Yuelu Jiang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yi Tao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Zhonghua Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
37
|
He Y, Ding H, Xia X, Qi W, Wang H, Liu W, Zheng F. GFP-fused yeast cells as whole-cell biosensors for genotoxicity evaluation of nitrosamines. Appl Microbiol Biotechnol 2021; 105:5607-5616. [PMID: 34228183 DOI: 10.1007/s00253-021-11426-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Nitrosamine compounds, represented by N-nitrosodimethylamine, are regarded as potentially genotoxic impurities (PGIs) due to their hazard warning structure, which has attracted great attention of pharmaceutical companies and regulatory authorities. At present, great research gaps exist in genotoxicity assessment and carcinogenicity comparison of nitrosamine compounds. In this work, a collection of GFP-fused yeast cells representing DNA damage repair pathways were used to evaluate the genotoxicity of eight nitrosamine compounds (10-6-105 μg/mL). The high-resolution expression profiles of GFP-fused protein revealed the details of the DNA damage repair of nitrosamines. Studies have shown that nitrosamine compounds can cause extensive DNA damage and activate multiple repair pathways. The evaluation criteria based on the total expression level of protein show a good correlation with the mammalian carcinogenicity data TD50, and the yeast cell collection can be used as a potential reliable criterion for evaluating the carcinogenicity of compounds. The assay based on DNA damage pathway integration has high sensitivity and can be used as a supplementary method for the evaluation of trace PGIs in actual production. KEY POINTS: • The genotoxicity mechanism of nitrosamines was systematically studied. • The influence of compound structure on the efficacy of genotoxicity was explored. • GFP-fused yeast cells have the potential to evaluate impurities in production.
Collapse
Affiliation(s)
- Ying He
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Haotian Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xingya Xia
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Wenyi Qi
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Huaisong Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Feng Zheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
38
|
Kaur J, Kaur V, Pakade YB, Katnoria JK. A study on water quality monitoring of Buddha Nullah, Ludhiana, Punjab (India). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2699-2722. [PMID: 32949005 DOI: 10.1007/s10653-020-00719-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Diverse genotoxic agents, entering the aquatic environment through natural and anthropogenic events, pose serious threats to its biotic components. The present study involves the monitoring of water quality by assessing the genotoxic effects and physico-chemical parameters including heavy metals of 10 surface water samples collected from different locations of Buddha Nullah, a tributary of Sutlej flowing through Ludhiana, Punjab (India). Genotoxicity was evaluated following Allium cepa root chromosomal aberration assay and DNA nicking assay using plasmid (pBR322) whilst the metal (cadmium, chromium, cobalt, copper, lead, nickel and zinc) analysis was conducted using atomic absorption spectrophotometer. All water samples collected from the study area had cobalt and lead content more than the permissible limits (0.04 and 0.01, respectively) recommended by the Bureau of Indian Standards and the World Health Organization. The samples also induced genotoxicity following both bioassays. The water samples collected from Gaunspur (GP), a site approx. 75.53 km upstream of the Sutlej-Buddha Nullah joining point, has shown the maximum genotoxic effect, i.e. 38.62% in terms of per cent total aberrant cells during A. cepa assay and 100% DNA damage during DNA nicking assay. The Pearson correlation indicated that genotoxicity had a significant positive correlation with the content of cobalt (at p ≤ 0.5). During cluster analysis, the samples from 10 sites formed four statistically significant clusters based on the level of pollution that was dependent on two factors like similarity in physico-chemical characteristics and source of pollution at a specific site.
Collapse
Affiliation(s)
- Jaskaran Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Varinder Kaur
- Department of Chemistry- Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Yogesh B Pakade
- Cleaner Technology Centre, CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Jatinder Kaur Katnoria
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
39
|
Yuan Z, Yu F, Zhang D, Wang H. Profiling of the assembly of RecA nucleofilaments implies a potential target for environmental factors to disturb DNA repair. J Environ Sci (China) 2021; 102:283-290. [PMID: 33637254 DOI: 10.1016/j.jes.2020.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 06/12/2023]
Abstract
Double-strand breaks (DSBs), one class of the most harmful DNA damage forms that bring elevated health risks, need to be repaired timely and effectively. However, an increasing number of environmental pollutants have been identified to impair DSB repair from various mechanisms. Our previous work indicated that the formation of unsaturated RecA nucleofilaments plays an essential role in homology recombination (HR) pathway which can accurately repair DSBs. In this study, by developing a benzonase cutting protection assay and combining it with traditional electrophoretic mobility shift assay (EMSA) analysis, we further investigated the assembly patterns of four RecA mutants that display differential DSB repair ability and ATPase activity. We observed that the mutants (G204S and S69G) possessing both ATP hydrolysis and DSB repair activities form unsaturated nucleofilaments similar to that formed by the wild type RecA, whereas the other two ATP hydrolysis-deficient mutants (K72R and E96D) that fail to mediate HR form more compacted nucleofilaments in the presence of ATP. These results establish a coupling of ATPase activity and effective DSB repair ability via the assembly status of RecA nucleofilaments. This linkage provides a potential target for environmental factors to disturb the essential HR pathway for DSB repair by suppressing the ATPase activity and altering the assembly pattern of nucleofilaments.
Collapse
Affiliation(s)
- Zheng Yuan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhi Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dapeng Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 430056, China.
| |
Collapse
|
40
|
Treatment of cooling tower blowdown water by using adsorption-electrocatalytic oxidation: Technical performance, toxicity assessment and economic evaluation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Lin Y, Rivera MS, Jiang T, Li G, Cotto I, Vosloo S, Carpenter CM, Larese-Casanova P, Giese RW, Helbling DE, Padilla IY, Rosario-Pabón Z, Vega CV, Cordero JF, Alshawabkeh AN, Pinto A, Gu AZ. Impact of Hurricane Maria on Drinking Water Quality in Puerto Rico. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9495-9509. [PMID: 32640159 PMCID: PMC7837318 DOI: 10.1021/acs.est.0c01655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study performed a comprehensive assessment of the impact of Hurricane Maria (HM) on drinking water quality in Puerto Rico (PR) by integrating targeted chemical analysis of both inorganic (18 trace elements) and organic trace pollutants (200 micropollutants) with high-throughput quantitative toxicogenomics and in vitro biomarkers-based toxicity assays. Average concentrations of 14 detected trace elements and 20 organic micropollutants showed elevation after HM. Arsenic, sucralose, perfluorooctanoic acid (PFOA), atrazine-2-hydroxy, benzotriazole, acesulfame, and prometon were at significantly (p < 0.05) higher levels in the post-HM than in the pre-HM samples. Thirteen micropollutants, including four pesticides, were only detected in posthurricane samples. Spatial comparison showed higher pollutant and toxicity levels in the samples from northern PR (where eight Superfund sites are located) than in those from southern PR. Distinctive pathway-specific molecular toxicity fingerprints for water extracts before and after HM and at different locations revealed changes in toxicity nature that likely resulted from the impact of HM on drinking water composition. Correlation analysis and Maximum Cumulative Ratio assessment suggested that metals (i.e., arsenic) and PFOA were the top ranked pollutants that have the potential to cause increased risk after HM, providing a possible direction for future water resource management and epidemiological studies.
Collapse
Affiliation(s)
- Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY
| | | | - Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | - Guangyu Li
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | - Irmarie Cotto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | - Solize Vosloo
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | | | | | - Roger W. Giese
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY
| | - Ingrid Y. Padilla
- Department of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez, PR
| | | | | | - José F. Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Akram N. Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | - Ameet Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | - April Z. Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
42
|
Wei X, Yang M, Zhu Q, Wagner ED, Plewa MJ. Comparative Quantitative Toxicology and QSAR Modeling of the Haloacetonitriles: Forcing Agents of Water Disinfection Byproduct Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8909-8918. [PMID: 32551543 DOI: 10.1021/acs.est.0c02035] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The haloacetonitriles (HANs) is an emerging class of nitrogenous-disinfection byproducts (N-DBPs) present in disinfected drinking, recycled, processed wastewaters, and reuse waters. HANs were identified as primary forcing agents that accounted for DBP-associated toxicity. We evaluated the toxic characteristics of iodoacetonitrile (IAN), bromoacetonitrile (BAN), dibromoacetonitrile (DBAN), bromochloroacetonitrile (BCAN), tribromoacetonitrile (TBAN), chloroacetonitrile (CAN), dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), bromodichloroacetonitrile (BDCAN), and chlorodibromoacetonitrile (CDBAN). This research generated the first quantitative, comparative analyses on the mammalian cell cytotoxicity, genotoxicity and thiol reactivity of these HANs. The descending rank order for HAN cytotoxicity was TBAN ≈ DBAN > BAN ≈ IAN > BCAN ≈ CDBAN > BDCAN > DCAN ≈ CAN ≈ TCAN. The rank order for genotoxicity was IAN ≈ TBAN ≈ DBAN > BAN > CDBAN ≈ BDCAN ≈ BCAN ≈ CAN ≈ TCAN ≈ DCAN. The rank order for thiol reactivity was TBAN > BDCAN ≈ CDBAN > DBAN > BCAN > BAN ≈ IAN > TCAN. These toxicity metrics were associated with membrane permeability and chemical reactivity. Based on their physiochemical parameters and toxicity metrics, we developed optimized, robust quantitative structure activity relationship (QSAR) models for cytotoxicity and for genotoxicity. These models can predict cytotoxicity and genotoxicity of novel HANs prior to analytical biological evaluation.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518000 China
| | - Qingyao Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518000 China
| | - Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Jiang T, Amadei CA, Gou N, Lin Y, Lan J, Vecitis CD, Gu AZ. Toxicity of Single-Walled Carbon Nanotubes (SWCNTs): Effect of Lengths, Functional Groups and Electronic Structures Revealed by a Quantitative Toxicogenomics Assay. ENVIRONMENTAL SCIENCE. NANO 2020; 7:1348-1364. [PMID: 33537148 PMCID: PMC7853656 DOI: 10.1039/d0en00230e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are a group of widely used carbon-based nanomaterials (CNMs) with various applications, which raise increasing public concerns associated with their potential toxicological effect and risks on human and ecosystems. In this report, we comprehensively evaluated the nanotoxicity of SWCNTs with their relationship to varying lengths, functional groups and electronic structures, by employing both newly established quantitative toxicogenomics test, as well as conventional phenotypic bioassays. The objective is to reveal potential cellular toxicity and mechanisms of SWCNTs at the molecular level, and to probe their potential relationships with their morphological, surface, and electronic properties. The results indicated that DNA damage and oxidative stress were the dominant mechanisms of action for all SWCNTs and, the toxicity level and characteristics varied with length, surface functionalization and electronic structure. Distinguishable molecular toxicity fingerprints were revealed for the two SWCNTs with varying length, with short SWCNT exhibiting higher toxicity level than the long one. In terms of surface properties, SWCNT functionalization, namely carboxylation and hydroxylation, led to elevated overall toxicity, especially genotoxicity, as compared to unmodified SWCNT. Carboxylated SWCNT induced a greater toxicity than the hydroxylated SWCNT. The nucleus is likely the primary target site for long, short, and carboxylated SWCNTs and mechanical perturbation is likely responsible for the DNA damage, specifically related to degradation of the DNA double helix structure. Finally, dramatically different electronic structure-dependent toxicity was observed with metallic SWCNT exerting much higher toxicity than the semiconducting one that exhibited minimal toxicity among all SWCNTs.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
| | - Carlo Alberto Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
| | - Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Corresponding authors: ,
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - April Z. Gu
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
- Corresponding authors: ,
| |
Collapse
|
44
|
McKenna E, Thompson KA, Taylor-Edmonds L, McCurry DL, Hanigan D. Summation of disinfection by-product CHO cell relative toxicity indices: sampling bias, uncertainty, and a path forward. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:708-718. [PMID: 31894210 DOI: 10.1039/c9em00468h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cyto- and genotoxic potencies of disinfection by-products (DBPs) have been evaluated in published literature by measuring the response of exposed Chinese hamster ovary cells. In recent publications, DBP concentrations divided by their individual toxicity indices are summed to predict the relative toxicity of a water sample. We hypothesized that the omission or inclusion of certain DBPs over others is equivalent to statistical sampling bias and may result in biased conclusions. To test this hypothesis, we removed or added actual or simulated DBP measurements to that of published studies which evaluated granular activated carbon as a treatment to reduce the relative toxicity of the effluent. In several examples, it was possible to overturn the conclusions (i.e., activated carbon is detrimental or beneficial in reducing toxicity) by preferentially including specific DBPs. In one example, removing measured haloacetaldehydes caused the predicted cytotoxicity of a treated sample to decrease by up to 47%, reversing the initial conclusion that activated carbon increased the toxicity of the water. We also discuss measurements of statistical error, which are rarely included in publications related to predicted toxicity, but strongly influence the outcomes. Finally, we discuss future research needs in the light of these and other concerns.
Collapse
Affiliation(s)
- Elizabeth McKenna
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557-0258, USA.
| | | | | | | | | |
Collapse
|
45
|
Zeyad MT, Kumar M, Malik A. Mutagenicity, genotoxicity and oxidative stress induced by pesticide industry wastewater using bacterial and plant bioassays. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 24:e00389. [PMID: 31763201 PMCID: PMC6864361 DOI: 10.1016/j.btre.2019.e00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022]
Abstract
Atomic absorption spectrophotometer and gas chromatography analysis revealed the presence of heavy metals, organochlorine and organophosphate pesticides in industrial wastewater. XAD, Dichloromethane and n-Hexane extracted wastewater were analysed for genotoxic potential using Ames Salmonella/mammalian microsome test. The XAD concentrated sample displayed remarkable mutagenic activity compared to solvent assisted liquid-liquid extraction. Strain TA98 was found utmost sensitive towards all extracts. Wastewater induced chromosomal aberrations in roots of Allium cepa showed significant (p < 0.05) decrease in mitotic index. Seeds of Vigna radiata germinated on soft agar plates treated with different concentration of wastewater showed significant reduction in germination (52 %), seedling vigor index (76 %), radicle length (56 %), plumule length (47 %), biomass of radicle (64 %) and plumule (57%) at highest wastewater concentration. Propidium iodide stained V. radiata roots showed oxidative stress induced by wastewater under CLS microscopy. Further, genotoxicity of wastewater was confirmed by plasmid nicking assay using pBR322 plasmid.
Collapse
Affiliation(s)
- Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP-202002, India
| | - Murugan Kumar
- National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau, UP-275103, India
| | - Abdul Malik
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP-202002, India
| |
Collapse
|
46
|
Global Analysis of Furfural-Induced Genomic Instability Using a Yeast Model. Appl Environ Microbiol 2019; 85:AEM.01237-19. [PMID: 31300396 DOI: 10.1128/aem.01237-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Furfural is an important renewable precursor for multiple commercial chemicals and fuels; a main inhibitor existing in cellulosic hydrolysate, which is used for bioethanol fermentation; and a potential carcinogen, as well. Using a genetic system in Saccharomyces cerevisiae that allows detection of crossover events, we observed that the frequency of mitotic recombination was elevated by 1.5- to 40-fold when cells were treated with 0.1 g/liter to 20 g/liter furfural. Analysis of the gene conversion tracts associated with crossover events suggested that most furfural-induced recombination resulted from repair of DNA double-strand breaks (DSBs) that occurred in the G1 phase. Furfural was incapable of breaking DNA directly in vitro but could trigger DSBs in vivo related to reactive oxygen species accumulation. By whole-genome single nucleotide polymorphism (SNP) microarray and sequencing, furfural-induced genomic alterations that range from single base substitutions, loss of heterozygosity, and chromosomal rearrangements to aneuploidy were explored. At the whole-genome level, furfural-induced events were evenly distributed across 16 chromosomes but were enriched in high-GC-content regions. Point mutations, particularly the C-to-T/G-to-A transitions, were significantly elevated in furfural-treated cells compared to wild-type cells. This study provided multiple novel insights into the global effects of furfural on genomic stability.IMPORTANCE Whether and how furfural affects genome integrity have not been clarified. Using a Saccharomyces cerevisiae model, we found that furfural exposure leads to in vivo DSBs and elevation in mitotic recombination by orders of magnitude. Gross chromosomal rearrangements and aneuploidy events also occurred at a higher frequency in furfural-treated cells. In a genome-wide analysis, we show that the patterns of mitotic recombination and point mutations differed dramatically in furfural-treated cells and wild-type cells.
Collapse
|
47
|
Zhang Y, Sun HJ, Zhang JY, Ndayambaje E, Lin H, Chen J, Hong H. Chronic exposure to dichloroacetamide induces biochemical and histopathological changes in the gills of zebrafish. ENVIRONMENTAL TOXICOLOGY 2019; 34:781-787. [PMID: 30884105 DOI: 10.1002/tox.22744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 05/15/2023]
Abstract
To evaluate the impact of DCAcAm on zebrafish gill, we measure the responses of antioxidant enzyme (superoxide dismutase, SOD), lipid peroxidation (malondialdehyde, MDA), ATPase (Na+ /K+ -ATPase and Ca2+ /Mg2+ -ATP) and histopathological changes of gill in adult zebrafish, after exposed to different concentrations of DCAcAm (0, 1, 10, 100, and 1000 μg L-1 ) for 30 days. Results indicated that DCAcAm first increased and then decreased SOD activity, and DCAcAm also lowered the activities of Na+ /K+ -ATPase and Ca2+ /Mg2+ -ATPase. These results indicated that high affinity of DCAcAm probably be a main factor, which can damage the structures of enzymes, thereby inhibiting the SOD and ATPase activities. Besides, histopathological investigation results also manifested that chronic exposure to DCAcAm can damage the gill tissues, disrupting the normal function of gills. We conclude that chronic exposure to DCAcAm was harmful to organisms, not only influence gill function, but also further cause damage on the gill tissues.
Collapse
Affiliation(s)
- Yu Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Zhejiang, China
| | - Hong-Jie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Zhejiang, China
| | - Jing-Ying Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Zhejiang, China
| | - Emmanuel Ndayambaje
- College of Geography and Environmental Science, Zhejiang Normal University, Zhejiang, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Zhejiang, China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Zhejiang, China
| | - Huachang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Zhejiang, China
| |
Collapse
|
48
|
Yang X, Ou W, Xi Y, Chen J, Liu H. Emerging Polar Phenolic Disinfection Byproducts Are High-Affinity Human Transthyretin Disruptors: An in Vitro and in Silico Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7019-7028. [PMID: 31117532 DOI: 10.1021/acs.est.9b00218] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phenolic disinfection byproducts (phenolic-DBPs) have been identified in recent years. However, the toxicity data for phenolic-DBPs are scarce, hampering their risk assessment and the development of regulations on the acceptable concentration of phenolic-DBPs in water. In this study, the binding potency and underlying interaction mechanism between human transthyretin (hTTR) and five groups of representative phenolic-DBPs (2,4,6-trihalo-phenols, 2,6-dihalo-4-nitrophenols, 3,5-dihalo-4-hydroxybenzaldehydes, 3,5-dihalo-4-hydroxybenzoic acids, halo-salicylic acids) were determined and probed by competitive fluorescence displacement assay integrated with in silico methods. Experimental results implied that 2,4,6-trihalo-phenols, 2,6-dihalo-4-nitrophenols, and 3,5-dihalo-4-hydroxybenzaldehydes have a high binding affinity with hTTR. The hTTR binding potency of the chemicals with electron-withdrawing groups on their molecular structures were higher than that with electron-donor groups. Molecular modeling methods were used to decipher the binding mechanism between model compounds and hTTR. The results documented that ionic pair, hydrogen bonding and hydrophobic interactions were dominant interactions. Finally, a mechanism-based model for predicting the hTTR binding affinity was developed. The determination coefficient ( R2), leave-one-out cross validation Q2 ( QLOO2), bootstrapping coefficient ( QBOOT2), external validation coefficient ( QEXT2) and concordance correlation coefficient ( CCC) of the developed model met the acceptable criteria ( Q2 > 0.600, R2 > 0.700, CCC > 0.850), implying that the model had good goodness-of-fit, robustness, and external prediction performances. All the results indicated that the phenolic-DBPs have the hTTR disrupting effects, and further studies are needed to investigate their other mechanism of endocrine disruption.
Collapse
Affiliation(s)
- Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
- Nanjing Institute of Environmental Science , Ministry of Ecology and Environment of the People's Republic of China , Nanjing 210042 , China
| | - Wang Ou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Yue Xi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| |
Collapse
|