1
|
Blair MF, Vaidya R, Salazar-Benites G, Bott CB, Pruden A. Relating microbial community composition to treatment performance in an ozone-biologically active carbon filtration potable reuse treatment train. WATER RESEARCH 2024; 262:122091. [PMID: 39047455 DOI: 10.1016/j.watres.2024.122091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Treatment trains that couple ozone (O3) with biologically active carbon (BAC) filtration are of interest as a lower cost, more sustainable, membrane-free approach to water reuse. However, little is known about the microbial communities that are the fundamental drivers of O3-BAC treatment. The objective of this study was to demonstrate microbial community profiling as a diagnostic tool for assessing the functionality, biological stability, and resilience of coupled physical, chemical, advanced oxidative and biological processes employed in water reuse treatment. We utilized 16S rRNA gene amplicon sequencing to profile the bacterial microbiota over time throughout a potable reuse train employing coagulation, flocculation, sedimentation, ozonation, BAC filtration, granular activated carbon (GAC) adsorption, and UV disinfection. A distinct baseline microbiota was associated with each stage of treatment (ANOSIM, p < 0.05, r-stat = 0.52), each undergoing succession with time and operational shifts. Ozonation resulted in the sharpest shifts (i.e., 83.3 % average change in Genus level relative abundances, when adjusted O3:TOC ratio > 1), and also variance, in microbial community composition. Adjustment in O3:TOC ratios, temperature, filter-aid polymer, monochloramine quenching agent, and empty-bed contact time also resulted in measurable changes in the baseline microbial community composition of individual processes, but to a lesser degree. Of these, supplementation of nitrogen and phosphorus resulted in the strongest bifurcation, especially in the microbial communities inhabiting the BAC (ANOSIM: p < 0.05, BAC5 r-stat = 0.32; BAC10 r-stat = 0.54) and GAC (ANOSIM: p < 0.05, GAC10 r-stat = 0.54; GAC20 r-stat = 0.63) units. Additionally, we found that the BAC microbial community was responsive to an inoculation of microbially active media, which resulted in improved TOC removal. The findings of this study improve understanding of bacterial dynamics occurring in advanced water treatment trains and can inform improved system design and operation.
Collapse
Affiliation(s)
- Matthew F Blair
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | | | | | - Charles B Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Wang Z, Chen C, Xiong M, Tan J, Wu K, Liu H, Xing DF, Wang A, Ren N, Zhao L. Microbial interactions facilitating efficient methane driven denitrification via in-situ utilization of short chain fatty acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172901. [PMID: 38697549 DOI: 10.1016/j.scitotenv.2024.172901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
High nitrate pollution in agriculture and industry poses a challenge to emerging methane oxidation coupled denitrification. In this study, an efficient nitrate removal efficiency of 100 % was achieved at an influent loading rate of 400 mg-N/L·d, accompanied by the production of short chain fatty acids (SCFAs) with a maximum value of 80.9 mg/L. Batch tests confirmed that methane was initially converted to acetate, which then served as a carbon source for denitrification. Microbial community characterization revealed the dominance of heterotrophic denitrifiers, including Simplicispira (22.8 %), Stappia (4.9 %), and the high‑nitrogen-tolerant heterotrophic denitrifier Diaphorobacter (19.0 %), at the nitrate removal rate of 400 mg-N/L·d. Notably, the low abundance of methanotrophs ranging from 0.24 % to 3.75 % across all operational stages does not fully align with the abundance of pmoA genes, suggesting the presence of other functional microorganisms capable of methane oxidation and SCFAs production. These findings could facilitate highly efficient denitrification driven by methane and contributed to the development of denitrification using methane as an electron donor.
Collapse
Affiliation(s)
- Zihan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Minli Xiong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jingyan Tan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kaikai Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Liu
- School of Biopharmaceuticals, Heilongjiang Agricultural Engineering Vocational College, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Li Y, Si Y, Sun Z, Hu X, Shi Z, Li Y, Wu H. Simulated nitrogen load promoted mineralization of N2P1 compounds and accumulation of N4S2 compounds in soil dissolved organic matter in a typical subtropical estuarine marsh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172107. [PMID: 38575015 DOI: 10.1016/j.scitotenv.2024.172107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Soil dissolved organic matter (DOM) is the most reactive pool in estuarine marshes, playing an important role in the biogeochemical processes of biogenetic elements. To investigate the impacts of enhanced nitrogen (N) load on DOM molecular composition and its interactions with microbes in typical Cyperus malaccensis mashes of the Min River estuary, a field N load experiment with four N levels (0, 37.50, 50 and 100 g exogenous N m-2 yr-1, respectively; applied monthly for a total of seven months) was performed. DOM molecular composition was characterized by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), the microbial community compositions (MCC, including fungi and bacteria) were determined by high-throughput sequencing technique, and their relationships were presented by co-occurrence network analysis. The results indicated that enhanced N load had significant impacts on soil DOM molecular composition, with N/C and P/C of DOM decreasing but S/C increasing markedly. Meanwhile, enhanced N load decreased the percentages of N2P1 compounds (primarily lipids) but increased those of N4S2 compounds (mainly lignins and lipids). The relative abundances of lignins significantly increased with increasing N load levels, whereas the proportions of lipids decreased. The abundance of N2P1 and N4S2 compounds was primarily positively correlated with eutrophic and oligotrophic microorganisms, respectively. Therefore, mineralization of N2P1 compounds might act as a source to replenish inorganic P, while enrichment of N4S2 compounds may make great contribution to organic S accumulation. Overall, enhanced N load promoted P depletion and S enrichment via altering plant growth, litter decomposition and MCC.
Collapse
Affiliation(s)
- Yajin Li
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China
| | - Youtao Si
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China; Institute of Geography, Fujian Normal University, Fuzhou 350117, People's Republic of China.
| | - Zhigao Sun
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China; Institute of Geography, Fujian Normal University, Fuzhou 350117, People's Republic of China.
| | - Xingyun Hu
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China
| | - Zixiang Shi
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China
| | - Yanzhe Li
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China
| | - Huihui Wu
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China
| |
Collapse
|
4
|
Zuo Z, Niu C, Zhao X, Lai CY, Zheng M, Guo J, Hu S, Liu T. Biological bromate reduction coupled with in situ gas fermentation in H 2/CO 2-based membrane biofilm reactor. WATER RESEARCH 2024; 254:121402. [PMID: 38461600 DOI: 10.1016/j.watres.2024.121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Bromate, a carcinogenic contaminant generated in water disinfection, presents a pressing environmental concern. While biological bromate reduction is an effective remediation approach, its implementation often necessitates the addition of organics, incurring high operational costs. This study demonstrated the efficient biological bromate reduction using H2/CO2 mixture as the feedstock. A membrane biofilm reactor (MBfR) was used for the efficient delivery of gases. Long-term reactor operation showed a high-level bromate removal efficiency of above 95 %, yielding harmless bromide as the final product. Corresponding to the short hydraulic retention time of 0.25 d, a high bromate removal rate of 4 mg Br/L/d was achieved. During the long-term operation, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed, which can be regulated by controlling the gas flow. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms underpinning the efficient bromate removal, showing that the microbial bromate reduction was primarily driven by the VFAs produced from in situ gas fermentation. Microbial community analysis showed an increased abundance of Bacteroidota group from 4.0 % to 18.5 %, which is capable of performing syngas fermentation, and the presence of heterotrophic denitrifiers (e.g., Thauera and Brachymonas), which are known to perform bromate reduction. Together these results for the first time demonstrated the feasibility of using H2/CO2 mixture for bromate removal coupled with in situ VFAs production. The findings can facilitate the development of cost-effective strategies for groundwater and drinking water remediation.
Collapse
Affiliation(s)
- Zhiqiang Zuo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chenkai Niu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xinyu Zhao
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
5
|
Chi Z, Liu X, Li H, Liang S, Luo YH, Zhou C, Rittmann BE. Co-metabolic biodegradation of chlorinated ethene in an oxygen- and ethane-based membrane biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167323. [PMID: 37742949 DOI: 10.1016/j.scitotenv.2023.167323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Groundwater contamination by chlorinated ethenes is an urgent concern worldwide. One approach for detoxifying chlorinated ethenes is aerobic co-metabilims using ethane (C2H6) as the primary substrate. This study evaluated long-term continuous biodegradation of three chlorinated alkenes in a membrane biofilm reactor (MBfR) that delivered C2H6 and O2 via gas-transfer membranes. During 133 days of continuous operation, removals of dichloroethane (DCE), trichloroethene (TCE), and tetrachloroethene (PCE) were as high as 94 % and with effluent concentrations below 5 μM. In situ batch tests showed that the co-metabolic kinetics were faster with more chlorination. C2H6-oxidizing Comamonadaceae and "others," such as Methylococcaceae, oxidized C2H6 via monooxyenation reactions. The abundant non-ethane monooxygenases, particularly propane monooxygenase, appears to have been responsible for C2H6 aerobic metabolism and co-metabolism of chlorinated ethenes. This work proves that the C2H6 + O2 MBfR is a platform for ex-situ bioremediation of chlorinated ethenes, and the generalized action of the monooxygenases may make it applicable for other chlorinated organic contaminants.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Xinyang Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| | - Shen Liang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
6
|
Tong T, Tong J, Xue K, Li Y, Yu J, Wei Y. Microbial community structure and functional prediction in five full-scale industrial park wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166529. [PMID: 37625722 DOI: 10.1016/j.scitotenv.2023.166529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The development of industrial parks has become an important global trend contributing significantly to economic and industrial growth. However, this growth comes at a cost, as the treatment of multisource industrial wastewater generated in these parks can be difficult owing to its complex composition. Microorganisms play a critical role in pollutant removal during industrial park wastewater treatment. Therefore, our study focused on the microbial communities in five full-scale industrial park wastewater treatment plants (WWTPs) with similar treatment processes and capacities. The results showed that denitrifying bacteria were dominant in almost every process section of all the plants, with heterotrophic denitrification being the main pathway. Moreover, autotrophic sulfur denitrification and methane oxidation denitrification may contribute to total nitrogen (TN) removal. In plants where the influent had low levels of COD and TN, dominant bacteria included oligotrophic microorganisms like Prosthecobacter (2.88 % ~ 10.02 %) and hgcI_clade (2.05 % ~ 9.49 %). Heavy metal metabolizing microorganisms, such as Norank_f__PHOS-HE36 (3.96 % ~ 5.36 %) and Sediminibacterium (1.86 % ~ 5.34 %), were prevalent in oxidation ditch and secondary settling tanks in certain plants. Functional Annotation of Prokaryotic Taxa (FAPROTAX) revealed that microbial communities in the regulation and hydrolysis tanks exhibited higher potential activity in the nitrogen (N) and sulfur (S) cycles than those in the oxidation ditch. Sulfate/sulfite reduction was common in most plants, whereas the potential occurrence of sulfide compounds and thiosulfate oxidation tended to be higher in plants with a relatively high sulfate concentration and low COD content in their influent. Our study provides a new understanding of the microbial community in full-scale industrial park WWTPs and highlights the critical role of microorganisms in the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Tujun Tong
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China; China Energy Conservation and Environmental Protection Group, Beijing 100082, China
| | - Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Keni Xue
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanan Li
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiangze Yu
- University of Chinese Academy of Sciences, Beijing 100049, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Pang S, Zhou Y, Yang L, Zhou J, Li X, Xia S. Simultaneous removal of nitrate and ammonium by hydrogen-based partial denitrification coupled with anammox in a membrane biofilm reactor. BIORESOURCE TECHNOLOGY 2023; 369:128443. [PMID: 36470489 DOI: 10.1016/j.biortech.2022.128443] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen-based membrane biofilm reactors (MBfRs) are effective for nitrogen removal. However, the safety of hydrogen limited the application of MBfR. Here, a hydrogen-based partial denitrification system coupled with anammox (H2-PDA) was constructed in an MBfR for reducing hydrogen demand significantly. The metabolomics and structures of microbial communities were analyzed to determine the phenotypic differences and drivers underlying denitrification, anammox, and H2-PDA. These findings indicated that total nitrogen (TN) removal increased from 57.1% in S1 to 93.7% in S2. During the H2-PDA process, partial denitrification and anammox contributed to TN removal by 93.7% and 6.3%, respectively. Community analysis indicated that the H2-PDA system was dominated by the genus Meiothermus, which is involved in partial denitrification. Collectively, these findings confirmed the feasibility of incorporating the H2-PDA process in a MBfR and form a foundation for the establishment of novel and practical methods for efficient nitrogen removal.
Collapse
Affiliation(s)
- Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
8
|
Cao L, Ge R, Xu W, Zhang Y, Li G, Xia X, Zhang F. Simultaneous removal of nitrate, nitrobenzene and aniline from groundwater in a vertical baffled biofilm reactor. CHEMOSPHERE 2022; 309:136746. [PMID: 36209853 DOI: 10.1016/j.chemosphere.2022.136746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The challenge of simultaneous removal of nitrobenzene (NB), aniline (AN) and nitrate from groundwater in a single bioreactor is mainly attributed to the persistence of AN to degradation with anoxic denitrification conditions. In this work, simultaneous removal of NB (100 μM), AN (100 μM) and nitrate (1 mM) was achieved within 8 h with a COD/N ratio of 8 in a vertical baffled biofilm reactor (VBBR). By setting DO concentration at 0.4-0.5 mg L-1 to create a micro-aerobic condition, NB removal rate was accelerated without accumulation of AN, and AN could serve as electron donors for denitrification after ring cleavage. High-throughput sequencing showed that biofilm was predominated by denitrifiers (Luteimonas, Planctomyces, Thiobacillus, Thauera and so on) and NB-degrading bacteria (Pseudomonas), and biodiversity varied vertically along the height of the reactor. A dominantly anaerobic pathway for reducing NB to AN was identified by PICRUSt analysis, as the predicted genes involved in aerobic transformation of NB were several magnitudes lower than those in the anaerobic pathway. This study provided a new insight to the role of oxygen in robust bioremediation groundwater contaminated with NB, AN and nitrate.
Collapse
Affiliation(s)
- Lifeng Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing, 100015, PR China
| | - Runlei Ge
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Wenxin Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yongming Zhang
- Department of Environmental Science and Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing, 100015, PR China
| | - Xue Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Fang Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing, 100015, PR China.
| |
Collapse
|
9
|
Falås P, Juárez R, Dell LA, Fransson S, Karlsson S, Cimbritz M. Microbial bromate reduction following ozonation of bromide-rich wastewater in coastal areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156694. [PMID: 35714740 DOI: 10.1016/j.scitotenv.2022.156694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Ozonation of wastewater can reduce the release of organic micropollutants, but may result in the formation of undesirable by-products, such as bromate from bromide. Bromide is one of the most abundant ions in seawater, the primary precursor of bromate during ozonation, and the end product in microbial bromate reduction. Investigations were carried out to compare the concentration of bromide in wastewater in coastal and non-coastal catchment areas, to monitor bromate formation during ozonation, and to assess the potential for subsequent bromate reduction with denitrifying carriers. Higher bromide concentrations were systematically observed in wastewater from coastal catchment areas (0.2-2 mg Br-/L) than in wastewater from non-coastal areas (0.06-0.2 mg Br-/L), resulting in elevated formation of bromate during ozonation. Subsequent investigations of bromate reduction in contact with denitrifying carriers from two full-scale moving bed biofilm reactors (MBBRs) showed that 80 % of the bromate formed during ozonation could be reduced to bromide in 60 min with first-order rate constants of 0.3-0.8 L/(gbiomass·h). Flow-through experiments with denitrifying carriers also showed that combined reduction of bromate and nitrate could be achieved below a concentration of 2 mg NOx--N/L. These findings indicate that bromide-rich wastewater is more likely to be of concern when using ozonation in coastal than in non-coastal areas, and that bromate and nitrate reduction can be combined in a single biofilm reactor.
Collapse
Affiliation(s)
- Per Falås
- Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
| | - Rubén Juárez
- Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden; Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, SE-223 70 Lund, Sweden
| | - Lauren A Dell
- Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Sandra Fransson
- Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Stina Karlsson
- Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden; Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, SE-223 70 Lund, Sweden
| | - Michael Cimbritz
- Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
10
|
Jiang M, Zhang Y, Zhang J, Dai X, Li H, Zhang X, Wu Z, Zheng J. Model Evaluation of the Microbial Metabolic Processes in a Hydrogen-Based Membrane Biofilm Reactor for Simultaneous Bromate and Nitrate Reduction. MEMBRANES 2022; 12:774. [PMID: 36005689 PMCID: PMC9415787 DOI: 10.3390/membranes12080774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The H2-based membrane biofilm reactor (H2-MBfR) has been acknowledged as a cost-effective microbial reduction technology for oxyanion removal from drinking water sources, but it remains unknown how the evolution of biofilm characteristics responds to the changing critical operating parameters of the H2-MBfR for simultaneous bromate (BrO3-) and nitrate (NO3-) elimination. Therefore, an expanded multispecies model, applicable to mechanistically interpret the bromate-reducing bacteria (BRB)- and denitrifying bacteria (DNB)-dominated metabolic processes in the biofilm of the H2-MBfR, was developed in this study. The model outputs indicate that (1) increased BrO3- loading facilitated the metabolism of BRB by increasing BRB fraction and BrO3- gradients in the biofilm, but had a marginal influence on NO3- reduction; (2) H2 pressure of 0.04 MPa enabled the minimal loss of H2 and the extension of the active region of BRB and DNB in the biofilm; (3) once the influent NO3- concentration was beyond 10 mg N/L, the fraction and activity of BRB significantly declined; (4) BRB was more tolerant than DNB for the acidic aquatic environment incurred by the CO2 pressure over 0.02 MPa. The results corroborate that the degree of microbial competition for substrates and space in the biofilm was dependent on system operating parameters.
Collapse
Affiliation(s)
- Minmin Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Jie Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xingru Dai
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China
| | - Xuehong Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
11
|
Liu J, Yin J, Li Y, Li D, Wu J, Wang C, Wang C, Yin F, Yang B, Zhang W. High nitrite-nitrogen stress intensity drives nitrite anaerobic oxidation to nitrate and inhibits methanogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155109. [PMID: 35398130 DOI: 10.1016/j.scitotenv.2022.155109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Nitrite is an important intermediate in nitrogen metabolism. We explored the effect of nitrite-nitrogen stress intensity (NNSI) on nitrite metabolism and methanogenesis in anaerobic digestion. The results showed that the NNSI regulated microbial diversity, composition, and functions, and microbial community assembly was primarily shaped by stochastic processes. Moreover, the NNSI was negatively correlated with α-diversity and positively correlated with non-metric multi-dimensional scaling distance. Denitrification gradually increased with increasing NNSI; however, methanogenesis was gradually inhibited, which was primarily due to the inhibition of the aceticlastic methanogenesis pathway (i.e., Methanosaeta) and methylotrophic methanogenesis pathway (i.e., Candidatus_Methanofastidiosum). High NNSI (1882 ± 98.99 mg/L NO2--N) promoted nitrite anaerobic oxidation to nitrate and was favorable for dissimilatory nitrate reduction to ammonia (DNRA). We present evidence for the microbial transformation of nitrite under anaerobic conditions, with potential geochemical and evolutionary importance. As nitrogen oxides were already present on early Earth, our finding presents the possibility of a nitrogen cycle before the evolution of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Jianfeng Liu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China; DongMing Agriculture and Animal Husbandry Development (Group) Co., Ltd., Tonghua 134118, PR China
| | - Jiao Yin
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Yanshuang Li
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Dingjin Li
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Jiaxuan Wu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Chengxian Wang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Changmei Wang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China
| | - Fang Yin
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China
| | - Bin Yang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Wudi Zhang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China; DongMing Agriculture and Animal Husbandry Development (Group) Co., Ltd., Tonghua 134118, PR China.
| |
Collapse
|
12
|
Wang Y, Cai X, Fan J, Wang D, Mao Y. Transcriptome analysis provides new insights into the tolerance and aerobic reduction of Shewanella decolorationis Ni1-3 to bromate. Appl Microbiol Biotechnol 2022; 106:4749-4761. [PMID: 35708750 DOI: 10.1007/s00253-022-12006-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
As a possible human carcinogen, bromate is easily formed in drinking water and wastewater treatments using advanced oxidation technology. Microbial reduction is a promising method to remove bromate, but little is known about aerobic bromate reduction as well as the molecular mechanism of tolerance and reduction to bromate in bacteria. Herein, bromate reduction by isolate under aerobic conditions was reported for the first time. Shewanella decolorationis Ni1-3, isolated from an activated sludge recently, was identified to reduce bromate to bromide under both aerobic and anaerobic conditions. RNA-Seq together with differential gene expression analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to identify that bromate triggered the expression of genes for oxidative stress protection (e.g., ohr, msrQ, dsbC, gpo, gorA, and gst), DNA damage repair (e.g., dprA, parA, and recJ), and sulfur metabolism (e.g., cysH, cysK, and cysP). However, the genes for lactate utilization (e.g., lldF and dld), nitrate reduction (e.g., napA and narG), and dissimilatory metal reduction (e.g., mtrC and omcA) were down-regulated in the presence of bromate. The results contribute to revealing the molecular mechanism of resistance and reduction in S. decolorationis Ni1-3 to bromate under aerobic conditions and clarifying the biogeochemical cycle of bromine. KEY POINTS: • Aerobic bromate reduction by pure culture was observed for the first time • Strain Ni1-3 effectively reduced bromate under both aerobic and anaerobic conditions • ROS and SOS response genes were strongly induced in the presence of bromate.
Collapse
Affiliation(s)
- Yicheng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, People's Republic of China
| | - Xunchao Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, People's Republic of China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, Guangdong, 518071, People's Republic of China
| | - Jiale Fan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, People's Republic of China
| | - Dan Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, People's Republic of China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, People's Republic of China.
| |
Collapse
|
13
|
Wang Y, Lai CY, Wu M, Lu X, Hu S, Yuan Z, Guo J. Copper stimulation on methane-supported perchlorate reduction in a membrane biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127917. [PMID: 34915291 DOI: 10.1016/j.jhazmat.2021.127917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The present study demonstrated that the perchlorate reduction rate in a methane-based membrane biofilm reactor was significantly enhanced from 14.4 to 25.6 mg-Cl/L/d by increasing copper concentration in the feeding medium from 1 to 10 μM, indicating a stimulatory effect of copper on the methane-supported perchlorate reduction process. Batch tests further confirmed that the increased copper concentration enhanced both methane oxidation and perchlorate reduction rates, which was supported by an increasing trend of functional genes (pmoA for methanotrophs and pcrA for specific perchlorate reducers) abundances through quantitative polymerase chain reaction (qPCR). Both 16S rRNA gene sequencing and functional genes (pmoA and pcrA) sequencing jointly revealed that the biofilm supplied with a higher copper concentration exhibited a more diverse microbial community. The methane-supported perchlorate reduction was accomplished through a synergistic association of methanotrophs (Methylocystis, Methylomonas, and Methylocystaceae) and perchlorate reducers (Dechloromonas, Azospira, Magnetospirillum, and Denitratisoma). Acetate may function as the key syntrophic linkage between methanotrophs and perchlorate reducers. It was proposed that the increased copper concentration improved the activity of particulate methane monooxygenase (pMMO) for methane oxidation or promoted the biosynthesis of intracellular carbon storage compounds polyhydroxybutyrate (PHB) in methanotrophs for generating more acetate available for perchlorate reduction.
Collapse
Affiliation(s)
- Yulu Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xuanyu Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
14
|
Xu RZ, Cao JS, Luo JY, Feng Q, Ni BJ, Fang F. Integrating mechanistic and deep learning models for accurately predicting the enrichment of polyhydroxyalkanoates accumulating bacteria in mixed microbial cultures. BIORESOURCE TECHNOLOGY 2022; 344:126276. [PMID: 34742815 DOI: 10.1016/j.biortech.2021.126276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The enrichment of polyhydroxyalkanoates (PHA) accumulating bacteria (PAB) in mixed microbial cultures (MMC) is extremely difficult to be predicted and optimized. Here we demonstrate that mechanistic and deep learning models can be integrated innovatively to accurately predict the dynamic enrichment of PAB. Well-calibrated activated sludge models (ASM) of the PAB enrichment process provide time-dependent data under different operating conditions. Recurrent neural network (RNN) models are trained and tested based on the time-dependent dataset generated by ASM. The accurate prediction performance is achieved (R2 > 0.991) for three different PAB enrichment datasets by the optimized RNN model. The optimized RNN model can also predict the equilibrium concentration of PAB (R2 = 0.944) and corresponding time, which represents the end of the PAB enrichment process. This study demonstrates the strength of integrating mechanistic and deep learning models to predict long-term variations of specific microbes, helping to optimize their selection process for PHA production.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
15
|
Akkoyunlu B, Daly S, Casey E. Membrane bioreactors for the production of value-added products: Recent developments, challenges and perspectives. BIORESOURCE TECHNOLOGY 2021; 341:125793. [PMID: 34450442 DOI: 10.1016/j.biortech.2021.125793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The potential of membrane bioreactors to produce value-added products such as biofuels, biopolymers, proteins, organic acids and lipids at high productivities is emerging. Despite the promising results at laboratory scale, industrial deployment of this technology is hindered due to challenges associated with scale-up. This review aims to address these challenges and create a framework to encourage further research directed towards industrial application of membrane bioreactors to produce value-added products. This review describes the current state-of-the art in such bioreactor systems by exploiting membranes to increase the mass transfer rate of the limiting substrates, reach high cell concentrations and separate the inhibitory substances that may inhibit the bioconversion reaction. It also covers the current trends in commercialization, challenges linked with membrane usage, such as high costs and membrane fouling, and proposes possible future directions for the wider application of membrane bioreactors.
Collapse
Affiliation(s)
- Burcu Akkoyunlu
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Sorcha Daly
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland.
| |
Collapse
|
16
|
Dong K, Feng X, Wang W, Chen Y, Hu W, Li H, Wang D. Simultaneous Partial Nitrification and Denitrification Maintained in Membrane Bioreactor for Nitrogen Removal and Hydrogen Autotrophic Denitrification for Further Treatment. MEMBRANES 2021; 11:membranes11120911. [PMID: 34940412 PMCID: PMC8705033 DOI: 10.3390/membranes11120911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022]
Abstract
Low C/N wastewater results from a wide range of factors that significantly harm the environment. They include insufficient carbon sources, low denitrification efficiency, and NH4+-N concentrations in low C/N wastewater that are too high to be treated. In this research, the membrane biofilm reactor and hydrogen-based membrane biofilm reactor (MBR-MBfR) were optimized and regulated under different operating parameters: the simulated domestic sewage with low C/N was domesticated and the domestic sewage was then denitrified. The results of the MBR-MBfR experiments indicated that a C/N ratio of two was suitable for NH4+-N, NO2−-N, NO3−-N, and chemical oxygen demand (COD) removal in partial nitrification-denitrification (PN-D) and hydrogen autotrophic denitrification for further treatment. The steady state for domestic wastewater was reached when the MBR-MBfR in the experimental conditions of HRT = 15 h, SRT = 20 d, 0.04 Mpa for H2 pressure in MBfR, 0.4–0.8 mg/L DO in MBR, MLSS = 2500 mg/L(MBR) and 2800 mg/L(MBfR), and effluent concentrations of NH4+-N, NO3−-N, and NO2−-N were 4.3 ± 0.5, 1.95 ± 0.04, and 2.05 ± 0.15 mg/L, respectively. High-throughput sequencing results revealed the following: (1) The genus Nitrosomonas as the ammonia oxidizing bacteria (AOB) and Denitratisoma as potential denitrifiers were simultaneously enriched in the MBR; (2) at the genus level, Meiothermus,Lentimicrobium, Thauera,Hydrogenophaga, and Desulfotomaculum played a dominant role in leading to NO3−-N and NO2−-N removal in the MBfR.
Collapse
Affiliation(s)
- Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (K.D.); (X.F.); (W.W.); (Y.C.); (W.H.)
| | | | | | | | | | | | | |
Collapse
|
17
|
Lai CY, Wu M, Wang Y, Zhang J, Li J, Liu T, Xia J, Yuan Z, Guo J. Cross-feeding interactions in short chain gaseous alkane-driven perchlorate and selenate reduction. WATER RESEARCH 2021; 200:117215. [PMID: 34020333 DOI: 10.1016/j.watres.2021.117215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Short chain gaseous alkanes (SCGAs) mainly consist of methane (CH4), ethane (C2H6), propane (C3H8) and butane (C4H10). The first three SCGAs have been shown to remove perchlorate (ClO4-) and selenate (SeO42-), yet it is unknown whether C4H10 is available to reduce these contaminants. This study demonstrated that C4H10 fed biofilms were capable of reducing ClO4- and SeO42- to chloride (Cl-) and elemental selenium (Se0), respectively, by employing two independent membrane biofilms reactors (MBfRs). Batch tests showed that C4H10 and oxygen fed biofilms had much higher ClO4- and SeO42- reduction rates and enhanced expression levels of bmoX and pcrA than that without C4H10 or O2. Polyhydroxyalkanoates (PHA) accumulated in the biofilms when C4H10 was supplied, and they decomposed for driving ClO4- and SeO42- reduction when C4H10 was absent. Moreover, we revisited the literature and found that a cross-feeding pathway seems to be universal in microaerobic SCGA-driven perchlorate and selenate reduction processes. In the ClO4--reducing MBfRs, Mycobacterium primarily conducts C2H6 and C3H8 oxidation in synergy with Dechloromonas who performs perchlorate reduction, while both Mycobacterium and Rhodococcus carried out C4H10 oxidation with perchlorate-respiring Azospira as the partner. In the SeO42--reducing MBfRs, Mycobacterium oxidized C2H6 solely or oxidized C3H8 jointly with Rhodococcus, while Burkholderiaceae likely acted as the selenate-reducing bacterium. When C4H10 was supplied as the electron donor, both Mycobacterium and Rhodococcus conducted C4H10 oxidation in synergy with unknow selenate-reducing bacterium. Collectively, we confirm that from CH4 to C4H10, all SCGAs could be utilized as electron donors for bio-reduction process. These findings offer insights into SCGA-driven bio-reduction processes, and are helpful in establishing SCGA-based technologies for groundwater remediation.
Collapse
Affiliation(s)
- Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Yulu Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jiongbin Zhang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jiahui Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Tao Liu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jun Xia
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
18
|
Karthikeyan OP, Smith TJ, Dandare SU, Parwin KS, Singh H, Loh HX, Cunningham MR, Williams PN, Nichol T, Subramanian A, Ramasamy K, Kumaresan D. Metal(loid) speciation and transformation by aerobic methanotrophs. MICROBIOME 2021; 9:156. [PMID: 34229757 PMCID: PMC8262016 DOI: 10.1186/s40168-021-01112-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 05/06/2023]
Abstract
Manufacturing and resource industries are the key drivers for economic growth with a huge environmental cost (e.g. discharge of industrial effluents and post-mining substrates). Pollutants from waste streams, either organic or inorganic (e.g. heavy metals), are prone to interact with their physical environment that not only affects the ecosystem health but also the livelihood of local communities. Unlike organic pollutants, heavy metals or trace metals (e.g. chromium, mercury) are non-biodegradable, bioaccumulate through food-web interactions and are likely to have a long-term impact on ecosystem health. Microorganisms provide varied ecosystem services including climate regulation, purification of groundwater, rehabilitation of contaminated sites by detoxifying pollutants. Recent studies have highlighted the potential of methanotrophs, a group of bacteria that can use methane as a sole carbon and energy source, to transform toxic metal (loids) such as chromium, mercury and selenium. In this review, we synthesise recent advances in the role of essential metals (e.g. copper) for methanotroph activity, uptake mechanisms alongside their potential to transform toxic heavy metal (loids). Case studies are presented on chromium, selenium and mercury pollution from the tanneries, coal burning and artisanal gold mining, respectively, which are particular problems in the developing economy that we propose may be suitable for remediation by methanotrophs. Video Abstract.
Collapse
Affiliation(s)
- Obulisamy Parthiba Karthikeyan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX USA
| | - Thomas J. Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Shamsudeen Umar Dandare
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Kamaludeen Sara Parwin
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India
| | - Heetasmin Singh
- Department of Chemistry, University of Guyana, Georgetown, Guyana
| | - Hui Xin Loh
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Mark R Cunningham
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Paul Nicholas Williams
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Tim Nichol
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | | - Deepak Kumaresan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| |
Collapse
|
19
|
Lai CY, Zhou L, Yuan Z, Guo J. Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. WATER RESEARCH 2021; 197:117120. [PMID: 33862393 DOI: 10.1016/j.watres.2021.117120] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/12/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
As a clean and renewable energy, biogas is an important alternative to fossil fuels. However, the high carbon dioxide (CO2) content in biogas limits its value as a fuel. 'Biogas upgrading' is an advanced process which removes CO2 from biogas, thereby converting biogas to biomethane, which has a higher commercial value. Microbial technologies offer a sustainable and cost-effective way to upgrade biogas, removing CO2 using hydrogen (H2) as electron donor, generated by surplus electricity from renewable wind or solar energy. Hydrogenotrophic methanogens can be applied to convert CO2 with H2 to methane (CH4), or alternatively, homoacetogens can convert both CO2 and H2 into value-added chemicals. Here, we comprehensively review the current state of biogas generation and utilization, and describe the advances in biological, H2-dependent biogas upgrading technologies, with particular attention to key challenges associated with the processes, e.g., metabolic limitations, low H2 transfer rate, and finite CO2 conversion rate. We also highlight several new strategies for overcoming technical barriers to achieve efficient CO2 conversion, including process optimization to eliminate metabolic limitation, novel reactor designs to improve H2 transfer rate and utilization efficiency, and employing advanced genetic engineering tools to generate more efficient microorganisms. The insights offered in this review will promote further exploration into microbial, H2-driven biogas upgrading, towards addressing the global energy crisis and climate change associated with use of fossil fuels.
Collapse
Affiliation(s)
- Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Linjie Zhou
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
20
|
Shi LD, Wang Z, Liu T, Wu M, Lai CY, Rittmann BE, Guo J, Zhao HP. Making good use of methane to remove oxidized contaminants from wastewater. WATER RESEARCH 2021; 197:117082. [PMID: 33819663 DOI: 10.1016/j.watres.2021.117082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Being an energetic fuel, methane is able to support microbial growth and drive the reduction of various electron acceptors. These acceptors include a broad range of oxidized contaminants (e.g., nitrate, nitrite, perchlorate, bromate, selenate, chromate, antimonate and vanadate) that are ubiquitously detected in water environments and pose threats to human and ecological health. Using methane as electron donor to biologically reduce these contaminants into nontoxic forms is a promising solution to remediate polluted water, considering that methane is a widely available and inexpensive electron donor. The understanding of methane-based biological reduction processes and the responsible microorganisms has grown in the past decade. This review summarizes the fundamentals of metabolic pathways and microorganisms mediating microbial methane oxidation. Experimental demonstrations of methane as an electron donor to remove oxidized contaminants are summarized, compared, and evaluated. Finally, the review identifies opportunities and unsolved questions that deserve future explorations for broadening understanding of methane oxidation and promoting its practical applications.
Collapse
Affiliation(s)
- Ling-Dong Shi
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Lab Water Pollution Control & Environment, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Lab Water Pollution Control & Environment, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Liu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, Arizona 85287-5701, U.S.A
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - He-Ping Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Lab Water Pollution Control & Environment, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Li L, Zhang B, He C, Zhang H. Hydrodynamics- and hydrochemistry-affected microbial selenate reduction in aquifer: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145331. [PMID: 33736316 DOI: 10.1016/j.scitotenv.2021.145331] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Selenate [Se(VI)] with higher content in groundwater will be harmful for human beings. Hence, effective treatment for Se(VI) in aquifer should be conducted reasonably. Microbial reduction of Se(VI) to elemental selenium with weak movability and toxicity has attracted significant attention due to its high efficiency and no secondary contamination. However, hydrodynamic and hydrochemical influences with corresponding mechanisms during Se(VI) bioreduction are still not clear. In this study, influences of flow rate, initial Se(VI) and organic concentrations, coexisting nitrate were evaluated. Se(VI) removal efficiency and capacity reached 96.42 ± 6.82% and 41.28 ± 3.41 (g/m3·d) with flow rate of 0.56 mL/min, initial Se(VI) and chemical organic demand concentrations of 10 mg/L and 400 mg/L. Dechloromonas and Pseudomonas were presumably contributed to Se(VI) reduction, with upregulated serA and tatC genes. Solid Se0 was identified as the final product from Se(VI) reduction. These results will be beneficial for the further comprehending of Se(VI) remediation in aquifer.
Collapse
Affiliation(s)
- Liuliu Li
- School of Water Resources and Environment, Key Laboratory of Groundwater Circulation and Environmental Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, Key Laboratory of Groundwater Circulation and Environmental Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China.
| | - Chao He
- School of Water Resources and Environment, Key Laboratory of Groundwater Circulation and Environmental Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| | - Han Zhang
- School of Water Resources and Environment, Key Laboratory of Groundwater Circulation and Environmental Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| |
Collapse
|
22
|
Jahan BN, Li L, Pagilla KR. Fate and reduction of bromate formed in advanced water treatment ozonation systems: A critical review. CHEMOSPHERE 2021; 266:128964. [PMID: 33250222 DOI: 10.1016/j.chemosphere.2020.128964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Disinfection in water treatment and reclamation systems eliminates the potential health risks associated with waterborne pathogens, however it may produce disinfection by-products (DBPs) harmful to human health. Potentially carcinogenic bromate is a DBP formed during the ozonation of bromide-containing waters. To mitigate the problem of bromate formation, different physical/chemical or biological reduction methods of bromate have been investigated. Until now, adsorption-based physical method has proven to be more effective than chemical methods in potable water treatment. Though several studies on biological reduction methods have been carried out in a variety of bioreactor systems, such as in biologically active carbon filters and denitrifying bioreactors, the microbiological mechanisms or biochemical pathways of bromate minimization have not been clearly determined to date. Genetic analysis could provide a broader picture of microorganisms involved in bromate reduction which might show cometabolic or respiratory pathways, and affirm the synergy functions between different contributing groups. The hypothesis established from the diffusion coefficients of different electron donor and acceptors, illustrates that some microorganisms preferring bromate over oxygen contain specific enzymes which lower the activation energy required for bromate reduction. In addition, considering microbial bromate reduction as an effective treatment strategy; field scale investigations are required to observe quantitative correlations of various influencing parameters such as pH, ozone dose, additives or constituents such as ammonia, hydrogen peroxide, and/or chloramine, dissolved organic carbon levels, dissolved oxygen gradient within biofilm, and empty bed contact time on bromate removal or reduction.
Collapse
Affiliation(s)
- Begum Nazia Jahan
- Graduate Research Assistant, Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Lin Li
- Post-Doctoral Researcher, Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Krishna R Pagilla
- Chair, Civil and Environmental Engineering, University of Nevada, Reno, NV, USA.
| |
Collapse
|
23
|
Cerrillo JL, Lopes CW, Rey F, Palomares AE. The Influence of the Support Nature and the Metal Precursor in the Activity of Pd‐based Catalysts for the Bromate Reduction Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202001797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jose L. Cerrillo
- Instituto de Tecnología Química (CSIC-Universitat Politècnica de València) Camino Vera s.n. Valencia 46022 Spain
| | - Christian W. Lopes
- Instituto de Tecnología Química (CSIC-Universitat Politècnica de València) Camino Vera s.n. Valencia 46022 Spain
- Institute of Chemistry Universidade Federal do Rio Grande do Sul Avenida Bento Gonçalves, 9500 91509-900 Porto Alegre Brazil
| | - Fernando Rey
- Instituto de Tecnología Química (CSIC-Universitat Politècnica de València) Camino Vera s.n. Valencia 46022 Spain
| | - Antonio E. Palomares
- Instituto de Tecnología Química (CSIC-Universitat Politècnica de València) Camino Vera s.n. Valencia 46022 Spain
| |
Collapse
|
24
|
How the Soil Microbial Communities and Activities Respond to Long-Term Heavy Metal Contamination in Electroplating Contaminated Site. Microorganisms 2021; 9:microorganisms9020362. [PMID: 33673105 PMCID: PMC7918637 DOI: 10.3390/microorganisms9020362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
The effects of long-term heavy metal contamination on the soil biological processes and soil microbial communities were investigated in a typical electroplating site in Zhangjiakou, China. It was found that the soil of the electroplating plant at Zhangjiakou were heavily polluted by Cr, Cr (VI), Ni, Cu, and Zn, with concentrations ranged from 112.8 to 9727.2, 0 to 1083.3, 15.6 to 58.4, 10.8 to 510.0 and 69.6 to 631.6 mg/kg, respectively. Soil urease and phosphatase activities were significantly inhibited by the heavy metal contamination, while the microbial biomass carbon content and the bacterial community richness were much lower compared to noncontaminated samples, suggesting that the long-term heavy metal contamination had a severe negative effect on soil microorganisms. Differently, soil dehydrogenase was promoted in the presence of Chromate compared to noncontaminated samples. This might be due to the enrichment of Sphingomonadaceae, which have been proven to be able to secrete dehydrogenase. The high-throughput sequencing of the 16S rRNA gene documented that Proteobacteria, Actinobacteria, and Chloroflexi were the dominant bacterial phyla in the contaminated soil. The Spearman correlation analysis showed the Methylobacillus, Muribaculaceae, and Sphingomonadaceae were able to tolerate high concentrations of Cr, Cr (VI), Cu, and Zn, indicating their potential in soil remediation.
Collapse
|
25
|
Zhang B, Li Y, Fei Y, Cheng Y. Novel Pathway for Vanadium(V) Bio-Detoxification by Gram-Positive Lactococcus raffinolactis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2121-2131. [PMID: 33492933 DOI: 10.1021/acs.est.0c07442] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Whereas prospects of bioremediation for a vanadium(V) [V(V)]-contaminated environment are widely recognized, reported functional species are extremely limited, with the vast majority of Gram-negative bacteria in Proteobacteria. Herein, the effectiveness of V(V) reduction is proved for the first time by Lactococcus raffinolactis, a Gram-positive bacterium in Firmicutes. The V(V) removal efficiency was 86.5 ± 2.17% during 10-d operation, with an average removal rate of 4.32 ± 0.28 mg/L·d in a citrate-fed system correspondingly. V(V) was bio-reduced to insoluble vanadium(IV) and distributed both inside and outside the cells. Nitrite reductase encoded by gene nirS mainly catalyzed intracellular V(V) reduction, revealing a previously unrecognized pathway. Oxidative stress induced by reactive oxygen species from dissimilatory V(V) reduction was alleviated through strengthened superoxide dismutase and catalase activities. Extracellular polymeric substances with chemically reactive hydroxyl (-OH) and carboxyl (-COO-) groups also contributed to V(V) binding and reduction as well as ROS scavenging. This study can improve the understanding of Gram-positive bacteria for V(V) bio-detoxification and offer microbial resources for bioremediation of a V(V)-polluted environment.
Collapse
Affiliation(s)
- Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Yi'na Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Yangmei Fei
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Yutong Cheng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| |
Collapse
|
26
|
Lai CY, Wu M, Lu X, Wang Y, Yuan Z, Guo J. Microbial Perchlorate Reduction Driven by Ethane and Propane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2006-2015. [PMID: 33434000 DOI: 10.1021/acs.est.0c04103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Previous studies demonstrated that methane can be used as an electron donor to microbially remove various oxidized contaminants in groundwater. Natural gas, which is more widely available and less expensive than purified methane, is potentially an alternative source of methane. However, natural gas commonly contains a considerable amount of ethane (C2H6) and propane (C3H8), in addition to methane. It is important that these gaseous alkanes are also utilized along with methane to avoid emissions. Here, we demonstrate that perchlorate (ClO4-), a frequently reported contaminant in groundwater, can be microbially reduced to chloride (Cl-) driven by C2H6 or C3H8 under oxygen-limiting conditions. Two independent membrane biofilm reactors (MBfRs) supplied with C2H6 and C3H8, respectively, were operated in parallel to biologically reduce ClO4-. The continuous ClO4- removal during long-term MBfR operation combined with the concurrent C2H6/C3H8 consumption and ClO4- reduction in batch tests confirms that ClO4- reduction was associated with C2H6 or C3H8 oxidation. Polyhydroxyalkanoates (PHAs) were synthesized in the presence of C2H6 or C3H8 and were subsequently utilized for supporting ClO4- bio-reduction in the absence of gaseous alkanes. Analysis by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) showed that transcript abundance of bmoX (encoding alpha hydroxylase subunit of C2H6/C3H8 monooxygenase) was positively correlated to the consumption rates of C2H6/C3H8, while pcrA (encoding a catalytic subunit of perchlorate reductase) was positively correlated to the consumption of ClO4-. High-throughput sequencing targeting 16S rRNA, bmoX, and pcrA indicated that Mycobacterium was the dominant microorganism oxidizing C2H6/C3H8, while Dechloromonas may be the major perchlorate-reducing bacterium in the biofilms. These findings shed light on microbial ClO4- reduction driven by C2H6 and C3H8, facilitating the development of cost-effective strategies for ex situ groundwater remediation.
Collapse
Affiliation(s)
- Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Xuanyu Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Yulu Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
27
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
28
|
Lai CY, Song Y, Wu M, Lu X, Wang Y, Yuan Z, Guo J. Microbial selenate reduction in membrane biofilm reactors using ethane and propane as electron donors. WATER RESEARCH 2020; 183:116008. [PMID: 32634677 DOI: 10.1016/j.watres.2020.116008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Selenate (Se(VI)) contamination in groundwater is one of major concerns for human health, in particular in shale gas extraction sites. Microbial selenate reduction coupled to methane (CH4) oxidation has been demonstrated very recently. Little is known whether ethane (C2H6) and butane (C3H8) are able to drive selenate reduction, although they are also important components in shale gas. In this study, we demonstrated Se(VI) bio-reduction could be achieved using C2H6 and C3H8 as electron donors and carbon sources. Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM-EDX) confirmed elemental Se (Se0) was the major final product formed from Se(VI) bio-reduction. Polyhydroxyalkanoates (PHAs) were generated in the biofilms as the internal electron-storage materials, which were consumed for sustaining Se(VI) bio-reduction in absence of C2H6 and C3H8. Microbial community analysis showed that two genera capable of oxidizing gaseous alkanes dominated in the biofilms, including Mycobacterium (in both C2H6 and C3H8-fed biofilms) and Rhodococcus (in C3H8-fed biofilm). In addition, several potential Se(VI) reducers (e.g., Variovorax) were detected in the biofilms. Investigation of Communities by Reconstruction of Unobserved States analysis supported that predictive genes associated with alkanes oxidation, denitrification and PHAs cycle were enriched in the biofilms. These findings offer insights into the process of selenate reduction driven by C2H6 and C3H8, which ultimately may help to develop a solution to use shale gas for groundwater remediation, especially near shale gas exploitation sites.
Collapse
Affiliation(s)
- Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Yarong Song
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Xuanyu Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Yulu Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
29
|
NC10 bacteria promoted methane oxidation coupled to chlorate reduction. Biodegradation 2020; 31:319-329. [PMID: 32915337 DOI: 10.1007/s10532-020-09912-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
Abstract
The strictly anaerobic serum bottles were applied to investigate methane oxidation coupled to chlorate (ClO3-) reduction (MO-CR) without exogenous oxygen. 0.35 mM ClO3- was consumed within 20 days at the reduction rate of 17.50 μM/d, over three times than that of ClO4-. Chlorite (ClO2-) was not detected throughout the experiment and the mass recovery of Cl- was over 89%. Isotope tracing results showed most of 13CH4 was oxided to CO2, and the electrons recovery reached to 77.6%. Small amounts of 13CH4 was consumed for DOC production probably through aerobic methane oxidation process, with oxygen generated from disproportionation reaction. In pMMO (key enzyme in aerobic oxidation of methane) inhibition tests, ClO3- reduction rate was slowed to 7. 0 μmol/d by 2 mM C2H2, real-time quantitative PCR also showed the transcript abundance of pMMO and Cld were significantly dropped at the later period of experiment, indicating that the O2 disproportionated from ClO2- was utilized to active CH4. NC10 bacteria Candidatus Methylomirabilis, related closely to oxygenic denitrifiers M. oxyfera, was detected in the system, and got enriched along with chlorate reduction. Several pieces of evidence supported that NC10 bacteria promoted CH4 oxidation coupled to ClO3- reduction, these oxygenic denitrifiers may perform ClO2- disproportionation to produce O2, and then oxidized methane intracellularly.
Collapse
|
30
|
Li R, Wei D, Wang W, Zhang Y. Pyrrhotite-sulfur autotrophic denitrification for deep and efficient nitrate and phosphate removal: Synergistic effects, secondary minerals and microbial community shifts. BIORESOURCE TECHNOLOGY 2020; 308:123302. [PMID: 32276204 DOI: 10.1016/j.biortech.2020.123302] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Pyrrhotite-sulfur autotrophic denitrification (PSAD) system, using mixture of pyrrhotite and sulfur particle as electron donor, was studied through batch, column and pilot experiments. Treating synthetic secondary effluent at HRT 3 h, the PSAD system obtained the effluent with NO3--N 0.28 ± 0.14 mg·L-1 and without PO43--P to be detected. Thiobacillus was the most abundant autotrophic denitrification bacteria; autotrophic, heterotrophic and sulfate-reducing bacteria coexisted in the PSAD system; phosphate was mainly removed in forms of graftonite, dufrenite, ardealite. The H+ produced in the SAD could accelerate the PAD through promoting pyrrhotite dissolution, and iron ions produced in the PAD could accelerate the SAD through Fe3+/Fe2+ shuttle. Because of the synergistic effects between the pyrrhotite and sulfur, the PSAD system removed nitrate and phosphate deeply and efficiently. It is a promising way to meet the stringent nitrogen and phosphorus discharge standards and to recover phosphorus resources from wastewater.
Collapse
Affiliation(s)
- Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163(#) Xianlin Avenue, Nanjing 210023, China.
| | - Dongyang Wei
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Wei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163(#) Xianlin Avenue, Nanjing 210023, China
| | - Yongwei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163(#) Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
31
|
Abdelfattah A, Hossain MI, Cheng L. High-strength wastewater treatment using microbial biofilm reactor: a critical review. World J Microbiol Biotechnol 2020; 36:75. [PMID: 32390104 DOI: 10.1007/s11274-020-02853-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Biofilm reactors retain microbial cells in the form of biofilm which is attached to free moving or fixed carrying materials, thus providing a high active biomass concentration and automatic liquid and solid separation. Nowadays, microbial biofilm reactors have been widely used in high-strength wastewater treatment where very high pollutant removal efficiency is required, which usually requires excessive space and aeration energy for conventional activated sludge-based treatment. This paper provides an overview of microbial biofilm reactors developed over the last half-century, including moving bed biofilm reactor (MBBR), trickling filter (TF) reactor, rotating biological contactor (RBC), membrane biofilm reactor (MBfR), passive aeration simultaneous nitrification and denitrification (PASND) biofilm reactor, for their applications in high-strength wastewater treatment of not only removing carbon, nitrogen, sulphur but also a variety of oxidized contaminants including perchlorate and bromate. Despite the advance of biofilm reactor that exhibits high resistance to excessive pollutants loading, its drawbacks both from engineering and microbiological point of view are reviewed. The future prospects of biofilm reactor are also discussed in this review paper.
Collapse
Affiliation(s)
- Abdallah Abdelfattah
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.,Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Md Iqbal Hossain
- School of Engineering and Information Technology, Murdoch University, Murdoch, Australia.,Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
32
|
Zhang B, Jiang Y, Zuo K, He C, Dai Y, Ren ZJ. Microbial vanadate and nitrate reductions coupled with anaerobic methane oxidation in groundwater. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121228. [PMID: 31561197 DOI: 10.1016/j.jhazmat.2019.121228] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 05/13/2023]
Abstract
Vanadate contaminant in groundwater receives increasing attentions, but little is known on its biogeochemical transformation with gaseous electron donors. This study investigated bio-reduction of vanadate coupled with anaerobic methane oxidation and its relationship with nitrate reduction. Results showed 95.8 ± 3.1% of 1 mM vanadate was removed within 7 days using methane as the sole electron donor. Tetravalent vanadium compounds were the main reduction products, which precipitated naturally in groundwater environment. The introduction of nitrate inhibited vanadate reduction, though both were reduced in parallel. Accumulations of volatile fatty acids (VFAs) were observed from methane oxidation. Preliminary microbial community structure and metabolite analyses indicated that vanadate was likely reduced via Methylomonas coupled with methane oxidation or through synergistic relationships between methane oxidizing bacteria and heterotrophic vanadate reducers with VFAs served as the intermediates.
Collapse
Affiliation(s)
- Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China; Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Co, 80309, United States.
| | - Yufeng Jiang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Kuichang Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Chao He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Yunrong Dai
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Co, 80309, United States; Department of Civil and Environmental Engineering, Princeton University, NJ, 08540, United States.
| |
Collapse
|
33
|
Wang D, Cai X, Lv X, Wang Y, Gao X, Zhu Y, Zhang T, Mao Y. Phylogenetic characterization of bromate-reducing microbial community enriched anaerobically from activated sludge. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109630. [PMID: 31520951 DOI: 10.1016/j.ecoenv.2019.109630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/31/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Bromate is a weakly carcinogenic disinfection by-product generated from naturally existing bromide during ozonation. In order to uncover the phylogenetic diversity of bromate-reducing aquatic bacteria, the microbial mixed cultures were enriched anaerobically from various activated sludge samples with a high concentration of 3.6 mmol/L bromate which served as the electron acceptor in batch-fed reactors. Then the phylogenetic diversity was characterized by employing 16S rRNA gene-based clone libraries and high-throughput sequencing. Results showed that as highest as 48.65 mg/L [BrO3--Br] (0.61 mmol/L) could be reduced to Br- within an operational cycle of 48 h, indicating the presence of bromate-reducing bacteria. The microbial analysis based on 16S rRNA gene clone libraries indicated that the dominant bacteria in the enriched consortium were affiliated to the genera of Aeromonas, which had been reported and implied its functional application to reduce bromate. In addition, some other subdivisions of bromate-reducing bacteria were enriched at different operational cycles. The abundance of the genus Rivibacter belonging to Comamonadaceae were increased after 10 cycles enrichment, which might represent another type of novel bromate bio-reducers. The study provided new insights for the phylogenetic diversity of the bromate-reducing microorganisms while further researches are required to verify the bromate bio-reduction mechanism.
Collapse
Affiliation(s)
- Dan Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xunchao Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xinyue Lv
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Yicheng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xue Gao
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yunlong Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
34
|
Dong QY, Wang Z, Shi LD, Lai CY, Zhao HP. Anaerobic methane oxidation coupled to chromate reduction in a methane-based membrane biofilm batch reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26286-26292. [PMID: 31286367 DOI: 10.1007/s11356-019-05709-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Chromate can be reduced by methanotrophs in a membrane biofilm reactor (MBfR). In this study, we cultivated a Cr(VI)-reducing biofilm in a methane (CH4)-based membrane biofilm batch reactor (MBBR) under anaerobic conditions. The Cr(VI) reduction rate increased to 0.28 mg/L day when the chromate concentration was ≤ 2.2 mg/L but declined sharply to 0.01 mg/L day when the Cr(VI) concentration increased to 6 mg/L. Isotope tracing experiments showed that part of the 13C-labeled CH4 was transformed to 13CO2, suggesting that the biofilm may reduce Cr(VI) by anaerobic methane oxidation (AnMO). Microbial community analysis showed that a methanogen, i.e., Methanobacterium, dominated in the biofilm, suggesting that this genus is probably capable of carrying out AnMO. The abundance of Methylomonas, an aerobic methanotroph, decreased significantly, while Meiothermus, a potential chromate-reducing bacterium, was enriched in the biofilm. Overall, the results showed that the anaerobic environment inhibited the activity of aerobic methanotrophs while promoting AnMO bacterial enrichment, and high Cr(VI) loading reduced Cr(VI) flux by inhibiting the methane oxidation process.
Collapse
Affiliation(s)
- Qiu-Yi Dong
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Wang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling-Dong Shi
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
- Advanced Water Management Centre, The University of Queensland, St. Lucia, 4072, Queensland, Australia.
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Luo JH, Wu M, Liu J, Qian G, Yuan Z, Guo J. Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor. ENVIRONMENT INTERNATIONAL 2019; 130:104926. [PMID: 31228790 DOI: 10.1016/j.envint.2019.104926] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/02/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
It has been reported that microbial reduction of sulfate, nitrite/nitrate and iron/manganese could be coupled with anaerobic oxidation of methane (AOM), which plays a significant role in controlling methane emission from anoxic niches. However, little is known about microbial chromate (Cr(VI)) reduction coupling with AOM. In this study, a microbial consortium was enriched via switching nitrate dosing to chromate feeding as the sole electron acceptor under anaerobic condition in a membrane biofilm reactor (MBfR), in which methane was continuously provided as the electron donor through bubble-less hollow fiber membranes. According to long-term reactor operation and chromium speciation analysis, soluble chromate could be reduced into Cr(III) compounds by using methane as electron donor. Fluorescence in situ hybridization and high-throughput 16S rRNA gene amplicon profiling further indicated that after feeding chromate Candidatus 'Methanoperedens' (a known nitrate-dependent anaerobic methane oxidation archaeon) became sole anaerobic methanotroph in the biofilm, potentially responsible for the chromate bio-reduction driven by methane. Two potential pathways of the microbial AOM-coupled chromate reduction were proposed: (i) Candidatus 'Methanoperedens' independently utilizes chromate as electron acceptor to form Cr(III) compounds, or (ii) Candidatus 'Methanoperedens' oxidizes methane to generate intermediates or electrons, which will be utilized to reduce chromate to Cr(III) compounds by unknown chromate reducers synergistically. Our findings suggest a possible link between the biogeochemical chromium and methane cycles.
Collapse
Affiliation(s)
- Jing-Huan Luo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
36
|
Methane oxidation coupled to vanadate reduction in a membrane biofilm batch reactor under hypoxic condition. Biodegradation 2019; 30:457-466. [PMID: 31410606 DOI: 10.1007/s10532-019-09887-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
This study shows vanadate (V(V)) reduction in a methane (CH4) based membrane biofilm batch reactor when the concentration of dissolved oxygen (O2) was extremely low. V(IV) was the dominant products formed from V(V) bio-reduction, and majority of produced V(IV) transformed into precipitates with green color. Quantitative polymerase chain reaction and Illumina sequencing analysis showed that archaea methanosarcina were significantly enriched. Metagenomic predictive analysis further showed the enrichment of genes associated with reverse methanogenesis pathway, the key CH4-activating mechanism for anaerobic methane oxidation (AnMO), as well as the enrichment of genes related to acetate synthesis, in archaea. The enrichment of aerobic methanotrophs Methylococcus and Methylomonas implied their role in CH4 activation using trace level of O2, or their participation in V(V) reduction.
Collapse
|
37
|
Raúl C, Kim UJ, Kannan K. Occurrence and human exposure to bromate via drinking water, fruits and vegetables in Chile. CHEMOSPHERE 2019; 228:444-450. [PMID: 31051346 DOI: 10.1016/j.chemosphere.2019.04.171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/14/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Bromate (BrO3-) is an anionic contaminant known possess carcinogenic potential. Although some studies have reported the occurrence of bromate in drinking water, very little is known about its presence in fruits and vegetables, especially in Chile. In this study, we quantified bromate in soils (n = 29), drinking water (n = 43), surface water (n = 6), groundwater (n = 6), fertilizers (n = 7), fruits (n = 12) and vegetables (n = 42) collected across Chile. The highest average concentrations of bromate in soils (11.7 ng g-1) and drinking water (8.8 ng mL-1) were found in northern Chile. Additionally, drinking water collected from four regions of Chile showed higher concentrations of bromate (median:18.5 ng mL-1) than the maximum contaminant level (MCL, 10 ng mL-1). Concentrations of bromate in nitrogenous and non-nitrogenous fertilizers were similar (median: 2.51 μg g-1). Leafy vegetables (median: 9.52 ng g-1) produced in the northern Chile contained higher bromate concentrations than those produced in other regions (median: 0.24 ng g-1). The estimated daily intakes of bromate via drinking water in northern, central and southern were ranged between 58.6 and 447 ng/kg bw/d. Leafy vegetables were an important source of bromate for all age group. The EDI values were below the respective reference dose (RfD) of 4000 ng/kg-day.
Collapse
Affiliation(s)
- Calderon Raúl
- Instituto de Investigaciones Agropecuarias, INIA La Platina, Santa Rosa, 11610, Santiago, Chile; Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile.
| | - Un-Jung Kim
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201-0509, United States
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201-0509, United States
| |
Collapse
|
38
|
Lv X, Wang D, Iqbal W, Yang B, Mao Y. Microbial reduction of bromate: current status and prospects. Biodegradation 2019; 30:365-374. [PMID: 31236769 DOI: 10.1007/s10532-019-09882-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
Abstract
Bromate is a disinfection byproduct (DBP) that forms during the ozonation of bromide-containing natural water, which may cause health risks to humans. In this review, we provide an overview of the mechanism of bromate formation, microbial communities and bioreactors that are responsible for bromate reduction. Bromate can be formed through two pathways of bromide oxidation by ozone or by ·OH, and it can be removed by biological approaches. Members belonging to phyla of Spirochaetes, Proteobacteria, Firmicutes, Actinobacteria, Clostridium, Deinococcus-Thermus and Bacteroidetes have been identified as capable of reducing bromate to bromide. Multiple configurations of biofilm bioreactors have been employed to cultivate microbial communities to perform bromate removal. The rapid development of multiomics has and will continue to accelerate the elucidation of the mechanisms involved in bromate and other DBP conversions, as well as the interaction patterns among different bacterial subdivisions in the bioremoval of DBPs.
Collapse
Affiliation(s)
- Xinyue Lv
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Dan Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Waheed Iqbal
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
39
|
Bai YN, Wang XN, Lu YZ, Fu L, Zhang F, Lau TC, Zeng RJ. Microbial selenite reduction coupled to anaerobic oxidation of methane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:168-174. [PMID: 30878925 DOI: 10.1016/j.scitotenv.2019.03.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) is the process of coupling the anaerobic oxidation of methane (AOM) with denitrification, which plays an important part in controlling the flow of methane in anoxic niches. In this study, we explored the feasibility of microbial selenite reduction using methane by DAMO culture. Isotopic 13CH4 and long-term experiments showed that selenite reduction was coupled to methane oxidation, and selenite was ultimately reduced to Se (0) by the analyses of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The introduction of nitrate, the original electron acceptor in the DAMO culture, inhibited selenite reduction. Meanwhile, the microbial community of DAMO culture was significantly changed when the electron acceptor was changed from nitrate to selenite after long-term selenite reduction. High-throughput 16S rRNA gene sequencing indicated that Methylococcus (26%) became the predominant microbe performing selenite reduction and methane oxidation and the possible pathways of AOM accompanied with selenite reduction were proposed. This study revealed more potential relation during the biogeochemical cycle of carbon, nitrogen, and selenium.
Collapse
Affiliation(s)
- Ya-Nan Bai
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Xiu-Ning Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Yong-Ze Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Ling Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Fang Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Tai-Chu Lau
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Raymond J Zeng
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, PR China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
40
|
Wu M, Luo JH, Hu S, Yuan Z, Guo J. Perchlorate bio-reduction in a methane-based membrane biofilm reactor in the presence and absence of oxygen. WATER RESEARCH 2019; 157:572-578. [PMID: 30995575 DOI: 10.1016/j.watres.2019.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Perchlorate has been widely detected in various water environments and could cause serious health problems. Methane has been proposed as a promising electron donor to remove perchlorate from contaminated water, yet it is unclear whether and how microbial methane oxidation couples with perchlorate reduction, in particular under anoxic conditions. Here, the feasibility and performance of perchlorate reduction driven by methane in the presence and absence of oxygen were investigated and compared in a lab-scale methane-based membrane biofilm reactor. Long-term operational performance suggested that perchlorate was reduced to chloride, with 4 mg Cl/L/d of perchlorate removal rate under anoxic conditions. Differently, perchlorate removal rate increased to 16 mg Cl/L/d, and volatile fatty acids (VFAs) were produced from methane partial oxidation when a limited oxygen (10 mg/L/d) was externally supplied. Regardless of oxygen conditions, microbial perchlorate reduction driven by methane might be mediated through synergistic interactions by a microbial consortium, but with different key microbial members under both oxygen regimes. Under anoxic conditions, aerobic methanotrophs (likely Methylocystaceae and Methylococcaceae) might micro-aerobically oxidize methane by utilizing internal oxygen from microbial perchlorate reduction, which might be mediated by Rhodocyclaceae. In contrast, under oxygen-limiting conditions, methanogens (e.g., Methanosarcina) and fermenters (e.g., Veillonellaceae) likely jointly converted methane into VFAs, then dissimilatory perchlorate-reducing bacteria (e.g., Rhodocyclaceae) utilized the produced VFAs to reduce perchlorate to chloride. Our findings provide evidence to link methane oxidation with perchlorate reduction under both oxygen regimes, which could be facilitated to design a process to remove perchlorate from groundwater.
Collapse
Affiliation(s)
- Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jing-Huan Luo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
41
|
Shi LD, Du JJ, Wang LB, Han YL, Cao KF, Lai CY, Zhao HP. Formation of nanoscale Te 0 and its effect on TeO 32- reduction in CH 4-based membrane biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1232-1239. [PMID: 30577115 DOI: 10.1016/j.scitotenv.2018.11.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Formation and recovery of elemental tellurium (Te0) from wastewaters are required by increasing demands and scarce resources. Membrane biofilm reactor (MBfR) using gaseous electron donor has been reported as a low-cost and benign technique to reduce and recover metal (loids). In this study, we demonstrate the feasibility of nanoscale Te0 formation by tellurite (TeO32-) reduction in a CH4-based MBfR. Biogenic Te0 intensively attached on cell surface, within diameters ranging from 10 nm to 30 nm and the hexagonal nanostructure. Along with the Te0 formation, the TeO32- reduction was inhibited. After flushing, biofilm resumed the TeO32- reduction ability, suggesting that the formed nanoscale Te0 might inhibit the reduction by hindering substrate transfer of TeO32- to microbes. The 16S rRNA gene amplicon sequencing revealed that Thermomonas and Hyphomicrobium were possibly responsible for TeO32- reduction since they increased consecutively along with the experiment operation. The PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) analysis showed that the sulfite reductases were positively correlated with the TeO32- flux, indicating they were potential enzymes involved in reduction process. This study confirms the capability of CH4-based MBfR in tellurium reduction and formation, and provides more techniques for resources recovery and recycles.
Collapse
Affiliation(s)
- Ling-Dong Shi
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jia-Jie Du
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Lu-Bin Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Yu-Lin Han
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Ke-Fan Cao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - He-Ping Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
42
|
Lai CY, Dong QY, Chen JX, Zhu QS, Yang X, Chen WD, Zhao HP, Zhu L. Role of Extracellular Polymeric Substances in a Methane Based Membrane Biofilm Reactor Reducing Vanadate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10680-10688. [PMID: 30106284 DOI: 10.1021/acs.est.8b02374] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For the first time, we demonstrated vanadate (V(V)) reduction in a membrane biofilm reactor (MBfR) using CH4 as the sole electron donor. The V(V)-reducing capability of the biofilm kept increasing, with complete removal of V(V) achieved when the influent surface loading of V(V) was 363 mg m-2 day-1. Almost all V(V) was reduced to V(IV) precipitates, which is confirmed by a scanning electron microscope coupled to energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS). Microbial community analysis revealed that denitrifiers Methylomonas and Denitratisoma might be the main genera responsible for V(V) reduction. The constant enrichment of Methylophilus suggests that the intermediate (i.e., methanol) from CH4 metabolism might be used as the electron carriers for V(V) bioreduction. Intrusion of V(V) (2-5 mg/L, at the surface loading of 150-378 mg m-2 day-1) into the biofilm stimulated the secretion of extracellular polymeric substances (EPS), but high loading of V(V) (10 mg/L, at the surface loading of 668 mg m-2 day-1) decreased the amount of EPS. Metagenomic prediction analysis established the strong correlation between the secretion of EPS and the microbial metabolism associated with V(V) reduction, tricarboxylic acid cycle (TCA) cycle, methane oxidation, and ATP production, and EPS might relieve the oxidative stress induced by high loading of V(V). Colorimetric determination and a three-dimensional excitation-emission matrix (3D-EEM) showed that tryptophan and humic acid-like substances might play important roles in microbial cell protection and V(V) binding. Fourier transform infrared (FTIR) spectroscopy identified hydroxyl (-OH) and carboxyl (COO-) groups in EPS as the candidate functional groups for binding V(V).
Collapse
Affiliation(s)
- Chun-Yu Lai
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou , China 310058
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Qiu-Yi Dong
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou , China 310058
| | - Jia-Xian Chen
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou , China 310058
| | - Quan-Song Zhu
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou , China 310058
| | - Xin Yang
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou , China 310058
| | - Wen-Da Chen
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou , China 310058
| | - He-Ping Zhao
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou , China 310058
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety , Zhejiang University , Hangzhou , Zhejiang , China 310058
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou , China 310058
| | - Liang Zhu
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou , China 310058
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety , Zhejiang University , Hangzhou , Zhejiang , China 310058
| |
Collapse
|