1
|
Yuan Y, Li D, Huang H, He J, Yu C, Gao Y, Vione D, Fang H. Direct photodegradation of aromatic carbamate pesticides: Kinetics and mechanisms in aqueous vs. non-aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137648. [PMID: 40015042 DOI: 10.1016/j.jhazmat.2025.137648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
The direct photodegradation quantum yields (Φ) of five representative aromatic carbamate pesticides - carbaryl, carbofuran, propoxur, isoprocarb, and metolcarb - were examined in both aqueous and non-aqueous solutions, the latter mimicking hydrophobic environments such as leaf surfaces. For carbaryl, carbofuran, isoprocarb, and metolcarb, the Φ values generally followed the order Φwater < ΦMeOH < Φn-hexane, while propoxur showed a different trend, ΦMeOH < Φn-hexane < Φwater. Scavenging and laser flash photolysis experiments, combined with quantum chemical calculations, were used to clarify the photodegradation mechanisms. Photodegradation is primarily initiated by the singlet excited state (S*), with the triplet state (T * ) also contributing in compounds with conjugated structures, such as carbaryl. Upon excitation, methylcarbamate aromatic esters (MCAEs) generated both radical cations (S•+) and phenoxyl radicals (S-O•), and S•+ would convert to S-O• subsequently. S-O• is predominantly generated through the cleavage of C-O bonds in ester groups, subsequently abstracting hydrogen from solvent molecules. The reactivity of hydrogen donors in these solvents follows the order: -CH2- > -CH3 > -OH. For propoxur, the ether group also contributes to the formation of S-O•, which further reacts with H2O and enhances degradation in aqueous environments. Solvent polarity had a minimal effect on photodegradation. This comparative study of degradation in aqueous and nonaqueous phases provides insights for designing and selecting pesticides that are effective during use in nonaqueous environments, such as on leaf surfaces, yet degrade rapidly in aqueous environments in the post-application phase.
Collapse
Affiliation(s)
- Yufan Yuan
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Danping Li
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huajun Huang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinbao He
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chenglong Yu
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, Torino 10125, Italy.
| | - Hansun Fang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Ge L, Hou Z, Niu J, Wang S, Zhang P, Zhu Y. New insights into the environmental photochemistry of hydroxynaphthalene congeners in water and in ice: A distinct comparative study. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138310. [PMID: 40267707 DOI: 10.1016/j.jhazmat.2025.138310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Hydroxynaphthalene congeners (OH-Naps) are newly recognized contaminants, urging new insights into their photodegradation in water and in ice. In the study, the important differences between the aqueous and ice photochemistry of four OH-Naps were found. Under simulated sunlight irradiation (λ > 290 nm), they photolyzed faster in ice than in equivalent water in most cases, indicating that their photodegradation was related to whether they resided in water or ice. Meanwhile, the photolytic kinetics were influenced greatly by the substituent groups (-OH, -Cl, and -NO2) and positions, resulting in the fastest photolysis of 2-hydroxynaphthalene (2-OHN) or 4-chloro-1-hydroxynaphthalene (4-Cl-1-OHN), and the slowest photodegradation of 4-nitro-1-hydroxynaphthalene (4-NO2-1-OHN) in the two phases. Furthermore, their apparent photolysis was found to be faster at alkaline pH, attributing to the stronger photo-absorption, electron density and higher reactivities of the anionic forms. The •OH photooxidation kinetics also depended on the specific OH-Nap and the matrix type. Through the key photoproduct identification, the phototransformation of 4-Cl-1-OHN and 4-NO2-1-OHN involved different pathways in the two phases. Only in ice, the two OH-Naps underwent multi-hydroxylation, and 4-NO2-1-OHN suffered from photoisomerization as well. The bioassay to Vibrio fischeri indicated the higher photo-modified toxicity of most OH-Naps in ice than in water, attributing to the generation of more toxic multiple-hydroxyl adducts in ice. Based on extrapolating the lab-derived data to the real environment, the photochemical fate of OH-Naps highly depended on latitudes and solar intensities. These results are significant for evaluating the environmental persistence, fate and risk of the newly recognized contaminants.
Collapse
Affiliation(s)
- Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Zhimin Hou
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Siyuan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
3
|
Wei J, He M, Xu J, Wei Z, Tang X, Zheng Q, Wang Z, Qu R. Phototransformation behavior of octachlorodibenzofuran (OCDF) on the surface of river suspended particulate matter: Kinetics and products formation mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125913. [PMID: 39993706 DOI: 10.1016/j.envpol.2025.125913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Octachlorodibenzofuran (OCDF) readily adheres to particulate matters in the aqueous environment owing to its strong hydrophobicity. Phototransformation is a key abiotic transformation process for organic pollutants. Here, we systematically investigated the phototransformation behavior of OCDF on the surface of suspended particulate matter (SPM) from the tributary of the Yangtze River. It was found that acidic conditions and the presence of NO3-, Ca2+, and Mg2+ had inhibitory effect on OCDF photodegradation. Through quenching experiments, we discovered that hydroxyl radical (HO•), superoxide anion (O2•-) and singlet oxygen (1O2) all contributed to the removal of OCDF, with HO• and O2•- being the main reactive oxygen species (ROS). A total of ten intermediates were identified using mass spectrometry, and three possible pathways were proposed. Theoretical calculations revealed that 1O2 dominated the dechlorination reaction, HO• was responsible for the generation of ring cleavage products, and both HO• and O2•- participated in the formation of hydroxylated products. Toxicity predictions by the T.E.S.T software showed that the toxicity and bioconcentration factors of intermediates in the photochemical process were reduced, thus decreasing the environmental risk. This research deepened the understanding of the phototransformation behavior of OCDF on the SPM surface, providing a scientific basis for assessing its environmental fate.
Collapse
Affiliation(s)
- Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Mengqiang He
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Jianqiao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Zhongbo Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou, 213100, Jiangsu, PR China
| | - Qing Zheng
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| |
Collapse
|
4
|
Liu W, Wang A, Wang X, Shen Z, Wang J, Ma J, Zhao Y, He Z. Unveiling the reaction pathways in the degradation mechanism of enrofloxacin by hydroxyl radicals: A DFT and experiment study. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137950. [PMID: 40117775 DOI: 10.1016/j.jhazmat.2025.137950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Fluoroquinolone antibiotics, widely used in daily life, contribute to environmental pollution due to their persistence in natural ecosystems. However, the degradation mechanism of fluoroquinolones remains elusive, which not only hinders the understanding of their environmental behavior but also restricts the development of effective remediations. This study investigates the degradation mechanism of enrofloxacin (ENR) through hydroxyl radicals (•OH), integrating density functional theory (DFT) calculations and experimental validations. The degradation process involves key steps such as bond activation (C-F, C-H, C-C) and decarboxylation, with the C-F bond and decarboxylation identified as rate-limiting steps. Experimental results confirm the theoretical predictions of degradation pathways and major by-products. Toxicity analysis shows that most degradation products exhibit significantly reduced toxicity compared to ENR. This work provides valuable insights into the degradation behavior of fluoroquinolones and lays the groundwork for designing advanced environmental remediation strategies.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Aofan Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xinruo Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhonghua Shen
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jishi Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
5
|
Yen CC, Chen KY, Ahmed MMM, Syu CH, Liu YT, Hsieh YC, Jien SH, Tzou YM. Photochemical oxidation of Cr(III) to Cr(VI) in the presence of Fe(III): Influence of Fe(III) concentration and UV wavelength. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136852. [PMID: 39694014 DOI: 10.1016/j.jhazmat.2024.136852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
The reduction of Cr(VI) to Cr(III) is key to lowering environmental toxicity and mobility, but the reverse process remains less understood. We investigated Cr(III) oxidation mechanisms across various pH levels and light wavelengths (185, 254, and 358 nm) in the presence of Fe(III). At pH 3.0 under 358 nm light, Cr(VI) production peaked at 11.65 μM, driven by photo-reactive Fe(OH)²⁺ producing •OH radicals. While Fe(III) generally promotes Cr(III) oxidation, concentrations above 0.5 mM inhibited the process. Oxidation was most intense under 185 nm light, generating up to 217 μM of Cr(VI), due to Fe(III) and water photolysis. At 254 and 358 nm, •OH was solely produced by Fe(III) photolysis, where •OH oxidized Fe(II), which then reduced Cr(VI), slowing Cr(III) oxidation. Short-wavelength, high-energy light significantly enhances Cr(III) oxidation. Under such UV exposure in the atmosphere, Cr(III)-containing aerosols and particles may undergo harmful transformations, potentially entering ecosystems via acidic deposition and posing health risks.
Collapse
Affiliation(s)
- Chun-Chien Yen
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung 413008, Taiwan
| | - Kai-Yue Chen
- Department of Agronomy, National Chiayi University, Chiayi 600355, Taiwan
| | - M M M Ahmed
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chien-Hui Syu
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung 413008, Taiwan
| | - Yu-Ting Liu
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Cheng Hsieh
- Office of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX 77843, USA
| | - Shih-Hao Jien
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
6
|
Teng X, Xu J, Wang Z, Qu R. Photodegradation of Chlorinated Persistent Organic Pollutants (Cl-POPs) in Pearl River Suspended Particulate Matter-Water Systems: Kinetics, Quantitative Structure-Activity Relationship (QSAR) Development, and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4059-4067. [PMID: 39968535 DOI: 10.1021/acs.est.4c07246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Chlorinated persistent organic pollutants (Cl-POPs) are highly hydrophobic and are easily adsorbed to solid particulate matter after being released into the water column, thus affecting the transformation process and environmental fate. This study investigated the photodegradation behavior of 16 Cl-POPs in the Pearl River suspended particulate matter (SPM)-water system. The photodegradation rates of polychlorinated biphenyls (PCBs) were generally higher than those of dioxins and increased with substitution numbers of Cl atoms. A QSAR model correlating photodegradation rate constants of Cl-POPs and their structural parameters was established by using multiple linear regression (MLR) analysis and machine learning. The model results showed that soil-water partition coefficient (KOC), morgan fingerprint (mf_1747), and nucleophilicity index (NI) were the main factors affecting the photodegradation of Cl-POPs, confirming that the photodegradation of Cl-POPs with higher hydrophobicity and larger nucleophilic reactivity proceeded faster. According to the quenching experiment and theoretical calculation results, •O2- in the hydrophobic region contributed more to the strongly hydrophobic Cl-POPs, while the contribution of •OH was mainly concentrated in the weakly hydrophobic Cl-POPs. This study provided valuable insights into photolysis-related environmental persistence and fate of Cl-POPs in the SPM-water system.
Collapse
Affiliation(s)
- Xiaolei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, P. R. China
| | - Jianqiao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, P. R. China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, P. R. China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Matsukevich IV, Beljin J, Kulinich NV, Apostolović T, Maletić S, Romanovski V. Photocatalytic degradation of polycyclic aromatic hydrocarbons under visible light irradiation in water using TiO 2/MgO nanocomposites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5628-5637. [PMID: 39939572 PMCID: PMC11868315 DOI: 10.1007/s11356-025-36055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
An extensive class of pollutants found in soil, water, and bottom sediments are categorized as polycyclic aromatic hydrocarbons. A possible method of breaking down polycyclic aromatic hydrocarbons is thought to be the photochemical approach. The potential application of mesoporous nanocomposites on TiO2/MgO as catalysts for the photooxidation of polycyclic aromatic hydrocarbons under the influence of visible light was assessed in this work. TiO2/MgO nanocomposites were successfully obtained by the self-propagating high-temperature synthesis using methotitanic acid and magnesium nitrate as metal precursors. An important step in the synthesis was the conversion of the titanium precursor into a water-soluble form with the subsequent addition of glycine and citric acid at a carbon/nitrogen (C/N) molar ratio of 0.25. This synthesis via solutions allowed the target materials with major phases of magnesium metatitanate MgTiO3, magnesium dititanate MgTi2O5, and magnesium titanate Mg2TiO4 to be obtained after heat treatment at 750 °C. Heterostructured mesoporous TiO2/MgO powders with a specific surface area of 22.0-28.4 m2/g had an average diameter of the predominant pores of 10-30 nm. The greatest degree of photocatalytic oxidation of fluorene, pyrene, and benzpyrene (80, 68, and 53%, respectively) was obtained when it was combined with the TiO2/MgTi2O5/MgTiO3 nanocomposite under visible light irradiation. This study showed that mesoporous TiO2/MgO nanocomposites could be used as photooxidation catalysts for polycyclic aromatic hydrocarbons. The maximum level of photocatalytic oxidation of polycyclic aromatic hydrocarbons in TiO2/MgO nanocomposites occurred at pH 7 and a photocatalyst dose of 1 mg/L under the influence of normal solar radiation.
Collapse
Affiliation(s)
- Iryna V Matsukevich
- FunGlass - Center for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčin, Študentská 2, Trenčin, 911 50, Slovakia
| | - Jelena Beljin
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradović 3, 21102, Novi Sad, Serbia
| | - Natallia V Kulinich
- Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus, 9/1 Surganova str, Minsk, 220072, Belarus
| | - Tamara Apostolović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradović 3, 21102, Novi Sad, Serbia
| | - Snežana Maletić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradović 3, 21102, Novi Sad, Serbia
| | - Valentin Romanovski
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
8
|
Meng TT, Ding MJ, Yu WY, Song XM, Ni S, Zhang K, Xu FX, Bai FY, Pan XM, Zhao Z. Transformation mechanism, kinetics and ecotoxicity of kaempferol and quercetin in the gaseous and aqueous phases: A theoretical combined experimental study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178352. [PMID: 39754958 DOI: 10.1016/j.scitotenv.2024.178352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/04/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The transformation and risk assessment of flavonoids triggered by free radicals deserve extensive attention. In this work, the degradation mechanisms, kinetics, and ecotoxicity of kaempferol and quercetin mediated by ∙OH, ∙OCH3, ∙OOH, and 1O2 in gaseous and aqueous environments were investigated using cell experiments and quantum chemical calculations. Three radical scavenging mechanisms, including hydrogen atom transfer (HAT), radical adduct formation (RAF) and single electron transfer (SET) were discussed. The results show that RAF and HAT are the main reaction mechanisms for the neutral kaempferol/quercetin, and SET mechanism is important for the anionic kaempferol/quercetin. The overall rate coefficient of kaempferol and quercetin with ∙OH were calculated at 273-323 K, and the aqueous rate coefficients are calculated by considering the rates of neutral and monoanionic forms multiplied with the molar fractions of each form. The values are 2.81 × 1010 and 8.63 × 1010 M-1 s-1 in the aqueous environment, and 2.31 × 10-10 and 1.18 × 10-10 cm3 molecule-1 s-1 in the gaseous environment at 298 K. Fluorescence probe and flow cytometry results show that kaempferol and quercetin can be efficiently degraded by free radicals, and quercetin has a better effect, which is consistent with the theoretical results in the aqueous environment. The transformation mechanism of Q-OH-P7a with ∙OH, O2 and NO was studied, and the stable product is Q-P1. Toxicology results show that most of the subsequent products of quercetin do not bioaccumulate and can be biodegraded, but most products still have toxic properties or harmful properties and show positive mutagenicity. This study provides new guidance for flavonoid degradation behavior and environmental risks.
Collapse
Affiliation(s)
- Ting-Ting Meng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Meng-Jiao Ding
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wan-Ying Yu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Xiao-Ming Song
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Ke Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Fan-Xing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiu-Mei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| |
Collapse
|
9
|
Mei Q, Qiu Z, Jiang J, Li M, Wang Q, He M. Ozonolysis of ketoprofen in polluted water: Reaction pathways, kinetics, removal efficiency, and health effects. J Environ Sci (China) 2025; 147:451-461. [PMID: 39003061 DOI: 10.1016/j.jes.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 07/15/2024]
Abstract
Ketoprofen (KET), as a non-steroidal anti-inflammatory drug frequently detected in aqueous environments, is a threat to human health due to its accumulation and low biodegradability, which requires the transformation and degradation of KET in aqueous environments. In this paper, the reaction process of ozone-initiated KET degradation in water was investigated using density functional theory (DFT) method at the M06-2X/6-311++g(3df,2p)//M06-2X/6-31+g(d,p) level. The detailed reaction path of KET ozonation is proposed. The thermodynamic results show that ozone-initiated KET degradation is feasible. Under ultraviolet irradiation, the reaction of ozone with water can also produce OH radicals (HO·) that can react with KET. The degradation reaction of KET caused by HO· was further studied. The kinetic calculation illustrates that the reaction rate (1.99 × 10-1 (mol/L)-1 sec-1) of KET ozonation is relatively slow, but the reaction rate of HO· reaction is relatively high, which can further improve the degradation efficiency. On this basis, the effects of pollutant concentration, ozone concentration, natural organic matter, and pH value on degradation efficiency under UV/O3 process were analyzed. The ozonolysis reaction of KET is not sensitive to pH and is basically unaffected. Finally, the toxicity prediction of oxidation compounds produced by degradation reaction indicates that most of the degradation products are harmless, and a few products containing benzene rings are still toxic and have to be concerned. This study serves as a theoretical basis for analyzing the migration and transformation process of anti-inflammatory compounds in the water environment.
Collapse
Affiliation(s)
- Qiong Mei
- School of Land Engineering, Shaanxi Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710064, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Zhaoxu Qiu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jinchan Jiang
- Weihai Water Conservancy Service Center, Weihai 264200, China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qizhao Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China.
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
10
|
Li X, Bu Y, Xu J, Alfassam HE, Rudayni HA, Allam AA, Pan X, Wang Z, Qu R. Degradation of 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV328) in soil by FeS activated persulfate: Kinetics, mechanism, and theoretical calculations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125154. [PMID: 39427950 DOI: 10.1016/j.envpol.2024.125154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV328) is a commonly used benzotriazole ultraviolet stabilizers (BUVs) with bioaccumulative properties. Since it's stubbornly degraded in the environment, it poses significant environmental risks in soil. However, the removal of UV328 from soil is challenging, and existing treatment methods have low efficiency. This study focuses on UV328 in soil and proposes an efficient method for its removal using persulfate (PS) activated by iron sulfide (FeS). The research demonstrates that with FeS and PS dosages of 20 and 100 mM respectively, and a soil-to-water ratio of 5:1, 12 h-removal efficiency of UV328 with an initial concentration of 12 mg/kg reaches 93.0%. Furthermore, employing electron paramagnetic resonance spectroscopy and quenching experiments, key reactive oxygen species (ROSs) are identified. SO4•-, •OH, 1O2 and •O2- contribute 31.76%, 28.77%, 26.52% and 12.95%, respectively. Four main reaction pathways of amination, hydroxylation, sulfate substitution, and bond cleavage, are identified with 14 transformation products characterized. Calculated energy profiles based on density functional theory (DFT) identify the most susceptible reaction sites for different ROSs. Five different types of agricultural soils were selected to explore the impact of soil characteristics on UV328 removal. The degradation performance of natural mackinawite demonstrates the effectiveness and accessibility of raw materials. Toxicity assessments of transformation products confirm the environmental friendliness of this system. This study proposes an efficient degradation method for UV328-contaminated soil, providing scientific insights and theoretical guidance for addressing environmental removal of BUVs from soil.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yue Bu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jianqiao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haifa E Alfassam
- Department of Biology, college of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211 Egypt
| | - Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China; Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui Hefei 230601, PR China.
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
11
|
Gu S, Qu F, Qu D, Yan Z, Meng Y, Liang Y, Chang H, Liang H. Improving membrane distillation performance by Fe(II) activated sodium percarbonate oxidation during the treatment of shale gas produced water. WATER RESEARCH 2024; 262:122139. [PMID: 39068730 DOI: 10.1016/j.watres.2024.122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Membrane distillation (MD) offers promise for recycling shale gas produced water (SGPW), while membrane fouling is still a major obstacle in standalone MD. Herein, sodium percarbonate (SPC) oxidation was proposed as MD pretreatment, and the performance of the single MD, SPC-MD hybrid process and Fe(II)/SPC-MD hybrid process for SGPW treatment were systematically evaluated. Results showed that compared to raw SGPW, the application of SPC and Fe(II)/SPC led to the decrease of the fluorescent organics by 28.54 % and 54.52 %, respectively. The hydrophobic fraction decreased from 52.75 % in raw SGPW to 37.70 % and 27.20 % for SPC and Fe(II)/SPC, respectively, and the MD normalized flux increased from 0.19 in treating raw SGPW to 0.65 and 0.81, respectively. The superiority of SPC oxidation in reducing the deposited membrane foulants and restoring membrane properties was further confirmed through scanning electron microscopy observation, attenuated total reflection fourier transform infrared, water contact angle and surface tension analyses of fouled membranes. Correlation analysis revealed that hydrophobic/hydrophilic matters and fluorescent organics in SGPW took a crucial role in MD fouling. The mechanism of MD fouling mitigation by Fe(II)/SPC oxidation was attributed to the decrease in concentrations and hydrophobicity of organic by synergistic oxidation, coagulation and adsorption.
Collapse
Affiliation(s)
- Suhua Gu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Ying Liang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
12
|
Wang Z, Zhang R, Li Y, Zhang Q, Wang W, Wang Q. Computational study on the endocrine-disrupting metabolic activation of Benzophenone-3 catalyzed by cytochrome P450 1A1: A QM/MM approach. CHEMOSPHERE 2024; 358:142238. [PMID: 38705413 DOI: 10.1016/j.chemosphere.2024.142238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/17/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Predicting the metabolic activation mechanism and potential hazardous metabolites of environmental endocrine-disruptors is a challenging and significant task in risk assessment. Here the metabolic activation mechanism of benzophenone-3 catalyzed by P450 1A1 was investigated by using Molecular Dynamics, Quantum Mechanics/Molecular Mechanics and Density Functional Theory approaches. Two elementary reactions involved in the metabolic activation of BP-3 with P450 1A1: electrophilic addition and hydrogen abstraction reactions were both discussed. Further conversion reactions of epoxidation products, ketone products and the formaldehyde formation reaction were investigated in the non-enzymatic environment based on previous experimental reports. Binding affinities analysis of benzophenone-3 and its metabolites to sex hormone binding globulin indirectly demonstrates that they all exhibit endocrine-disrupting property. Toxic analysis shows that the eco-toxicity and bioaccumulation values of the benzophenone-3 metabolites are much lower than those of benzophenone-3. However, the metabolites are found to have skin-sensitization effects. The present study provides a deep insight into the biotransformation process of benzophenone-3 catalyzed by P450 1A1 and alerts us to pay attention to the adverse effects of benzophenone-3 and its metabolites in human livers.
Collapse
Affiliation(s)
- Zijian Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Ruiming Zhang
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao, 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qiao Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
13
|
Li Q, Cui Y, Wang Z, Li Y, Yang H. Toxicity assessment of dioxins and their transformation by-products from inferred degradation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173416. [PMID: 38795989 DOI: 10.1016/j.scitotenv.2024.173416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Due to the significant POPs characteristics, dioxins caused concern in public health and environmental protection. Evaluating the toxicity risk of dioxin degradation pathways is critical. OCDD, 1,2,3,4,6,7,8-HpCDD, and 1,2,3,4,6,7,8-HpCDF, which are highly abundant in the environment and have strong biodegradation capabilities, were selected as precursor molecules in this study. Firstly, their transformation pathways were deduced during the metabolism of biometabolism, microbial aerobic, microbial anaerobic, and photodegradation pathways, and density function theory (DFT) was used to calculate the Gibbs free energy to infer the possibility of the occurrence of the transformation pathway. Secondly, the carcinogenic potential of the precursors and their degradation products was evaluated using the TOPKAT modeling method. With the help of the positive indicator (0-1) normalization method and heat map analysis, a significant increase in the toxic effect of some of the transformation products was found, and it was inferred that it was related to the structure of the transformation products. Meanwhile, the strength of the endocrine disrupting effect of dioxin transformation products was quantitatively assessed using molecular docking and subjective assignment methods, and it was found that dioxin transformation products with a higher content of chlorine atoms and molecules similar to those of thyroid hormones exhibited a higher risk of endocrine disruption. Finally, the environmental health risks caused by each degradation pathway were comprehensively assessed with the help of the negative indicator (1-2) standardization method, which provides a theoretical basis for avoiding the toxicity risks caused by dioxin degradation transformation. In addition, the 3D-QSAR model was used to verify the necessity and rationality of this study. This paper provides theoretical support and reference significance for the toxicity assessment of dioxin degradation by-products from inferred degradation pathways.
Collapse
Affiliation(s)
- Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yuhan Cui
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Zhonghe Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
14
|
Yan Y, Meng Y, Miu K, Wenk J, Anastasio C, Spinney R, Tang CJ, Xiao R. Direct Determination of Absolute Radical Quantum Yields in Hydroxyl and Sulfate Radical-Based Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8966-8975. [PMID: 38722667 DOI: 10.1021/acs.est.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The absolute radical quantum yield (Φ ) is a critical parameter to evaluate the efficiency of radical-based processes in engineered water treatment. However, measuring Φ is fraught with challenges, as current quantification methods lack selectivity, specificity, and anti-interference capabilities, resulting in significant error propagation. Herein, we report a direct and reliable time-resolved technique to determine Φ at pH 7.0 for commonly used radical precursors in advanced oxidation processes. For H2O2 and peroxydisulfate (PDS), the values of Φ •OH and Φ SO 4 • - at 266 nm were measured to be 1.10 ± 0.01 and 1.46 ± 0.05, respectively. For peroxymonosulfate (PMS), we developed a new approach to determine Φ • OH PMS with terephthalic acid as a trap-and-trigger probe in the nonsteady state system. For the first time, the Φ • OH PMS value was measured to be 0.56 by the direct method, which is stoichiometrically equal to Φ SO 4 • - PMS (0.57 ± 0.02). Additionally, radical formation mechanisms were elucidated by density functional theory (DFT) calculations. The theoretical results showed that the highest occupied molecular orbitals of the radical precursors are O-O antibonding orbitals, facilitating the destabilization of the peroxy bond for radical formation. Electronic structures of these precursors were compared, aiming to rationalize the tendency of the Φ values we observed. Overall, this time-resolved technique with specific probes can be used as a reliable tool to determine Φ , serving as a scientific basis for the accurate performance evaluation of diverse radical-based treatment processes.
Collapse
Affiliation(s)
- Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yunxiang Meng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Kanying Miu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Jannis Wenk
- Department of Chemical Engineering, Water Innovation & Research Centre (WIRC@Bath), University of Bath, Bath BA2 7AY, U.K
| | - Cort Anastasio
- Department of Land, Air, and Water Resource, University of California, Davis, California 95616, United States
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chong-Jian Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
15
|
Cao W, Wu N, Zhang S, Qi Y, Guo R, Wang Z, Qu R. Photodegradation of polychlorinated biphenyls in water/nitrogen-doped silica and air/nitrogen-doped silica systems: Kinetics, mechanism and quantitative structure activity relationship (QSAR) analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171586. [PMID: 38461975 DOI: 10.1016/j.scitotenv.2024.171586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Developing efficient and low-cost photocatalytic materials is essential for removing polychlorinated biphenyls (PCBs). In this work, the photodegradation process of fourteen representative polychlorinated biphenyls (PCBs) in both water/nitrogen-doped SiO2 (N-SiO2) and air/N-SiO2 systems was studied. The photodegradation kinetics of PCBs is consistent with the pseudo-first-order kinetic equation. The variation in the degradation effects of different PCBs in the two systems is primarily related to the position of the Cl substituent and the effective absorption wavelength range of PCBs. A total of fourteen intermediates for 4'-Dichlorobiphenyl (PCB-15), 2,2',4,4',6,6'-Hexachlorobiphenyl (PCB-155), and 2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl (PCB-209) generated from four reaction pathways were identified based on both mass spectrometry analysis and theoretical calculations. Using the values of lnk (k denotes pseudo-first-order kinetic constants) for the 11 PCBs in the training set and the calculated molecular and structural parameters, quantitative structure-activity relationship (QSAR) models for the two systems were constructed by using multiple linear regression (MLR) method to better understand the factors affecting the photodegradation rate of PCBs. The QSAR equations were obtained with Cl atom substitution at position 3 (N3) as the main parameter, which were lnk = -1.98 - 0.19 N3 for the water/N-SiO2 system and lnk = -1.56 - 0.34 N3 for the air/N-SiO2 system, with the correlation coefficient (R2) of 0.66 and 0.73, leave-one-out cross-validation (Q2LOO) of 0.51 and 0.59, respectively, and bootstrapping validation coefficients (Q2BOOT) values of both 0.74, confirming that the models were well fitted and showed high robustness and prediction ability. This study provides valuable insights into photocatalytic degradation studies of PCBs.
Collapse
Affiliation(s)
- Wenqian Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Nannan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| |
Collapse
|
16
|
Qi Y, Cao W, Zheng Q, Wei Z, Wang Z, Qu R. Insights into the photocatalytic degradation of hydrophobic organic contaminants on the surface of nitrogen doped silica: New findings of the formation of silicon-based substitution products. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133398. [PMID: 38160556 DOI: 10.1016/j.jhazmat.2023.133398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
In this work, nitrogen-doped SiO2 (N-SiO2) was successfully synthesized to develop an "adsorption-photocatalytic degradation" water purification technology to remove hydrophobic organic contaminants (HOCs). As a representative of HOCs, decabromodiphenylethane (DBDPE) could be efficiently degraded under simulated sunlight after adsorption on the surface of N-SiO2. Due to the generation of reactive oxygen species (ROS) and silicon-based radicals, the photodegradation rate of DBDPE on water-SiO2 interface was 1.5-fold higher than that in water. Furthermore, the transformation pathways of DBDPE on N-SiO2 surface were compared with that in water. Bond breaking and debromination reactions were the common pathways, while hydroxylation and silicon-based substitution reactions were the specific transformation pathways for DBDPE on the surface of N-SiO2. Density functional theory (DFT) calculation was used to reveal the generation mechanism of silicon-based radicals and determine the rationality of the involvement of silicon-based radicals in DBDPE transformation. The energy barriers of silicon-based substitution reaction were comparable to that of hydroxylation and debromination reactions, which confirmed the plausibility of the generation of silicon-based substitution products. This study provides an efficient method for the disposal of HOCs, which also gives some new insights into the conversion mechanism of organic pollutants mediated by silicon-based radicals.
Collapse
Affiliation(s)
- Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Wenqian Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Qing Zheng
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224003, PR China
| | - Zhongbo Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
17
|
Ge L, Li X, Zhang S, Cao S, Zheng J, Wang D, Zhang P. Comparing the photodegradation of typical antibiotics in ice and in water: Degradation kinetics, mechanisms, and effects of dissolved substances. CHEMOSPHERE 2024; 352:141489. [PMID: 38368963 DOI: 10.1016/j.chemosphere.2024.141489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
New antibiotic contaminants have been detected in both surface waters and natural ice across cold regions. However, few studies have revealed distinctions between their ice and aqueous photochemistry. In this study, the photodegradation and effects of the main dissolved substances on the photolytic kinetics were investigated for sulfonamides (SAs) and fluoroquinolones (FQs) in ice/water under simulated sunlight. The results showed that the photolysis of sulfamethizole (SMT), sulfachloropyridazine (SCP), enrofloxacin (ENR) and difloxacin (DIF) in ice/water followed the pseudo-first-order kinetics with their quantum yields ranging from 4.93 × 10-3 to 11.15 × 10-2. The individual antibiotics experienced disparate photodegradation rates in ice and in water. This divergence was attributed to the concentration-enhancing effect and the solvent cage effect that occurred in the freezing process. Moreover, the main constituents (Cl-, HASS, NO3- and Fe(III)) exhibited varying degrees of promotion or inhibition on the photodegradation of SAs and FQs in the two phases (p < 0.05), and these effects were dependent on the individual antibiotics and the matrix. Extrapolation of the laboratory data to the field conditions provided a reasonable estimate of environmental photolytic half-lives (t1/2,E) during midsummer and midwinter in cold regions. The estimated t1/2,E values ranged from 0.02 h for ENR to 14 h for SCP, which depended on the reaction phases, latitudes and seasons. These results revealed the similarities and differences between the ice and aqueous photochemistry of antibiotics, which is important for the accurate assessment of the fate and risk of these new pollutants in cold environments.
Collapse
Affiliation(s)
- Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Xuanyan Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Shuang Zhang
- School of Environmental Science and Technology, Dalian Maritime University, Dalian, 116026, PR China
| | - Shengkai Cao
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Jinshuai Zheng
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Degao Wang
- School of Environmental Science and Technology, Dalian Maritime University, Dalian, 116026, PR China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
18
|
Zhang S, Wei J, Liu B, Wang W, Wang Z, Wang C, Wang L, Zhang W, Andersen HR, Qu R. Enhanced permanganate oxidation of phenolic pollutants by alumina and potential industrial application. WATER RESEARCH 2024; 251:121170. [PMID: 38277831 DOI: 10.1016/j.watres.2024.121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
In this study, we found that alumina (Al2O3) may improve the degradation of phenolic pollutants by KMnO4 oxidation. In KMnO4/Al2O3 system, the removal efficiency of 2,4-Dibromophenol (2,4-DBP) was increased by 26.5%, and the apparent activation energy was decreased from 44.5 kJ/mol to 30.9 kJ/mol. The mechanism of Al2O3-catalytic was elucidated by electrochemical processes, X-ray photoelectron spectroscopy (XPS) characterization and theoretical analysis that the oxidation potential of MnO4- was improved from 0.46 V to 0.49 V. The improvement was attributed to the formation of coordination bonds between the O atoms in MnO4- and the empty P orbitals of the Al atoms in Al2O3 crystal leading to the even-more electron deficient state of MnO4-. The excellent reusability of Al2O3, the good performance on degradation of 2,4-DBP in real water, the satisfactory degradation of fixed-bed reactor, and the enhanced removal of 6 other phenolic pollutants demonstrated that the KMnO4/Al2O3 system has satisfactory potential industrial application value. This study offers evidence for the improvement of highly-efficient MnO4- oxidation systems.
Collapse
Affiliation(s)
- Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Wei Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Wenjing Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
19
|
Wang J, Jiang J, Zhao H, Li Z, Li X, Azam S, Qu B. Phototransformation of halobenzoquinones in aqueous solution under the simulate sunlight: Kinetics, mechanism and products. CHEMOSPHERE 2024; 352:141318. [PMID: 38311038 DOI: 10.1016/j.chemosphere.2024.141318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Halobenzoquinones (HBQs) are a novel family of unregulated disinfection byproducts (DBPs). Little is known about their phototransformation activities in natural water. Here, five HBQs with various halogenated substituent types, numbers, and structures positions were selected to investigate the kinetics of degradation in aqueous solutions at various concentrations and in the presence of common environmental variables (Cl-, NO2-, and humic acid). The results indicated that dichloride and dibromo-substituted HBQs were photolyzed, whereas tetrachloro-substituted HBQs showed little degradation. The photolysis rate constant (k) of HBQs decreased with increasing initial concentration. The presence of NO2- and Cl- promoted the degradation of HBQs mainly through the formation of hydroxyl radical (•OH), which were confirmed by electron paramagnetic resonance (EPR). In contrast, humic acid played a negative role on HBQs transformation due to the adsorption and quenching reactions. Possible conversion pathways for HBQs were proposed based on the identification of two major photodegradation products, hydroxylated HBQs and halogenated-benzenetriol, as well as reactive free radicals. This study provided meaningful insights into the environmental fates and risk assessments of HBQs in natural aquatic system.
Collapse
Affiliation(s)
- Jingyao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingqiu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shafiul Azam
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116024, China.
| |
Collapse
|
20
|
Guo R, Zhang S, Xiao X, Liang Y, Wang Z, Qu R. Potassium permanganate oxidation enhanced by infrared light and its application to natural water. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133012. [PMID: 37984145 DOI: 10.1016/j.jhazmat.2023.133012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Photocoupled permanganate (PM) is an effective way to enhance the oxidation efficiency of PM, however, the activation of PM by infrared has received little attention. This study aimed to investigate the ability of infrared light to activate PM. When coupled with infrared, the degradation rate of 4-chlorophenol (4-CP) is increased to 3.54 times of PM oxidation alone. The accelerated reaction was due to the formation of vibrationally excited PM by absorbing 3.1 kJ mol-1 infrared energy, which also leads to the primary reactive intermediates Mn(V/IV) in the reaction system. The infrared coupled PM system also showed 1.14-2.34 times promotion effect on other organic pollutants. Furthermore, solar composed of 45% infrared, coupled PM system showed excellent degradation performance, where the degradation of 4-CP in 10 L of tap water and river water was 68 and 23 times faster than in ultrapure water, respectively. The faster-increased degradation rate in natural waters is mainly due to the abundant inorganic ions, which can stabilize the manganese species, and then has a positive effect on 4-CP degradation. In summary, this work develops a energy-efficient photoactivated PM technology that utilizes infrared and provides new insights into the design of novel sunlight-powered oxidation processes for water treatment.
Collapse
Affiliation(s)
- Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xuejing Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yeping Liang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
21
|
Lu Y, Wang S. The mechanism of photodegradation reaction of different dissociation forms of tetrabromobisphenol S in water with free radicals and the ecotoxicity evaluation of related products. CHEMOSPHERE 2024; 350:141136. [PMID: 38184076 DOI: 10.1016/j.chemosphere.2024.141136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
Tetrabromobisphenol S (TBBPS) is a widely used brominated flame retardant that has attracted environmental concern due to its abundant presence in water. The objective of this study is to systematically analyze the direct photolysis and degradation mechanisms of TBBPS in two different dissociation forms in water, as well as to evaluate their toxicological effects induced by •OH, 1O2, and •NO2 radicals. The degradation mechanism of TBBPS is investigated with density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods, and the toxicity of the degradation products is assessed through toxicological studies. The results of the study indicate that the OH-addition and H-abstraction reactions are favorable pathways for •OH-induced TBBPS degradation. The H-abstraction reaction of TBBPS0 with •OH was more favorable than the •OH addition reaction. However, in the degradation of TBBPS-, the •OH addition reaction was favored over the H-abstraction reaction. Additionally, the indirect photolysis of TBBPS by 1O2 and •NO2 in water was found to be easier for TBBPS- compared to TBBPS0, with degradation mechanisms involving Br-substitution and NO2-addition reactions. The higher Ea values calculated indicate that the degradation of TBBPS by 1O2 and •NO2 in water has been a secondary reaction. The direct photolysis reaction pathway of TBBPS in water has involved the cleavage of the S1-C7 and S1-C16 bonds. For TBBPS0 in the S1/T1 states, the primary reaction pathway is the cleavage of the S1-C16 bond, while for TBBPS-, the primary reaction pathway is the cleavage of the S1-C7 bond. Furthermore, the computational toxicology results indicate a slight increase in the toxicity levels of most products, highlighting the significance of investigating the degradation byproducts of TBBPS in greater detail.
Collapse
Affiliation(s)
- Ying Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Se Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
22
|
Lin J, Chi L, Yuan Q, Li B, Feng M. Photodegradation of typical pharmaceuticals changes toxicity to algae in estuarine water: A metabolomic insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168338. [PMID: 37931817 DOI: 10.1016/j.scitotenv.2023.168338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The ubiquitous existence of various pharmaceuticals in the marine environment has received global attention for their risk assessment. However, rather little is known thus far regarding the natural attenuation (e.g., photolysis)-induced product/mixture toxicity of these pharmaceuticals on marine organisms. In this study, the photodegradation behavior, product formation, and risks of two representative pharmaceuticals (i.e., ciprofloxacin, CIP; diclofenac, DCF) were explored in the simulated estuary water. It was noted that both pharmaceuticals can be completely photolyzed within 1 h, and five products of CIP and three products of DCF were identified by a high-resolution liquid chromatography-mass spectrometer. Accordingly, their photodecomposition pathways were tentatively proposed. The in silico prediction suggested that the formed transformation products maintained the persistence, bioaccumulation potential, and multi-endpoint toxic effects such as genotoxicity, developmental toxicity, and acute/chronic toxicity on different aquatic species. Particularly, the non-targeted metabolomics first elucidated that DCF and its photolytic mixtures can significantly affect the antioxidant status of marine algae (Heterosigma akashiwo), triggering oxidative stress and damage to cellular components. It is very alarming that the complete photolyzed DCF sample induced more serious oxidative stress than DCF itself, which called for more concern about the photolysis-driven ecological risks. Overall, this investigation first uncovered the overlooked but serious toxicity of the transformation products of prevalent pharmaceuticals during natural attenuation on marine species.
Collapse
Affiliation(s)
- Jiang Lin
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Lianbao Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Yuan
- China United Engineering Corporation Limited, Hangzhou 310052, China
| | - Busu Li
- Laoshan Laboratory, Qingdao 266237, China.
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| |
Collapse
|
23
|
Guo S, Lu L, Chen B. Effects of carbon-silicon structure on photochemical activity of biochars. CHEMOSPHERE 2024; 347:140719. [PMID: 37967675 DOI: 10.1016/j.chemosphere.2023.140719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Biochar has raised increasing concerns because of its great environmental impacts. It is known that the photocatalytic property of biochar is related to its carbon component and dissolved black carbon, but the effect of silicon component is ignored, and the effect of silicon and carbon phases was far less studied. This study systematically explored the photochemistry of silicon-rich and silicon-deficient biochar under light irradiation by using hexavalent chromium (Cr(VI)) and sulfadiazine as representative pollutants for photoreduction and photooxidation, respectively. It was found that biochar had photoreduction activity under the enhancement of electron donors, and 80.1% Cr(VI) can be removed by biochar with crystalline silicon and carbon (i.e., RH900) after 12 h irradiation. Meanwhile after low temperature pyrolysis, biochar with amorphous silicon and carbon (i.e., RH600) had great photooxidation capacity, and 71.90% organic pollutant was degraded within 24 h. The reaction was illustrated by transient photocurrent response, and hydroxyl radical generation measurement, and other tests. A new photochemical mechanism of the synergy between silicon and carbon model was proposed to elucidate the redox reactions of pollutants under the light. Graphitic carbon or crystalline silicon formed under high temperature played a role of valence band which was excited under light irradiation and the effect of electron donors to benefit photoreduction, while amorphous silicon formed under low temperature facilitated photooxidation process by increasing reactive oxygen species concentration. This study provided a gist for biochar production and application in the field of photocatalysis, and contributed to the broader understanding of biochar geochemical behavior in natural sunlit system.
Collapse
Affiliation(s)
- Siwei Guo
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Zhao Y, Yang H, Chen Y, Du M, Gu W, Zhao W. Synthesis of environmentally friendly neonicotinoid insecticide with proper functional properties by theoretical methodologies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115708. [PMID: 37979357 DOI: 10.1016/j.ecoenv.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Modern insecticide substitutes using acetylcholine receptors (nAChR) as biochemical targets, such as neonicotinoid insecticides (NNIs), have been extensively researched. Only 12 compounds have been experimentally realized since the initial discovery of imidacloprid. Increasingly, the bottleneck in this field is to rapidly determine the synthesizability of NNI substitutes. Here, we designed a coupled evaluation system for synthesis prediction and validation, including the synthesis probability, reaction path difficulty, and electron transfer characteristics of NNIs and their substitutes. Firstly, a total of 1475 eigenvalues were generated and 52 critical eigenvalues were screened out through the Pearson's correlation coefficient. The positive and unlabeled (PU) machine learning was constructed using the critical eigenvalues NNIs, including 12 experimentally synthesized NNIs (positive samples) and 73 unsynthesized NNI substitutes (unlabeled samples). Results identified 3 NNI substitutes that were highly promising candidates for synthesis (synthesis probability > 0.5). The results of density functional theory demonstrated the ranking of their reaction ease was UN-1 (31.4 kcal/mol) > UN-2 (81.6 kcal/mol) > UN-3 (3.35 ×103 kcal/mol). Time-dependent density functional theory revealed that changes in the electron distribution and electron excitation type were critical factors affecting their synthesizability, and the local excitation type was more favorable for the synthesizability of NNI substituents. The findings provide significant guidance for NNIs synthesis, reducing the possible space of unlabeled samples to 95.89% of their original size, while also minimizing the cost of research on subsequent NNI substitutes.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yanbing Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
25
|
Marcelo G, Rodríguez-Pascual P, Batanero B, Mendicuti F, Pecharromán C. Sepiolite promotes photodegradation of pyrene under visible light. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115573. [PMID: 37856983 DOI: 10.1016/j.ecoenv.2023.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Mechanochemistry and photocatalysis are emergent technologies for the remediation of polycyclic aromatic hydrocarbons (PAHs) in soils. In this work, mechanochemistry and photocatalysis are combined for pyrene degradation. The photodegradation of pyrene, when in contact with sepiolite under pressure application, is studied. The mechanical treatment leads to a pyrene crystal phase transformation. In this new phase, pyrene undergoes a fast photodegradation in the 320-420 nm range. We show that sepiolite is superior as a photocatalyst in pyrene degradation to TiO2, the most exploited photocatalyst. A broad physicochemical characterization is carried out to propose a mechanism in which the photoexcitation of mechanically altered pyrene leads to an electron transfer to sepiolite matrix, which triggers the PAH degradation. Finally, we want to highlight that the pyrene/sepiolite combination is a simplified system to shed light on how PAH photodegradation may occur in soils.
Collapse
Affiliation(s)
- Gema Marcelo
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Instituto de Investigación Química Andrés M. del Rio, Ctra. Madrid-Barcelona Km 33,600, Alcalá de Henares (Madrid) E-28805, Spain.
| | - Pedro Rodríguez-Pascual
- Instituto de Ciencia de los Materiales de Madrid (ICMM, CSIC), C/Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Belen Batanero
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química Andrés M. del Rio, Ctra. Madrid-Barcelona Km 33,600, Alcalá de Henares (Madrid) E-28805, Spain
| | - Francisco Mendicuti
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Instituto de Investigación Química Andrés M. del Rio, Ctra. Madrid-Barcelona Km 33,600, Alcalá de Henares (Madrid) E-28805, Spain
| | - Carlos Pecharromán
- Instituto de Ciencia de los Materiales de Madrid (ICMM, CSIC), C/Sor Juana Inés de la Cruz 3, Madrid 28049, Spain.
| |
Collapse
|
26
|
Wu F, Wang Z, Li X, Pu Q, Wu Y, Cao N, Wang X. Molecular design of environment-friendly amide herbicide substitutes with high efficacy, low phytotoxicity and medication safety. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132858. [PMID: 39491986 DOI: 10.1016/j.jhazmat.2023.132858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The primary goal of this investigation was to formulate an ecologically sustainable alternative to amide herbicides (AHs) characterized by robust herbicidal effectiveness, minimal corn phytotoxicity, and commendable pharmaceutical safety. We employed comparative molecular similarity index analysis (CoMSIA), a three-dimensional quantitative structure-activity relationship (3D-QSAR) model, which systematically outlined parameters such as herbicidal effectiveness, corn phytotoxicity, and AHs biodegradability. Subsequently, after thorough evaluation, we carefully selected a group of fourteen stable AH-substitute compounds known for their safety and environmental compatibility, considering aspects like pharmacokinetics, toxicokinetics, functional properties, and environmental friendliness. This resulted in a significant increase in herbicidal effectiveness, ranging from 21.64% to 34.07%, alongside a decrease in corn phytotoxicity within the range of 12.19-20.87%. Furthermore, we achieved an improvement in biodegradability, measured within the spectrum of 4.92-9.40%. Importantly, these changes also correlated with the reduction of hepatotoxicity, mutagenicity, and cutaneous health risks. Finally, we delved into the mechanisms underlying the improved herbicidal effectiveness, reduced corn phytotoxicity, and enhanced biodegradability of AHs substitutes through molecular docking and analysis of amino acid interactions. The investigation concluded that non-covalent forces governing the interaction between AHs substitutes and receptor proteins are crucial in determining herbicidal effectiveness, corn phytotoxicity, and biodegradability. Specifically, Van der Waals and electrostatic forces emerged as key factors governing the binding affinities of AH molecules with receptor proteins, both before and after modification. In summary, this study introduces innovative approaches in the field of agricultural chemical weeding technology and provides a theoretical framework for the environmentally responsible management of AHs herbicides.
Collapse
Affiliation(s)
- Fuxing Wu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Zini Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xinao Li
- Moe Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- Moe Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Yang Wu
- Moe Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Ning Cao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xiaoli Wang
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
27
|
Gao L, Wu H, Dang J, Zhang S, Tian S, Zhang Q, Wang W. New insight into the removal process of benzotriazole UV stabilizers by UV/H 2O 2: Integrating quantum chemical calculation with CFD simulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132245. [PMID: 37562354 DOI: 10.1016/j.jhazmat.2023.132245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Benzotriazole UV stabilizers (BT-UVs) are important UV absorbers. As high-production chemicals and potential hazards, their ubiquitous presence in aquatic environments is of greatly pressing concern. Herein, the removal of six typical BT-UVs by UV/H2O2 was comprehensively investigated by quantum chemistry calculation integrated with CFD simulation. Utilizing such a micro and macro incorporated model in treating contaminants is the first report. From the micro-view, degradation mechanisms of BT-UVs by •OH oxidation were determined, and corresponding rate constants were obtained with values of 109∼1010 M-1s-1. In a macroscopic aspect, combining the established kinetic model and CFD simulation, the effects of UV lamp power (P), volumetric flow rate (Qv), and H2O2 dosage ([H2O2]0) on removal yields of BT-UVs were expounded, increasing P or [H2O2]0 or decreasing Qv are effective in improving removal yields of BT-UVs, but the enhancement was abated when P or [H2O2]0 increased to a certain level. When [H2O2]0 is 5 mg/L and Qv is decreased from 0.1 to 0.05 m3/h, the removal yields of BT-UVs could achieve more than 95% (P = 150 W) and 99% (P = 250 W), respectively. This work provides a new interdisciplinary insight for investigating organic contaminant removal in potential industrial applications of UV/H2O2 systems.
Collapse
Affiliation(s)
- Li'ao Gao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Hongjin Wu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Juan Dang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Shibo Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Shuai Tian
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-sen University, Shenzhen 518033, China; Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
28
|
Sun J, Chu R, Khan ZUH. A Theoretical Study on the Degradation Mechanism, Kinetics, and Ecotoxicity of Metronidazole (MNZ) in •OH- and SO 4•--Assisted Advanced Oxidation Processes. TOXICS 2023; 11:796. [PMID: 37755806 PMCID: PMC10535747 DOI: 10.3390/toxics11090796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Metronidazole (MNZ), a typical example of nitroimidazole antibiotics, is widely used in the treatment of infectious diseases caused by anaerobic bacteria. The degradation mechanism and kinetics of MNZ in the presence of HO• and SO4•- were studied using density functional theory (DFT). It was confirmed that both HO• and SO4•- easily added to the carbon atom bonded to the NO2 group in the MNZ molecule as the most feasible reaction channel. This study shows that subsequent reactions of the most important product (M-P) include the O2 addition, hydrogen abstraction and bond breakage mechanisms. The rate constants of HO• and SO4•--initiated MNZ in the aqueous phase were calculated in the temperature range of 278-318 K. The total rate constants of MNZ with HO• and SO4•- were determined to be 8.52 × 109 and 1.69 × 109 M-1s-1 at 298 K, which were consistent with experimental values of (3.54 ± 0.42) × 109 and (2.74 ± 0.13) × 109 M-1s-1, respectively. The toxicity of MNZ and its degradation products to aquatic organisms has been predicted. The results proposed that the toxicity of the initial degradation product (M-P) was higher than that of MNZ. However, further degradation products of MNZ induced by HO• were not harmful to three aquatic organisms (fish, daphnia, and green algae). This study provides a comprehensive theoretical basis for understanding the degradation behavior of MNZ.
Collapse
Affiliation(s)
- Jingyu Sun
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi 435002, China;
| | - Ruijun Chu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi 435002, China;
| | - Zia Ul Haq Khan
- Department of Chemistry, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan;
| |
Collapse
|
29
|
Wang Y, Fu R, Sun P, Li X, Zhao W. Screening eco-friendliness tire antioxidants alternatives: functional 2,2,4-trimethyl-1,2-dihydroquinoline derivatives design and toxicity evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92282-92294. [PMID: 37486471 DOI: 10.1007/s11356-023-28836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Antioxidants which are indispensable functional additives used in rubber tires, are released into aquatic habitats from tire wear particles (TWP), collected in water bodies, and threaten the aquatic ecosystem. This study aimed to design eco-friendly derivatives of 2,2,4-trimethyl-1,2-dihydroquinoline (TMQ) with increased antioxidant activity to use as tire antioxidants. Initially, seventy highly efficient derivatives of TMQ were designed by hydroxylation modifications at multiple sites. The antioxidant activity of hydroxyl derivatives was characterized based on DFT method and compared with TMQ. Twenty derivatives showing a significant (greater than 9%) increase in antioxidant activity compared to TMQ were selected for the next stage. The toxicity risk of these twenty TMQ derivatives was assessed using various toxicokinetic methods. Finally, six TMQ derivatives with significantly lower toxicity risk compared to that of TMQ were evaluated for potential developmental toxicity. They were characterized using molecular docking and molecular dynamics techniques to assess the developmental toxicity risk in silver salmon by absorption of their ROO·, HO·, O2·- and O3 derivatives. TMQ-6 and TMQ-48 showed the lowest toxicity among all TMQ derivatives by a rather large margin. The study throws light on the path of future endeavors to develop highly efficient and greener tire antioxidants.
Collapse
Affiliation(s)
- Yu Wang
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
- College of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai, 519041, China
| | - Rui Fu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| |
Collapse
|
30
|
Wang S, Peng Y, Zhang Q, Wang W, Wang Q. Mechanistic understanding of rapid H 2SO 4-HNO 3-NH 3 nucleation in the upper troposphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163477. [PMID: 37062321 DOI: 10.1016/j.scitotenv.2023.163477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 06/03/2023]
Abstract
The upper troposphere (UT) nucleation is thought to be responsible for at least one-third of the global cloud condensation nuclei. Although NH3 was considered to be extremely rare in the UT, recent studies show that NH3 is convected aloft, promoting H2SO4-HNO3-NH3 rapid nucleation in the UT during the Asian monsoon. In this study, the roles of HNO3, H2SO4 (SA), and NH3 in the nucleation of SA-HNO3-NH3 were investigated by quantum chemical calculation and molecular dynamic (MD) simulations at the level of M06-2×/6-31 + G (d, p). The nucleation ability of SA-HNO3-NH3 is suppressed as the temperature increases in the UT. The results indicated that bisulfate (HSO4-), nitrate (NO3-), and ammonium (NH4+) ionized from SA, HNO3, and NH3, respectively, can significantly enhance the nucleation ability of SA-HNO3-NH3. In addition, hydrated hydrogen ion (H3O+) as well as sulfate ions (SO42-) ionized by SA can also actively participate in the process of ion-induced nucleation. The results reveal that the enhancement effect of five ions on the SA-HNO3-NH3 nucleation can be ordered as follows: SO42- > H3O+ > HSO4- > NO3- > NH4+. Many ion-induced nucleation pathways of SA-HNO3-NH3 with the Gibbs free energies of formation (ΔG) lower than -100 kcal mol-1 were energetically favorable. HNO3 and NH3 can promote the nucleation of SA-HNO3-NH3 and water (W) molecules are also beneficial to promote the new particle formation (NPF) of SA-HNO3-NH3. Under the action of H-bonds and electrostatic interaction, ion-induced nucleation could lead to the rapid nucleation of H2SO4-HNO3-NH3 in the UT.
Collapse
Affiliation(s)
- Shengming Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanbo Peng
- Shandong Academy for Environmental Planning, Jinan 250101, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qiao Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
31
|
Liu B, Wei J, Zhang S, Shad A, Tang X, Allam AA, Wang Z, Qu R. Insights into oxidation of pentachlorophenol (PCP) by low-dose ferrate(VI) catalyzed with α-Fe 2O 3 nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131983. [PMID: 37406528 DOI: 10.1016/j.jhazmat.2023.131983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/08/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
In this study, the catalytic performance of α-Fe2O3 nanoparticles (nα-Fe2O3) in the low-dose ferrate (Fe(VI)) system was systematically studied through the degradation of pentachlorophenol (PCP). Based on the established quadratic functions between nα-Fe2O3 amount and observed pseudo first-order rate constant (kobs), two linear correlation equations were offered to predict the optimum catalyst dosage and the maximum kobs at an applied Fe(VI) amount. Moreover, characterization and cycling experiments showed that nα-Fe2O3 has good stability and recyclability. According to the results of reactive species identification and quenching experiment and galvanic oxidation process, the catalytic mechanism was proposed that Fe(III) on the surface of nα-Fe2O3 may react with Fe(VI) to enhance the generation of highly reactive Fe(IV)/Fe(V) species, which rapidly extracted a single electron from PCP molecule for its further reaction. Besides, two possible PCP degradation pathways, i.e., single oxygen transfer mediated hydroxylation and single electron transfer initiated polymerization were proposed. The formation of coupling products that are prone to precipition and separation was largely improved. This study proved that nα-Fe2O3 can effectively catalyze PCP removal at low-dose Fe(VI), which provides some support for the application of Fe(VI) oxidation technology in water treatment in the context of low-carbon emissions.
Collapse
Affiliation(s)
- Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Asam Shad
- Department of Environmental Sciences, Comsats University, Abbottabad Campus, Islamabad, Pakistan
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou 213100, Jiangsu, PR China
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
32
|
Guo Z, He H, Liu K, Li Z, Yang S, Liao Z, Lai C, Ren X, Huang B, Pan X. The photolytic behavior of COVID-19 antivirals ribavirin in natural waters and the increased environmental risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131320. [PMID: 37002997 PMCID: PMC10043975 DOI: 10.1016/j.jhazmat.2023.131320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Increasing drug residues in aquatic environments have been caused by the abuse of antivirals since the global spread of the COVID-19 epidemic, whereas research on the photolytic mechanism, pathways and toxicity of these drugs is limited. The concentration of COVID-19 antivirals ribavirin in rivers has been reported to increase after the epidemic. Its photolytic behavior and environmental risk in actual waters such as wastewater treatment plant (WWTP) effluent, river water and lake water were first investigated in this study. Direct photolysis of ribavirin in these media was limited, but indirect photolysis was promoted in WWTP effluent and lake water by dissolved organic matter and NO3-. Identification of photolytic intermediates suggested that ribavirin was photolyzed mainly via C-N bond cleavage, splitting of the furan ring and oxidation of the hydroxyl group. Notably, the acute toxicity was increased after ribavirin photolysis owing to the higher toxicity of most of the products. Additionally, the overall toxicity was greater when ARB photolysis in WWTP effluent and lake water. These findings emphasize the necessity to concern about the toxicity of ribavirin transformation in natural waters, as well as to limit its usage and discharge.
Collapse
Affiliation(s)
- Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zihui Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shicheng Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| |
Collapse
|
33
|
Tu Z, Qi Y, Tang X, Wang Z, Qu R. Photochemical transformation of anthracene (ANT) in surface soil: Chlorination and hydroxylation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131252. [PMID: 36963191 DOI: 10.1016/j.jhazmat.2023.131252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
To reveal the fate of anthracene (ANT) in soil, the photodegradation behavior of ANT was systematically studied using SiO2 to simulate a soil environment. Under xenon lamp irradiation, more than 90% of ANT loaded on SiO2 could be removed after 240 min. Moreover, the effects of water content, chloride ions (Cl-) and humic acid (HA) were examined. It was found that the presence of water and HA can significantly inhibit the photolysis of ANT on SiO2, while the addition of chloride alone has no obvious effect. However, when water is present, the inhibition effect of chloride became more obvious. According to radical quenching experiments and electron paramagnetic resonance (EPR) spectra, hydroxyl radicals (•OH) and chlorine radicals (Cl•) were formed in the system. Possible reaction pathways were speculated based on products identified by mass spectrometry. ANT was attacked by •OH to form hydroxylated products, which can be further hydroxylated and oxidized with the final formation of ring-opening products. ANT directly excited by light may also react with Cl• to produce chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs). Finally, the experimental results were verified on real soil. This study provides important information for understanding the photochemical transformation mechanism of ANT at the soil/air interface.
Collapse
Affiliation(s)
- Zhengnan Tu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou, Jiangsu 213100, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
34
|
Shen Y, Wang S, Lu Y, Chen K, Luo L, Hao C. Computational Study of Photodegradation Process and Conversion Products of the Antidepressant Citalopram in Water. Molecules 2023; 28:4620. [PMID: 37375177 DOI: 10.3390/molecules28124620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/29/2023] Open
Abstract
Citalopram (CIT) is a commonly prescribed medication for depression. However, the photodegradation mechanism of CIT has not yet been fully analyzed. Therefore, the photodegradation process of CIT in water is studied by density functional theory and time-dependent density functional theory. The calculated results show that during the indirect photodegradation process, the indirect photodegradation of CIT with ·OH occurs via OH-addition and F-substitution. The minimum activation energy of C10 site was 0.4 kcal/mol. All OH-addition and F-substitution reactions are exothermic. The reaction of 1O2 with CIT includes the substitution of 1O2 for F and an addition reaction at the C14 site. The Ea value of this process is 1.7 kcal/mol, which is the lowest activation energy required for the reaction of 1O2 with CIT. C-C/C-N/C-F cleavage is involved in the direct photodegradation process. In the direct photodegradation of CIT, the activation energy of the C7-C16 cleavage reaction was the lowest, which was 12.5 kcal/mol. Analysis of the Ea values found that OH-addition and F-substitution, the substitution of 1O2 for F and addition at the C14 site, as well as the cleavage reactions of C6-F/C7-C16/C17-C18/C18-N/C19-N/C20-N are the main pathways of photodegradation of CIT.
Collapse
Affiliation(s)
- Yifan Shen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Se Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ying Lu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Li Luo
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
35
|
Liang J, Liu H, Zou M, Tao X, Zhou J, Dang Z, Lu G. Degradation efficiency and mechanism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by thermally activated persulfate system. CHEMOSPHERE 2023; 325:138396. [PMID: 36931399 DOI: 10.1016/j.chemosphere.2023.138396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) as a typical brominated flame retardant (BFR) have attracted worldwide attention due to the high environmental risk and resistance to conventional remediation processes. In this study, thermally activated persulfate (TAP) process was applied to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), which is the most toxic and representative PBDEs in e-waste dismantling sites. Impact factors such as PDS dosage, heating temperature, and initial pH were evaluated. Results showed that BDE-47 can be 100% degraded within 180 min under the condition of PDS:BDE-47 = 1000:1, 60 °C, and pH = 7. Quenching experiments combined with EPR analysis further proved the important role of SO4·- in oxidating BDE-47. According to high-resolution mass spectrometry (HRMS) analysis, only one oxidation product of low toxicity was detected during the oxidation process. Theoretical calculations further revealed that the oxidation process mainly involved radical attack at C-Br bond, cleavage of C-Br bond, and fission of ether bond, and HSO4· may also play an important role in BDE-47 degradation in TAP system. In addition, TAP system exhibited universality as all selected PBDE congeners can be degraded, and the degradation rate of PBDEs was greatly affected by the number of substituted Br atoms in a negative trend. Overall, these findings indicate that TAP can be applied as an effective method for removal of PBDEs, and we provide a new insight for the practical application of TAP technology in BDE-47 degradation from experimental and theoretical aspects.
Collapse
Affiliation(s)
- Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
36
|
Wang Y, Fu R, Li X, Zhao W, Liu M, Li Y. Potential thyroid hormone disorder risks of tire antioxidants to aquatic food chain organisms after absorbing free radicals in marine and freshwater environments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106587. [PMID: 37236119 DOI: 10.1016/j.aquatox.2023.106587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Tire antioxidants are essential functional chemical additives in tire rubber production. Because of the characteristic easy precipitation in the water environment, the environmental pollution problem caused by tire antioxidants is concerning. To reveal the mechanism by which tire antioxidants reduce common oxidative factors (free radicals) in the environment and to control the potential biological thyroid hormone disorder risk of tire antioxidant derivatives, eight commonly used antioxidants in tire production were selected for analysis. Firstly, the ability of tire antioxidants to reduce three different free radicals was quantitatively characterized based on Gaussian calculation method and inferring the radical reduction mechanism of tire antioxidants. Moreover, using the PaDEL-Descriptor software and random forest algorithm found that the N-octanol/water partition coefficient, a structure descriptor of tire antioxidant molecules, significantly correlated with their reducing ability. Second, molecular docking and molecular dynamics methods were used to assess the thyroid hormone disorder risk to aquatic organisms of eight antioxidants after reducing three free radicals. And this is the first study to construct an assessment score list of potential thyroid hormone disorder risk of the derivatives of tire antioxidants after reducing free radicals to marine and freshwater aquatic organisms based on the risk entropy method. Through the screening of this list, it was found that the derivative of the antioxidant 2,2,4-trimethyl-1,2-dihydroquinoline oxidized by free radicals had the highest risk of thyroid hormone disorder. In addition, the top organism in the aquatic food chain was the most affected. This study also revealed that van der Waals interactions and hydrogen bonding were the main influencing factors of thyroid hormone disorder risk to aquatic organisms of the derivatives of tire antioxidants that reduce free radicals based on amino acid residue analysis. Overall, the results provide theoretical support for the selection of antioxidants and the avoidance and control of environmental risks in the tire rubber production process.
Collapse
Affiliation(s)
- Yu Wang
- College of New Energy and Environment, Jilin University, Changchun 130012, China; College of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Rui Fu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Miao Liu
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
37
|
Zhao L, Han Z, Zhou M, Lyu C, Li Y. Field measures of strengthen plant-microbial remediation of PAHs-FQs compound pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27618-6. [PMID: 37202637 DOI: 10.1007/s11356-023-27618-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
In this study, five PAHs (benzo [b] fluoranthene (BbF), phenanthrene (Phe), fluoranthene (Flu), fluorene (Fl), benzo [A] pyrene (Bap)), and five FQs (ofloxacin (OFL), enrofloxacin (ENR), ciprofloxacin (CIP), norfloxacin (NOR), lomefloxacin (LOM)) were selected as ligands; peroxidase (1NML) was selected as receptor degrading protein. In the plant-microbial degradation, the factors with significant inhibitory effects are NOR, Bap, CIP, ENR, OFL, Flu, LOM, Phe, Fl, and BbF by the fractional factorial design experiment and molecular docking-assisted molecular dynamics methods. Using Taguchi experiment and molecular dynamics simulation methods, the main external field measures were designed and screened to effectively promote the degradation of PAHs-FQs under the combined pollution scenarios of Bap-CIP and BbF-NOR, respectively. The peroxidase mutation design plans with enhanced substrate affinity were then designed and screened using the DS software by predicting the virtual key amino acid of peroxidase. The novel biodegradable enzymes 2YCD-1, 2YCD-4, 2YCD-5, 2YCD-7, and 2YCD-9 had better structures and showed excellent degradability for PAHs and FQs. This study explored the degradation rules of the composite pollutants in the coexistence systems of multiple PAHs and FQs, providing the best external field measures for the control and treatment of the combined pollution effects of different PAHs and FQs. Overall, the current study has important practical significance for promoting the plant-microbial joint remediation of PAHs-FQs pollution and for reducing the combined pollution of PAHs and FQs in farmland systems.
Collapse
Affiliation(s)
- Lei Zhao
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Zhenzhen Han
- Key Laboratory of Resource and Environmental System Optimization, Ministry of Education, North China Electric Power University, Beijing, 102206, China
| | - Mengying Zhou
- Key Laboratory of Resource and Environmental System Optimization, Ministry of Education, North China Electric Power University, Beijing, 102206, China
| | - Cong Lyu
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yu Li
- Key Laboratory of Resource and Environmental System Optimization, Ministry of Education, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
38
|
Liu L, Wang J, Yang H, Gao D, Cui Y, Chen H, Qin Y, Ye R, Ding X. The critical impacts of pyrochar during 2,4,6-trichlorophenol photochemical remediation process: Cooperation between persistent free radicals and oxygenated functional groups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121813. [PMID: 37178952 DOI: 10.1016/j.envpol.2023.121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
The widespread use of polychlorophenols poses enormous environmental challenges. Biochar has the potential to accelerate the transformation of polychlorophenols. But the biochar-triggered photochemical decomposition mechanism of polychlorophenols still remains unclear. Herein, the photochemical behavior of pyrochar was comprehensively investigated in 2,4,6-trichlorophenol (TCP) remediation. Researches revealed that persistent free radicals (PFRs) and oxygenated functional groups (OFGs) on the surface of pyrochar cooperatively promoted ROS generation for TCP degradation. PFRs performed a key role of electron-donating and energy transfer in ROS conversion, especially in the activation of H2O2 into •OH. The hydroxyl groups of photosensitive components of pyrochar were photo-excited and provided electrons for enhanced ROS formation as well. With photogenerated ROS involved, more TCP was decomposed through dechlorination under light irradiation than that in the dark, in which 1O2, •OH, and •O2- were the dominant active species. During this process, stronger light intensities (3 W/m2) and shorter light wavelengths (400 nm) can provide more energy for the activation of PFRs and OFGs, promoting the decomposition of TCP. This work casts a new light on the environmental roles of pyrochar in the photochemical removal of polychlorophenol pollutants.
Collapse
Affiliation(s)
- Lu Liu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jian Wang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Huijuan Yang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Di Gao
- College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yaya Cui
- College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hao Chen
- College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yaxin Qin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Ranfeng Ye
- College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Xing Ding
- College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
39
|
Huo Y, Li M, Jiang J, Zhou Y, Ma Y, Xie J, He M. The aomogeneous and heterogeneous oxidation of organophosphate esters (OPEs) in the atmosphere: Take diphenyl phosphate (DPhP) as an example. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121395. [PMID: 36871750 DOI: 10.1016/j.envpol.2023.121395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Organophosphate esters (OPEs) are widely detected in the atmosphere. However, the atmospheric oxidative degradation mechanism of OPEs has not been closely examined. This work took density functional theory (DFT) to investigate the tropospheric ozonolysis of organophosphates, represented by diphenyl phosphate (DPhP), including adsorption mechanisms on the surface of titanium dioxide (TiO2) mineral aerosols and oxidation reaction of hydroxyl groups (·OH) after photolysis. Besides, the reaction mechanism, reaction kinetics, adsorption mechanism, and ecotoxicity evaluation of the transformation products were also studied. At 298 K, the total reaction rate constants kO3, kOH, kTiO2-O3, and kTiO2-OH are 5.72 × 10-15 cm3 molecule-1 s-1, 1.68 × 10-13 cm3 molecule-1 s-1, 1.91 × 10-23 cm3 molecule-1 s-1, and 2.30 × 10-10 cm3 molecule-1 s-1. The atmospheric lifetime of DPhP ozonolysis in the near-surface troposphere is 4 min, much lower than that of hydroxyl radicals (·OH). Besides, the lower the altitude is, the stronger the oxidation is. The TiO2 clusters carry DPhP promoting ·OH oxidation but inhibiting ozonolysis of DPhP. Finally, the main transformation products of this process are glyoxal, malealdehyde, aromatic aldehydes, etc., which are still ecotoxic. The findings shed new light on the atmospheric governance of OPEs.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
40
|
Meng L, Dong J, Chen J, Lu J, Ji Y. Degradation of tetracyclines by peracetic acid and UV/peracetic acid: Reactive species and theoretical computations. CHEMOSPHERE 2023; 320:137969. [PMID: 36736472 DOI: 10.1016/j.chemosphere.2023.137969] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
As an environment-friendly oxidant and disinfectant, peracetic acid (PAA) and PAA based-advanced oxidation processes (AOPs) for the treatment of emerging micropollutants have raised increasing interest, owing to their ease of activation and less generation of harmful disinfection byproducts. Tetracyclines (TCs) antibiotics as a group of wide-spectrum antibiotics are frequently detected in sewage effluents, while the knowledge of PAA-based advanced oxidation reactions to remove the substrates is quite limited. In this work, we systematically investigated the kinetics and underlying transformation mechanisms of three TCs including tetracycline (TTC), oxytetracycline (OTC), and chlortetracycline (CTC) in the UV-activated PAA oxidation process. The results indicated that three TCs can be efficiently decayed by UV/PAA. The pseudo-first-order reaction rate constants (kobs) of TCs followed the order: kCTC (0.453 min-1) ≫ kTTC (0.164 min-1) > kOTC (0.158 min-1). Quenching experiments showed that the removal of CTC was mainly ascribed to the direct oxidation of PAA, while TTC and OTC were more susceptible to free radicals. The kobs values of the three TCs by PAA oxidation presented a fairly well correlation to the global nucleophilicity and the activation energies of the TC molecules, highlighting the structure-specific reactions of TCs to PAA. Based on product identification and theoretical calculation, N-demethylation and hydroxylation were proposed as the main pathways for TCs degradation by PAA non-radical oxidation. The combination of PAA and UV irradiation can further improve the degradation efficiency of TCs and contribute to reducing the diffusion and transmission of resistance genes in the environment.
Collapse
Affiliation(s)
- Liang Meng
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiayue Dong
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Chen
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory of Pollution Control and Resources Reuse, Nanjing, 210023, China.
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
41
|
Gao L, Zhang S, Dang J, Zhang Q. Mechanistic insight into the degradation of 1H-benzotriazole and 4-methyl-1H-benzotriazole by •OH-based advanced oxidation process and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49150-49161. [PMID: 36773265 DOI: 10.1007/s11356-023-25814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Benzotriazoles (BTs) are highly produced chemicals that are commonly used in the manufacture of aircraft de-icing/antifreeze fluids (ADAFs), coolants, etc. BTs have been detected in a variety of water environments, causing health hazards to aquatic species and humans. In this study, 1H-benzotriazole (BTri) and 4-methyl-1H-benzotriazole (4-TTri) were selected to investigate their degradation mechanisms in the aqueous phase initiated by ·OH using a theoretical calculation method. Addition reactions are the main type of reactions of ·OH with BTri and 4-TTri. The total rate constants for the reactions of BTri and 4-TTri with ·OH at 298 K are 8.26 × 109 M-1 s-1 and 1.81 × 1010 M-1 s-1, respectively. The reaction rate constants increase as the temperature rises, indicating that rising temperatures promote the degradation of BTri and 4-TTri. 7-hydroxy-1H-benzotriazole (1-P1) and 4-hydroxy-benzotriazoles (1-P2) produced via multiple reaction pathways are important transformation products of BTri. After successive reactions with ·OH, 1-P1 and 1-P2 can be successively converted to 4,7-dihydroxy-1H-benzotriazole (1-P7), 4,7-dione-1H-benzotriazole (1-P8), and 1,2,3-triazole-4,5-dicarboxylic acid (1-P9), which is consistent with the product compositions detected in the experiments. The toxicity assessment indicated that the acute toxicity and chronic toxicity of the resulting transformation products are significantly reduced compared to BTri as the degradation process progressed, and ultimately showed no harm to all three aquatic organisms (fish, daphnia, and green algae). Hence, advanced oxidation processes (AOPs) can not only effectively remove BTs from water, but also reduce their toxic effects on aquatic organisms.
Collapse
Affiliation(s)
- Li'ao Gao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Shibo Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Juan Dang
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| |
Collapse
|
42
|
Li M, Duan P, Huo Y, Jiang J, Zhou Y, Ma Y, Jin Z, Mei Q, Xie J, He M. The multiple roles of phenols in the degradation of aniline contaminants by sulfate radicals: A combined study of DFT calculations and experiments. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130216. [PMID: 36334575 DOI: 10.1016/j.jhazmat.2022.130216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Recent research revealed inhibition or enhancement of dissolved organic matter (DOM) to the degradation of trace organic contaminants (TrOC) in natural and engineered water systems. Phenols containing acetyl, carboxyl, formyl, hydroxy, and methoxy groups were selected as the model DOM to quantitatively study their roles in the degradation of simple anilines, sulfonamide antibiotics, phenylurea pesticides by sulfate radicals (SO4•-). Experimental results found that p-methoxyphenol inhibited aniline and sulfamethoxazole degradation by thermally activated peroxydisulfate (TAP), while p-acetylphenol slightly promoted aniline degradation. Quantum chemical calculations were applied to study the microscopic mechanism and kinetics of phenols affecting the degradation of aniline pollutants (AN) in three ways: competitively reacting with SO4•-, repairing aniline cationic radicals (AN•+) and phenylaminyl radicals (AN(-H)•), and generating phenoxy radicals to degrade anilines. Generally, the degradation of sulfonamides and phenylureas prefer to be inhibited by hydroxy- and methoxy-phenols with low oxidation potential (Eox), due to their diffusion-limiting reaction with SO4•- and rapid back-reduction AN•+ with the calculated rate constants of (0.02 - 6.38) × 109 M-1 s-1. Phenols repairing AN(-H)• through H abstraction reaction is speculated to possibly dominate the joint degradation of phenols and anilines by TAP, which has a poor correlation with Eox. This study provides mechanistic insight into the chemical behavior of complex and heterogeneous DOM in complex aqueous environments.
Collapse
Affiliation(s)
- Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Pijun Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zhehui Jin
- School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Qiong Mei
- School of Land Engineering, Chang'an University, Xi'an 710064, China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
43
|
Gu W, Yang M, Chen Z, Cao T, Zhang Y, Li Y, Zhang R. New insights into enhanced electrochemical advanced oxidation mechanism of B-doped graphene aerogel: Experiments, molecular dynamics simulations and DFT. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130331. [PMID: 36444056 DOI: 10.1016/j.jhazmat.2022.130331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
B-doped graphene, as an efficient and environmental-friendly metal-free catalyst, has aroused much attention in the electrochemical advanced oxidation process (EAOP), but the bottleneck in this field is to determine the relationship between the surface structure regulation and activity of catalysts. Herein, the B-doped graphene aerogel (BGA) fabricated gas diffusion electrode was prepared and used as a cathode for EAOP to remove tetracycline (TC). Higher free radical yield (169.59 μM), faster reaction speed (0.35 min-1) and higher TC removal rate (99.93%) were found in the BGA system. Molecular dynamics simulation unveiled the interaction energy of BGA was greater than the raw graphene aerogel (GA). The adsorption-activation process of H2O2 and the degradation process of TC occurred in the first adsorption layer of catalysts. And both processes turned more orderly after B doping, which accelerated the reaction efficiency. Results of density functional theory displayed the contribution of three B-doped structures to improve the binding strength between H2O2 and BGA was: - BCO2 (-0.23 eV) > - BC2O (-0.16 eV) > - BC3 (-0.09 eV). -BCO2 was inferred to be the main functional region of H2O2 in-situ activation to hydroxyl radical (•OH), while -BC2O and -BC3 were responsible for improving H2O2 production.
Collapse
Affiliation(s)
- Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Mingwang Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Zhuang Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Ting Cao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yimei Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yingfeng Li
- School of New Energy, North China Electric Power University, Beijing 102206, China.
| | - Ranran Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
44
|
Synthesis of Synthetic Musks: A Theoretical Study Based on the Relationships between Structure and Properties at Molecular Scale. Int J Mol Sci 2023; 24:ijms24032768. [PMID: 36769089 PMCID: PMC9917709 DOI: 10.3390/ijms24032768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Synthetic musks (SMs), as an indispensable odor additive, are widely used in various personal care products. However, due to their physico-chemical properties, SMs were detected in various environmental media, even in samples from arctic regions, leading to severe threats to human health (e.g., abortion risk). Environmentally friendly and functionally improved SMs have been theoretically designed in previous studies. However, the synthesizability of these derivatives has barely been proven. Thus, this study developed a method to verify the synthesizability of previously designed SM derivatives using machine learning, 2D-QSAR, 3D-QSAR, and high-throughput density functional theory in order to screen for synthesizable, high-performance (odor sensitivity), and environmentally friendly SM derivatives. In this study, three SM derivatives (i.e., D52, D37, and D25) were screened and recommended due to their good performances (i.e., high synthesizability and odor sensitivity; low abortion risk; and bioaccumulation ability in skin keratin). In addition, the synthesizability mechanism of SM derivatives was also analyzed. Results revealed that high intramolecular hydrogen bond strength, electrostatic interaction, qH+ value, energy gap, and low EHOMO would lead to a higher synthesizability of SMs and their derivatives. This study broke the synthesizability bottleneck of theoretically designed environment-friendly SM derivatives and advanced the mechanism of screening functional derivatives.
Collapse
|
45
|
Zhao H, Wang S, Sun J, Zhang Y, Tang Y. OH-initiated degradation of 1,2,3-trimethylbenzene in the atmosphere and wastewater: Mechanisms, kinetics, and ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159534. [PMID: 36272473 DOI: 10.1016/j.scitotenv.2022.159534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
1,2,3-Trimethylbenzene (1,2,3-TMB) is an important volatile organic compound (VOC) present in petroleum wastewater and the atmosphere. This compound can be degraded by OH radicals via abstraction, addition and substitution mechanisms. Results show that the addition mechanism is dominant and H-abstraction is subdominant, while methyl abstraction and substitution mechanisms are negligible in the gas and aqueous phases. Moreover, H-abstraction products undergo further reactions with O2, NO, NO2, H2O, and OH radicals in the atmosphere. Time-dependent density functional theory (TDDFT) calculations show that the degraded products, including 2,3,4-trimethylphenyl-nitroperoxoite, 1,2,3-trimethyl-4-nitrobenzene, 1,2,3-trimethyl-5-nitrobenzene, 2,6-dimethylbenzyl nitroperoxoite, 2,3-dimethylphenyl nitroperoxoite, 2,6-dimethylbenzaldehyde, and 2,3-dimethylbenzaldehyde, can photolyze under the sunlight. Kinetically, the calculated total rate constant is 5.57 × 10-11 cm3 molecule-1·s-1 at 1 atm and 298 K, which is consistent with available experimental values measured in the atmosphere. In addition, the calculated total reaction rate constant in water is close to that in the gas phase. In terms of ecotoxicity, all degradation products are less toxic than the initial reactant to fish, green algae and daphnia. For mammals represented by rats, 1,2,3-TMB and its products are moderately toxic, except for 2,3-dimethylphenol and 2,6-dimethylphenol, which are slightly toxic.
Collapse
Affiliation(s)
- Hui Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong 266033, PR China
| | - Shuangjun Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong 266033, PR China
| | - Jingyu Sun
- College of Chemistry and Environmental Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei 435002, PR China
| | - Yunju Zhang
- College of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, PR China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong 266033, PR China.
| |
Collapse
|
46
|
Zhang K, Ye C, Lou Y, Yu X, Feng M. Promoting selective water decontamination via boosting activation of periodate by nanostructured Ru-supported Co 3O 4 catalysts. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130058. [PMID: 36179619 DOI: 10.1016/j.jhazmat.2022.130058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The superior catalytic efficiency of ruthenium (Ru)-based nanocomposites in advanced oxidation processes for water decontamination has attracted accumulating attention worldwide. However, rather limited knowledge is currently available regarding their roles in activating periodate (PI), an emerging oxidant with versatile environmental applications. This study firstly delineated that Ru-supported Co3O4 (Ru/Co3O4), a typical Ru-based nanomaterial, can efficiently accomplish PI activation to eliminate multiple organic micropollutants and inactivate different pathogenic bacteria. Almost all eight micropollutants can be completely removed within 2 min of Ru/Co3O4-PI oxidation except sulfamethoxazole (SMX), which was degraded ∼70 % at 2 min with 100 % mineralization after 10 min. The excellent catalytic performance was independent of PI dosages, initial pH, and coexisting water constituents, demonstrating its prominent capability as a selective oxidation strategy. Diverse lines of evidence indicated the dominant role of single oxygen in the Ru/Co3O4-PI system, which triggered the generation of five transformation products of SMX with reduced environmental risks. Concurrently, PI was stoichiometrically converted to the eco-friendly IO3-. Additionally, Ru/Co3O4-PI system achieved 6-log inactivation of different pathogenic bacteria within 1 min, implying the feasibility of rapid water disinfection. Overall, this work demonstrated the excellent promise of Ru-based composites in PI activation for highly efficient and selective water decontamination.
Collapse
Affiliation(s)
- Kaiting Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Chengsong Ye
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Yaoyin Lou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xin Yu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Mingbao Feng
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China.
| |
Collapse
|
47
|
Yang R, Zeng G, Zhou Z, Xu Z, Lyu S. Naphthalene degradation dominated by homogeneous reaction in Fenton-like process catalyzed by pyrite: Mechanism and application. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Cai M, Liu Y, Wang C, Lin W, Li S. Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: Degradation pathway, mechanism and toxicity assessment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
He W, Yang H, Pu Q, Li Y. Novel control strategies for the endocrine-disrupting effect of PAEs to pregnant women in traffic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158269. [PMID: 36029816 DOI: 10.1016/j.scitotenv.2022.158269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Traffic-related air pollution has become a global issue, and scientific regulation measures are urgently needed to reduce traffic pollution. Phthalates (PAEs) have been widely detected in the traffic environment; thus, they were chosen as target pollutants because of their endocrine-disrupting effects. The pathways of action and mechanisms of PAEs' endocrine-disrupting effects in pregnant women through inhalation were deduced. A novel whole-process 1C + 3D + 5R regulation system was developed to control the endocrine-disrupting effect of PAEs on pregnant women based on the cleaning production concept. (1) For source reduction, the 2D-QSAR model of endocrine-disrupting effects of PAEs in pregnant women was constructed to screen out the key influencing factors as hydrogen bond interaction and hydrophobic interaction. Based on this, a designed PAE substitute molecule with low volatility and endocrine-disrupting effects and no developmental toxicity was screened. The substitute molecule could reduce the volatilization amount of PAEs at the source by 41.76 %; (2) For process interception, selecting C-band UV light to eliminate PAEs molecules in the traffic environment can slow down 19.99 % of the endocrine-disrupting effect of PAEs molecules. The homology modeling method was used to design four kinds of green belt plant proteins with high PAEs absorption efficiency to absorb PAEs molecules in the traffic environment. Compared with the original green belt plant proteins, the absorption amount of PAEs increased by up to 96.08 %, and (3) For terminal prevention, dietary food schemes were designed to regulate PAEs' endocrine-disrupting effect on pregnant women. The optimal dietary food scheme was the simultaneous intake of glutamate, catechin and folic acid, which could reduce the adverse effect of PAEs on maternal and infants by 32.51 %. This study presents theoretical support for regulating PAE exposure to specific populations in the traffic environment and treating other pollutants in the future.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
50
|
Zhao H, Sun J, Zhang Y, Wang S, Lu C, Tang Y, Guan J, Pan Y. Investigations on mechanisms, kinetics, and ecotoxicity in OH-initiated degradation of 1,2,4,5-tetramethylbenzene in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84616-84628. [PMID: 35788481 DOI: 10.1007/s11356-022-21704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
As one of the volatile organic compounds (VOCs) in the environment, 1,2,4,5-tetramethylbenzene (1,2,4,5-TeMB) present in oily wastewater, and it can occur substitution, abstraction, and addition reactions with OH radicals in the atmosphere and wastewater. Electrostatic potential (ESP) and average local ionization energy (ALIE) prediction indicate that H atoms from CH3 group and the benzene ring are the most active sites in 1,2,4,5-TeMB. The result shows that potential energy surfaces (PESs) in the gas and aqueous phase are similar, and the relevant barriers in the latter one are higher. The dominant channel is H abstraction from the benzene ring, and the subdominant one is OH radical addition to the benzene ring. Furthermore, subsequent reactions of dominant products with O2, NO2, NO, and OH radicals in the atmosphere are studied, as well. The total reaction rate constant is calculated to be 2.36×10-10 cm3 molecule-1 s-1 at 1 atm and 298 K in the atmosphere, which agrees well with the experimental data. While the total rate constant in the aqueous phase is much lower than that in the gas phase. Ecologic toxicity analysis shows that 1,2,4,5-TeMB is very toxic to fish, daphnia, and green algae; and OH-initiated degradation in the environment will reduce its toxicity.
Collapse
Affiliation(s)
- Hui Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, People's Republic of China
| | - Jingyu Sun
- College of Chemistry and Environmental engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China
| | - Yunju Zhang
- College of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, People's Republic of China
| | - Shuangjun Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, People's Republic of China
| | - Chenggang Lu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, People's Republic of China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, People's Republic of China.
| | - Jing Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, People's Republic of China
| | - Yaru Pan
- College of Chemistry, Tonghua Normal University, Tonghua, 134002, People's Republic of China
| |
Collapse
|