1
|
Wang T, Liu S, Li Z, Qiao Y, Cui X. Differential developmental effects and its potential mechanism of long-term exposure to TBBPA in two generations of marine medaka (Oryzias melastigma) during early life stages. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137961. [PMID: 40120263 DOI: 10.1016/j.jhazmat.2025.137961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Tetrabromobisphenol A (TBBPA), a most widely used brominated flame retardant, has been detected in worldwide aquatic environments. However, the effects and mechanisms of TBBPA at environmentally realistic levels have not been well characterized in aquatic organisms. This study aims to investigate the impact of TBBPA on developmental toxicity and endocrine system in two generations of marine medaka (Oryzias melastigma) during early life stages. The results revealed that the embryos under exposure to environmentally relevant concentrations of TBBPA (0, 5, 50, and 500 μg/L) resulted in accelerated hatching and growth development in F0 generation. Conversely, delayed hatching, decreased hatch rate, and growth inhibition were observed in the F1 generation. Moreover, TBBPA disrupted the levels of THs (thyroid hormones), GH (growth hormone), and IGF (insulin growth factor). The gene transcriptional profiling implies modified gene expressions in the HPT axis, GH/IGF axis, and endoplasmic reticulum stress. The molecular docking analysis confirmed the binding affinity of TBBPA to key endocrine-related proteins, which partially elucidates the mechanism of endocrine disruption and developmental abnormalities. Endoplasmic reticulum stress may explain the developmental differences between the two generations. This was the first study to explore the multigenerational developmental toxicity of TBBPA to marine fish, which is essential for ecological risk assessment of this emerging pollutant.
Collapse
Affiliation(s)
- Teng Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuai Liu
- College of Environment and Ecology, Xiamen University, Xiamen 361000, China
| | - Zhengyan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China..
| | - Yanxin Qiao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaoying Cui
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
2
|
Sun Z, Zhang S, Liang J, Li C, Yang X, Liu QS, Zhou Q, Shi J, Zhao B, Jiang G. Effects of multiple novel bisphenol S analogs on adipogenesis in 3T3-L1 cells. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137689. [PMID: 40007368 DOI: 10.1016/j.jhazmat.2025.137689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
The increasing usage of bisphenol S (BPS) analogs as novel alternatives to bisphenol A (BPA) or BPS results in widespread exposure risks. In contrast to BPS, BPS analog-induced perturbations in lipid metabolism are largely unknown. Our study aimed to investigate the interactions of nine novel BPS analogs with peroxisome proliferator-activated receptor γ (PPARγ) and their impacts on 3T3-L1 adipogenesis. BPS and its analogs were found to have varying binding affinities to the PPARγ ligand-binding domain, and five of the BPS analogs were identified as novel PPARγ agonists as evidenced by increased expressions of the PPARγ mediated luciferase reporter gene. Interestingly, seven BPS analogs, including five BPS analogs with PPARγ agonistic potency and two BPS analogs with negligible binding affinity, exhibited comparable or even greater adipogenic effects than BPS, which were demonstrated by increased triglyceride accumulation and enhanced expressions of the adipogenic biomarkers in 3T3-L1 cells. Further comparison revealed that a phenoxy group may be a potential structural regulator for the adipogenic capacities of the test BPS analogs. The findings provided the first evidence that seven novel BPS analogs exerted adipogenic potentials through PPARγ or other signaling pathways, revealing a hidden environmental factor in the development of obesity and other lipid metabolism disorders.
Collapse
Affiliation(s)
- Zhendong Sun
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shengnan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chuanhai Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qunfang Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Wu N, He Y, Sun Z, Zhang S, Yang X, Liu QS, Zhou Q, Jiang G. The environmental occurrence, human exposure, and toxicity of novel bisphenol S derivatives: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118182. [PMID: 40222108 DOI: 10.1016/j.ecoenv.2025.118182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Novel bisphenol S (BPS) derivatives are being increasingly utilized as substitutes to bisphenol A (BPA) and BPS in thermal receipts and other industrial or commercial products. In recent years, the environmental occurrence, human exposure, and toxicity of non-chlorinated and chlorinated BPS derivatives have been investigated in numerous studies. This review summarizes the state-of-art and new knowledge on these aspects and provides recommendations for future research directions. The environmental analysis showed that BPS derivatives have been widely detected in paper products, water, indoor dust, sediment, and municipal sewage sludge. Recent studies have also reported the presence of non-chlorinated BPS derivatives, such as benzenesulfonylbenzene (DDS) and 4-(4-propan-2-yloxyphenyl)sulfonylphenol (BPSIP), in human breast milk, urine, and the maternal-fetal-placental unit. Toxicological studies suggest that BPS derivatives may cause a series of toxic effects, including endocrine-disrupting effects, cytotoxicity, hepatotoxicity, developmental toxicity, and neurotoxicity, some of which have been shown to exhibit adverse effects similar to or even greater than those of BPS. Future studies should focus on elucidating environmental occurrences, half-lives, sources for human exposure, and potential transformation pathways of BPS derivatives, as well as their toxic effects and underlying mechanisms.
Collapse
Affiliation(s)
- Ning Wu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinling He
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhendong Sun
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Shengnan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Kong Y, Wu D, Wang G, Zhang M, Zhang R, Deng H, Li J, Lan H. Tetrabromobisphenol S (TBBPS) exposure induced the testicular aging through NLRP3-mediated inflammatory signaling pathway in vitro and in vivo. Int Immunopharmacol 2025; 152:114476. [PMID: 40090078 DOI: 10.1016/j.intimp.2025.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Tetrabromobisphenol A (TBBPA) is an extensively employed Brominated flame retardant (BFR), but studies have shown that it has a range of toxicities, and it has been banned from use at present. Tetrabromobisphenol S (TBBPS) is increasingly used in industrial production as a substitute for TBBPA. However, up to now, the toxicity and molecular mechanism of TBBPS in the reproductive system have not been fully revealed. Therefore, we investigated the effects of TBBPS on testicular. In vitro, GC-1 cells and TM4 cells were used as models to perform an array of biochemical tests, and the toxicological impacts of TBBPS on testicular cells were evaluated. It was found that TBBPS could induce testicular cells senescence. Additionally, p16, p21, and p53 expression were also increased after TBBPS treatment. TBBPS also induced oxidative stress and inflammation response. Mechanistic studies have revealed that TBBPS causes mitochondrial damage, which leads to mitochondrial ds-DNA leakage into the cytoplasm, the NLRP3 inflammasome was then activated, in turn leading to inflammatory and senescence responses in testicular cells. In vivo, we found that TBBPS caused testicular tissue aging and inflammatory responses by detecting a series of molecular markers. In summary, the current study demonstrates that TBBPS can induce aging damage and inflammatory responses in testis, and this study lays a foundation for further exploring the reproductive toxicity of TBBPS.
Collapse
Affiliation(s)
- Yuebing Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Meng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ruoting Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Haochu Deng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jiawen Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Qiu L, Yu P, Li Q, Wen C, Wang H, Zhao D, Zhang T, Wang C, Liu L, Li D, Wen S, Sun Y. Comparative the effect of bisphenol A and bisphenol S on the development and spectral sensitivity of cone photoreceptors in zebrafish larvae (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117737. [PMID: 39826411 DOI: 10.1016/j.ecoenv.2025.117737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/24/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Color vision, which is mediated by cone photoreceptors in vertebrates, is essential for perceiving the external environment. Bisphenol A (BPA) and its substitute bisphenol S (BPS) have been widely used worldwide, while the evaluation of their safety, especially the newly discovered visual toxicity mechanism caused by them in recent years, has not been clearly explored. In the present study, we investigated the effects of BPA treatment (1, 10, and 100 μg/L) on cone cell development and function to evaluate visual toxicity. We also compared the mechanisms of color deficiency induced by BPA and BPS at the same concentrations. The results indicated that BPA (10 and 100 μg/L) caused the abnormal proliferation (increased number of cone cells), morphological abnormalities (increased height of cone cells), mosaic pattern disorder, and depressed expression of key genes related to the photo-transduction pathway, and impaired the light perception ability of both red and UV cones ultimately. Similar to the BPA exposure group, BPS (1, 10, and 100 μg/L) exposure resulted in structural damage and mosaic arrays disorder of red and UV cone photoreceptors. In contrast to BPA exposure, BPS exposure resulted in significant activation of key genes involved in the phototransduction pathway. Our data indicate that both BPS and BPA exposure can interfere with the development of cone cells, and two types of compounds disturb the transduction of photon signals within cone cells in different ways, which further impaired the retinal spectral sensitivity to the light signal. This study clarifies the root cause for color vision impairment induced by BPA from the perspective of cone-mediated color vision. It also clarified that the BPA and its substitute BPS may not be entirely safe at the single-cell level.
Collapse
Affiliation(s)
- Liguo Qiu
- College of Life Sciences, Dezhou University, De' zhou 253023, China.
| | - Peng Yu
- Dezhou Hospital, Qilu Hospital of Shandong University, Dezhou 253023, China.
| | - Qiang Li
- Jinan Ecological Environment Digital Application Center Lixia Branch, Jinan 250014, China
| | - Cuiping Wen
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Haiyang Wang
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Dongying Zhao
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Tianyu Zhang
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Chenghui Wang
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Lixia Liu
- Belgorod College of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Dongxue Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Shiyong Wen
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Yinghui Sun
- College of Life Sciences, Dezhou University, De' zhou 253023, China.
| |
Collapse
|
6
|
Ma S, Ma L, Lu Y, Zhang J, Xin H, Zhou Y, Feng S, Jin G, Du X, Zhang H, Yin S. Stereoselective In Vitro Metabolism, Hepatotoxicity, and Cytotoxic Effects of Four Enantiomers of the Fungicide Propiconazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27775-27786. [PMID: 39654444 DOI: 10.1021/acs.jafc.4c06923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Propiconazole (PRO) is a chiral triazole fungicide that has been widely used for several years. However, its metabolic characteristics and hepatotoxicity in the chiral level environment remain unclear. In this study, the stereoselective behavior of PRO was investigated by using liver microsome incubation, cell viability assay, inhalation exposure, and molecular docking. Our results demonstrated that the isomers trans (-)-2R,4R-PRO and cis (+)-2R,4S-PRO exhibited slower metabolic rates in rat liver microsomes. The cytochrome P450 family 1 subfamily A polypeptide 2 enzyme was found to play a key role in the metabolism of PRO, contributing to its stereoselective behavior. Histopathological and cell viability results showed that exposure to rac-PRO could induce severe hepatotoxicity in mice. This effect might be related to the accumulation of cis (+)-2R,4S-PRO in the liver, which has a slow metabolism and is highly toxic. Our findings indicate that avoiding the application of cis (+)-2R,4S-PRO in agriculture can significantly reduce adverse effects on nontarget organisms.
Collapse
Affiliation(s)
- Siman Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lanfang Ma
- Department of Obstetrics and Gynecology, Guiyang Maternity and Child Health Care Hospital, Guiyang,Guizhou 550003, China
| | - Yanbei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jialin Zhang
- School of Life science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Xin
- School of Life science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuchen Zhou
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Shiwen Feng
- School of Veterinary and Agriculture Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Xinyuan Du
- Pharmaceutical Research Institute, China Shineway Pharmaceutical Group, Beijing 100025, China
| | - Hong Zhang
- School of Life science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiliang Yin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
7
|
Liu Z, Feng Y, Sun W, Wang B, Shi C, Ran R, Zhang Y, Lu L, Zhang H. Environmental concentrations of 6PPD and 6PPD-quinone induce hepatic lipid metabolism disorders in male black-spotted frogs. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136400. [PMID: 39522147 DOI: 10.1016/j.jhazmat.2024.136400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Aquatic environments are generally contaminated with N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its oxidation product 6PPD-quinone (6PPD-Q). Recently, 6PPD-Q was found lethally toxic to some specific species, especially salmonid silverfish. This study investigated male black-spotted frogs (Pelophylax nigromaculatus) exposed to 6PPD and 6PPD-Q with different environmental concentrations (0, 1, and 10 μg/L) for 21 days, after which biochemical, metabolomic, gene expression analyses, and molecular docking were conducted. 6PPD and 6PPD-Q were both found to bioaccumulate in frogs' livers in a dose-dependent manner and produce a significant reduction of the hepatosomatic index. Metabolomics data showed that 6PPD and 6PPD-Q induced distinct alterations in metabolite expression, predominantly within pathways associated with the biosynthesis of unsaturated fatty acids as well as the metabolism of arachidonic and linoleic acids. Exposure to 10 μg/L 6PPD and 6PPD-Q increased the cholesterol level by 2.22 and 4.35 folds, and the triglyceride level by 1.90 and 2.25 folds, respectively. 6PPD-Q inhibited the enzyme activity and gene expression involved in lipolysis, and promoted the lipid synthesis. Moreover, 6PPD and 6PPD-Q bound to peroxisome proliferators-activated receptors of α and γ. In conclusion, 6PPD and 6PPD-Q with environmental concentrations induced frogs' lipid metabolism disorders. These findings contribute to our understanding of 6PPD and 6PPD-Q health risks in amphibians.
Collapse
Affiliation(s)
- Zhiquan Liu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Yixuan Feng
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wenhui Sun
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Bingyi Wang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chaoli Shi
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ruixue Ran
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yinan Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| |
Collapse
|
8
|
Liao Y, Wang Y, Lin Y, Xiao Y, Mohan M, Jaman R, Dong H, Zhu J, Li X, Zhang C, Chen G, Zhou J. Molecular mechanisms of tetrabromobisphenol A (TBBPA) toxicity: Insights from various biological systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117418. [PMID: 39612681 DOI: 10.1016/j.ecoenv.2024.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a ubiquitous brominated flame retardant extensively incorporated into a wide range of products. As its utilization has escalated, its environmental exposure risks have concomitantly increased. The molecular properties of TBBPA allow it to persist in the environment and within organisms. In this review, we comprehensively examine the toxicity of TBBPA across different organ systems and elucidate the underlying molecular mechanisms. We particularly emphasize TBBPA's impact on biological signaling pathways, protein functionality, cellular architecture, and epigenetic regulation, which collectively lead to disruptions in endocrine, hepatic, neurological, reproductive, and other biological systems. The analysis of these toxicological phenomena and their fundamental molecular mechanisms has substantially enhanced our understanding of TBBPA's hazardous characteristics. This review also examines potential avenues for future research, with a focus on uncovering novel molecular mechanisms and assessing the toxicological impacts of TBBPA exposure, particularly in relation to interactions with other environmental contaminants. We propose a greater focus on examining the toxic effects and molecular mechanisms of long-term TBBPA exposure at environmentally relevant concentrations to facilitate more accurate assessments of human health risks.
Collapse
Affiliation(s)
- Yuxing Liao
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Yilin Wang
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - YaJie Lin
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Yuxi Xiao
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Mohith Mohan
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Rummana Jaman
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Hao Dong
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jiao Zhu
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Xuerui Li
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Conglin Zhang
- Department rehabilitation medicine, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China
| | - Guiyuan Chen
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Jiaqi Zhou
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
9
|
Mogus JP, Marin M, Arowolo O, Salemme V, Suvorov A. Developmental exposures to common environmental pollutants result in long-term Reprogramming of hypothalamic-pituitary axis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124890. [PMID: 39236844 DOI: 10.1016/j.envpol.2024.124890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Humans are exposed to a range of endocrine disrupting chemicals (EDCs). Many studies demonstrate that exposures to EDCs during critical windows of development can permanently affect endocrine health outcomes. Most experimental studies address changes in secretion of hormones produced by gonads, thyroid gland and adrenals, and little is known about the ability of EDCs to produce long-term changes in the hypothalamic-pituitary (HP) control axes. Here, we examined the long-term effects of three common EDCs on male mouse HP gene expression, following developmental exposures. Pregnant mice were exposed to 0.2 mg/ml solutions of bisphenol S (BPS), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), or 3,3',5,5'-tetrabromobisphenol A (TBBPA) from pregnancy day 8 through lactation day 21 (weaning day). Male offspring were left untreated until postnatal day 140, where pituitaries and hypothalami were collected. Pituitaries were assed for gene expression via RNA sequencing, while specific genes were assessed for expression in hypothalami via RT-qPCR. Differential expression, as well as gene enrichment and pathway analysis, indicated that all three chemicals induced long-term changes, (mostly suppression) in pituitary genes involved in its endocrine function. BPS and BDE-47 produced effects overlapping significantly at the level of effected genes and pathways. All three chemicals altered pathways of gonad and liver HP axes, while BPS altered HP-adrenal and BDE-47 altered HP-thyroid pathways specifically. All three chemicals reduced expression of immune genes in the pituitaries. Targeted gene expression in the hypothalamus indicates down regulation of hypothalamic endocrine control genes by BPS and BDE-47 groups, concordant with changes in the pituitary, suggesting that these chemicals suppress overall HP endocrine function. Interestingly, all three chemicals altered pituitary genes of GPCR-mediated intracellular signaling molecules, key signalers common to many pituitary responses to hormones. The results of this study show that developmental exposures to common EDCs have long-term impacts on hormonal feedback control at the hypothalamic-pituitary level.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Marjorie Marin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Olatunbosun Arowolo
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Victoria Salemme
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA; Currently at Department of Pharmacology, Molecular, Cellular and Integrative Physiology Group, University of California - Davis, USA
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| |
Collapse
|
10
|
Bostancı M, Kaptaner B, Doğan A. Thyroid-disrupting effects of bisphenol S in male Wistar albino rats: Histopathological lesions, follicle cell proliferation and apoptosis, and biochemical changes. Toxicol Ind Health 2024; 40:559-580. [PMID: 39138139 DOI: 10.1177/07482337241267247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this presented study, the aim was to investigate the toxic effects of bisphenol S (BPS), one of the bisphenol A analogues, on the thyroid glands of male Wistar albino rats. Toward this aim, the rats (n = 28) were given a vehicle (control) or BPS at 3 different doses, comprising 20, 100, and 500 mg/kg of body weight (bw) via oral gavage for 28 days. According to the results, BPS led to numerous histopathological changes in the thyroid tissue. The average proliferation index values among the thyroid follicular cells (TFCs) displayed increases in all of the BPS groups, and significant differences were observed in the BPS-20 and BPS-100 groups. The average apoptotic index values in the TFCs were increased significantly in the BPS-500 group. The serum thyroid-stimulating hormone and serum free thyroxine levels did not show significant changes after exposure to BPS; however, the serum free triiodothyronine levels displayed significant decreases in all 3 of the BPS groups. BPS was determined to cause significant increases in the antioxidant enzyme activities of catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, as well as a significantly decreased content of reduced glutathione. The malondialdehyde level in the thyroid tissue was elevated significantly in the BPS-500 group. The data obtained herein revealed that BPS has thyroid-disrupting potential based on structural changes, follicle cell responses, and biochemical alterations including a decreased serum free triiodothyronine level and increased oxidative stress.
Collapse
Affiliation(s)
- Müşerref Bostancı
- Department of Biology, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, Tuşba, Türkiye
| | - Burak Kaptaner
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, Tuşba, Türkiye
| | - Abdulahad Doğan
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Tuşba, Türkiye
| |
Collapse
|
11
|
Zhang J, Wang H, Liao Y, Li Y. The combined effects of bisphenol S and hexavalent chromium on alpha-glucosidase: Intermolecular interaction, structural and functional changes. Int J Biol Macromol 2024; 280:136120. [PMID: 39343258 DOI: 10.1016/j.ijbiomac.2024.136120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The co-contamination of heavy metal ions and organic pollutants has posed a threat to human health. Herein, this study investigated the intermolecular interactions of bisphenol S (BPS) and hexavalent chromium (Cr(VI)) under both individual and coexisting conditions, with alpha-glucosidase (AG), a key enzyme in carbohydrate metabolism, and the corresponding effects on the structure and function of AG. Multiple spectroscopic and molecular docking methods were employed to conduct the investigation in vitro and in silico. The results indicated that both BPS and Cr(VI) quenched the fluorescence of AG via a combined static and dynamic quenching processes. At 310 K, the binding constants of AG with BPS in the AG-BPS and (AG-Cr(VI))-BPS systems were 1.84 × 104 and 2.03 × 104 L mol-1, and the binding constants of AG with Cr(VI) in the AG-Cr(VI) and (AG-BPS)-Cr(VI) systems were 6.14 × 103 and 4.35 × 103 L mol-1. Cr(VI) could significantly affect the binding site of BPS in AG, while BPS had a minimal impact on the binding site of Cr(VI) in AG. BPS and Cr(VI) caused varied structural alterations of AG, and the impact of their coexistence on the structure of AG was related to the order in which they were added. Both BPS and Cr(VI) had a concentration-related effect on AG activity. This study provides valuable insights into the molecular mechanisms underlying the combined toxic effects of BPS and Cr(VI) on AG, highlighting the potential health risks associated with their environmental co-exposure.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China.
| | - Honghui Wang
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Yingmin Liao
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Yan Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| |
Collapse
|
12
|
Tariq F, Ahrens L, Alygizakis NA, Audouze K, Benfenati E, Carvalho PN, Chelcea I, Karakitsios S, Karakoltzidis A, Kumar V, Mora Lagares L, Sarigiannis D, Selvestrel G, Taboureau O, Vorkamp K, Andersson PL. Computational Tools to Facilitate Early Warning of New Emerging Risk Chemicals. TOXICS 2024; 12:736. [PMID: 39453156 PMCID: PMC11511557 DOI: 10.3390/toxics12100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Innovative tools suitable for chemical risk assessment are being developed in numerous domains, such as non-target chemical analysis, omics, and computational approaches. These methods will also be critical components in an efficient early warning system (EWS) for the identification of potentially hazardous chemicals. Much knowledge is missing for current use chemicals and thus computational methodologies complemented with fast screening techniques will be critical. This paper reviews current computational tools, emphasizing those that are accessible and suitable for the screening of new and emerging risk chemicals (NERCs). The initial step in a computational EWS is an automatic and systematic search for NERCs in literature and database sources including grey literature, patents, experimental data, and various inventories. This step aims at reaching curated molecular structure data along with existing exposure and hazard data. Next, a parallel assessment of exposure and effects will be performed, which will input information into the weighting of an overall hazard score and, finally, the identification of a potential NERC. Several challenges are identified and discussed, such as the integration and scoring of several types of hazard data, ranging from chemical fate and distribution to subtle impacts in specific species and tissues. To conclude, there are many computational systems, and these can be used as a basis for an integrated computational EWS workflow that identifies NERCs automatically.
Collapse
Affiliation(s)
- Farina Tariq
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden;
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), 756 51 Uppsala, Sweden;
| | - Nikiforos A. Alygizakis
- Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Karine Audouze
- University Paris Cité, INSERM U1124, 75006 Paris, France; (K.A.); (O.T.)
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (E.B.); (G.S.)
| | - Pedro N. Carvalho
- Department of Environmental Science, Aarhus University, 8000 Roskilde, Denmark; (P.N.C.); (K.V.)
| | - Ioana Chelcea
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden;
- Department of Chemical and Pharmaceutical Safety, Research Institutes of Sweden (RISE), 103 33 Stockholm, Sweden
| | - Spyros Karakitsios
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (A.K.); (D.S.)
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Achilleas Karakoltzidis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (A.K.); (D.S.)
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vikas Kumar
- Environmental Analysis and Management Using Computer Aided Process Engineering (AGACAPE), Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain;
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Liadys Mora Lagares
- Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
| | - Dimosthenis Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (A.K.); (D.S.)
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- National Hellenic Research Foundation, 11635 Athens, Greece
- University School of Advanced Study IUSS, 27100 Pavia, Italy
| | - Gianluca Selvestrel
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (E.B.); (G.S.)
| | - Olivier Taboureau
- University Paris Cité, INSERM U1124, 75006 Paris, France; (K.A.); (O.T.)
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, 8000 Roskilde, Denmark; (P.N.C.); (K.V.)
| | | |
Collapse
|
13
|
Siegel KR, Murray BR, Gearhart J, Kassotis CD. In vitro endocrine and cardiometabolic toxicity associated with artificial turf materials. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104562. [PMID: 39245243 PMCID: PMC11499011 DOI: 10.1016/j.etap.2024.104562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Artificial turf, a consumer product growing in usage in the United States, contains diverse chemicals, some of which are endocrine disruptive. Endocrine effects from turf material extracts have been primarily limited to one component, crumb rubber, of these multi-material products. We present in vitro bioactivities from non-weathered and weathered turf sample extracts, including multiple turf components. All weathered samples were collected from real-world turf fields. Non-weathered versus weathered differentially affected the androgen (AR), estrogen (ER), glucocorticoid (GR), and thyroid receptors (TR) in reporter bioassays. While weathered extracts more efficaciously activated peroxisome proliferator activated receptor γ (PPARγ), this did not translate to greater in vitro adipogenic potential. All turf extracts activated the aryl hydrocarbon receptor (AhR). High AhR-efficacy extracts induced modest rat cardiomyoblast toxicity in an AhR-dependent manner. Our data demonstrate potential endocrine and cardiometabolic effects from artificial turf material extracts, warranting further investigation into potential exposures and human health effects.
Collapse
Affiliation(s)
- Kyle R Siegel
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Brooklynn R Murray
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Jeff Gearhart
- Research Director, Ecology Center, Ann Arbor, MI 48104, United States
| | - Christopher D Kassotis
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
14
|
Knutsen HK, Åkesson A, Bampidis V, Bignami M, Bodin L, Chipman JK, Degen G, Hernández‐Jerez A, Hofer T, Landi S, Leblanc J, Machera K, Ntzani E, Rychen G, Sand S, Schwerdtle T, Vejdovszky K, Viviani B, Benford D, Hart A, Rose M, Schroeder H, Vleminckx C, Vrijheid M, Gkimprixi E, Kouloura E, Riolo F, Bordajandi LR, Hogstrand C. Update of the risk assessment of brominated phenols and their derivatives in food. EFSA J 2024; 22:e9034. [PMID: 39444985 PMCID: PMC11496907 DOI: 10.2903/j.efsa.2024.9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The European Commission asked EFSA to update its 2012 risk assessment on brominated phenols and their derivatives in food, focusing on five bromophenols and one derivative: 2,4,6-tribromophenol (2,4,6-TBP), 2,4-dibromophenol (2,4-DBP), 4-bromophenol (4-BP), 2,6-dibromophenol (2,6-DBP), tetrabrominated bisphenol S (TBBPS), tetrabromobisphenol S bismethyl ether (TBBPS-BME). Based on the overall evidence, the CONTAM Panel considered in vivo genotoxicity of 2,4,6-TBP to be unlikely. Effects in liver and kidney were considered as the critical effects of 2,4,6-tribromophenol (2,4,6-TBP) in studies in rats. A BMDL10 of 353 mg/kg body weight (bw) per day for kidney papillary necrosis in male rats was identified and was selected as the reference point for the risk characterisation. The derivation of a health-based guidance value was not considered appropriate due to major limitations in the toxicological database. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Around 78,200 analytical results for 2,4,6-TBP in food were used to estimate dietary exposure for the European population. Considering the resulting MOE values, all far above an MOE of 6000 that does not raise a health concern, and accounting for the uncertainties affecting the exposure and hazard assessments, the CONTAM Panel concluded with at least 95% probability that the current dietary exposure to 2,4,6-TBP does not raise a health concern. Due to lack of occurrence data, no risk assessment could be performed for breastfed or formula-fed infants. No risk characterisation could be performed for any of the other brominated phenols and derivatives included in the assessment, due to lack of data both on the toxicity and occurrence.
Collapse
|
15
|
Zheng Y, Li Y, Samreen, Zhang Z, Liu M, Cui X, Wang J. Evaluation of thyroid-disrupting effects of bisphenol F and bisphenol S on zebrafish (Danio rerio) using anti-transthyretin monoclonal antibody-based immunoassays. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106968. [PMID: 38851028 DOI: 10.1016/j.aquatox.2024.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024]
Abstract
The thyroid disrupting chemicals (TDCs) have raised great concerns due to their adverse impacts on thyroid hormones (THs). In this study, we investigated the thyroid-disrupting effects of bisphenol F (BPF) and bisphenol S (BPS), two major BPA substitutes, on adult zebrafish (Danio rerio). Firstly, anti-transthyretin (TTR) monoclonal antibody (anti-TTR mAb) was prepared and used to establish an indirect ELISA, which had a working range of 15.6∼1000 ng/mL of a detection limit of 6.1 ng/mL. The immunoassays based on anti-TTR mAb showed that exposure to BPF (10 and 100 μg/L) and BPS (100 μg/L) significantly elevated the levels of TTR protein in the plasma, liver, and brain tissues. Moreover, immunofluorescence showed that 100 μg/L BPF and BPS induced the production of TTR protein in liver and brain tissues. In addition, BPF and BPS increased THs levels and damaged thyroid tissue structure in adult female zebrafish. Especially, 100 μg/L BPF significantly increased T4 and T3 levels by 2.05 and 1.14 times, and induced pathological changes of thyroid follicles. The changes in the expression levels of genes involved in the hypothalamus-pituitary-thyroid (HPT) axis further illustrated that BPF and BPS had significant adverse effects on THs homeostasis and thyroid function in zebrafish. Therefore, TTR immunoassays could be used for the evaluation of thyroid-disrupting effects in fish and BPF exhibited greater disruption than BPS.
Collapse
Affiliation(s)
- Yuqi Zheng
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Samreen
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Minhao Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Xumeng Cui
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China.
| |
Collapse
|
16
|
Chouchene L, Boughammoura S, Ben Rhouma M, Mlouka R, Banni M, Messaoudi I, Kessabi K. Effect of thyroid disruption on ovarian development following maternal exposure to Bisphenol S. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52596-52614. [PMID: 39153066 DOI: 10.1007/s11356-024-34666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Thyroid hormones play a crucial role in numerous physiological processes, including reproduction. Bisphenol S (BPS) is a structural analog of Bisphenol A known for its toxic effects. Interference of this substitute with normal thyroid function has been described. To investigate the effect of thyroid disruption on ovarian development following maternal exposure to BPS, female rats were exposed, daily, to either AT 1-850 (a thyroid hormone receptor antagonist) (10 nmol/rat) or BPS (0.2 mg/kg) during gestation and lactation. The effects on reproductive outcome, offspring development, histological structures, hormone levels, oxidative status, cytoskeleton proteins expression, and oocyte development gene expression were examined. Our results are in favor of offspring ovarian development disruption due to thyroid disturbance in adult pregnant females. During both fetal and postnatal stages, BPS considerably altered the histological structure of the thyroid tissue as well as oocyte and follicular development, which led to premature ovarian failure and stimulation of oocyte atresia, being accompanied with oxidative stress, hypothalamic-pituitary-ovarian axis disorders, and cytoskeletal dynamic disturbance. Crucially, our study underscores that BPS may induce reproductive toxicity by blocking nuclear thyroid hormone receptors, evidenced by the parallelism and the perfect meshing between the data obtained following exposure to AT 1-850 and those after the treatment by this substitute.
Collapse
Affiliation(s)
- Lina Chouchene
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.
| | - Sana Boughammoura
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Mariem Ben Rhouma
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Rania Mlouka
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Imed Messaoudi
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Kaouthar Kessabi
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
17
|
Xu X, Zhang Y, Huang H, Chen J, Shi T. Distribution, transformation, and toxic effects of the flame retardant tetrabromobisphenol S and its derivatives in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174799. [PMID: 39019271 DOI: 10.1016/j.scitotenv.2024.174799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
As widely used alternative brominated flame retardants, tetrabromobisphenol S (TBBPS) and its derivatives have attracted increasing amounts of attention in the field of environmental science. Previous studies have shown that TBBPS and its derivatives easily accumulate in environmental media and may cause risks to environmental safety and human health. Therefore, to explore the environmental behaviours of TBBPS and its derivatives, in this paper, we summarized relevant research on the distribution of these compounds in water, the atmosphere, soil and food/biota, as well as their transformation mechanisms (biological and nonbiological) and toxic effects. The summary results show that TBBPS and its derivatives have been detected in water, the atmosphere, soil, and food/biota globally, making them a ubiquitous pollutant. These compounds may be subject to adsorption, photolysis or biological degradation after being released into the environment, which in turn increases their ecological risk. TBBPS and its derivatives can cause a series of toxic effects, such as neurotoxicity, hepatotoxicity, cytotoxicity, thyrotoxicity, genotoxicity and phytotoxicity, to cells or living organisms in in vitro and in vivo exposure. Toxicological studies suggest that TBBPS as an alternative to TBBPA is not entirely environmentally friendly. Finally, we propose future directions for research on TBBPS and its derivatives, including the application of new technologies in studies on the migration, transformation, toxicology and human exposure risk assessment of TBBPS and its derivatives in the environment. This review provides useful information for obtaining a better understanding of the behaviour and potential toxic effects of TBBPS and its derivatives in the environment.
Collapse
Affiliation(s)
- Xuehui Xu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China; Key Laboratory of Grassland Resources, Ministry of Education P.R. of China, Hohhot 010018, China.
| | - Yuexin Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jiafeng Chen
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| | - Tailong Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| |
Collapse
|
18
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
19
|
Chen G, Niu X, Chen Y, Wang M, Bi Y, Gao Y, Ji Y, An T. Estrogenic disruption effects and formation mechanisms of transformation products during photolysis of preservative parabens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171608. [PMID: 38492588 DOI: 10.1016/j.scitotenv.2024.171608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
The ubiquitous presence of emerging contaminants (ECs) in the environment and their associated adverse effects has raised concerns about their potential risks. The increased toxicity observed during the environmental transformation of ECs is often linked to the formation of their transformation products (TPs). However, comprehension of their formation mechanisms and contribution to the increased toxicity remains an unresolved challenge. To address this gap, by combining quantum chemical and molecular simulations with photochemical experiments in water, this study investigated the formation of TPs and their molecular interactions related to estrogenic effect using the photochemical degradation of benzylparaben (BZP) preservative as a representative example. A non-targeted analysis was carried out and three previously unknown TPs were identified during the transformation of BZP. Noteworthy, two of these novel TPs, namely oligomers BZP-o-phenol and BZP-m-phenol, exhibited higher estrogenic activities compared to the parent BZP. Their IC50 values of 0.26 and 0.50 μM, respectively, were found to be lower than that of the parent BZP (6.42 μM). The binding free energies (ΔGbind) of BZP-o-phenol and BZP-m-phenol (-29.71 to -23.28 kcal·mol-1) were lower than that of the parent BZP (-20.86 kcal·mol-1), confirming their stronger binding affinities toward the estrogen receptor (ER) α-ligand binding domain. Subsequent analysis unveiled that these hydrophobic residues contributed most favorably to ER binding, with van der Waals interactions playing a significant role. In-depth examination of the formation mechanisms indicated that these toxic TPs primarily originated from the successive cleavage of ester bonds (OCH2C6H5 and COO group), followed by their combination with BZP*. This study provides valuable insight into the mechanisms underlying the formation of toxic TPs and their binding interactions causing the endocrine-disrupting effects. It offers a crucial framework for elucidating the toxicological patterns of ECs with similar structures.
Collapse
Affiliation(s)
- Guanhui Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yashi Bi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuemeng Ji
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
20
|
Li P, Gan Z, Li Z, Wang B, Sun W, Su S, Ding S. Occurrence and exposure evaluation of bisphenol A and its analogues in indoor and outdoor dust from China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170833. [PMID: 38367725 DOI: 10.1016/j.scitotenv.2024.170833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Bisphenol A (BPA) and its analogues have been proved to be harmful to human reproduction, endocrine and nervous system. But information on the occurrence and human exposure to bisphenol compounds (BPs) in dust (especially outdoor dust) is limited. In this study, 14 BPs were determined in 174 indoor dust samples and 202 outdoor dust samples from Chinese mainland, Hong Kong, Macau and Taiwan. BPA, BPS, BPAF, BPF, BPAP and BPE were widely detected with detection frequencies of 98.94 %, 98.67 %, 97.87 %, 95.21 %, 87.23 % and 71.54 %, respectively. The median total concentrations of the most detected six BPs in the dust were in the order of south urban indoors (556 ng/g) > south rural outdoors (438 ng/g) > south urban outdoors (432 ng/g) > south rural outdoors (418 ng/g) > north rural indoors (412 ng/g) > north urban outdoors (341 ng/g) > north urban indoors (311 ng/g) > north rural outdoors (246 ng/g). The amounts of garbage incineration, plastic output and recycled paper may have influence on the BPs levels. Some BPs (BPAF, BPAP, BPF and BPS) in the indoor and outdoor samples were significantly positively correlated. In addition, the BPs in the indoor dust from different indoor micro environments in Chengdu were investigated. BPA (median concentration: 571.2 ng/g) and BPF (median concentration: 114.3 ng/g) were the two primary BPs, accounting for 78.1 % of the median total concentrations of the investigated BPs. High concentration of BPA appeared in printing workshops and offices, while high concentration of BPAP, BPC, BPE and BPF appeared in electronic repair shops. Occupational exposure to BPs deserves attention in the future. ΣBPs exposure risk for children and adults in the urban areas of southern China was the highest. To our knowledge, this is the first report in China to study BPs in outdoor dust sample.
Collapse
Affiliation(s)
- Peixuan Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Zhi Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bin Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - ShiJun Su
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Sanglan Ding
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Xu Y, Nie J, Lu C, Hu C, Chen Y, Ma Y, Huang Y, Lu L. Effects and mechanisms of bisphenols exposure on neurodegenerative diseases risk: A systemic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170670. [PMID: 38325473 DOI: 10.1016/j.scitotenv.2024.170670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Environmental bisphenols (BPs) pose a global threat to human health because of their extensive use as additives in plastic products. BP residues are increasing in various environmental media (i.e., water, soil, and indoor dust) and biological and human samples (i.e., serum and brain). Both epidemiological and animal studies have determined an association between exposure to BPs and an increased risk of neurodegenerative diseases (e.g., Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis), including cognitive abnormalities and behavioral disturbances. Hence, understanding the biological responses to different BPs is essential for prevention, and treatment. This study provides an overview of the underlying pathogenic molecular mechanisms as a valuable basis for understanding neurodegenerative disease responses to BPs, including accumulation of misfolded proteins, reduction of tyrosine hydroxylase and dopamine, abnormal hormone signaling, neuronal death, oxidative stress, calcium homeostasis, and inflammation. These findings provide new insights into the neurotoxic potential of BPs and ultimately contribute to a comprehensive health risk evaluation.
Collapse
Affiliation(s)
- Yeqing Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun Nie
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenghao Lu
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunlu Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying Ma
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuru Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
22
|
Hu C, Lu L, Guo C, Zhan T, Zhang X, Zhang H. Bisphenols and brominated bisphenols induced endothelial dysfunction via its disruption of endothelial nitric oxide synthase. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123600. [PMID: 38369087 DOI: 10.1016/j.envpol.2024.123600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Emerging literatures have concentrated on the association between cardiovascular diseases risk of typical endocrine disruptor bisphenols, which also put forward the further studies need respect to the potential mechanism. Herein, we investigated the endothelial dysfunction effects of bisphenols and brominated bisphenols involved in aortic pathological structure, endothelial nitric oxide synthase (eNOS) protein phosphorylation, synthase activity and nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mice. Bisphenol A (BPA) and bisphenol S (BPS) increased NO production by 85.7% and 68.8% at 10-6 M level in vitro and 74.3%, 41.5% in vivo, respectively, while tetrabromobisphenol S (TBBPS) significantly inhibited NO by 55.7% at 10-6 M in vitro and 28.9% in vivo at dose of 20 mg/kg BW/d. Aortic transcriptome profiling revealed that the process of 'regulation of NO mediated signal transduction' was commonly induced. The mRNA and protein expression of phosphorylated eNOS at Ser1177 were promoted by BPA and BPS but decreased by TBBPA and TBBPS in HUVECs. Phosphorylation and enzymatic activity of eNOS were significantly increased by 43.4% and 13.8% with the treatment of BPA and BPS at 10-7 M, but decreased by 16.9% after exposure to TBBPS at 10-6 M in vitro. Moreover, only TBBPS was observed to increase aorta thickness significantly in mice and induce endothelial dysfunction. Our work suggests that bisphenols and brominated bisphenols may exert adverse outcome on vascular health differently in vitro and in vivo, and emphasizes areas of public health concern similar endocrine disruptors vulnerable on the vascular endothelial function.
Collapse
Affiliation(s)
- Chao Hu
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Liping Lu
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou, 311121, China.
| | - Chunyan Guo
- Radiation Monitoring Technical Center, State Environmental Protection Key Laboratory of Radiation Environmental Monitoring, Ministry of Ecology and Environment, Hangzhou, 310012, China
| | - Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, 08854, United States
| | - Xiaofang Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou, 311121, China
| |
Collapse
|
23
|
Yang Z, Wang L, Yang Y, Pang X, Sun Y, Liang Y, Cao H. Screening of the Antagonistic Activity of Potential Bisphenol A Alternatives toward the Androgen Receptor Using Machine Learning and Molecular Dynamics Simulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2817-2829. [PMID: 38291630 DOI: 10.1021/acs.est.3c09779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Over the past few decades, extensive research has indicated that exposure to bisphenol A (BPA) increases the health risks in humans. Toxicological studies have demonstrated that BPA can bind to the androgen receptor (AR), resulting in endocrine-disrupting effects. In recent investigations, many alternatives to BPA have been detected in various environmental media as major pollutants. However, related experimental evaluations of BPA alternatives have not been systematically implemented for the assessment of chemical safety and the effects of structural characteristics on the antagonistic activity of the AR. To promote the green development of BPA alternatives, high-throughput toxicological screening is fundamental for prioritizing chemical tests. Therefore, we proposed a hybrid deep learning architecture that combines molecular descriptors and molecular graphs to predict AR antagonistic activity. Compared to previous models, this hybrid architecture can extract substantial chemical information from various molecular representations to improve the model's generalization ability for BPA alternatives. Our predictions suggest that lignin-derivable bisguaiacols, as alternatives to BPA, are likely to be nonantagonist for AR compared to bisphenol analogues. Additionally, molecular dynamics (MD) simulations identified the dihydrotestosterone-bound pocket, rather than the surface, as the major binding site of bisphenol analogues. The conformational changes of key helix H12 from an agonistic to an antagonistic conformation can be evaluated qualitatively by accelerated MD simulations to explain the underlying mechanism. Overall, our computational study is helpful for toxicological screening of BPA alternatives and the design of environmentally friendly BPA alternatives.
Collapse
Affiliation(s)
- Zeguo Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ying Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xudi Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuzhen Sun
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
24
|
Weiss V, Gobec M, Jakopin Ž. Halogenation of common phenolic household and personal care product ingredients enhances their AhR-modulating capacity. CHEMOSPHERE 2024; 350:141116. [PMID: 38182088 DOI: 10.1016/j.chemosphere.2024.141116] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The Aryl Hydrocarbon Receptor (AhR), a ligand-activated transcription factor, orchestrates responses to numerous structurally diverse endogenous and exogenous ligands. In addition to binding various xenobiotics, AhR also recognizes endocrine disruptors, particularly those featuring chlorinated or brominated aromatic structures. There is limited data available on the impact of common household and personal care product ingredients let alone their halogenated transformation products. Herein we bridge this knowledge gap by preparing a library of chlorinated and brominated parabens, bisphenols, UV filters, and nonylphenols. An evaluation of total of 125 compounds for agonistic and antagonistic activity on AhR unveiled a low micromolar agonist, Cl2BPAF with an EC50 of 13 μM. Moreover, our study identified several AhR antagonists, with BrBzP emerging as the most potent with an IC50 of 8.9 μM. To further investigate the functional implications of these compounds, we subjected the most potent agonist and antagonist to a functional assay involving cytokine secretion from peripheral blood mononuclear cells and compared their activity with the commercially available AhR agonist and antagonist. Cl2BPAF exhibited an overall immunosuppressive effect by reducing the secretion of proinflammatory cytokines, including IL-6, IFN-γ, and TNF-α, while BrBzP displayed opposite effects, leading to an increase of those cytokines. Notably, the immunomodulatory effects of Cl2BPAF surpassed those of ITE, a bona fide AhR agonist, while the impact of BrBzP exceeded that of CH223191, a bona fide AhR antagonist. In summary, our study underscores the potential influence of halogenated transformation products on the AhR pathway and, consequently, their role in shaping the immune responses.
Collapse
Affiliation(s)
- Veronika Weiss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
25
|
Hu C, Xu Y, Wang M, Cui S, Zhang H, Lu L. Bisphenol analogues induce thyroid dysfunction via the disruption of the thyroid hormone synthesis pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165711. [PMID: 37487893 DOI: 10.1016/j.scitotenv.2023.165711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Bisphenol analogues are widely used in industrial and daily-use consumer products having imperfect thyroid hormones (THs) structures. Widespread exposure interferes with thyroid-related health outcomes in human. The mechanisms of disruption on TH synthesis and subsequent thyroid dysfunction by different bisphenol analogues remain unclear. Here, we evaluated bisphenol-induced thyroid endocrine disruption in C57BL/6 mice at doses of 0.002, 0.02, 2, and 20 mg/kg body weight/day (BW/d) for five consecutive weeks. Administration of 20 mg/kg BW/d bisphenol S (BPS) and 2 mg/kg BW/d tetrabromobisphenol S (TBBPS) significantly increased serum thyrotropin (TSH) levels to 1.21-fold and 1.20-fold of control group, respectively, indicating that bisphenols induced thyroid dysfunction in mice. Height of the thyroid follicle epithelium significantly increased to 1.27-, 1.24-, 1.26-, and 1.36-fold compared to control group with BPA, BPS, TBBPA, and TBBPS at 20 mg/kg BW/d, respectively, indicating impairment of the thyroid gland structure, and TBBPS showed potent effect. Exposure to bisphenol analogues of 0.02 mg/kg BW/d downregulated the protein expression levels of thyrotropin receptor, the sodium/iodide symporter, thyroperoxidase. The TH-dependent effects were further determined using the T-Screen assay at 10-11 M to 10-5 M concentrations. Bisphenol analogues significantly decreased TH-dependent GH3 cell proliferation, indicating the antagonistic activity of bisphenol analogues. The gene responsible for THs synthesis of thyrotropin releasing hormone receptor and TSH were upregulated, but downregulation of thyroid receptor β was observed. Our results suggest that bisphenol analogues distinctly induce thyroid dysfunction via TH synthesis, implying adverse effect of bisphenol analogues on TH homeostasis and subsequent physiological processes.
Collapse
Affiliation(s)
- Chao Hu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Yeqing Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mingmin Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shixuan Cui
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Hangzhou International Urbanology Research Center, Hangzhou 311121, China
| | - Liping Lu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Algonaiman R, Almutairi AS, Al Zhrani MM, Barakat H. Effects of Prenatal Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, on Offspring's Health: Evidence from Epidemiological and Experimental Studies. Biomolecules 2023; 13:1616. [PMID: 38002298 PMCID: PMC10669689 DOI: 10.3390/biom13111616] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Pregnancy and lactation are critical periods for human well-being and are sensitive windows for pollutant exposure. Bisphenol A (BPA) is well demonstrated as a toxicant and has been replaced in the plastic industry with other bisphenol analogs that share similarities in structure and characteristics, most commonly Bisphenol S (BPS) and Bisphenol F (BPF). Maternal exposure to BPS or BPF can result in their accumulation in the fetal compartment, leading to chronic exposure and potentially limiting normal fetal growth and development. This review summarizes considerable findings of epidemiological or experimental studies reporting associations between BPS or BPF and impaired fetal growth and development. Briefly, the available findings indicate that exposure to the two bisphenol analogs during pregnancy and lactation can result in multiple disturbances in the offspring, including fetal growth restrictions, neurological dysfunctions, and metabolic disorders with the potential to persist throughout childhood. The occurrence of premature births may also be attributed to exposure to the two bisphenols. The possible mechanisms of actions by which the two bisphenols can induce such effects can be attributed to a complex of interactions between the physiological mechanisms, including impaired placental functioning and development, dysregulation of gene expression, altered hormonal balance, and disturbances in immune responses as well as induced inflammations and oxidative stress. In conclusion, the available evidence suggests that BPS and BPF have a toxic potential in a compartment level to BPA. Future research is needed to provide more intensive information; long-term studies and epidemiological research, including a wide scale of populations with different settings, are recommended. Public awareness regarding the safety of BPA-free products should also be enhanced, with particular emphasis on educating individuals responsible for the well-being of children.
Collapse
Affiliation(s)
- Raya Algonaiman
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Abdulkarim S. Almutairi
- Al-Rass General Hospital, Qassim Health Cluster, Ministry of Health, Ibn Sina Street, King Khalid District, Al-Rass 58883, Saudi Arabia;
| | - Muath M. Al Zhrani
- Department of Applied Medical Science, Applied College, Bishah University, Bishah 67616, Saudi Arabia;
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
27
|
Qiu L, Wei S, Wang Y, Zhang R, Ru S, Zhang X. Mechanism of thyroid hormone and its structurally similar contaminant bisphenol S exposure on retinoid metabolism in zebrafish larval eyes. ENVIRONMENT INTERNATIONAL 2023; 180:108217. [PMID: 37748373 DOI: 10.1016/j.envint.2023.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
The photoreceptor necessitates the retinoids metabolism processes in visual cycle pathway to regenerate visual pigments and sustain vision. Bisphenol S (BPS), with similar structure of thyroid hormone (TH), was reported to impair the light-sensing function of zebrafish larvae via disturbing TH-thyroid hormone receptor β (TRβ) signaling pathway. However, it remains unknown whether TRβ could modulate the toxicity of BPS on retinoid metabolism in visual cycle. This study showed that BPS diminished the optokinetic response of zebrafish larvae and had a stimulative effect on all-trans-retinoic acid (atRA) metabolism, like exogenous T3 exposure. By modulating CYP26A1 and TRβ expression, it was found that CYP26A1 played a crucial role in catalyzing oxidative metabolism of atRA and retinoids regeneration in visual cycle, and TRβ mediated cyp26a1 expression in zebrafish eyes. Similar with 10 nM T3 treatment, cyp26a1 expression could be induced by BPS in the presence of TRβ. Further, in CYP26A1 and TRβ- deficient eyes, 100 μg/L BPS could no longer promote atRA metabolism, or decrease the all-trans-retinol and 11-cis retinal contents in visual cycle, demonstrating that BPS exposure disturbed CYP26A1-mediated visual retinoids metabolism via TRβ. Overall, this study highlights the role of TRβ in mediating the retinoids homeostasis disruption caused by BPS, and provides new clues for exploring molecular targets of visual toxicity under pollutants stress.
Collapse
Affiliation(s)
- Liguo Qiu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
28
|
Haigis AC, Vergauwen L, LaLone CA, Villeneuve DL, O'Brien JM, Knapen D. Cross-species applicability of an adverse outcome pathway network for thyroid hormone system disruption. Toxicol Sci 2023; 195:1-27. [PMID: 37405877 DOI: 10.1093/toxsci/kfad063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Thyroid hormone system disrupting compounds are considered potential threats for human and environmental health. Multiple adverse outcome pathways (AOPs) for thyroid hormone system disruption (THSD) are being developed in different taxa. Combining these AOPs results in a cross-species AOP network for THSD which may provide an evidence-based foundation for extrapolating THSD data across vertebrate species and bridging the gap between human and environmental health. This review aimed to advance the description of the taxonomic domain of applicability (tDOA) in the network to improve its utility for cross-species extrapolation. We focused on the molecular initiating events (MIEs) and adverse outcomes (AOs) and evaluated both their plausible domain of applicability (taxa they are likely applicable to) and empirical domain of applicability (where evidence for applicability to various taxa exists) in a THSD context. The evaluation showed that all MIEs in the AOP network are applicable to mammals. With some exceptions, there was evidence of structural conservation across vertebrate taxa and especially for fish and amphibians, and to a lesser extent for birds, empirical evidence was found. Current evidence supports the applicability of impaired neurodevelopment, neurosensory development (eg, vision) and reproduction across vertebrate taxa. The results of this tDOA evaluation are summarized in a conceptual AOP network that helps prioritize (parts of) AOPs for a more detailed evaluation. In conclusion, this review advances the tDOA description of an existing THSD AOP network and serves as a catalog summarizing plausible and empirical evidence on which future cross-species AOP development and tDOA assessment could build.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlie A LaLone
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
29
|
Lu L, Shen L, Cui S, Huang Y, Gao Y, Zhu X, Lu S, Zhang C, Zhuang S. Angiogenic Activity and Mechanism for Bisphenols on Endothelial Cell and Mouse: Evidence of a Structural-Selective Effect. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11803-11813. [PMID: 37505069 DOI: 10.1021/acs.est.3c03883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Increased epidemiological evidence indicates the association of bisphenol exposure with human vascular disorders, while the underlying mechanism has not been clarified. Here, we sought to unveil the potential angiogenic effect and the underlying mechanism of bisphenols with different structural features using endothelial cells treated with an environmentally relevant concentration of bisphenols (range: 1 nM to 10 μM) and a C57BL/6 mouse model fed with doses of 0.002, 0.02, 2, and 20 mg/kg BW/day for 5 weeks. Bisphenol A (BPA) and bisphenol S (BPS) at a 1 nM level significantly increased tube formation by 45.1 and 30.2% and induced the microvessel sprouting, while tube length and microvessel sprouting were significantly inhibited by 37.2 and 55.7% after exposure to tetrabromobisphenol S (TBBPS) at 1 μM, respectively. Mechanistically, TBBPA and TBBPS significantly inhibited the interaction between phosphatidylinositol 3-kinase (PI3K) and thyroid receptor (TR), while BPA and BPS favored the interaction between PI3K and estrogen receptor (ER), resulting in abnormal PI3K signaling with consequent distinct angiogenic activity. BPA- and BPS-induced pro-angiogenic effects and TBBPS showed anti-angiogenic effects due to their distinct disruption on the TR/ER-PI3K pathway. Our work provided new evidence and mechanistic insight on the angiogenic activity of bisphenols and expanded the scope of endocrine disruptors with interference in vascular homeostasis.
Collapse
Affiliation(s)
- Liping Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lilai Shen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Yuchen Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoming Zhu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Shaoyong Lu
- Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, Texas 77058, United States
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| |
Collapse
|
30
|
Xiong C, Xu L, Dong X, Cao Z, Wang Y, Chen K, Guo M, Xu S, Li Y, Xia W, Zhou A. Trimester-specific associations of maternal exposure to bisphenols with neonatal thyroid stimulating hormone levels: A birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163354. [PMID: 37023811 DOI: 10.1016/j.scitotenv.2023.163354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Growing evidence suggests that exposure to bisphenol A (BPA) during pregnancy could interfere with neonatal thyroid function. Bisphenol F (BPF) and bisphenol S (BPS) are increasingly used as the substitutes of BPA. However, little is known about the effects of maternal exposure to BPS and BPF on neonatal thyroid function. The current study was aimed to investigate the trimester-specific associations of maternal exposure to BPA, BPS, and BPF with neonatal thyroid stimulating hormone (TSH) levels. METHODS Between November 2013 and March 2015, a total of 904 mother-newborn pairs were recruited from the Wuhan Healthy Baby Cohort Study, providing maternal urine samples in the first, second, and third trimesters for bisphenol exposure assessment, and neonatal heel prick blood samples for TSH measurement. Multiple informant model and quantile g-computation were used to evaluate the trimester-specific associations of bisphenols individually and mixture with TSH, respectively. RESULTS Each doubling concentration increase of maternal urinary BPA in the first trimester was significantly related to a 3.64 % (95% CI: 0.84 %, 6.51 %) increment in neonatal TSH. Each doubling concentration increase of BPS in the first, second and third trimesters were associated with 5.81 % (95 % CI: 2.27 %, 9.46 %), 5.70 % (95 % CI: 1.99 %, 9.55 %), 4.36 % (95 % CI: 0.75 %, 8.11 %) higher neonatal blood TSH, respectively. No significant association between trimester-specific BPF concentration and TSH was observed. The relationships between exposures to BPA/BPS and neonatal TSH were more evident in female infants. Quantile g-computation indicated that maternal co-exposure to bisphenols in the first trimester was significantly associated with neonatal TSH levels in a non-linear fashion. CONCLUSION Maternal exposure to BPA and BPS were positively associated with neonatal TSH levels. The results indicated the endocrine disrupting effect of prenatal exposure to BPS and BPA, which should be of particular concern.
Collapse
Affiliation(s)
- Chao Xiong
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luli Xu
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohan Dong
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuji Wang
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Chen
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Menglan Guo
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; School of Life Science, Hainan University, Haikou, Hainan, China
| | - Yuanyuan Li
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Aifen Zhou
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
31
|
Hou Z, Li Y, Zheng M, Liu X, Zhang Q, Wang W. Regioselective oxidation of heterocyclic aromatic hydrocarbons catalyzed by cytochrome P450: A case study of carbazole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114964. [PMID: 37121081 DOI: 10.1016/j.ecoenv.2023.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
Recently there are increasing interests in accurately evaluating the health effects of heterocyclic PAHs. However, the activation mechanism and possible metabolites of heterocyclic PAHs catalyzed by human CYP1A1 is still elusive to a great extent. Here, leveraged to high level QM/MM calculations, the corresponding activation pathways of a representative heterocyclic PAHs, carbazole, were systematically explored. The first stage is electrophilic addition or hydrogen abstraction from N-H group. Electrophilic addition was evidenced to be more feasible and regioselectivity at C3 and C4 sites were identified. Correlations between energy barriers and key structural/electrostatic parameters reveal that O-Cα distance and Fe-O-Cα angle are the main origin for the catalytic regioselectivity. Electrophilic addition was determined as the rate-determining step and the subsequent possible reactions include epoxidation, NIH shift (the hydrogen migration from the site of hydroxylation to the adjacent carbon) and proton shuttle. The corresponding products are epoxides, ketones and hydroxylated carbazoles, respectively. The main metabolites (hydroxylated carbazoles) are estimated to be more toxic than carbazole. The regioselectivity of carbazole activated by CYP1A1 is different from the environmental processes (gas and aqueous phase). Collectively, these results will inform the in-depth understanding the metabolic processes of heterocyclic PAHs and aid the accurate evaluation of their health effects.
Collapse
Affiliation(s)
- Zexi Hou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; Shenzhen Research Institute, Shandong University, Shenzhen 518057, PR China.
| | - Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xinning Liu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
32
|
Zheng M, Li Y, Dong W, Zhang Q, Wang W. Enantioselectivity and origin of enhanced efficiency in polyethylene terephthalate hydrolases catalyzed depolymerization. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131295. [PMID: 36989777 DOI: 10.1016/j.jhazmat.2023.131295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Biotechnology is one of the most promising strategies to resolve the global crisis of plastic pollution. A clear understanding of the core enzyme mechanisms in the biotransformation process is critical for rational enzyme engineering and for practical, industrial-scale applications. Herein, we systematically examined and evidenced a largely unexplored piece in the depolymerization mechanism catalyzed by polyethylene terephthalate (PET) hydrolases: their enantioselectivity. We found that all the short-lived tetrahedron intermediates (IM3 and IM8) possess S-type chirality in six representative PET hydrolases. For instance, the binding percentage ratio of pro-S:pro-R is 57:21 in FAST-PETase, while pro-S binding leads to a much lower average energy barrier (5.2 kcal/mol) than pro-R binding (33.1 kcal/mol). Key structural features (e.g. the angle for Ser@H1-His@N1-PET@O2 and distance for His@N1-PET@O2) that significantly modulate the enantioselectivity were identified. The origin of the energy landscape variation between wild-type IsPETase and mutant FAST-PETase was also unveiled via analysis of key features, the distortion/interaction energy, and non-covalent bond interactions. This study supplies the missing piece in the mechanism for depolymerization catalyzed by PET hydrolases, and will aid in the rational design of enzymes for industrial recycling of PET plastic waste.
Collapse
Affiliation(s)
- Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; Shenzhen Research Institute, Shandong University, Shenzhen 518057, PR China.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
33
|
Kanao E, Osaki H, Tanigawa T, Takaya H, Sano T, Adachi J, Otsuka K, Ishihama Y, Kubo T. Rational Supramolecular Strategy via Halogen Bonding for Effective Halogen Recognition in Molecular Imprinting. Anal Chem 2023. [PMID: 37230938 DOI: 10.1021/acs.analchem.3c01311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Halogen bonding is a highly directional interaction and a potential tool in functional material design through self-assembly. Herein, we describe two fundamental supramolecular strategies to synthesize molecularly imprinted polymers (MIPs) with halogen bonding-based molecular recognition sites. In the first method, the size of the σ-hole was increased by aromatic fluorine substitution of the template molecule, enhancing the halogen bonding in the supramolecule. The second method involved sandwiching hydrogen atoms of a template molecule between iodo substituents, which suppressed competing hydrogen bonding and enabled multiple recognition patterns, improving the selectivity. The interaction mode between the functional monomer and the templates was elucidated by 1H NMR, 13C NMR, X-ray absorption spectroscopy, and computational simulation. Finally, we succeeded in the effective chromatographic separation of diiodobenzene isomers on the uniformly sized MIPs prepared by multi-step swelling and polymerization. The MIPs selectively recognized halogenated thyroid hormones via halogen bonding and could be applied to screening endocrine disruptors.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Hayato Osaki
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tetsuya Tanigawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hikaru Takaya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Jun Adachi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
34
|
Li Y, Zhang Z, Wang J, Shan Y, Tian H, Cui P, Ru S. Zebrafish (Danio rerio) TRβ- and TTR-based electrochemical biosensors: Construction and application for the evaluation of thyroid-disrupting activity of bisphenols. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121745. [PMID: 37127237 DOI: 10.1016/j.envpol.2023.121745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Thyroid-disrupting chemicals (TDCs) have received increasing concerns because of their negative health impacts on both wildlife and humans. This study aimed to develop in vitro screening assays for TDCs based on thyroid hormone receptor β (TRβ) and transthyretin (TTR) proteins. Firstly, the recombinant ligand-binding domain of TRβ (TRβ-LBD) and TTR proteins of zebrafish were produced by eukaryotic expression system and then used as bio-recognition components to construct electrochemical biosensors. In the biosensors, the supported bilayer lipid membrane (s-BLM) was used as a matrix to immobilize proteins, and gold nanoflowers (AuNFs) were used to improve the sensitivity by increasing electroactive surface area. Under the optimizing conditions, the zfTRβ-LBD/AuNFs/s-BLM/GCE biosensor had a detection range of 0.23 nM-1.92 μM and a detection limit of 0.07 nM for triiodothyronine (T3), while the zfTTR/AuNFs/s-BLM/GCE biosensor had a detection range of 0.46 nM-3.84 μM, with a detection limit of 0.13 nM. Based on the constructed biosensors, the order of T3 equivalent concentrations of bisphenols was BPA ≈ BPS > BPF > BPAF ≈ BPAP > BPZ, which was similar to the results of recombinant TRβ two-hybrid yeast assay. Furthermore, the reliability of the biosensors was validated by molecular docking, in which BPA and BPS showed higher binding affinity to zfTRβ-LBD. Therefore, this study provided a valuable tool for efficiently screening TDCs.
Collapse
Affiliation(s)
- Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Yeqi Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Pengfei Cui
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China.
| |
Collapse
|
35
|
James RS, Seebacher F, Tallis J. Can animals tune tissue mechanics in response to changing environments caused by anthropogenic impacts? J Exp Biol 2023; 226:287009. [PMID: 36779312 DOI: 10.1242/jeb.245109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Anthropogenic climate change and pollution are impacting environments across the globe. This Review summarises the potential impact of such anthropogenic effects on animal tissue mechanics, given the consequences for animal locomotor performance and behaviour. More specifically, in light of current literature, this Review focuses on evaluating the acute and chronic effects of temperature on the mechanical function of muscle tissues. For ectotherms, maximal muscle performance typically occurs at temperatures approximating the natural environment of the species. However, species vary in their ability to acclimate to chronic changes in temperature, which is likely to have longer-term effects on species range. Some species undergo periods of dormancy to avoid extreme temperature or drought. Whilst the skeletal muscle of such species generally appears to be adapted to minimise muscle atrophy and maintain performance for emergence from dormancy, the increased occurrence of extreme climatic conditions may reduce the survival of individuals in such environments. This Review also considers the likely impact of anthropogenic pollutants, such as hormones and heavy metals, on animal tissue mechanics, noting the relative paucity of literature directly investigating this key area. Future work needs to determine the direct effects of anthropogenic environmental changes on animal tissues and related changes in locomotor performance and behaviour, including accounting for currently unknown interactions between environmental factors, e.g. temperature and pollutants.
Collapse
Affiliation(s)
- Rob S James
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
36
|
Pelaia T, Rubin AM, Seebacher F. Bisphenol S reduces locomotor performance and modifies muscle protein levels but not mitochondrial bioenergetics in adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106440. [PMID: 36822074 DOI: 10.1016/j.aquatox.2023.106440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Human activity has now introduced novel chemicals into most aquatic ecosystems. Endocrine-disrupting compounds originating from plastic pollution and manufacture can have pronounced biological effects by disrupting hormone-mediated processes. Bisphenol A (BPA) is one of the most commonly produced endocrine-disrupting compounds, which interferes with signalling by a broad range of hormones. In recognition of its potentially harmful effects, BPA is being replaced by substitutes such as bisphenol S (BPS). However, toxicological studies revealed that BPS too can bind to hormone receptors and disrupt signalling, particularly of thyroid hormone. The aim of this study was to test whether BPS exposure impacts locomotor performance and muscle function in zebrafish (Danio rerio). Locomotor performance depends on thyroid hormone signalling, and it is closely related to fitness so that its disruption can have negative ecological and evolutionary consequences. BPS exposure of 15 μg l-1 [∼60 nM] and 30 μg l-1 (but not 60 μg l-1) decreased sustained swimming performance (Ucrit), but not sprint speed. In a fully factorial design, we show that living in flowing water increased Ucrit compared to a still water control, and that BPS reduced Ucrit under both conditions but did not eliminate the training effect. In a second factorial experiment, we show that BPS did not affect mitochondrial bioenergetics in skeletal muscle (state 3 and 4 rates, respiratory control ratios, ROS production), but that induced hypothyroidism decreased state 3 and 4 rates of respiration. However, both hypothyroidism and BPS exposure decreased activity of AMP-activated protein kinase (pAMPK:total AMPK) but increased protein levels of myocyte enhancer factor 2, and slow and fast myosin heavy chains. Our data indicate that BPS is not a safe alternative for BPA and that exposure to BPS can have ecological consequences, which are likely to be at least partly mediated via thyroid hormone disruption.
Collapse
Affiliation(s)
- Tiana Pelaia
- School of Life and Environmental Science A08, University of Sydney, NSW 2006, Australia
| | - Alexander M Rubin
- School of Life and Environmental Science A08, University of Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Science A08, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
37
|
Liang X, Xie R, He Y, Li W, Du B, Zeng L. Broadening the lens on bisphenols in coastal waters: Occurrence, partitioning, and input fluxes of multiple novel bisphenol S derivatives along with BPA and BPA analogues in the Pearl River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121194. [PMID: 36738885 DOI: 10.1016/j.envpol.2023.121194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol S derivatives (BDs) are being widely used as novel substitutes for BPA and BPA analogues (BPAs), causing pollution in various environmental compartments. However, the occurrence and fate of BDs in coastal waters are currently unknown. To broaden the lens on bisphenols in coastal waters, this study measured a broad suite of 23 bisphenols, including 12 BDs along with BPA and 10 BPAs, in water, suspended particulate matter (SPM), and sediment from eight major outlets of the Pearl River Delta, China (PRD). In addition to BPA and BPAs, all the 12 BDs were detected in the collected samples. The total concentration of 12 BDs ranged from 1.2 to 25 ng/L (median of 4.3 ng/L) in water samples, 0.80-13 ng/g dw (median of 3.0 ng/g dw) in SPM samples and 0.48-3.7 ng/g dw (median of 0.64 ng/g dw) in sediment samples. For most individual BDs, they had comparable concentrations to individual BPAs. In addition, logKd values of the frequently detected bisphenols, including BPA, BPS, BPF, 4-((4-Isopropoxyphenyl)sulfonyl)phenol (BPSIP), 2,4-bis(phenylsulfonyl)phenol (DBSP), and other 9 bisphenols, were significantly correlated with their logKow values (R2 = 0.38, p < 0.05), indicating that the partitioning of bisphenols between the aqueous and SPM phases were strongly influenced by hydrophobic interaction. Based on bisphenols' concentrations in water from the eight outlets of PRD, the estimated input fluxes of novel BDs (1900 kg/y) were found to be even higher than that of BPAs (550 kg/y). This indicates that the riverine input of BDs into the coastal environment is gradually increasing, which should be taken seriously in the future.
Collapse
Affiliation(s)
- Xueyi Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Ruiman Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yuqing He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Wenzheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
38
|
Nowak K, Jakopin Ž. In silico profiling of endocrine-disrupting potential of bisphenol analogues and their halogenated transformation products. Food Chem Toxicol 2023; 173:113623. [PMID: 36657698 DOI: 10.1016/j.fct.2023.113623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Due to its endocrine-disrupting properties, bisphenol A (BPA) is being phased out from plastics, thermal paper and epoxy resins, and its replacements are being introduced into the market. Bisphenols are released into the environment, where they can undergo halogenation. Unlike BPA, the endocrine-disrupting potential of BPA analogues and their halogenated transformation products has not been extensively studied. The aim of this study was to evaluate the endocrine-disrupting potential of 18 BPA analogues and their halogenated derivatives by calculating affinities for 14 human nuclear receptors utilizing the Endocrine Disruptome and VirtualToxLab™ in silico tools. Our simulations identified AR, ERs, and GR as the most favorable targets of bisphenols and their derivatives. Several BPA analogues displayed a higher predicted potential for endocrine disruption than BPA. Our models highlighted BPZ and BPPH as the most hazardous in terms of predicted endocrine activities. Halogenation, in general, was predicted to increase the binding affinity of bisphenols for AR, ERβ, MR, GR, PPARγ, and TRβ. Notably, mono- or 2,2'-di-halogenated bisphenols exhibited the highest potential for endocrine disruption. In vitro corroboration of the obtained results should be the next milestone in evaluating the safety of BPA substitutes and their halogenated transformation products.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, University of Ljubljana, Slovenia.
| |
Collapse
|
39
|
Zhao S, Yang X, Liu H, Xi Y, Li J. Potential Disrupting Effects of Wastewater-Derived Disinfection Byproducts on Chinese Rare Minnow ( Gobiocypris rarus) Transthyretin: An In Vitro and In Silico Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3228-3237. [PMID: 36780642 DOI: 10.1021/acs.est.2c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The available information about whether wastewater-derived disinfection byproducts (DBPs) could elicit potential endocrine-related detrimental effects on aquatic organisms was scarce. Herein, the potential disrupting effects and underlying binding mechanism of 14 wastewater-derived aliphatic and aromatic DBPs and 12 other substances on Chinese rare minnow (Gobiocypris rarus) transthyretin (CrmTTR) were tested and revealed by in vitro and in silico methods. The amino acid sequences of CrmTTR were determined, and the recombinant CrmTTR with a molecular mass of 66.3 kDa was expressed and purified. In vitro assay results indicated that eight selected aromatic DBPs exhibited detectable CrmTTR disrupting ability. Meanwhile, six aliphatic DBPs were not CrmTTR binders. Molecular modeling results implied that hydrophobic hydrogen bonds and/or ionic pair interactions were non-negligible. Four binary classification models with high classification performance were constructed. A significant positive linear relationship was observed for the binding affinity data from CrmTTR and human TTR (n = 18, r = 0.922, p < 0.0001). However, the binding affinity for 13 out of 18 tested compounds with CrmTTR was higher than that with human TTR. All the results highlighted that some wastewater-derived DBPs may be potential disruptors on the aquatic organism endocrine system, and interspecies variation should not be neglected in future determination of the potential endocrine disrupting effects of wastewater-derived DBPs.
Collapse
Affiliation(s)
- Songshan Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yue Xi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jing Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
40
|
Wei S, Qiu L, Ru S, Yang Y, Wang J, Zhang X. Bisphenol S disrupts opsins gene expression and impairs the light-sensing function via antagonizing TH-TRβ signaling pathway in zebrafish larvae. Food Chem Toxicol 2023; 172:113588. [PMID: 36574878 DOI: 10.1016/j.fct.2022.113588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Bisphenol S (BPS) is extensively used in "bisphenol A-free" products such as baby bottles. Although the visual toxicity of BPS has been reported, the underlying mechanism was largely unknown. In the present study, zebrafish were exposed to 0, 4 and 400 nM BPS from 2 h post-fertilization (hpf) to 120 hpf to further explore the thyroid disruption mechanism underlying the BPS induced impairment of visual function. The results showed that BPS decreased T3 levels in larval eyes, induced retinal expression of thyroid hormone receptor β (TRβ), and thereby down-regulated the expression of TH-mediated opsin genes (opn1lw1, opn1lw2, opn1mw1, opn1mw2, opn1mw3, and opn1sw2) and impaired subsequent phototransduction pathways, leading to decreased visually mediated phototactic response and body color adaptation but stimulated visual motor response (VMR). Combining exposure of exogenous T3 or 1-850 (antagonist for TRβ) with BPS could partly compensate the inhibited expression of opsin genes (opn1mw2, opn1lw1, and opn1lw2) and alleviate the hyperactivity of larval VMR caused by BPS alone, suggesting that BPS disrupted the opsins expression and also light-sensing function via antagonizing TH-TRβ signaling pathway. This study underlined the importance of TH signaling in regulating the proper vision and proposed a novel mechanism for the visual toxicity of BPS.
Collapse
Affiliation(s)
- Shuhui Wei
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Liguo Qiu
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Yang Yang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Jun Wang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Xiaona Zhang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China.
| |
Collapse
|
41
|
Qin JY, Jia W, Ru S, Xiong JQ, Wang J, Wang W, Hao L, Zhang X. Bisphenols induce cardiotoxicity in zebrafish embryos: Role of the thyroid hormone receptor pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106354. [PMID: 36423468 DOI: 10.1016/j.aquatox.2022.106354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Bisphenols are frequently found in the environment and have been of emerging concern because of their adverse effects on aquatic animals and humans. In this study, we demonstrated that bisphenol A, S, and F (BPA, BPS, BPF) at environmental concentrations induced cardiotoxicity in zebrafish embryos. BPA decreased heart rate at 96 hpf (hours post fertilization) and increased the distance between the sinus venosus (SV) and bulbus arteriosus (BA), in zebrafish. BPF promoted heart pumping and stroke volume, shortened the SV-BAdistance, and increased body weight. Furthermore, we found that BPA increased the expression of the dio3b, thrβ, and myh7 genes but decreased the transcription of dio2. In contrast, BPF downregulated the expression of myh7 but upregulated that of thrβ. Molecular docking results showed that both BPA and BPF are predicted to bind tightly to the active pockets of zebrafish THRβ with affinities of -4.7 and -4.77 kcal/mol, respectively. However, BPS did not significantly affect dio3b, thrβ, and myh7 transcription and had a higher affinity for zebrafish THRβ (-2.13 kcal/mol). These findings suggest that although BPA, BPS, and BPF have similar structures, they may induce cardiotoxicity through different molecular mechanisms involving thyroid hormone systems. This investigation provides novel insights into the potential mechanism of cardiotoxicity from the perspective of thyroid disruption and offer a cautionary role for the use of BPA substitution.
Collapse
Affiliation(s)
- Jing-Yu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenyi Jia
- College of urban and environmental sciences, Peking University, Beijing 100871, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
42
|
Dutta S, Banu SK, Arosh JA. Endocrine disruptors and endometriosis. Reprod Toxicol 2023; 115:56-73. [PMID: 36436816 DOI: 10.1016/j.reprotox.2022.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Endometriosis is a hormone-dependent inflammatory gynecological disease of reproductive-age women. It is clinically and pathologically characterized by the presence of functional endometrium as heterogeneous lesions outside the uterine cavity. The two major symptoms are chronic pelvic pain and infertility, which profoundly affect women's reproductive health and quality of life. This significant individual and public health concerns underscore the importance of understanding the pathogenesis of endometriosis. The environmental endocrine-disrupting chemicals (EDCs) are exogenous agents that interfere with the synthesis, secretion, transport, signaling, or metabolism of hormones responsible for homeostasis, reproduction, and developmental processes. Endometriosis has been potentially linked to exposure to EDCs. In this review, based on the robust literature search, we have selected four endocrine disruptors (i) polychlorinated biphenyls (PCB)s (ii) dioxins (TCDD) (iii) bisphenol A (BPA) and its analogs and (iv) phthalates to elucidate their critical role in the etiopathogenesis of endometriosis. The epidemiological and experimental data discussed in this review indicate that these four EDCs activate multiple intracellular signaling pathways associated with proinflammation, estrogen, progesterone, prostaglandins, cell survival, apoptosis, migration, invasion, and growth of endometriosis. The available information strongly indicates that environmental exposure to EDCs such as PCBs, dioxins, BPA, and phthalates individually or collectively contribute to the pathophysiology of endometriosis. Further understanding of the molecular mechanisms of how these EDCs establish endometriosis and therapeutic strategies to mitigate the effects of these EDCs in the pathogenesis of endometriosis are timely needed. Moreover, understanding the interactive roles of these EDCs in the pathogenesis of endometriosis will help regulate the exposure to these EDCs in reproductive age women.
Collapse
Affiliation(s)
- Sudipta Dutta
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA.
| | - Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA.
| |
Collapse
|
43
|
Huang H, Liang J, Tang P, Yu C, Fan H, Liao Q, Long J, Pan D, Zeng X, Liu S, Huang D, Qiu X. Associations of bisphenol exposure with thyroid hormones in pregnant women: a prospective birth cohort study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87170-87183. [PMID: 35802331 DOI: 10.1007/s11356-022-21817-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols are endocrine disruptor chemicals that disrupt thyroid hormone homeostasis. However, evidence on the effects of bisphenol mixtures on thyroid hormones are insufficient. Therefore, the present study aimed to explore the effects of bisphenol substitutes and bisphenol mixtures on thyroid hormones during pregnancy. The study was conducted among 446 pregnant women in the Guangxi Zhuang Birth Cohort (GZBC), China. In multiple linear regressions, compared with the low-exposure group, bisphenol S (BPS) concentrations in the middle-exposure group led to a 10.90% (95% CI: - 18.16%, - 2.99%) decrease in triiodothyronine (T3) levels in the first trimester; tetrabromobisphenol A (TBBPA) levels in the middle-exposure group led to an 8.26% (95% CI: - 15.82%, - 0.01%) decrease in T3 levels in the first trimester; bisphenol B (BPB) levels in the middle-exposure group led to higher free thyroxine (FT4) levels (9.84%; 95% CI: 1.73%, 18.60%) in the second trimester; bisphenol F (BPF) in the middle-exposure group led to higher FT4 levels (8.59%, 95% CI: 0.53%, 17.31%) in the second trimester; and TBBPA levels in the high-exposure group led to a 9.39% (95% CI: 1.46%, 17.93%) increase in FT4 levels in the second trimester. The Bayesian kernel machine regression (BKMR) and restricted cubic spline (RCS) models showed a U-shaped dose-response relationship between bisphenol A (BPA) and free triiodothyronine (FT3) (p < 0.01) as well as BPS and FT4 (p < 0.05). Nonlinear relationships were also observed between the bisphenol mixture and FT3. Overall, maternal bisphenol exposure affected thyroid hormone levels during pregnancy. This study provides evidence that BPB, BPF, BPS, and TBBPA are unsafe substitutes for BPA, as well as the overall effect of bisphenols on adverse health in human beings.
Collapse
Affiliation(s)
- Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chuanxiang Yu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Haoran Fan
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jinghua Long
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
44
|
Ghafoor S, Abbasi MH, Khawar MB, Tayyeb A, Saleem T, Ashfaq I, Sheikh N. Bisphenol S induced dysregulations in liver; iron regulatory genes and inflammatory mediators in male Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83711-83722. [PMID: 35771333 DOI: 10.1007/s11356-022-21672-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS), an analog of bisphenol A (BPA), has been frequently detected in consumer products, food wrappers, plastics, and thermal papers. Since the liver is a hub of metabolic and detoxification pathways, thus intimately related to BPS presence in the environment and body. The current study was designed to investigate the effects of BPS administration in an animal model. Twenty-five male Wistar rats weighing 175 ± 25 g were randomly divided into control and treated groups. The control group was further divided into group I (no treatment) and group II (corn oil), whereas the treatment group was divided into D-I (40 mg/kg/day), D-II (200 mg/kg/day), and D-III (400 mg/kg/day) groups, getting oral doses of BPS for 15 days. Data analysis showed a significant statistical increase in hepatic enzymes ALT (33.4%), AST (25.4%), and ALP (529.6%) in the D-III group along with the development of hypercholesterolemia and hypertriglyceridemia in all BPS groups. Aberrant mRNA expressions of some key hepatic iron regulatory genes and inflammatory mediators were evident through qRT-PCR. Bisphenol S caused congestion of central vein from mild to moderate in hepatic sections. In conclusion, our investigation insinuates BPS intoxication potential and therefore may not be a safe alternative to BPA.
Collapse
Affiliation(s)
- Shazia Ghafoor
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Q-A-Campus, Lahore, 54590, Pakistan
| | | | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences (SBS), University of the Punjab, Q-A-Campus, Lahore, 54590, Pakistan
| | - Tayyaba Saleem
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Q-A-Campus, Lahore, 54590, Pakistan
| | - Isbah Ashfaq
- School of Biological Sciences (SBS), University of the Punjab, Q-A-Campus, Lahore, 54590, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Q-A-Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
45
|
Yu H, Zhang J, Chen Y, Chen J, Qiu Y, Zhao Y, Li H, Xia S, Chen S, Zhu J. The adverse effects of fluxapyroxad on the neurodevelopment of zebrafish embryos. CHEMOSPHERE 2022; 307:135751. [PMID: 35863420 DOI: 10.1016/j.chemosphere.2022.135751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Fluxapyroxad (Flu), one of the succinate dehydrogenase-inhibited (SDHI) fungicides, has been extensively used in crop fungal disease control. Despite its increasing use in modern agriculture and long-term retention in the environment, the potentially toxic effects of Flu in vivo, especially on neurodevelopment, remain under-evaluated. In this study, zebrafish embryos were exposed to Flu at concentrations of 0.5, 0.75, and 1 mg/L for 96 h to evaluate the neurotoxicity of Flu. The results showed that Flu caused concentration-dependent malformations, including shorter body length, smaller head and eyes, and yolk sac edema. After exposure to Flu, larval zebrafish exhibited severe motor aberrations. Flu at a concentration of 1 mg/L significantly decreased dopamine level and notably altered acetylcholinesterase (AChE) activity and acetylcholine (ACh) content. Abnormal central nervous system (CNS) neurogenesis and disordered motor neuron development were observed in Tg (HUC-GFP) and Tg (hb9-GFP) zebrafish in Flu-treated groups. The expression of key genes involved in neurotransmission and neurodevelopment further proved that Flu impaired the zebrafish nervous system. This work contributes to our understanding of the neurotoxic effects and mechanisms induced by Flu in zebrafish and may help us take precautions against the neurotoxicity of Flu.
Collapse
Affiliation(s)
- Huilin Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yinghong Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Juan Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yang Qiu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yan Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Honghao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shengyao Xia
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Jiajin Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
46
|
Guan R, Luan F, Li N, Qiu Z, Liu W, Cui Z, Zhao C, Li X. Identification of molecular initiating events and key events leading to endocrine disrupting effects of PFOA: Integrated molecular dynamic, transcriptomic, and proteomic analyses. CHEMOSPHERE 2022; 307:135881. [PMID: 35926748 DOI: 10.1016/j.chemosphere.2022.135881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) can rapidly activate signaling pathways independent of nuclear hormone receptors through membrane receptor regulation, which leads to endocrine disrupting effects. In the present work, the molecular initiating event (MIE) and the key events (KEs) which cause the endocrine disrupting effects of PFOA have been explored and determined based on molecular dynamics simulation (MD), fluorescence analysis, transcriptomics, and proteomics. MD modeling and fluorescence analysis proved that, on binding to the G protein-coupled estrogen receptor-1 (GPER), PFOA could induce a conformational change in the receptor, turning it into an active state. The results also indicated that the binding to GPER was the MIE that led to the adverse outcome (AO) of PFOA. In addition, the downstream signal transduction pathways of GPER, as regulated by PFOA, were further investigated through genomics and proteomics to identify the KEs leading to thr endocrine disrupting effects. Two pathways (Endocrine resistance, ERP and Estrogen signaling pathway, ESP) containing GPER were regulated by different concentration of PFOA and identified as the KEs. The knowledge of MIE, KEs, and AO of PFOA is necessary to understand the links between PFOA and the possible pathways that lead to its negative effects.
Collapse
Affiliation(s)
- Ruining Guan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Ningqi Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhiqiang Qiu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wencheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zeyang Cui
- School of Information Science & Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Xin Li
- Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
47
|
Yang R, Liu S, Yin N, Zhang Y, Faiola F. Tox21-Based Comparative Analyses for the Identification of Potential Toxic Effects of Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14668-14679. [PMID: 36178254 DOI: 10.1021/acs.est.2c04467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemical pollution has become a prominent environmental problem. In recent years, quantitative high-throughput screening (qHTS) assays have been developed for the fast assessment of chemicals' toxic effects. Toxicology in the 21st Century (Tox21) is a well-known and continuously developing qHTS project. Recent reports utilizing Tox21 data have mainly focused on setting up mathematical models for in vivo toxicity predictions, with less attention to intuitive qHTS data visualization. In this study, we attempted to reveal and summarize the toxic effects of environmental pollutants by analyzing and visualizing Tox21 qHTS data. Via PubMed text mining, toxicity/structure clustering, and manual classification, we detected a total of 158 chemicals of environmental concern (COECs) from the Tox21 library that we classified into 13 COEC groups based on structure and activity similarities. By visualizing these COEC groups' bioactivities, we demonstrated that COECs frequently displayed androgen and progesterone antagonistic effects, xenobiotic receptor agonistic roles, and mitochondrial toxicity. We also revealed many other potential targets of the 13 COEC groups, which were not well illustrated yet, and that current Tox21 assays may not correctly classify known teratogens. In conclusion, we provide a feasible method to intuitively understand qHTS data.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, U.K
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Li M, Gong J, Ge L, Gao H, Yang J, Yang C, Kang J, Fang Y, Xu H. Development of human retinal organoid models for bisphenol toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114094. [PMID: 36126549 DOI: 10.1016/j.ecoenv.2022.114094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols, including Bisphenol A (BPA), Tetrabromobisphenol A (TBBPA), and Tetrabromobisphenol S (TBBPS), have been widely applied in the production of polycarbonate plastics and epoxy resins and have been detected in the environment worldwide. The frequent detection of bisphenols in maternal and fetal samples has raised concerns about their toxic effects on human embryonic development, especially on the development of the central nervous system. However, the effect of bisphenols on human retinal development is still unknown. In this study, to evaluate the toxicity of bisphenols on early retinal development, human embryonic stem cells were induced to differentiate into retinal organoids that responded to BPA, TBBPA, and TBBPS, at human exposure relevant concentrations. The global gene expression of retinal organoids was analyzed by RNA sequencing (RNA-seq). A set of retinal development-related biological processes, including neuron differentiation, phototransduction, axon guidance, and retina layer formation, were identified in retinal organoids corresponding to different developmental stages. The RNA-seq data also showed that BPA, TBBPA, and TBBPS influenced retinal development by interfering with the Cytokine-cytokine receptor interaction pathway. HSPA6, HIF1A-AS3, CDC20B, IL19, OAS1, HSPA7, and RN7SK were dysregulated by these chemicals. Additionally, BPA, TBBPA, and TBBPS exhibited different toxic effects on neural retina development, with TBBPA appearing to exert more toxicity than BPA and TBBPS. Furthermore, three bisphenols exhibited different effects at different stages of neural retina development. The sensitivity of retinal development to bisphenols depends on their developmental stage. This study provides new insights into the deep dissection of retinotoxicity after prenatal bisphenol exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Junling Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yajie Fang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
49
|
Seebacher F. Interactive effects of anthropogenic environmental drivers on endocrine responses in wildlife. Mol Cell Endocrinol 2022; 556:111737. [PMID: 35931299 DOI: 10.1016/j.mce.2022.111737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Anthropogenic activity has created unique environmental drivers, which may interact to produce unexpected effects. My aim was to conduct a systematic review of the interactive effects of anthropogenic drivers on endocrine responses in non-human animals. The interaction between temperature and light can disrupt reproduction and growth by impacting gonadotropins, thyroid hormones, melatonin, and growth hormone. Temperature and endocrine disrupting compounds (EDCs) interact to modify reproduction with differential effects across generations. The combined effects of light and EDCs can be anxiogenic, so that light-at-night could increase anxiety in wildlife. Light and noise increase glucocorticoid release by themselves, and together can modify interactions between individuals and their environment. The literature detailing interactions between drivers is relatively sparse and there is a need to extend research to a broader range of taxa and interactions. I suggest that incorporating endocrine responses into Adverse Outcome Pathways would be beneficial to improve predictions of environmental effects.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
50
|
Shi Y, Chen C, Wu X, Han Z, Zhang S, Chen K, Qiu X. Exposure to amitriptyline induces persistent gut damages and dysbiosis of the gut microbiota in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109417. [PMID: 35872240 DOI: 10.1016/j.cbpc.2022.109417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Amitriptyline (AMI), the most commonly prescribed tricyclic antidepressant, is widely detected in water environments. Exposure to AMI may lead to diverse adverse effects on aquatic organisms, but little is known about the effect of short-term exposure to AMI on the gut microbiota of aquatic organisms and their recovery characteristics. In the present study, adult zebrafish (Danio rerio) were exposed to AMI (0, 2.5, 10, and 40 μg/L) for seven days, and then allowed to recover in AMI-free culture water for 21 days. The exposure caused gut damages in all the AMI treated groups of zebrafish, which became more severe after recovery compared to the control group. AMI exposure also disturbed the microbiota of zebrafish guts and rearing water even after the 21-day recovery period. Furthermore, AMI exposure affected microbes involved in the substance and energy metabolic functions in zebrafish guts and tended to increase the abundance of microbial genera associated with opportunistic pathogens. In addition, the microbial predicted metabolic functions in AMI-exposed guts of zebrafish were significantly altered after the 21-day recovery period, explaining the persistent effects of short-term exposure to AMI. The results of this study suggest that acute exposure to AMI may have persistent impacts on the gut histomorphology and the gut microbiota in aquatic organisms.
Collapse
Affiliation(s)
- Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanshuo Zhang
- Henan Division GRG Metrology and Test Co., Ltd, Zhengzhou 450001, China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|