1
|
Carpanez TG, Castro LMC, Amaral MCS, Moreira VR. Occurrence and environmental consequences of microplastics and nanoplastics from agricultural reuse of wastewater and biosolids in the soil ecosystem: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179538. [PMID: 40306078 DOI: 10.1016/j.scitotenv.2025.179538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/23/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
The contamination of soil and groundwater ecosystems by plastic particles (micro- and nanoplastics) was discussed, focusing on wastewater and biosolids recycled into agricultural soils. The impact of these contaminants was critically examined. Livestock (average: 18; min.: 8 - max.: 42 MP/L) and municipal (average: 2226; min: 0.08 - máx: 31,400 MP/L) wastewater, vinasse, and biosolids (>30,000 MP/L) from wastewater treatment plants are the most frequently reported in the literature for their nutritional potential in agricultural reuse. However, aside from municipal wastewater and biosolids, plastic particles in these other matrices are still largely unexplored, posing a potential threat to soil quality due to the limited understanding of their contribution to soil contamination. The particles accumulate in deeper layers, altering the hydraulic conductivity, fertility, organic matter availability, greenhouse gas emissions, and soil fauna and microorganisms. Nanoplastics have a more pronounced impact than microplastics and represent a greater threat. Due to their vertical mobility, nanoplastics have a greater capacity to accumulate in deep layers, including in groundwater. Different from what is observed for microplastics, current detection and quantification methodologies for nanoplastics are broad and nonspecific. It currently considers extensive size ranges (0-5000 μm), making it difficult to accurately identify these compounds, highlighting the need for more suitable methods for detecting nanoplastics. Given the recognized impacts on soil, it is essential to advance studies to ensure the benefits of reusing wastewater and organic soil amendments while effectively eliminating plastic particles from these matrices to prevent critical contamination scenarios.
Collapse
Affiliation(s)
- Thais Girardi Carpanez
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, MG, Brazil
| | - Livia Maira Carneiro Castro
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, MG, Brazil
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, MG, Brazil
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| |
Collapse
|
2
|
Li Z, Wang X, Huang Y, Yang X, Wang R, Zhang M. Increasing the Proportion of Broadleaf Species in Mixed Conifer-Broadleaf Forests Improves Understory Plant Composition and Promotes Soil Carbon Fixation. PLANTS (BASEL, SWITZERLAND) 2025; 14:1392. [PMID: 40364421 PMCID: PMC12073394 DOI: 10.3390/plants14091392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/29/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
Understory vegetation is an important component of forest ecosystems, and the supply of nutrients in the soil is related to the growth and development of soil microorganisms and understory plants. The effects of different tree species composition ratios in the forest on the process of soil microbial community assembly are not clear in the existing studies, and the factors influencing the differences in the abundance of understory plants under different forest canopy compositions and their mechanisms of action have not yet been clearly explained. In this study, two types of pure forests (PFP and PFQ) and two types of mixed forests (MF and MPQ) were selected from the Zhongcun Forestry, and the soil characteristics, soil microbial community assembly process, and understory plant community abundance, composition, and β-diversity were analyzed for the different forest types. The results showed that changes in the proportion of broadleaf and coniferous species in the forest could lead to changes in the community assembly process of soil fungi, and that the fungal assembly process in the mixed forest was mainly related to dispersal limitation. Compared with pure forests that were exclusively coniferous or exclusively broadleaf, mixed coniferous and broadleaf forests had a higher abundance of understory plants and a more stable forest community composition. In mixed forests, forests with a large proportion of broadleaf arbors had more available resources in the soil, soil pH was closer to neutral, and soil C was less likely to be lost compared to forests with a large proportion of conifers.
Collapse
Affiliation(s)
| | | | | | | | | | - Mengtao Zhang
- College of Forestry, Shanxi Agriculture University, Jinzhong 030801, China; (Z.L.); (X.W.); (Y.H.); (X.Y.); (R.W.)
| |
Collapse
|
3
|
Chen Y, Cao D, Li X, Jia X, Shi Y, Cai Y. Interactive effects of soil dissolved organic matter (DOM) and Per- and polyfluoroalkyl substances on contaminated soil site: DOM molecular-level perspective. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137372. [PMID: 39874753 DOI: 10.1016/j.jhazmat.2025.137372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Dissolved organic matter (DOM), as the most active soil component, plays a crucial role in regulating the transport of contaminants. Per- and polyfluoroalkyl substances (PFAS) have been found to be widespread contaminants in the soil environment, and their migration would be also affected by DOM. Herein, the surface and subsurface soil samples collected from two PFAS manufacturing factories were studied for the variation characteristics of DOM under PFAS contamination, and the interaction between DOM and PFAS in soil was further explored. The results showed that PFAS contamination significantly reduced the richness of surface soil DOM. For the specific DOM components, the potential transformation of DOM in subsurface soil indicates that the presence of PFAS promotes the transformation of other DOM components to PA compounds. Moreover, a strong positive relationship was observed between the concentration of most perfluoroalkyl sulfonic acids (PFSAs) and the average unsaturation (DBE) and aromaticity index (AImod) of DOM, while no such relationship for perfluoroalkyl carboxylic acids (PFCAs), suggesting DBE and AImod may be a potential contributor influencing the distribution and transport of PFSAs. These findings highlight the interaction between DOM and the PFAS in the soil environment, which may enhance our understanding of the release and fate of PFAS in the soil environment.
Collapse
Affiliation(s)
- Yuhang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaotong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Zhang S, Wang Y, Sheng M, Chen X, Zhang Z, Li S, Qin Y, Fu P, Wang F. Decreased stability of soil dissolved organic matter under disturbance of periodic flooding and drying in reservoir drawdown area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178973. [PMID: 40024040 DOI: 10.1016/j.scitotenv.2025.178973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Dissolved organic matter (DOM) constitutes the largest active carbon pool on earth, playing a crucial role in numerous biogeochemical processes. Understanding the molecular characteristics and chemical properties of DOM is essential for comprehending the global carbon cycle. However, there is a lack of systematic understanding regarding the influence of periodic flooding and drying, caused by reservoir operations, on the sources, characteristics and stability of soil DOM in the drawdown area, as well as the biotic and abiotic processes regulating DOM changes. This study employs Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and 16S rRNA sequencing to investigate the variations in molecular and compound composition of soil DOM at different elevations in the drawdown area of the Three Gorges Reservoir, and their associations with microbial communities. The results indicate that with the increasing duration of flooding, the proportion of easily degradable DOM gradually increases in the drawdown area soils, while the proportion of refractory DOM decreases. Periodic flooding and drying enhance the microbial authigenic components of DOM, reduce the plant-derived DOM components, and significantly decrease the stability, aromaticity, and unsaturation of soil DOM. Soil DOM engages in the biogeochemical processes of the drawdown area ecosystem through coupled changes with bacteria and archaea, and changes in soil DOM result in variations in microbial necromass carbon and lignin phenol content at different elevations. The findings are significant for deepening the understanding of the biogeochemical processes involving soil DOM in drawdown areas.
Collapse
Affiliation(s)
- Shengman Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Yuchun Wang
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ming Sheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ziyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shanze Li
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yong Qin
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Wang J, Qu L, Osterholz H, Qi Y, Zeng X, Bai E, Wang C. Effects of DOM Chemodiversity on Microbial Diversity in Forest Soils on a Continental Scale. GLOBAL CHANGE BIOLOGY 2025; 31:e70131. [PMID: 40084578 DOI: 10.1111/gcb.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Soil dissolved organic matter (DOM) is a critical reservoir of carbon and nutrients in forest ecosystems, playing a central role in carbon cycling and microbial community dynamics. However, the influence of DOM molecular-level diversity (chemodiversity) on microbial community diversity and spatial distribution remains poorly understood. In this study, we used Fourier transform ion cyclotron resonance mass spectrometry and high-throughput sequencing to analyze soil DOM and microbial diversity along a ~4,000 km forest transect in China. We found that soil DOM chemodiversity varies significantly across sites, initially increasing and then decreasing with latitude. Additionally, we observed that the biogeographic distribution of DOM components has differential effects on bacterial and fungal diversity: lipid-like compounds are strongly associated with bacterial diversity, while aromatic-, carbohydrate-, and lipid-like compounds primarily influence fungal diversity. Linear models and structural equation modeling both reveal that DOM acts as a key intermediary, mediating the effects of temperature and soil properties on microbial spatial distribution. Our findings emphasize the importance of DOM molecular characteristics in shaping microbial community structure and functioning, providing new insights into how environmental factors influence microbial ecosystems and soil carbon cycles in forest ecosystems.
Collapse
Affiliation(s)
- Jian Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Lingrui Qu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Helena Osterholz
- Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Xiangfeng Zeng
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Chao Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Zhang SY, Liu ZT, Zhao XD, Gao ZY, Jiang O, Li J, Li X, Kappler A, Xu J, Tang X. Lignin and Peptide Promote the Abundance and Activity of Arsenic Methylation Microbes in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2541-2553. [PMID: 39885735 DOI: 10.1021/acs.est.4c10809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Rice physiological straighthead disease is induced by microbially mediated arsenic methylation and usually regionally distributed in paddy soils. However, the biogeochemical mechanism underlying the geographic distribution of microbial communities harboring methylating genes (arsM) remains unclear. Herein, we revealed significant (p = 0.001) differences in the arsM communities in different regions of Chinese paddy soils at the continental scale. Moreover, a positive correlation between the diversity of arsM communities and the chemodiversity of soil dissolved organic matter (DOM) was revealed. Among the different DOM components, lignin- and peptide-like DOM are the most important DOM components impacting the abundance and diversity of arsM communities. Metatranscriptomic analyses of 18 selected paddy soil samples revealed that the expression of the arsM gene increased with increasing soil lignin and peptide contents. Compared with the control, the addition of lignin and peptide significantly (p < 0.05) increased the methylated As concentration in the incubated paddy soils. Communities harboring arsM genes belonging to the phyla Chloroflexota, Verrucomicrobiota, Deltaproteobacteria, Thermodesulfobacteriota, and Ignavibacteriota mostly dominated in paddy soils with relatively high lignin and peptide contents. This study highlights the correlation between the diversity of DOM and arsM communities in paddy soils and provides mechanistic information for soil arsenic contamination control and sustainable rice production.
Collapse
Affiliation(s)
- Si-Yu Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zi-Teng Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xin-Di Zhao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zi-Yu Gao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ouyuan Jiang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoming Li
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Andreas Kappler
- Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianjin Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Cheng L, Lian J, Wang X, Munir MAM, Huang X, He Z, Xu C, Tong W, Yang X. Evaluating a Soil Amendment for Cadmium Mitigation and Enhanced Nutritional Quality in Faba Bean Genotypes: Implications for Food Safety. PLANTS (BASEL, SWITZERLAND) 2025; 14:141. [PMID: 39795401 PMCID: PMC11723064 DOI: 10.3390/plants14010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Soil amendments combined with low cadmium (Cd)-accumulating crops are commonly used for remediating Cd contamination and ensuring food safety. However, the combined effects of soil amendments and the cultivation of faba beans (Vicia faba L.)-known for their high nutritional quality and low Cd accumulation-in moderately Cd-contaminated soils remain underexplored. This study investigates the impact of a soil amendment (SA) on agronomic traits, seed nutrition, and Cd accumulation in 11 faba bean genotypes grown in acidic soil (1.3 mg·kg-1 Cd, pH 5.39). The SA treatment increased soil pH to 6.0 (an 11.31% increase) and reduced DTPA-Cd by 37.1%. Although the average yield of faba beans decreased marginally by 8.74%, it remained within the 10% national permissible limit. Notably, SA treatment reduced Cd concentration in seeds by 60% and significantly mitigated Mn and Al toxicity. Additionally, SA treatment enhanced levels of essential macronutrients (Ca, Mg, P, S) and micronutrients (Mo, Cu) while lowering Phytate (Phy)/Ca, Phy/Mg, and Phy/P ratios, thus improving mineral nutrient bioavailability. Among the genotypes, F3, F5, and F6 showed the most favorable balance of nutrient quality, and yield following SA application. This study provides valuable insights into the effectiveness of SA for nutrient fortification and Cd contamination mitigation in Cd-contaminated farmland.
Collapse
Affiliation(s)
- Liping Cheng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning 530004, China
| | - Xin Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| | - Mehr Ahmed Mujtaba Munir
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| | - Xiwei Huang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| | - Zhenli He
- Department of Soil, Water and Ecosystem Sciences, Indian River Research and Education Center, University of Florida—IFAS, Fort Pierce, FL 34945, USA;
| | - Chengjian Xu
- Qujiang District Agricultural Technology Extension Center, Quzhou 324022, China;
| | - Wenbin Tong
- Qujiang District Agricultural Technology Extension Center, Quzhou 324022, China;
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| |
Collapse
|
8
|
Chen Z, Zhang Y, Yang B, Fan S, Li L, Yang P, Zhang W. Revealing the interplay of dissolved organic matters variation with microbial symbiotic network in lime-treated sludge landscaping. ENVIRONMENTAL RESEARCH 2024; 263:120216. [PMID: 39442659 DOI: 10.1016/j.envres.2024.120216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Lime pretreatment is commonly used for sludge hygienization. Appropriate lime dosage is crucial for achieving both sludge stabilization (lime dosage >0.2 g/g-TS) and promoting plant and soil health during subsequent landscaping (lime dosage <0.8 g/g-TS). While much research has been conducted on sludge lime treatment, few studies have examined the effects of lime dosing on integrating sludge stabilization and plant growth promotion during landscaping. In this study, we investigated microbial dynamics and dissolved organic matter (DOM) transformation during sludge landscaping with five lime dosage gradients (0, 0.2, 0.4, 0.6, 0.8 g lime/g-TS) over 90 days. Our results showed that a lime dosage of 0.4 g/g-TS is the lower threshold for achieving waste activated sludge (WAS) stabilization during landscaping, leading to maximum humic substance formation and minimal phytotoxicity. Specifically, at 0.4 g/g-TS lime dosage, protein degradation and decarboxylation-induced humification were significantly enhanced. The predominant microbial genera shifted from Aromatoleum to Exiguobacterium and Romboutsia (both affiliated with the phylum Firmicutes). Reactomics analysis further indicated that a 0.4 g/g-TS lime dosage promoted the hydrolysis of proteins (lyase reactions on C-C, C-O, and C-N bonds), amino acid metabolism, and decarboxylation-induced humification (e.g., C1H2O2, C2H4O2, C5H4O2, C6H4O2). The co-occurrence network analysis suggested that the phyla Firmicutes, Proteobacteria, and Bacteroidetes were key players in DOM transformation. This study provides an in-depth understanding of microbe-mediated DOM transformation during sludge landscaping and identifies the optimal lime dosage for improving sludge landscaping efficiency.
Collapse
Affiliation(s)
- Zexu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Boyuan Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Sen Fan
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Lanfeng Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, Jilin, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
9
|
Han Y, Qu C, Hu X, Sun P, Kang J, Cai P, Rong X, Chen W, Huang Q. Responses of various organic carbon pools to elevated temperatures in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176836. [PMID: 39419229 DOI: 10.1016/j.scitotenv.2024.176836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Soil organic carbon (SOC) and its composition may be vulnerable to the effects of microbial degradation and various environmental stresses. Hitherto, the responses of various SOC pools to warming have rarely been explored. In this study, an incubation experiment was performed with top soils (0-20 cm) from Alfisol and Ultisol at three temperatures (15, 30 and 45 °C). Warming significantly decreased the contents of SOC, particulate organic carbon (POC), mineral associated organic carbon (MAOC) and iron bound organic carbon (Fe-OC) to different degrees. However, the proportion of MAOC and Fe-OC to SOC increased by 3.6-13.3 % and 3.8-7.3 %, respectively, with rising temperature, suggesting that the temperature response of MAOC and especially Fe-OC mineralization is lower than other SOC pools. From the analysis of the Fe-OC structure by various spectroscopic techniques, it was found that elevated temperature increased the proportion of aromatic C but decreased that of aliphatic C to Fe-OC. Soil pH, identified as the most important environmental variable for controlling Fe-OC chemical structure by Mantel test, exhibited a significant negative correlation with aliphatic Fe-OC and positive correlation with aromatic Fe-OC. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy affirmed the higher binding strength of aromatic C with Fe oxides than aliphatic C in both soils. In addition, elevated temperature induced the increase and decrease of K-strategy bacteria and r-strategy bacteria, respectively, indicating warming slowed the bacterial growth, which could produce less necromass carbon for the association of Fe oxides and caused the decrease in Fe-OC. In summary, warming-induced changes in pH and microbial community structure can lead to a decrease in Fe-OC content, whereas the increased proportions confirmed that Fe-OC remains the most stable OC pool facing with short-term soil warming. These findings are helpful for better understanding the importance of soil minerals, especially Fe oxides, in the regulation of soil C sequestration under the context of climate change.
Collapse
Affiliation(s)
- Yafeng Han
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiping Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Pan Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Kang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingmin Rong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| |
Collapse
|
10
|
Dai L, Li J, Zhang J, Li X, Liu T, Yu Q, Tao S, Zhou M, Hou H. The Pb capture mechanism of soil prophylactic agents prepared from phosphorus tailings and the influence of phosphorus speciation on its slow-release mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176996. [PMID: 39454789 DOI: 10.1016/j.scitotenv.2024.176996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
This research activated phosphorus tailings to prepare a high‑phosphorus core (HPC) for multi-species composite slow-release heavy metal soil prophylactic agents (MCP), aiming to extend the slow-release period of MCP and enhance the efficiency of Pb stabilization. During the preparation of HPC, the proportion of non-apatitic inorganic phosphorus (NAIP) and apatite phosphorus (AP) continuously decreased with increasing polymerization temperature. At 400 °C, polyphosphates (PP) began to form, reaching 74.26 % at 600 °C. Initially, the rapidly soluble NAIP remained the major component of HPC, but the proportion of AP increased with higher polymerization temperatures, reaching 40.8 % at 600 °C. After 120 days of cultivation with four MCPs (MCP 300-21, MCP 400-12, MCP 500-14, MCP 600-14), the total soil phosphorus (TSP), soil organic matter (SOM), and Pb stabilization capacity of the cultivated soil showed significant improvements, reaching maximum values of 2.39 mg/g, 38.16 mg/g, and 45.4 mg/g, respectively, which are 9.9, 4.4, and 5.9 times higher than those of the CK soil. KEGG (Kyoto Encyclopedia of Genes and Genomes) functional prediction analysis indicated that MCPs contribute directly or indirectly to the forms and chemical stability of Pb by stimulating soil physiological and biochemical processes. This research proposes a novel approach for using phosphates in soil heavy metal management strategies and provides new insights into the mechanisms of heavy metal stabilization in soil using environmental functional materials.
Collapse
Affiliation(s)
- Luming Dai
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Jiahao Li
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing 526200, Guangdong, China.
| | - Jiaxing Zhang
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Xuli Li
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tong Liu
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Qinqin Yu
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Shaoyang Tao
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Min Zhou
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Haobo Hou
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing 526200, Guangdong, China.
| |
Collapse
|
11
|
Liu Y, Chen X, Leng Y, Wang S, Liu H, Zhang W, Li W, Li N, Ning Z, Gao W, Fan C, Wu X, Zhang M, Li Q, Chen M. Molecular-level insight into the effect of fertilization regimes on the chemodiversity of dissolved organic matter in tropical cropland. ENVIRONMENTAL RESEARCH 2024; 262:119903. [PMID: 39245311 DOI: 10.1016/j.envres.2024.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Fertilization is a critical agronomic measure for croplands in tropical regions, owing to their low fertility. However, the effects of fertilization on the quantity and chemodiversity of latosolic dissolved organic matter (DOM) in tropical regions remain largely unknown. Therefore, in this study, the variations in latosol DOM concentrations and chemodiversity induced by inorganic fertilization and the co-application of inorganic fertilization with straw return, sheep manure, biochar, and vermicompost fertilizers at a molecular level were systematically investigated using multispectral techniques and ultrahigh-resolution mass spectrometry. In line with our expectations, the results showed that combined inorganic-organic fertilization improved soil quality by increasing soil organic carbon content compared to that under inorganic fertilization. However, as the most active and bioavailable organic carbon pool, dissolved organic carbonconcentrations between the fertilization treatments were not significantly different (p = 0.07). However, the dissolved organic carbon concentrations under combined inorganic-organic fertilization treatment (NPK plus straw return, 263.45 ± 37.51 mg/kg) were lower than those under inorganic fertilization treatment (282.10 ± 18.57 mg/kg). Spectral analysis showed that the DOM in the combined inorganic-organic fertilization treatments had a higher degree of humification and lower autogenetic contributions. Furthermore, Fourier transform ion cyclotron resonance mass spectrometry analysis indicated that the combined inorganic-organic fertilization increased the chemodiversity of latosolic DOM and promoted the production of large, oxidized, and stable molecules, including lignin, aromatic, and tannin compounds, which potentially benefits soil carbon sequestration in tropical regions. This study could provide a theoretical basis for elucidating on the potentially relevant ecological functions and environmental effects of DOM under fertilization regimes.
Collapse
Affiliation(s)
- Yuqin Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xin Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Youfeng Leng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Shuchang Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Huiran Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Wen Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Wei Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Ning Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Ziyu Ning
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Wenlong Gao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Changhua Fan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Xiaolong Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Miao Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China.
| |
Collapse
|
12
|
Ma J, Zhang Z, Sun J, Li T, Fu Z, Hu R, Zhang Y. Effects of Increasing the Nitrogen-Phosphorus Ratio on the Structure and Function of the Soil Microbial Community in the Yellow River Delta. Microorganisms 2024; 12:2419. [PMID: 39770622 PMCID: PMC11677714 DOI: 10.3390/microorganisms12122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Nitrogen (N) deposition from human activities leads to an imbalance in the N and phosphorus (P) ratios of natural ecosystems, which has a series of negative impacts on ecosystems. In this study, we used 16s rRNA sequencing technology to investigate the effect of the N-P supply ratio on the bulk soil (BS) and rhizosphere soil (RS) bacterial community of halophytes in coastal wetlands through manipulated field experiments. The response of soil bacterial communities to changing N and P ratios was influenced by plants. The N:P ratio increased the α-diversity of the RS bacterial community and changed the structure of the BS bacterial community. P addition may increase the threshold, causing decreased α-diversity of the bacterial community. The co-occurrence network of the RS community is more complex, but it is more fragile than that of BS. The co-occurrence network in BS has more modules and fewer network hubs. The increased N:P ratio can increase chemoheterotrophy and denitrification processes in the RS bacterial community, while the N:P ratio can decrease the N-fixing processes and increase the nitration processes. The response of the BS and the RS bacterial community to the N:P ratio differed, as influenced by soil organic carbon (SOC) content in terms of diversity, community composition, mutualistic networks, and functional composition. This study demonstrates that the effect of the N:P ratio on soil bacterial community is different for plant roots and emphasizes the role of plant roots in shaping soil bacterial community during environmental change.
Collapse
Affiliation(s)
- Jinzhao Ma
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| | - Zehao Zhang
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
- Institute of Restoration Ecology, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Jingkuan Sun
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Tian Li
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| | - Zhanyong Fu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| | - Rui Hu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| | - Yao Zhang
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| |
Collapse
|
13
|
Chang N, Chen L, Wang N, Cui Q, Qiu T, Zhao S, He H, Zeng Y, Dai W, Duan C, Fang L. Unveiling the impacts of microplastic pollution on soil health: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175643. [PMID: 39173746 DOI: 10.1016/j.scitotenv.2024.175643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Soil contamination by microplastics (MPs) has emerged as a significant global concern. Although traditionally associated with crop production, contemporary understanding of soil health has expanded to include a broader range of factors, including animal safety, microbial diversity, ecological functions, and human health protection. This paradigm shifts underscores the imperative need for a comprehensive assessment of the effects of MPs on soil health. Through an investigation of various soil health indicators, this review endeavors to fill existing knowledge gaps, drawing insights from recent studies conducted between 2021 and 2024, to elucidate how MPs may disrupt soil ecosystems and compromise their crucial functions. This review provides a thorough analysis of the processes leading to MP contamination in soil environments and highlights film residues as major contributors to agricultural soils. MPs entering the soil detrimentally affect crop productivity by hindering growth and other physiological processes. Moreover, MPs hinder the survival, growth, and reproductive rates of the soil fauna, posing potential health risks. Additionally, a systematic evaluation of the impact of MPs on soil microbes and nutrient cycling highlights the diverse repercussions of MP contamination. Moreover, within soil-plant systems, MPs interact with other pollutants, resulting in combined pollution. For example, MPs contain oxygen-containing functional groups on their surfaces that form high-affinity hydrogen bonds with other pollutants, leading to prolonged persistence in the soil environment thereby increasing the risk to soil health. In conclusion, we succinctly summarize the current research challenges related to the mediating effects of MPs on soil health and suggest promising directions for future studies. Addressing these challenges and adopting interdisciplinary approaches will advance our understanding of the intricate interplay between MPs and soil ecosystems, thereby providing evidence-based strategies for mitigating their adverse effects.
Collapse
Affiliation(s)
- Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Wei Dai
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Chengjiao Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
14
|
Zhou D, Luo Y, Luo Y, He Y, Chen Y, Wan Z, Wu Y. Chemodiversity of dissolved organic matter and its association with the bacterial community at a zinc smelting slag site after 10 years of direct revegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175322. [PMID: 39111427 DOI: 10.1016/j.scitotenv.2024.175322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/14/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Dissolved organic matter (DOM) plays a critical role in driving the development of biogeochemical functions in revegetated metal smelting slag sites, laying a fundamental basis for their sustainable rehabilitation. However, the DOM composition at the molecular level and its interaction with the microbial community in such sites undergoing long-term direct revegetation remain poorly understood. This study investigated the chemodiversity of DOM and its association with the bacterial community in the rhizosphere and non-rhizosphere slags of four plant species (Arundo donax, Broussonetia papyrifera, Cryptomeria fortunei, and Robinia pseudoacacia) planted at a zinc smelting slag site for 10 years. The results indicated that the relative abundance of lipids decreased from 18 % to 5 %, while the relative abundance of tannins and lignins/CRAM-like substances increased from 4 % to 10 % and from 44 % to 64 % in the revegetated slags, respectively. The chemical stability of the organic matter in the rhizosphere slag increased due to the retention of recalcitrant DOM components, such as lignins, aromatics, and tannins. As the diversity and relative abundance of the bacterial community increased, particularly within the Proteobacteria, there was better utilization of recalcitrant components (e.g., lignins/CRAM-like compounds), but this utilization was not invariable. In addition, potential preference associations between specific bacterial OTUs and DOM molecules were observed, possibly stimulated by heavy metal bioavailability. Network analysis revealed complex connectivity and strong interactions between the bacterial community and DOM molecules. These specific interactions between DOM molecules and the bacterial community enable adaptation to the harsh conditions of the slag environment. Overall, these findings provide novel insights into the transformation of DOM chemodiversity at the molecular level at a zinc smelting slag sites undergoing long-term revegetation. This knowledge could serve as a crucial foundation for developing direct revegetation strategies for the sustainable rehabilitation of metal smelting slag sites.
Collapse
Affiliation(s)
- Dongran Zhou
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Youfa Luo
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang 550025, China.
| | - Yang Luo
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yu He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yulu Chen
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zuyan Wan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Zhang W, Ma T, Lu J, Zhu J, Ren T, Cong R, Lu Z, Zhang Y, Li X. Long-term rice-crayfish farming alters soil dissolved organic carbon quality and biodegradability by regulating microbial metabolism and iron oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122777. [PMID: 39368381 DOI: 10.1016/j.jenvman.2024.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/23/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
The biodegradability of dissolved organic carbon (DOC) is a crucial process in the migration and transformation of soil organic carbon (SOC), and play a vital role in the global soil carbon (C) cycle. Although the significance of DOC in SOC transportation and microbial utilization is widely acknowledged, the impact of long-term rice-crayfish (RC) farming on the content, quality, and biodegradability of DOC in paddy soils, as well as regulatory mechanisms involved, remains unclear. To address this gap, a space-for-time method was employed to investigate the effects of different RC farming durations (1-, 5-, 10-, 15-, and 20- years) on the quality and biodegradability of DOC, as well as their relationship with soil microbial metabolism and minerals in this study. The results revealed that continuous RC farming increased the soil DOC content, but reduced DOC biodegradability. Specifically, after 20 years of continuous RC farming, the DOC content increased by 52.7% compared to the initial year, whereas the DOC biodegradability decreased by 63.4%. Analysis using three-dimensional fluorescence and ultraviolet spectroscopy demonstrated that continuous RC farming resulted in a decrease in the relative abundance of humus-like fractions, humification, and aromaticity indexes in DOC, but increased the relative abundance of protein-like fractions, biological, and fluorescence index, indicating that long-term RC farming promoted the simple depolymerization of the molecular structure of DOC. Continuous RC farming increased the activity of hydrolase involved in soil nitrogen (N) and phosphorus (P) cycles and oxidase, but decreasing the hydrolase C/N and C/P acquisition ratios; moreover, it also stimulated an increase in soil iron oxides and exchangeable calcium content. Structural equation modeling suggests that soil hydrolases and iron oxides are the primary drivers of DOC quality change, with DOC biodegradability being driven solely by soil iron oxides and not regulated by DOC quality. In conclusion, long-term RC farming promotes the catalytic decomposition of DOC aromatic substances and the production of DOC protein-like components by increasing soil oxidase activity and decreasing the hydrolase C/N acquisition ratio; these processes collectively contribute to the simple depolymerization of DOC molecular structure. Additionally, long-term RC farming induced legacy effects of soil iron oxides and enhanced chemical protection role leading to reduced DOC biodegradability. These findings suggested that long-term RC farming may reduce the rapid turnover and loss of DOC, providing a negative feedback on climate warming.
Collapse
Affiliation(s)
- Wanyang Zhang
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tianqiao Ma
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jun Zhu
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tao Ren
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Rihuan Cong
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhifeng Lu
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yangyang Zhang
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaokun Li
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Shuangshui Shuanglv Institute, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Zheng W, Fan X, Chen H, Ye M, Yin C, Wu C, Liang Y. The response patterns of r- and K-strategist bacteria to long-term organic and inorganic fertilization regimes within the microbial food web are closely linked to rice production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173681. [PMID: 38844210 DOI: 10.1016/j.scitotenv.2024.173681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Soil microbial food web is crucial for maintaining crop production, while its community structure varies among fertilization regimes. Currently, the mechanistic understanding of the relationships between microbial food web and crop production under various nutrient fertilizations is poor. This knowledge gap limits our capacity to achieve precision agriculture for ensuring yield stability. In this study, we investigated the abiotic (i.e., soil chemical properties) and biotic factors (i.e., microbial food web, including bacteria, fungi, archaea and nematodes) that were closely associated with rice (Oryza sativa L.) production, using soils from seven fertilization regimes in distinct sampling locations (i.e., bulk vs rhizosphere soil) at a long-term experimental site. Organic manure alone fertilization (M) and integrated fertilization (NPKM) combining manure with inorganic fertilizers increased soil pH by 0.21-0.41 units and organic carbon content by 49.1 %-65.2 % relative to the non-fertilization (CK), which was distinct with inorganic fertilization. The principal coordinate analysis (PCoA) revealed that soil microbial and nematode communities were primarily shaped by fertilization rather than sampling locations. Organic fertilization (M, NPKM) increased the relative abundance of both r-strategist bacteria, specific taxa within the fungal (i.e., Pezizales) and nematode communities (i.e., omnivores-predators), whereas inorganic fertilization increased K-strategist bacteria abundances relative to the CK. Correspondingly, network analysis showed that the keystone taxa in the amplicon sequence variants (ASVs) enriched by organic manure and inorganic fertilization were mainly affiliated with r- and K-strategist bacteria, respectively. Structural equation modeling (SEM) analysis found that r- and K-strategist bacteria were positively correlated with rice production under organic and inorganic fertilization, respectively. Our results demonstrate that the response patterns of r/K-strategists to nutrient fertilization largely regulate rice yield, suggesting that the enhanced soil fertility and r-strategists contribute to the highest crop production in NPKM fertilization.
Collapse
Affiliation(s)
- Wanning Zheng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoping Fan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Chen
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mujun Ye
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chang Yin
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunyan Wu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Peng Y, Niu L, Hu Y, Huo C, Shi J, Fan Z, Yan Y, Zhang Z, Wang X. Long-term effects of nitrogen and phosphorus fertilization on profile distribution and characteristics of dissolved organic matter in fluvo-aquic soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121834. [PMID: 39003911 DOI: 10.1016/j.jenvman.2024.121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Dissolved organic matter (DOM) drives numerous biogeochemical processes (e.g. carbon cycling) in agro-ecosystems and is sensitive to fertilization management. Nevertheless, changes in the quantity and quality of DOM in the vertical soil profile following long-term continuous nitrogen (N) and phosphorus (P) inputs remain unclear. In this study, the contents and optical characteristics of DOM along a 2-m soil profile were investigated using a 40-year wheat/maize rotation combined with experiments using different N and P fertilization rates in the North China Plain. The results revealed that the dissolved organic carbon (DOC) content decreased with an increase in soil depths. Compared with that in the control (no fertilization), 40-year N, P, and N + P additions increased the soil DOC content by 26%-69%, except for 270-kg N, and 67.5-kg P treatments. N + P application resulted in higher DOC contents than N-alone and P-alone applications. N, P, and N + P inputs increased or did not affect the aromaticity and hydrophobicity of DOM at 0-40 cm but reduced them from 40 to 200 cm. Compared with that in the control, N, P, and N + P inputs enhanced the content of humic acid-like substances (C1+C2+C3+C4) and decreased the content of protein-like substance (C5). C1 was the dominant component among the five DOM, representing the microbial humic component. Optical indices also indicated that soil DOM primarily originated from microbial sources. Nutrient addition accelerated transformation between complex C1 and simple C5 via promoting microbial activities. These results imply that N and P fertilizers increased the DOM content and altered its composition, thereby potentially affecting the stability of soil organic matter in the agroe-cosystems.
Collapse
Affiliation(s)
- Yumei Peng
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingan Niu
- Qu Zhou Experimental Station, China Agricultural University, Quzhou, Hebei, 057250, China
| | - Yalei Hu
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chunpeng Huo
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia Shi
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhongmin Fan
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuxin Yan
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ziyun Zhang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiang Wang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Yang X, Zhang S, Wu D, Huang Y, Zhang L, Liu K, Wu H, Guo S, Zhang W. Recalcitrant components accumulation in dissolved organic matter decreases microbial metabolic quotient of red soil under long-term manuring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173287. [PMID: 38776786 DOI: 10.1016/j.scitotenv.2024.173287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Microbial metabolism is closely related to soil carbon dioxide emissions, which in turn is related to environmental issues such as global warming. Dissolved organic matter (DOM) affects many fundamental biogeochemical processes such as microbial metabolism involved in soil carbon cycle, not only directly by its availability, but also indirectly by its chemodiversity. However, the association between the DOM chemodiversity and bioavailability remains unclear. To address this knowledge gap, soils from two agro-ecological experimental sites subjected to various long-term fertilizations in subtropical area was collected. The chemodiversity of DOM was detected by multi-spectroscopic techniques including ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy and excitation emission matrices fluorescence spectroscopy. Results showed that long-term manure amendments significantly decreased microbial metabolic quotient (qCO2) by up to 57%. We also observed that long-term manure amendments significantly increased recalcitrant components of DOM (indicated by the aromaticity, humification index, the ratio of aromatic carbon to aliphatic carbon, and the relative abundances of humic-like components) and decreased labile components of DOM. Negatively correlation between the qCO2 and the proportion of recalcitrant components of DOM supported that accumulation in recalcitrant components of DOM increased microbial carbon utilization efficiency. Random forest models also showed the highest contribution of the relative abundances of humic-like components and the aromaticity of DOM in affecting qCO2. Both of the redundancy analysis and structural equation modeling further indicated the decisive role of soil pH in influencing the DOM chemodiversity. Soil pH explained 56.7% of the variation in the chemodiversity of DOM. The accumulation of recalcitrant components in DOM with increasing soil pH might be attributed to the accelerated microbial consumption of bioavailability components and/or to the negative impact on the solubility of bioavailability components. Overall, this research highlights the significance of long-term manure amendments in regulating qCO2 by altering the chemodiversity of soil DOM.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Dong Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yaping Huang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hengyang Red Soil Experimental Station of Chinese Academy of Agricultural Sciences/Qiyang Farmland Ecosystem National Observation and Research Station, Qiyang, Hunan 426182, China
| | - Kailou Liu
- Jiangxi Institute of Red Soil and Germplasm Resources, Jinxian, Jiangxi 331717, China
| | - Huiqiao Wu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Shengli Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenju Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
19
|
Zhou C, Gao Q, Tigabu M, Wang S, Cao S, Yu Y. Continuous planting of Chinese fir monocultures significantly influences dissolved organic matter content and microbial assembly processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171943. [PMID: 38527546 DOI: 10.1016/j.scitotenv.2024.171943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Monoculture plantations in China, characterized by the continuous cultivation of a single species, pose challenges to timber accumulation and understory biodiversity, raising concerns about sustainability. This study investigated the impact of continuous monoculture plantings of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) on soil properties, dissolved organic matter (DOM), and microorganisms over multiple generations. Soil samples from first to fourth-generation plantations were analyzed for basic chemical properties, DOM composition using Fourier transform ion cyclotron resonance mass spectrometry, and microorganisms via high-throughput sequencing. Results revealed a significant decline in nitrate nitrogen content with successive rotations, accompanied by an increase in easily degradable compounds like carbohydrates, aliphatic/proteins, tannins, Carbon, Hydrogen, Oxygen and Nitrogen- (CHON) and Carbon, Hydrogen, Oxygen and Sulfur- (CHOS) containing compounds. However, the recalcitrant compounds, such as lignin and carboxyl-rich alicyclic molecules (CRAMs), condensed aromatics and Carbon, Hydrogen and Oxygen- (CHO) containing compounds decreased. Microorganism diversity, abundance, and structure decreased with successive plantations, affecting the ecological niche breadth of fungal communities. Bacterial communities were strongly influenced by DOM composition, particularly lignin/CRAMs and tannins. Continuous monoculture led to reduced soil nitrate, lignin/CRAMs, and compromised soil quality, altering chemical properties and DOM composition, influencing microbial community assembly. This shift increased easily degraded DOM, accelerating soil carbon and nitrogen cycling, ultimately reducing soil carbon sequestration. From environmental point of view, the study emphasizes the importance of sustainable soil management practices in continuous monoculture systems. Particularly the findings offer valuable insights for addressing challenges associated with monoculture plantations and promoting long-term ecological sustainability.
Collapse
Affiliation(s)
- Chuifan Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Qianian Gao
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mulualem Tigabu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuzhen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Sheng Cao
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanchun Yu
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
20
|
Yang S, Wang K, Yu X, Xu Y, Ye H, Bai M, Zhao L, Sun Y, Li X, Li Y. Fulvic acid more facilitated the soil electron transfer than humic acid. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134080. [PMID: 38522204 DOI: 10.1016/j.jhazmat.2024.134080] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Humus substances (HSs) participate in extracellular electron transfer (EET), which is unclear in heterogeneous soil. Here, a microbial electrochemical system (MES) was constructed to determine the effect of HSs, including humic acid, humin and fulvic acid, on soil electron transfer. The results showed that fulvic acid led to the optimal electron transfer efficiency in soil, as evidenced by the highest accumulated charges and removal of total petroleum hydrocarbons after 140 days, with increases of 161% and 30%, respectively, compared with those of the control. However, the performance of MES with the addition of humic acid and humin was comparable to that of the control. Fulvic acid amendment enhanced the carboxyl content and oxidative state of dissolved organic matter, endowing a better electron transfer capacity. Additionally, the presence of fulvic acid induced an increase in the abundance of electroactive bacteria and organic degraders, extracellular polymeric substances and functional enzymes such as cytochrome c and NADH synthesis, and the expression of m tr C gene, which is responsible for EET enhancement in soil. Overall, this study reveals the mechanism by which HSs stimulate soil electron transfer at the physicochemical and biological levels and provides basic support for the application of bioelectrochemical technology in soil.
Collapse
Affiliation(s)
- Side Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Kai Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xin Yu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Wang S, Liu T, Zhu E, He C, Shi Q, Feng X. Potential retention of dissolved organic matter by soil minerals during wetland water-table fluctuations. WATER RESEARCH 2024; 254:121412. [PMID: 38457944 DOI: 10.1016/j.watres.2024.121412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
Wetlands export large amounts of dissolved organic carbon (DOC) downstream, which is sensitive to water-table fluctuations (WTFs). While numerous studies have shown that WTFs may decrease wetland DOC via enhancing DOC biodegradation, an alternative pathway, i.e., retention of dissolved organic matter (DOM) by soil minerals, remains under-investigated. Here, we conducted a water-table manipulation experiment on intact soil columns collected from three wetlands with varying contents of reactive metals and clay to examine the potential retention of DOM by soil minerals during WTFs. Using batch sorption experiments and Fourier transform ion cyclotron resonance mass spectrometry, we showed that mineral (bentonite) sorption mainly retained lignin-, aromatic- and humic-like compounds (i.e., adsorbable compounds), in contrast to the preferential removal of protein- and carbohydrate-like compounds during biodegradation. Seven cycles of WTFs significantly decreased the intensity of adsorbable compounds in DOM (by 50 ± 21% based on fluorescence spectroscopy) and DOC adsorbability (by 2-20% and 1.9-12.7 mg L-1 based on batch sorption experiment), to a comparable extent compared with biodegradable compounds (by 11-32% and 1.6-15.2 mg L-1). Furthermore, oxidation of soil ferrous iron [Fe(II)] exerted a major control on the magnitude of potential DOM retention by minerals, while WTFs increased mineral-bound lignin phenols in the Zoige soil with the highest content of lignin phenols and Fe(II). Collectively, these results suggest that DOM retention by minerals likely played an important role in DOC decrease during WTFs, especially in soils with high contents of oxidizable Fe. Our findings support the 'iron gate' mechanism of soil carbon protection by newly-formed Fe (hydr)oxides during water-table decline, and highlight an underappreciated process (mineral-DOM interaction) leading to contrasting fate (i.e., preservation) of DOC in wetlands compared to biodegradation. Mineral retention of wetland DOC hence deserves more attention under changing climate and human activities.
Collapse
Affiliation(s)
- Simin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; China National Botanical Garden, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Group Environmental Remediation Co. Ltd., Beijing 100015, PR China
| | - Ting Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; China National Botanical Garden, Beijing 100093, PR China.
| | - Erxiong Zhu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; China National Botanical Garden, Beijing 100093, PR China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Xiaojuan Feng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; China National Botanical Garden, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
22
|
Wang M, Zhao J, Liu Y, Huang S, Zhao C, Jiang Z, Gu Y, Xiao J, Wu Y, Ying R, Zhang J, Tian W. Deciphering soil resistance and virulence gene risks in conventional and organic farming systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133788. [PMID: 38367443 DOI: 10.1016/j.jhazmat.2024.133788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Organic farming is a sustainable agricultural practice emphasizing natural inputs and ecological balance, and has garnered significant attention for its potential health and environmental benefits. However, a comprehensive evaluation of the emergent contaminants, particularly resistance and virulence genes within organic farming system, remains elusive. Here, a total of 36 soil samples from paired conventional and organic vegetable farms were collected from Jiangsu province, China. A systematic metagenomic approach was employed to investigate the prevalence, dispersal capability, pathogenic potential, and drivers of resistance and virulence genes across both organic and conventional systems. Our findings revealed a higher abundance of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) in organic farming system, with ARGs exhibiting a particularly notable increase of 10.76% compared to the conventional one. Pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Mycobacterium tuberculosis were hosts carrying all four gene categories, highlighting their potential health implications. The neutral community model captured 77.1% and 71.9% of the variance in community dynamics within the conventional and organic farming systems, respectively, indicating that stochastic process was the predominant factor shaping gene communities. The relative smaller m value calculated in organic farming system (0.021 vs 0.023) indicated diminished gene exchange with external sources. Moreover, farming practices were observed to influence the resistance and virulence gene landscape by modifying soil properties, managing heavy metal stress, and steering mobile genetic elements (MGEs) dynamics. The study offers insights that can guide agricultural strategies to address potential health and ecological concerns.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Sijie Huang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Caiyi Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Zhongkun Jiang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, Jiangsu, China
| | - Yongjing Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, Jiangsu, China
| | - Jian Xiao
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| | - Rongrong Ying
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| |
Collapse
|
23
|
Zhang L, Huang R, Ma Z, Li S, Ding J, Huang W, Liu C, Sui Y, Zhou J, Zhang J, Liang Y. Warming Leads to Changes in Soil Organic Carbon Molecules Due to Decreased Mineral Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7765-7773. [PMID: 38556742 DOI: 10.1021/acs.jafc.3c09657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Climate change affects the content and composition of soil organic carbon (SOC). However, warming-induced changes in the SOC compounds remain unknown. Using nuclear magnetic resonance spectroscopy, molecular mixing models, and Fourier transform ion cyclotron resonance mass spectrometry, we analyzed the variations and relationships in molecular compounds in Mollisol with 10-56 g C kg-1 soil-1 by translocating soils under six climate regimes. We found that increased temperature and precipitation were negatively correlated with carbohydrate versus lipid and lignin versus protein. The former was consistent across soils with varying SOC contents, but the latter decreased as the SOC content increased. The carbohydrate-lipid correlations were related to dithionite-citrate-extractable Fe, while the lignin-protein correlations were linked to changes in moisture and pyrophosphate-extractable Fe/Al. Our findings indicate that the reduction in the mineral protection of SOC is associated with molecular alterations in SOC under warming conditions.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilin Huang
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Zhiyuan Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Sen Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jixian Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weigen Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyang Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueyu Sui
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Harbin 150040, China
| | - Jizhong Zhou
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma 73069, United States
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Xiao S, Gao J, Wang Q, Huang Z, Zhuang G. SOC bioavailability significantly correlated with the microbial activity mediated by size fractionation and soil morphology in agricultural ecosystems. ENVIRONMENT INTERNATIONAL 2024; 186:108588. [PMID: 38527397 DOI: 10.1016/j.envint.2024.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Despite the fact that physical and chemical processes have been widely proposed to explicate the stabilization mechanisms of soil organic carbon (SOC), thebioavailability of SOC linked to soil physical structure, microbial community structure, and functional genes remains poorly understood. This study aims to investigate the SOC division based on bioavailability differences formed by physical isolation, and to clarify the relationships of SOC bioavailability with soil elements, pore characteristics, and microbial activity. Results revealed that soil element abundances such as SOC, TN, and DOC ranked in the same order as the soil porosity as clay > silt ≥ coarse sand > fine sand in both top and sub soil. In contrast to silt and clay, which had reduced SOC bioavailability, fine sand and coarse sand had dramatically enhanced SOC bioavailability compared to the bulk soil. The bacterial and fungal community structure was significantly influenced by particle size, porosity, and soil elements. Copiotrophic bacteria and functional genes were more prevalent in fine sand than clay, which also contained more oligotrophic bacteria. The SOC bioavailability was positively correlated with abundances of functional genes, C degradation genes, and copiotrophic bacteria, but negatively correlated with abundances of soil elements, porosity, oligotrophic bacteria, and microbial biomass (p < 0.05). This indicated that the soil physical structure divided SOC into pools with varying levels of bioavailability, with sand fractions having more bioavailable organic carbon than finer fractions. Copiotrophic Proteobacteria and oligotrophic Acidobacteria, Firmicutes, and Gemmatimonadetes made up the majority of the bacteria linked to SOC mineralization. Additionally, the fungi Mortierellomycota and Mucoromycota, which are mostly involved in SOC mineralization, may have the potential for oligotrophic metabolism. Our results indicated that particle-size fractionation could influence the SOC bioavailability by restricting SOC accessibility and microbial activity, thus having a significant impact on sustaining soil organic carbon reserves in temperate agricultural ecosystems, and provided a new research direction for organic carbon stability.
Collapse
Affiliation(s)
- Shujie Xiao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiuying Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixuan Huang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China; Sino-Danish Center for Education and Research, Beijing 101400, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Lv L, Huang H, Lv J, Xu X, Cao D, Rao Z, Geng F, Kang Y. Unique dissolved organic matter molecules and microbial communities in rhizosphere of three typical crop soils and their significant associations based on FT-ICR-MS and high-throughput sequencing analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170904. [PMID: 38354799 DOI: 10.1016/j.scitotenv.2024.170904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Using cucumber, maize, and ryegrass as model plants, the diversity and uniqueness of the molecular compositions of dissolved organic matter (DOM) and the structures of microbial communities in typical crop rhizosphere soils, as well as their associations, were investigated based on high-resolution mass spectrometry combined with high-throughput sequencing. The results showed that the rhizosphere contained 2200 organic molecules that were not identified in the non-rhizosphere soils, as characterized by FT-ICR-MS. The rhizosphere DOM molecules generally contained more N, S, and P heteroatoms, stronger hydrophilicity, and more refractory organic matter, representing high and complex chemical diversity characteristics. 16SrRNA sequencing results demonstrated that Proteobacteria, Actinomycetes and Firmicutes were the dominant flora in the soils. Plant species could significantly change the composition and relative abundance of rhizosphere microbial populations. The microbial community structures of rhizosphere and non-rhizosphere soils showed significant differences at both the phylum and class levels. Multiple interactions between the microorganisms and DOM compositions formed a complex network of relationships. There were strong and remarkable positive or negative couplings between different sizes and categories of DOM molecules and the specific microbial groups (P < 0.05, |R| ≥ 0.9) in the rhizosphere soils as shown by network profiles. The correlations between DOM molecules and microbial groups in rhizosphere soils had plant species specificity. The results above emphasized the relationship between the heterogeneity of DOM and the diversity of microbial communities, and explored the molecular mechanisms of the biochemical associations in typical plant rhizosphere soils, providing a foundation for in-depth understanding of plant-soil-microbe interactions.
Collapse
Affiliation(s)
- Lili Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; LMIB and School of Mathematical Sciences, Beihang University, Beijing 100191, China
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China.
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Xuehui Xu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Fanglan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Yuehui Kang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| |
Collapse
|
26
|
Liu C, Li L, Zhi Y, Chen J, Zuo Q, He Q. Molecular insight into the vertical migration and degradation of dissolved organic matter in riparian soil profiles. ENVIRONMENTAL RESEARCH 2024; 245:118013. [PMID: 38141915 DOI: 10.1016/j.envres.2023.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Due to the molecular complexity of dissolving organic matter (DOM), the vertical molecular distribution of riparian soil DOM (especially dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP)) in different land use types and their relationship with the bacterial community is still unclear. This study analyzed the spectral characteristics of riparian soil DOM from 0 to 100 cm in wild grassland, agricultural land, and bare land. The molecular distribution of DOM was revealed through Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and the specific relationship between DOM and bacterial community composition (BCC) was evaluated. The results showed that the DOM in the upper soil layer (0-40 cm) was mainly composed of recalcitrant macromolecular organics, while that in the lower layer (40-100 cm) was labile small molecular organics. In agricultural land, the total storage of DOM was lower than that in wild grassland, but with a higher abundance of recalcitrant organic carbon (lignin, etc.). At the same time, the bacterial community in agricultural land is shifting towards copiotrophs. In addition, the abundance of labile C degrading genes increases with nitrate as the main electron acceptor. However, sulfates are mainly used as electron acceptors in wild grasslands. Both DOP and DON were dominated by lignin and displayed higher chemical diversity in the upper soil. The bioavailability of DOP in three types of soil is higher than that of DON. DOM-BCC network analysis shows that the recalcitrant DON and DOP molecules in soil are positively correlated with phylum Actinobacteriota in agricultural land. These results emphasize that the DOM molecular characteristics were closely related to the function of the soil bacterial community.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Junyu Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qingyang Zuo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
27
|
Luo Y, He Y, Zhou D, Pan L, Wu Y. Organic amendment application affects the release behaviour, bioavailability, and speciation of heavy metals in zinc smelting slag: Insight into dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133105. [PMID: 38056253 DOI: 10.1016/j.jhazmat.2023.133105] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
Organic amendments are commonly used in assisted phytostabilization of mine wastes by improving their physicochemical and biological properties. These amendments are susceptible to leaching and degradation, resulting in the generation of dissolved organic matter (DOM), which significantly influences the geochemical behaviour of heavy metals (HMs). However, the geochemical behaviour of HMs in metal smelting slag driven by organic amendment-derived DOM remains unclear. In this study, we investigated the impact of cow manure-derived DOM on the release behaviour, bioavailability, and speciation of HMs (Cu, Pb, Zn, and Cd) in zinc smelting slag using a multidisciplinary approach. The results showed that DOM enhanced the weathering of the slag, with a minimal impact on the slag's mineral phases, except for causing gypsum dissolution. The DOM addition resulted in a slight increase in HM release from the slag during the initial inoculation period, followed by a reduction in HM release during the later period. Furthermore, the DOM addition increased the diversity and relative abundance of the bacterial community. This, in turn, led to a decrease in the dissolved organic carbon (DOC) content and enhanced the transformation of labile DOM compounds into recalcitrant compounds. The variation in HM release during various inoculation periods can be attributed to the bacterial decomposition and transformation of DOM, which further enhanced the transformation of HM fractions. Specifically, during the later period, DOM promoted the conversion of a portion of the reducible and oxidizable fractions of Cu, Pb, and Zn into the acid-soluble and residual fractions. Moreover, it partially transformed the reducible, oxidizable, and residual fractions of Cd into the acid-soluble fraction. Overall, this study provides new insights into the geochemical behaviour of HMs in slag governed by the coupling effect of DOM and the bacterial community. These findings have implications for the use of organic amendments in assisted phytostabilization of metal smelting slag. ENVIRONMENTAL IMPLICATION: Metal smelting slag is hazardous due to its high levels of HMs, and its improper disposal has serious consequences for the ecosystem. Organic amendments are employed in assisted phytostabilization of the slag site by improving its microecological properties. However, the impact of organic amendment-derived DOM on HM migration and transformation in slag remains unclear. This study indicated that the coupling effects of DOM and microbes governed the geochemical behaviour of HMs in slag. These findings provide new insights into how organic amendments impact the geochemical behaviour of HMs in slag, contributing to the development of phytostabilization technology.
Collapse
Affiliation(s)
- Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou, University, Guiyang 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang 550025, China.
| | - Yu He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Dongran Zhou
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Lishan Pan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou, University, Guiyang 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang 550025, China
| |
Collapse
|
28
|
Zeng K, Huang X, Dai C, He C, Chen H, Guo J, Xin G. Bacterial community regulation of soil organic matter molecular structure in heavy metal-rich mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133086. [PMID: 38035526 DOI: 10.1016/j.jhazmat.2023.133086] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Heavy metals (HMs) profoundly impact soil carbon storage potential primarily through soil carbon structure. The association between HM content and soil carbon structure in mangrove sediments remains unclear, likely due to the involvement of microorganisms. In this study, surface sediments in the Futian National Mangrove Nature Reserve were sampled to investigate the chemical structure of soil organic carbon (SOC), the molecular composition of dissolved organic matter (DOM), and potential interactions with microorganisms. HMs, except for Ni, were positively correlated with soil carbon. HMs significantly reduced the alkyl C/O-alkyl C ratio, aromaticity index, and aromatic C values, but increased the labile carboxy/amide C and carbonyl C ratio in SOC. HMs also increased DOM stability, as reflected by the reduced abundance of labile DOM (lipids and proteins) and increased proportion of stable DOM (tannins and condensed aromatics). Bacteria increased the decomposition of labile DOM components (unsaturated hydrocarbons) and the accumulation of stable DOM components (lignins) under HM enrichment. In addition, the association between the bacterial groups and DOM molecules was more robust than that with fungal groups, indicating bacteria had a more significant impact on DOM molecular composition. These findings help in understanding the molecular mechanisms of soil carbon storage in HM-rich mangroves.
Collapse
Affiliation(s)
- Kai Zeng
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Chuanshun Dai
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuntao He
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Junjie Guo
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
29
|
Deng W, Lu Y, Lyu M, Deng C, Li X, Jiang Y, Zhu H, Yang Y, Xie J. Chemical composition of soil carbon is governed by microbial diversity during understory fern removal in subtropical pine forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169904. [PMID: 38185157 DOI: 10.1016/j.scitotenv.2024.169904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Understory vegetation has an important impact on soil organic carbon (SOC) accumulation. However, little is known about how understory vegetation alters soil microbial community composition and how microbial diversity contributes to SOC chemical composition and persistence during subtropical forest restoration. In this study, removal treatments of an understory fern (Dicranopteris dichotoma) were carried out within pine (Pinus massoniana) plantations restored in different years in subtropical China. Soil microbial community composition and microbial diversity were measured using phospholipid fatty acids (PLFAs) biomarkers and high-throughput sequencing, respectively. The chemical composition of SOC was also measured via solid-state 13C nuclear magnetic resonance (13C NMR). Our results showed that fern removal decreased alkyl C by 4.2 % but increased O-alkyl C by 15.6 % on average, leading to a decline of alkyl C/O-alkyl C ratio, suggesting altered chemical composition of SOC and lowered SOC recalcitrance without fern. Fern removal significantly lowered the fungi-to-bacteria ratio, and it also reduced fungal and bacterial diversity. Partial correlation analysis revealed that soil nitrogen availability was a key factor influencing microbial diversity. Bacterial diversity showed a close relationship with the Alkyl C/O-alkyl C ratio following fern removal. Furthermore, the microbial community structure and bacterial diversity were responsible for 18 % and 55 % of the explained variance in the chemical composition of SOC, respectively. Taken together, these analyses jointly suggest that bacterial diversity exerts a greater role than microbial community structure in supporting SOC persistence during understory fern removal. Our study emphasizes the significance of understory ferns in supporting microbial abundance and diversity as a means of altering SOC persistence during subtropical forest restoration.
Collapse
Affiliation(s)
- Wei Deng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Yuming Lu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Maokui Lyu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China.
| | - Cui Deng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Xiaojie Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Yongmeng Jiang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Hongru Zhu
- Fujian Province Forestry Survey and Planning Institute, Fuzhou 350003, China
| | - Yusheng Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China
| | - Jinsheng Xie
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China.
| |
Collapse
|
30
|
Feng K, Xu X, Ke Q, Ding J, Zhao L, Qiu H, Cao X. Mineralogical transformation of arsenic at different copper smelting workshops: The impact on arsenic bioaccessibility. CHEMOSPHERE 2024; 352:141502. [PMID: 38382715 DOI: 10.1016/j.chemosphere.2024.141502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Soil arsenic (As) contamination associated with the demolition of smelting plants has received increasing attention. Soil As can source from different industrial processes, and also participate in soil weathering, making its speciation rather complex. This study combined the usage of chemical sequential extraction and advanced spectroscopic techniques, e.g., time of flight secondary ion mass spectrometry (ToF-SIMS), to investigate the mineralogical transformation of soil As at different processing sites from a typical copper smelting plant in China. Results showed that the stability of arsenic species decreased following the processes of storage, smelting, and flue gas treatment. Arsenic in the warehouse area was incorporated into pyrite (FeS2) as well as its secondary minerals such as jarosite (KFe3(SO4)2(OH)6). At the smelting area, a large proportion of As was adsorbed by iron oxides from smelting slags, while some As existed in stable forms like orpiment (As2S3). At the acid-making area, more than half of As was adsorbed on amorphous iron oxides, and some were adsorbed on the flue gas desulfurization gypsum. More importantly, over 86% of the As belonged to non-specifically and specifically adsorbed fractions was found to be bioaccessible, highlighting the gypsum-adsorbed As one of the most hazardous species in smelting plant soils. Our findings indicated the importance of iron oxides in As retention and suggested the potential health risk of gypsum-adsorbed As. Such detailed knowledge of As speciation and bioaccessibility is vital for the management and remediation of As-contaminated soils in smelting plants.
Collapse
Affiliation(s)
- Kanghong Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qiang Ke
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaxin Ding
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
31
|
Han B, Chen L, Xiao K, Liu Y, Cao D, Yu L, Li Y, Tao S, Liu W. Spatial heterogeneity and compositional profiles of dissolved organic matter in farmland soils across mainland China. J Environ Sci (China) 2024; 137:593-603. [PMID: 37980042 DOI: 10.1016/j.jes.2023.02.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 11/20/2023]
Abstract
Dissolved organic matter (DOM) plays an essential role in many geochemical processes, however its complexity, chemical diversity, and molecular composition are poorly understood. Soil samples were collected from 500 vegetable fields in administrative regions of mainland China, of which 122 were selected for further investigation. DOM properties were characterized by three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) (field intensity is 15 Tesla). Our results indicated that the main constituents were UVA humic-like substances, humic-like substances, fulvic acid-like substances, and tyrosine-like substances. A total of 10,989 molecular formulae with a mass range of 100.04 to 799.59 Da were detected, covering the mass spectrometric information of the soil samples from 27 different regions. CHO and CHON molecules were dominant in DOM, whereas lignin, tannins, and aromatic substances served as the main components. The results of cluster analysis revealed that the soil properties in Jiangxi Province were considerably different from those in other regions. The key backgrounds of the DOM molecular characteristics in the vegetable-field soil samples across mainland China were provided at the molecular level, with large abundance and great variability.
Collapse
Affiliation(s)
- Bingjun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Liyuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yang Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yujun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
32
|
He Y, Deng Q, Cao L, Luo C, Zhao W, Tao H, Chen L, Zhu Y, Zhang J, Mo X, Mi B, Wu F. Highly efficient Ni(II) adsorption by industrial lignin-based biochar: a pivotal role of dissolved substances within biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10874-10886. [PMID: 38212563 DOI: 10.1007/s11356-024-31889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
In the context of carbon neutrality, promoting resource utilization of industrial alkali lignin addressing heavy metal pollution is crucial for China's pollution alleviation and carbon reduction. Microwave pyrolysis produced functionalized biochar from industrial alkali lignin for Ni(II) adsorption. LB400 achieved 343.15 mg g-1 saturated adsorption capacity in 30 min. Pseudo-second-order kinetic and Temkin isotherm models accurately described the adsorption, which was endothermic and spontaneous (ΔGϴ < 0, ΔHϴ > 0). Quantitative analysis revealed that both dissolved substances and carbon skeleton from biochar contributed to adsorption, with the former predominates (93.76%), including mineral precipitation NiCO3 (Qp) and adsorption of dissolved organic matter (QDOM). Surface complexation (Qc) and ion exchange (Qi) on the carbon skeleton accounted for 6.3%. Higher biochar preparation temperature reduced Ni(II) adsorption by dissolved substances. Overall, biochar which comes from the advantageous disposal of industrial lignin effectively removes Ni(II) contamination, encouraging ecologically sound treatment of heavy metal pollution and sustainable resource utilization.
Collapse
Affiliation(s)
- Yanying He
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Qianyi Deng
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Liwen Cao
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Cheng Luo
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Wenjie Zhao
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Honglin Tao
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Long Chen
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Yule Zhu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Jing Zhang
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Xueying Mo
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Baobin Mi
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
- Research Institute of Vegetables, Hunan Academy of Agriculture Sciences, Changsha, 410125, China
| | - Fangfang Wu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
| |
Collapse
|
33
|
Chen C, Deng Y, Liu Q, Lai H, Zhang C. Effects of microplastics on cold seep sediment prokaryotic communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123008. [PMID: 38006990 DOI: 10.1016/j.envpol.2023.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Cold seep sediments are an important reservoir of microplastics (MPs) whose impact on the structure and function of prokaryotic community is not well understood. In this study, the impact of 0.2% and 1% (w/w) polyethylene (PE), polystyrene (PS), and polypropylene (PP) MPs on the cold seep sediment prokaryotic community was investigated in a 120-day laboratory incubation experiment. The results revealed that exposure to MPs altered sedimentary chemical properties in a type- and concentration-dependent manner. Furthermore, MPs significantly altered the structure of bacterial community, with some MPs degradation-associated bacterial phyla significantly increasing (p < 0.05). However, in the case of archaea, the changes in the structure of microbial community were less pronounced (p > 0.05). Co-occurrence network analysis revealed that the addition of MPs reduced the network complexity, while PICRUSt2 and FAPROTAX analyses suggested that 0.2% PP and 1% PS MPs had the most significant effects on the nitrogen and carbon cycles (p < 0.05). Overall, this study provides new insights into the effects of MPs on the structure and function of microbial communities in cold seep sediments.
Collapse
Affiliation(s)
- Chunlei Chen
- Institute of Marine Biology and pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Yinan Deng
- Guangzhou Marine Geological Survey, Guangzhou, 510075, Guangdong, China
| | - Qing Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, Guangxi, China
| | - Hongfei Lai
- Guangzhou Marine Geological Survey, Guangzhou, 510075, Guangdong, China
| | - Chunfang Zhang
- Institute of Marine Biology and pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
34
|
Han B, Chen L, Xiao K, Chen R, Cao D, Yu L, Li Y, Tao S, Liu W. Characteristics of dissolved organic matter (DOM) in Chinese farmland soils under different climate zone types: A molecular perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119695. [PMID: 38035506 DOI: 10.1016/j.jenvman.2023.119695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Interactions between dissolved organic matter (DOM) and surrounding environments are highly complex. Understanding DOM at the molecular level can contribute to the management of soil pollution and safeguarding agricultural fields. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has enabled a molecular-level understanding of DOM. Accordingly, in this study, we investigated soil samples from 27 different regions of mainland China with various soil types and climatic characteristics. Based on the geographical features of the four typical climatic zones in mainland China (temperate monsoon, temperate continental, subtropical monsoon, and Qinghai-Tibet Plateau climates), we employed high-resolution mass spectrometry to determine the molecular diversity of DOM under different climatic conditions. The results indicated that lignin and tannin-like substances were the most active categories of DOM in the soils. Collectively, the composition and unsaturation of DOM molecules are influenced by sunlight, precipitation, temperature, and human activity. All climatic regions contained a substantial number of characteristic molecules, with CHO and CHON constituting over 80%, and DOM containing nitrogen and sulfur was relatively more abundant in the monsoon regions. The complex composition of DOM incorporates various active functional groups, such as -NO2 and -ONO2. Furthermore, soil DOM in the monsoon regions showed higher unsaturation and facilitated various (bio) biochemical reactions in the soil.
Collapse
Affiliation(s)
- BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - RuYa Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang Province, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - YuJun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
35
|
Zuo S, Wu D, Du Z, Xu C, Tan Y, Bol R, Wu W. Mitigation of soil N 2O emissions by decomposed straw based on changes in dissolved organic matter and denitrifying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167148. [PMID: 37730058 DOI: 10.1016/j.scitotenv.2023.167148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/19/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
The return of decomposed straw represents a less explored potential option for reducing N2O emissions. However, the mechanisms underlying the effects of decomposed straw return on soil N2O mitigation are still not fully clear. Therefore, we used a helium atmosphere robotized continuous flow incubation system to compare the soil N2O and N2 emissions from four treatments: CK (control: no straw), WS (wheat straw), IWS (wheat straw decomposed with Irpex lacteus), and PWS (wheat straw decomposed with Phanerochaete chrysosporium). All the treatments have been fertilized with the same amount of KNO3. Furthermore, we also analyzed i) the chemodiversity of soil dissolved organic matter (DOM), ii) the nirS, nirK, and nosZ gene copies and relative abundances of denitrifying bacterial communities (DBCs), and iii) the specific linkages between N2O emissions and DOM and DBC. The results showed that the WS, IWS and PWS treatments increased N2O emissions compared to the CK treatment. However, applying decomposed straw to soil, especially straw treated with P. chrysosporium, effectively decreased the soil N2O and increased N2 emissions compared to WS and IWS. Moreover, the IWS and PWS treatments increased the CHO composition, but they decreased the CHON and CHOS compositions of heteroatomic compounds of DOM compared with the WS and CK treatments. Furthermore, the WS, IWS and PWS treatments all significantly increased the nirS and nosZ gene copies compared with the CK treatment. Additionally, compared with the other treatments, the PWS treatment significantly shaped the DBC and led to a higher relative abundance of Pseudomonas with nirS and nosZ genes. Meanwhile, Network analysis showed that the mitigation of N2O was closely related to particular DOM molecules, and specific DBC taxa. These results highlight the potential for decomposed straw amendments to mitigate of soil N2O emissions not only by changing soil DOM but also mediating the soil DBC.
Collapse
Affiliation(s)
- Sasa Zuo
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Di Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhangliu Du
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chuncheng Xu
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yuechen Tan
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor LL57 2UW, UK
| | - Wenliang Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
36
|
Lu S, Hao J, Yang H, Chen M, Lian J, Chen Y, Brown RW, Jones DL, Wan Z, Wang W, Chang W, Wu D. Earthworms mediate the influence of polyethylene (PE) and polylactic acid (PLA) microplastics on soil bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166959. [PMID: 37696400 DOI: 10.1016/j.scitotenv.2023.166959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
There is a growing body of evidence that suggests that both biodegradable and conventional (non-degradable) microplastics (MP) are hazardous to soil health by affecting the delivery of key ecological functions such as litter decomposition, nutrient cycling and water retention. Specifically, soil fauna may be harmed by the presence of MPs while also being involved in their disintegration, degradation, migration and transfer in soil. Therefore, a comprehensive understanding of the interactions between MPs and soil fauna is essential. Here, we conducted a 120-day soil microcosm experiment applying polyethylene (PE) and polylactic acid (PLA), in the absence/presence of the earthworm Eisenia nordenskioldi to estimate the relative singular and combined impact of MPs and earthworms on the soil bacterial community. Our findings revealed contrasting effects of PE and PLA on the composition and diversity of soil bacteria. All treatments affected the community and network structure of the soil bacterial community. Compared to the control (no MPs or earthworms), PE decreased bacterial alpha diversity, while PLA increased it. Patescibacteria were found to be significantly abundant in the PE group whereas Actinobacteria and Gemmatimonadetes were more abundant in PE, and PLA and earthworms groups. The presence of earthworms appeared to mediate the impact of PE/PLA on soil bacteria, potentially through bacterial consumption or by altering soil properties (e.g., pH, aeration, C availability). Earthworm presence also appeared to promote the chemical aging of PLA. Collectively, our results provide novel insights into the soil-fauna-driven impact of degradable/nondegradable MPs exposure on the long-term environmental risks associated with soil microorganisms.
Collapse
Affiliation(s)
- Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jiahua Hao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Hao Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Mengya Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yalan Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Robert W Brown
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Zhuoma Wan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Wei Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wenjin Chang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
37
|
Li T, Li P, Qin W, Wu M, Saleem M, Kuang L, Zhao S, Tian C, Li Z, Jiang J, Chen K, Wang B. Fertilization Weakens the Ecological Succession of Dissolved Organic Matter in Paddy Rice Rhizosphere Soil at the Molecular Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19782-19792. [PMID: 37966898 DOI: 10.1021/acs.est.3c05939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Dissolved organic matter (DOM) is involved in numerous biogeochemical processes, and understanding the ecological succession of DOM is crucial for predicting its response to farming (e.g., fertilization) practices. Although plentiful studies have examined how fertilization practice affects the content of soil DOM, it remains unknown how long-term fertilization drives the succession of soil DOM over temporal scales. Here, we investigated the succession of DOM in paddy rice rhizosphere soils subjected to different long-term fertilization treatments (CK: no fertilization; NPK: inorganic fertilization; OM: organic fertilization) along with plant growth. Our results demonstrated that long-term fertilization significantly promoted the molecular chemodiversity of DOM, but it weakened the correlation between DOM composition and plant development. Time-decay analysis indicated that the DOM composition had a shorter halving time under CK treatment (94.7 days), compared to NPK (337.4 days) and OM (223.8 days) treatments, reflecting a lower molecular turnover rate of DOM under fertilization. Moreover, plant development significantly affected the assembly process of DOM only under CK, not under NPK and OM treatments. Taken together, our results demonstrated that long-term fertilization, especially inorganic fertilization, greatly weakens the ecological succession of DOM in the plant rhizosphere, which has a profound implication for understanding the complex plant-DOM interactions.
Collapse
Affiliation(s)
- Ting Li
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfa Li
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wei Qin
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, Alabama 36104, United States
| | - Lu Kuang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baozhan Wang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
38
|
Zhang M, Wang S, Zhang L, Li W, Cao M, Huang S, Xu X, He P, Zhou W, Philippot L, Ai C. Microbial ecological clusters structured by environments drive maize residue decomposition at the continental scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166092. [PMID: 37558068 DOI: 10.1016/j.scitotenv.2023.166092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Environmental factors (e.g., climate and edaphic factors) indirectly regulate residue decomposition via microbial communities. Microbial ecological clusters (eco-clusters) structured by specific environmental factors have consequences for ecosystem functions. However, less is known about how microbial eco-clusters affect residue decomposition, especially over broad geographic scales. We collected agricultural soils from adjacent pairs of upland and paddy fields along a latitudinal gradient from the cold-temperature zone to the tropical zone, and conducted a microcosm experiment with 13C-labelled maize residue to explore the continental pattern of maize residue-derived 13CO2 (RDC), and whether and how microbial eco-clusters drive and predict RDC. Results showed that RDC decreased with latitude in both upland and paddy fields. Further, we identified 21 well-defined eco-clusters according to microbial environmental preferences, which explained 51.15 % of the spatial variations in RDC. The eco-clusters of high-total annual precipitation (TAP), high-mean annual temperature (MAT), low-pH, and some low-nutrient-associated exerted a positive effect on RDC. These eco-clusters contained many taxa belonging to the Actinobacteriota, Firmicutes, and Sordariomycetes, and their relative abundance decreased with latitude. Upland soils displayed 2.40-fold of RDC over paddy soils. Low-pH and high-organic matter (OM) eco-clusters were found to be the most prominent predictors of RDC in upland and paddy fields, respectively. Finally, we constructed a continental atlas of RDC in both upland and paddy fields based on eco-clusters and high-resolution climate and soil data. Overall, our study provides important evidence that historical environment-shaped microbial eco-clusters can drive and predict residue decomposition, providing new insights into how environmental factors indirectly regulate residue decomposition.
Collapse
Affiliation(s)
- Meiling Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Shiyu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Liyu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wentao Li
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
| | - Mengmeng Cao
- Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuyu Huang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xinpeng Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ping He
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wei Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, 21000 Dijon, France
| | - Chao Ai
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
39
|
Zhou X, Ma A, Chen X, Zhang Q, Guo X, Zhuang G. Climate Warming-Driven Changes in the Molecular Composition of Soil Dissolved Organic Matter Across Depth: A Case Study on the Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16884-16894. [PMID: 37857299 DOI: 10.1021/acs.est.3c04899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Dissolved organic matter (DOM) is critical for soil carbon sequestration in terrestrial ecosystems. DOM molecular composition varies with soil depth. However, the spatial heterogeneity of depth-dependent DOM in response to climate warming remains unclear, especially in alpine ecosystems. In this study, the DOM of alpine meadow soil samples was characterized comprehensively by using spectroscopy and mass spectrometry, and open-top chambers (OTCs) were employed to simulate warming. It was found that climate warming had the greatest impact on the upper layer (0-30 cm), followed by the lower layer (60-80 cm), while the middle layer (30-60 cm) was the most stable among the three soil layers. The reasons for the obvious changes in DOM in the upper and lower layers of soil were further explained based on biotic and abiotic factors. Specifically, soil nutrients (NH4+-N, NO3--N, TC, and TP) affected the molecular composition of DOM in layer L1 (0-15 cm), while pH affected layer L5 (60-80 cm). Gemmatimonadetes, Proteobacteria, and Actinobacteria played important roles in the composition of DOM in the L5 layer (60-80 cm), while the dominant fungal groups affecting the DOM composition increased in the L1 layer (0-15 cm) under warming. In summary, this research has contributed to a deeper understanding of depth-dependent changes in DOM molecular composition in alpine ecosystems.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianke Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101400, China
- Sino-Danish Center for Education and Research, Beijing 101400, China
| | - Qinwei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Guo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Wang S, Heal KV, Zhang Q, Yu Y, Tigabu M, Huang S, Zhou C. Soil microbial community, dissolved organic matter and nutrient cycling interactions change along an elevation gradient in subtropical China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118793. [PMID: 37619380 DOI: 10.1016/j.jenvman.2023.118793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
To identify possible dominating processes involved in soil microbial community assembly, dissolved organic matter (DOM) and multi-nutrient cycling (MNC) interactions and contribute to understanding of climate change effects on these important cycles, we investigated the interaction of soil chemistry, DOM components and microbial communities in five vegetation zones - ranging from evergreen broad-leaved forest to alpine meadow - along an elevation gradient of 290-1960 m in the Wuyi Mountains, Fujian Province, China. Soil DOM composition and microbial community assembly were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and Illumina MiSeq high-throughput sequencing, respectively. Sloan's neutral model and the modified stochasticity ratio were used to infer community assembly processes. Key microbial drivers of the soil MNC index were identified from partial least squares path models. Our results showed that soil DOM composition is closely related to the vegetation types along an elevation gradient, the structure and composition of the microbial community, and soil nutrient status. Overall, values of the double bond equivalent (DBE), modified aromaticity index (AImod) increased, and H/C ratio and molecular lability boundary (MLBL) percentage decreased with elevation. Lignins/CRAM-like structures compounds dominated soil DOM in each vegetation type and its relative abundance decreased with elevation. Aliphatic/protein and lipids components also decreased, but the relative abundance of aromatic structures and tannin increased with elevation. The alpha diversity index of soil bacteria gradually decreased with elevation, with deterministic processes dominating the microbial community assembly in the highest elevation zone. Bacterial communities were conducive to the decomposition of labile degradable DOM compounds (H/C ≥ 1.5) at low elevation. In the cooler and wetter conditions at higher-elevation sites the relative abundance of potentially resistant soil DOM components (H/C < 1.5) gradually increased. Microbial community diversity and composition were important predictors of potential soil nutrient cycling. Although higher elevation sites have higher nutrient cycling potential, soil DOM was assessed to be a more stable carbon store, with apparent lower lability and bioavailability than at lower elevation sites. Overall, this study increases understanding of the potential linkage between soil microbial community, multiple nutrient cycling and DOM fate in subtropical mountain ecosystems that can help predict the effect of climate change on soil carbon sequestration and thus inform ecosystem management.
Collapse
Affiliation(s)
- Shuzhen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China; Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Kate V Heal
- School of GeoSciences, The University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Qin Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yuanchun Yu
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
| | - Mulualem Tigabu
- Swedish University of Agricultural Sciences, Faculty of Forest Science, Southern Swedish Forest Research Centre, P.O. Box 190, SE-234 22, Lomma, Sweden
| | - Shide Huang
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, 354315, Fujian Province, China
| | - Chuifan Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China; Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China.
| |
Collapse
|
41
|
Han R, Wang Z, Wang S, Sun G, Xiao Z, Hao Y, Nriagu J, Teng HH, Li G. A combined strategy to mitigate the accumulation of arsenic and cadmium in rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165226. [PMID: 37392888 DOI: 10.1016/j.scitotenv.2023.165226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Arsenic and cadmium in rice grain are of growing concern in the global food supply chain. Paradoxically, the two elements have contrasting behaviors in soils, making it difficult to develop a strategy that can concurrently reduce their uptake and accumulation by rice plant. This study examined the combined impacts of watering (irrigation) schemes, different fertilizers and microbial populations on the bioaccumulation of arsenic and cadmium by rice as well as on rice grain yield. Compared to drain-flood and flood-drain treatments, continuously flooded condition significantly reduced the accumulation of cadmium in rice plant but the level of arsenic in rice grain remained above 0.2 mg/kg, which exceeded the China national food safety standard. Application of different fertilizers under continuously flooded condition showed that compared to inorganic fertilizer and biochar, manure addition effectively reduced the accumulation of arsenic over three to four times in rice grain and both elements were below the food safety standard (0.2 mg/kg) while significantly increasing the rice yield. Soil Eh was the critical factor in the bioavailability of cadmium, while the behavior of arsenic in rhizosphere was associated with the iron cycle. The results of the multi-parametric experiments can be used as a roadmap for low-cost and in-situ approach for producing safe rice without compromising the yield.
Collapse
Affiliation(s)
- Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhe Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Shuqing Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Guoxin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zufei Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yilong Hao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - H Henry Teng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
42
|
Riboni N, Bianchi F, Mattarozzi M, Caldara M, Gullì M, Graziano S, Maestri E, Marmiroli N, Careri M. Ultra-high Performance Liquid Chromatography-Ion Mobility-High-Resolution Mass Spectrometry to Evaluate the Metabolomic Response of Durum Wheat to Sustainable Treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15407-15416. [PMID: 37796632 PMCID: PMC10591464 DOI: 10.1021/acs.jafc.3c04532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Sustainable agriculture aims at achieving a healthy food production while reducing the use of fertilizers and greenhouse gas emissions using biostimulants and soil amendments. Untargeted metabolomics by ultra-high performance liquid chromatography-ion mobility-high-resolution mass spectrometry, operating in a high-definition MSE mode, was applied to investigate the metabolome of durum wheat in response to sustainable treatments, i.e., the addition of biochar, commercial plant growth promoting microbes, and their combination. Partial least squares-discriminant analysis provided a good discrimination among treatments with sensitivity, specificity, and a non-error rate close to 1. A total of 88 and 45 discriminant compounds having biological, nutritional, and technological implications were tentatively identified in samples grown in 2020 and 2021. The addition of biochar-biostimulants produced the highest up-regulation of lipids and flavonoids, with the glycolipid desaturation being the most impacted pathway, whereas carbohydrates were mostly down-regulated. The findings achieved suggest the safe use of the combined biochar-biostimulant treatment for sustainable wheat cultivation.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
| | - Federica Bianchi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Center
for Energy and Environment (CIDEA), Centro Santa Elisabetta, University of Parma, Parco Area delle Scienze 95, 43124 Parma, Italy
| | - Monica Mattarozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Marina Caldara
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
| | - Mariolina Gullì
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Sara Graziano
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Elena Maestri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Centro
Santa Elisabetta, National Interuniversity
Center for Environmental Sciences (CINSA), Parco Area delle Scienze 95, 43124 Parma, Italy
| | - Maria Careri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| |
Collapse
|
43
|
He C, Yi Y, He D, Cai R, Chen C, Shi Q. Molecular composition of dissolved organic matter across diverse ecosystems: Preliminary implications for biogeochemical cycling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118559. [PMID: 37418915 DOI: 10.1016/j.jenvman.2023.118559] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been widely applied to characterize the molecular composition of dissolved organic matter (DOM) in different ecosystems. Most previous studies have explored the molecular composition of DOM focused on one or a few ecosystems, which prevents us from tracing the molecular composition of DOM from different sources and further exploring its biogeochemical cycling across ecosystems. In this study, a total of 67 DOM samples, including soil, lake, river, ocean, and groundwater, were analyzed by negative-ion electrospray ionization FT-ICR MS. Results show that molecular composition of DOM varies dramatically among diverse ecosystems. Specifically, the forest soil DOM exhibited the strongest terrestrial signature of molecules, while the seawater DOM showed the most abundant of biologically recalcitrant components, for example, the carboxyl-rich alicyclic molecules were abundant in the deep-sea waters. Terrigenous organic matter is gradually degraded during its transport along the river-estuary-ocean continuum. The saline lake DOM showed similar DOM characteristics with marine DOM, and sequestrated abundant recalcitrant DOM. By comparing these DOM extracts, we found that human activities likely lead to an increase in the content of S and N-containing heteroatoms in DOM, this phenomenon was commonly found in the paddy soil, polluted river, eutrophic lake, and acid mine drainage DOM samples. Overall, this study compared molecular composition of DOM extracted from various ecosystems, providing a preliminary comparison on the DOM fingerprint and an angle of view into biogeochemical cycling across different ecosystems. We thus advocate for the development of a comprehensive molecular fingerprint database of DOM using FT-ICR MS across a wider range of ecosystems. This will enable us to better understand the generalizability of the distinct features among ecosystems.
Collapse
Affiliation(s)
- Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Yuanbi Yi
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ding He
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
44
|
Zhang H, Ni J, Wei R, Chen W. Water-soluble organic carbon (WSOC) from vegetation fire and its differences from WSOC in natural media: Spectral comparison and self-organizing maps (SOM) classification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165180. [PMID: 37385508 DOI: 10.1016/j.scitotenv.2023.165180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Vegetation fire frequently occurs globally and produces two types of water-soluble organic carbon (WSOC) including black carbon WSOC (BC-WSOC) and smoke-WSOC, they will eventually enter the surface environment (soil and water) and participate in the eco-environmental processes on the earth surface. Exploring the unique features of BC-WSOC and smoke-WSOC is critical and fundamental for understanding their eco-environmental effects. Presently, their differences from the natural WSOC of soil and water remain unknown. This study produced various BC-WSOC and smoke-WSOC by simulating vegetation fire and used UV-vis, fluorescent EEM-PARAFAC, and fluorescent EEM-SOM to analyze their different features from natural WSOC of soil and water. The results showed that the maximum yield of smoke-WSOC reached about 6600 folds that of BC-WSOC after a vegetation fire event. The increasing burning temperature decreased the yield, molecular weight, polarity, and protein-like matters abundance of BC-WSOC and increased the aromaticity of BC-WSOC, but presented a negligible effect on the features of smoke-WSOC. Furthermore, compared with natural WSOC, BC-WSOC had a greater aromaticity, smaller molecular weight, and more humic-like matters, while smoke-WSOC had a lower aromaticity, smaller molecular size, higher polarity, and more protein-like matters. EEM-SOM analysis indicated that the ratio between the fluorescence intensity at Ex/Em: 275 nm/320 nm and the sum fluorescence intensity at Ex/Em: 275 nm/412 nm and Ex/Em: 310 nm/420 nm could effectively differentiate WSOC of different sources, following the order of smoke-WSOC (0.64-11.38) > water-WSOC and soil-WSOC (0.06-0.76) > BC-WSOC (0.0016-0.04). Hence, BC-WSOC and smoke-WSOC possibly directly alter the quantity, properties, and organic compositions of WSOC in soil and water. Owing to smoke-WSOC having far greater yield and bigger difference from natural WSOC than BC-WSOC, the eco-environmental effect of smoke-WSOC deposition should be given more attention after a vegetation fire.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
45
|
Sheng M, Chen S, Liu CQ, Fu Q, Zhang D, Hu W, Deng J, Wu L, Li P, Yan Z, Zhu YG, Fu P. Spatial and molecular variations in forest topsoil dissolved organic matter as revealed by FT-ICR mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165099. [PMID: 37379928 DOI: 10.1016/j.scitotenv.2023.165099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Forest soils cover about 30 % of the Earth's land surface and play a fundamental role in the global cycle of organic matter. Dissolved organic matter (DOM), the largest active pool of terrestrial carbon, is essential for soil development, microbial metabolism and nutrient cycling. However, forest soil DOM is a highly complex mixture of tens of thousands of individual compounds, which is largely composed of organic matter from primary producers, residues from microbial process and the corresponding chemical reactions. Therefore, we need a detailed picture of molecular composition in forest soil, especially the pattern of large-scale spatial distribution, which can help us understand the role of DOM in the carbon cycle. To explore the spatial and molecular variations of DOM in forest soil, we choose six major forest reserves located in different latitudes ranging in China, which were investigated by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). Results show that aromatic-like molecules are preferentially enriched in DOM at high latitude forest soils, while aliphatic/peptide-like, carbohydrate-like, and unsaturated hydrocarbon molecules are preferentially enriched in DOM at low latitude forest soils, besides, lignin-like compounds account for the highest proportion in all forest soil DOM. High latitude forest soils have higher aromatic equivalents and aromatic indices than low latitude forest soils, which suggest that organic matter at higher latitude forest soils preferentially contain plant-derived ingredients and are refractory to degradation while microbially derived carbon is dominant in organic matter at low latitudes. Besides, we found that CHO and CHON compounds make up the majority in all forest soil samples. Finally, we visualized the complexity and diversity of soil organic matter molecules through network analysis. Our study provides a molecular-level understanding of forest soil organic matter at large scales, which may contribute to the conservation and utilization of forest resources.
Collapse
Affiliation(s)
- Ming Sheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Shuang Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Qinglong Fu
- School of Environment Studies, China University of Geosciences, Wuhan 430074, China
| | - Donghuan Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Junjun Deng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Libin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Ping Li
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
46
|
Zhou H, Zhang M, Yang J, Wang J, Chen Y, Ye X. Returning ryegrass to continuous cropping soil improves soil nutrients and soil microbiome, producing good-quality flue-cured tobacco. Front Microbiol 2023; 14:1257924. [PMID: 37876786 PMCID: PMC10591219 DOI: 10.3389/fmicb.2023.1257924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
The widespread and continuous cultivation of tobacco has led to soil degradation and reduced crop yields and quality. Green manure is an essential organic fertilizer that alleviates obstacles to continuous cultivation. However, the plant-soil microecological effects of green manure on flue-cured tobacco cultivation remain unclear. Thus, a positioning trail including two treatments, chemical fertilizer application only (treatment NPK) and chemical fertilizer application with turning ryegrass (treatment NPKG) was conducted, and the effect of ryegrass returning on the soil physicochemical properties, soil microbiome, crop yield, and quality of flue-cured tobacco in continuous cropping soil were investigated. Results showed that returning ryegrass to the field increased the thickness of soil humus layer from 13 cm to 15 cm, reduced the humus layer soil bulk density to 1.29 cm3/g. Ryegrass tilled and returned to the field increased soil organic matter content by 6.89-7.92%, increased rhizosphere soil available phosphorus content by 2.22-17.96%, and converted the soil non-exchangeable potassium into potassium that was available for plant absorption and utilization. Ryegrass tilling and returning to the field increased the potassium content of middle leaves of flue-cured tobacco by 7.69-10.07%, the increased potassium content in flue-cured tobacco was accompanied by increased total sugar, reducing sugar, and the ratio of reducing sugar to nicotine, which facilitated the harmonization of the chemical composition of cured tobacco leaves. Moreover, the increased number of markedly improved operational taxonomic units enhanced the complexity of the soil bacterial community and its compactness after ryegrass tillage and their return to the field. The available potassium, available phosphorus, total potassium content, pH, and sampling period of the rhizosphere soil had considerable effects on the rhizosphere microbial. Ryegrass tilling and returning to the field changed the soil microbiome, which increased the abundance of bulk soil Proteobacteria, rhizosphere soil Fibrobacterota, and microbes with anti-pathogen activity (Lysobacteria, Sphingomonas, Chaetomium, and Minimedusa); and reduced the abundance of pathogenic fungi Neocosmospore genus in the soil. In brief, ryegrass returned to the field, improved soil microecology and restored soil nutrients, and established a new dynamic balance of soil ecology, thereby improving the quality of cultivated land and the quality of flue-cured tobacco.
Collapse
Affiliation(s)
- Hanjun Zhou
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Mingjie Zhang
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Jiahao Yang
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Jing Wang
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Yulu Chen
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Xiefeng Ye
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
47
|
He Y, Luo Y, Wei C, Long L, Wang C, Wu Y. Effects of dissolved organic matter derived from cow manure on heavy metal(loid)s and bacterial community dynamics in mercury-thallium mining waste slag. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5857-5877. [PMID: 37178440 DOI: 10.1007/s10653-023-01607-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Organic amendments in aided phytostabilization of waste slag containing high levels of heavy metal (loid)s (HMs) are an important way to control the release of HMs in situ. However, the effects of dissolved organic matter (DOM) derived from organic amendments on HMs and microbial community dynamics in waste slag are still unclear. Here, the effect of DOM derived from organic amendments (cow manure) on the geochemical behaviour of HMs and the bacterial community dynamics in mercury (Hg)-thallium (Tl) mining waste slag were investigated. The results showed that the Hg-Tl mining waste slag without the addition of DOM continuously decreased the pH and increased the EC, Eh, SO42-, Hg, and Tl levels in the leachate with increasing incubation time. The addition of DOM significantly increased the pH, EC, SO42-, and arsenic (As) levels but decreased the Eh, Hg, and Tl levels. The addition of DOM significantly increased the diversity and richness of the bacterial community. The dominant bacterial phyla (Proteobacteria, Firmicutes, Acidobacteriota, Actinobacteriota, and Bacteroidota) and genera (Bacillus, Acinetobacter, Delftia, Sphingomonas, and Enterobacter) were changed in association with increases in DOM content and incubation time. The DOM components in the leachate were humic-like substances (C1 and C2), and the DOC content and maximum fluorescence intensity (FMax) values of C1 and C2 in the leachate decreased and first increased and then decreased with increasing incubation time. The correlations between HMs and DOM and the bacterial community showed that the geochemical behaviours of HMs in Hg-Tl mining waste slag were directly influenced by DOM-mediated properties and indirectly influenced by DOM regulation of bacterial community changes. Overall, these results indicated that DOM properties associated with bacterial community changes increased As mobilization but decreased Hg and Tl mobilization from Hg-Tl mining waste slag.
Collapse
Affiliation(s)
- Yu He
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Chaoxiao Wei
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Licui Long
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Chi Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
48
|
Li K, Chen J, Sun W, Zhou H, Zhang Y, Yuan H, Hu A, Wang D, Zhang W. Coupling effect of DOM and microbe on arsenic speciation and bioavailability in tailings soil after the addition of different biologically stabilized sludges. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132048. [PMID: 37453348 DOI: 10.1016/j.jhazmat.2023.132048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Dissolved organic matter (DOM) and microbes co-mediate the transformation of heavy metals in soil. However, few previous studies have investigated the effects of interaction between DOM and microbes on the transformation and bioavailability of heavy metals in tailings soil at the molecular level after the addition of organic wastes. This study used co-occurrence network analysis based on Fourier-transform ion cyclone resonance mass spectrometry and high-throughput sequencing to investigate the molecular mechanisms of different bio-stabilized sludge addition on arsenic fraction transformation and bioavailability in tailings soil. It was found that sludge amendments decreased the arsenic bioavailable fraction from 3.62% to 1.74% and 1.68% and promoted humification of DOM in soil. The extra inorganic salt ions introduced with sludge desorb the adsorbed As(V) into soil solution. Specifically, bio-stabilized sludge increased the contents of labile compounds that provided nutrients for microbial metabolism and shaped the microbial community composition into a more copiotrophic state, which increased the abundance of As(V)-reducing bacteria and then converted the As(V) into As(III) and precipitated as As2S3. This work innovatively explores the transformation mechanisms of As fractions through the perspectives of microbial community and DOM molecular characterization, providing an important basis for the remediation of As-contaminated soil using biosolids.
Collapse
Affiliation(s)
- Kewei Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Jun Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Wenjin Sun
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Hao Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Hao Yuan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Aibin Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
49
|
Shen J, Liang Z, Kuzyakov Y, Li W, He Y, Wang C, Xiao Y, Chen K, Sun G, Lei Y. Dissolved organic matter defines microbial communities during initial soil formation after deglaciation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163171. [PMID: 37001675 DOI: 10.1016/j.scitotenv.2023.163171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Ecosystem succession and pedogenesis reshuffle the composition and turnover of dissolved organic matter (DOM) and its interactions with soil microbiome. The changes of these connections are especially intensive during initial pedogenesis, e.g. in young post-glacial areas. The temporal succession and vertical development of DOM effects on microbial community structure remains elusive. Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS), high-throughput sequencing, and molecular ecological networks, we characterized the molecular diversity of water-extractable DOM and identified its links to microbial communities in soil profiles along deglaciation chronosequence (12, 30, 40, 52, 80, and 120 years) in the southeastern Tibetan Plateau. Low-molecular-weight compound content decreased, whereas the mid- and high-molecular-weight compounds increased with succession age and soil depth. This was confirmed by the increase in double bond equivalents and averaged oxygen-to‑carbon ratios (O/C), and decrease in hydrogen-to‑carbon ratios (H/C), which reflect DOM accumulation and stabilization. Microbial community succession shifted towards the dominance of oligotrophic Acidobacteria and saprophytic Mortierellomycota, reflecting the increase of stable DOM components (H/C < 1.5 and wider O/C). Less DOM-bacterial positive networks during the succession reduced specialization of labile DOM production (such as lipid- and protein-like compounds), whereas more DOM-fungal negative networks increased specialization of stable DOM decomposition (such as tannin- and condensed aromatic-like compounds). Consequently, DOM stability is not intrinsic during initial pedogenesis: stable DOM compounds remain after fast bacterial utilization of labile DOM compounds, whereas fungi decompose slowly the remaining DOM pools.
Collapse
Affiliation(s)
- Jie Shen
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ziyan Liang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yakov Kuzyakov
- Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
| | - Weitao Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yuting He
- Chengdu Popularization of Agricultural Technique Station, Chengdu 610041, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Xiao
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Geng Sun
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Yanbao Lei
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
50
|
Si H, Zhao C, Wang B, Liang X, Gao M, Jiang Z, Yu H, Yang Y, Gu Z, Ogino K, Chen X. Liquid-solid ratio during hydrothermal carbonization affects hydrochar application potential in soil: Based on characteristics comparison and economic benefit analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117567. [PMID: 36857889 DOI: 10.1016/j.jenvman.2023.117567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/28/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Returning straw-like agricultural waste to the field by converting it into hydrochar through hydrothermal carbonization (HTC) is an important way to realize resource utilization of waste, soil improvement, and carbon sequestration. However, the large-scale HTC is highly limited by the large water consumption and waste liquid pollution. Here, we propose strategies to optimize the liquid-solid ratio (LSR) of HTC, and comprehensively evaluate the stability, soil application potential, and economic benefits of corn stover-based hydrochar under different LSRs. The results showed that the total amount of dissolved organic carbon of hydrochars increased by 55.0% as LSR reducing from 10:1 to 2:1, while the element content, thermal stability, carbon fixation potential, specific surface area, pore volume, and functional group type were not obviously affected. The specific surface area and pore volume of hydrochar decreased by 61.8% and 70.9% as LSR reduced to 1:1, due to incomplete carbonization. According to the gray relation, hydrochar derived at LSR of 10:1 and followed by 2:1 showed greatest relation degree of 0.80 and 0.70, respectively, indicating better soil application potential. However, reducing LSR from 10:1 to 2:1 made the income of single process production increased from -388 to 968 ¥, and the wastewater generation decreased by 80%. Considering the large-scale application of HTC in fields for farmland improvement and environmental remediation, the comprehensive advantages of optimized LSR will be further highlighted.
Collapse
Affiliation(s)
- Hongyu Si
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Changkai Zhao
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Bing Wang
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.
| | - Xiaohui Liang
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Mingjie Gao
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zhaoxia Jiang
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Hewei Yu
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yuanyuan Yang
- Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zhijie Gu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Xiuxiu Chen
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|