1
|
Saffar-Avval S, Gharehveran MM, Alvarez Ruiz R, Lee LS, Chaplin BP. Matrix Effects on Electrochemical Oxidation of Per- and Polyfluoroalkyl Substances in Sludge Centrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8263-8273. [PMID: 40245167 DOI: 10.1021/acs.est.4c13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
This study investigated the electrochemical oxidation of per- and polyfluoroalkyl substances (PFAS) using a Ti4O7 anode in centrate from sludge dewatering. Synthetic solutions containing perfluorooctanoic acid (PFOA), other PFAS, and inorganic constituents (phosphate, ammonium, chloride, carbonate, and acetate salts) found in centrate were studied to assess their impact on the oxidation process. PFOA removal decreased from 95% in a stable electrolyte (NaClO4) to 81% in a Na2HPO4 electrolyte and 30% in a solution mimicking concentrated centrate. X-ray photoelectron spectroscopy detected phosphate and nitrogen species on the electrode surface. At potentials required to oxidize PFAS (>3.0 V/SHE), phosphate and ammonium were oxidized to radicals that blocked electrode sites, inhibiting PFAS removal and shifting PFOA oxidation from first-order kinetics. The kinetics were accurately modeled using a Langmuir-Hinshelwood approach with a transient inhibition term. Results suggested that phosphate, ammonium, and bicarbonate ions reduced hydroxyl radical availability, thereby limiting PFOA defluorination. In concentrated centrate, 95% of the chemical oxygen demand and 93% of total PFAS were removed after 233 s of electrolysis at 30 mA cm-2. However, partial degradation of perfluorohexanoic acid and accumulation of perfluoroheptanoic acid, attributed to inorganic electrode fouling, suggested the need for a multistage reactor system for more complete PFAS mineralization.
Collapse
Affiliation(s)
- Shirin Saffar-Avval
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| | | | - Rodrigo Alvarez Ruiz
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Zhu G, Yang H, Fan X, Quan X, Liu Y. Promoting SO 4·- and ·OH Generation from Sulfate Solution toward Efficient Electrochemical Oxidation of Organic Contaminants at a B/N-Doped Diamond Flow-Through Electrode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2317-2326. [PMID: 39841974 DOI: 10.1021/acs.est.4c12215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Electrochemical oxidation via in situ-generated reactive oxygen species (ROS) is effective for the mineralization of refractory organic pollutants. However, the oxidation performance is usually limited by the low yield and utilization efficiency of ROS. Herein, a B/N-doped diamond (BND) flow-through electrode with enhanced SO4·-/·OH generation and utilization was designed for electrochemical oxidation of organic pollutants in sulfate solution. Both its SO4·-/·OH yields and SO4·- selectivity were improved by regulating B/N doping, and the production and utilization of SO4·-/·OH were facilitated by flow-through mode. BND showed fast PFOA oxidation with kinetic constants of 2.56-4.58 h-1 at low current densities of 2.0-5.0 mA cm-2. Its energy consumption for PFOA oxidation was 2.15-6.46 kWh m-3, which was lower than those of state-of-the-art electrodes under similar conditions. The BND anode was also efficient for treating organic fluorine wastewater and coking wastewater. The superior performance was contributed by its enhanced SO4·-/·OH yields and utilization, as well as high SO4·- selectivity.
Collapse
Affiliation(s)
- Genwang Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haolei Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Ji Y, Niu J, Shang E, Tang X, Hu S, Shen G, Tao Y. Surface fluorination mediated electro-oxidative degradation of HFPO-DA on boron-doped diamond electrode. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125298. [PMID: 39537081 DOI: 10.1016/j.envpol.2024.125298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Heptafluoropropylene oxide dimer acid (HFPO-DA), as an alternative to perfluorooctanoic acid (PFOA), has been shown to pose similar environmental and health risks as other perfluorinated compounds. The electrochemical-based advanced oxidation processes are promising techniques for the treatment of perfluorinated compounds, and the boron-doped diamond (BDD) anode could degrade HFPO-DA under mild conditions. However, the roles of radicals in the degradation and how to overcome the steric hindrance of the -CF3 branch on the carboxyl group were not yet clear. In this study, we investigated the degradation mechanism of HFPO-DA on the BDD anode. Instead of other non-active anodes (PbO2 and SnO2 electrodes), HFPO-DA can be degradable on the BDD electrode with a rate constant logarithmic correlation to the applied current density. The hydroxyl radical (•OH) was one of the key factors in the degradation of HFPO-DA, accounting for almost 89% of the significant effect, and the direct electron transfer was the rate-limiting step in the degradation reaction. Physicochemical characterization including field emission scanning electron microscope (FE-SEM), X-ray photo-electron spectroscopy (XPS), water contact angle, and electrochemical property indicated that the BDD electrode was fluorinated after electrolysis, the electrode surface became more hydrophobic due to the bonding of -CxFy, leading to a decrease in the electrochemically active area. Moreover, degradation products (pentafluoropropionic acid, trifluoroacetic acid, and fluorine ion) were detected and the mass balance of carbon and fluorine was calculated during the degradation. Therefore, a degradation mechanism for HFPO-DA was proposed, which involved direct electron transfer, decarboxylation, radical reaction, decarboxylation, and decarboxylation. The de-CF3 step initiated the fluorination of the BDD electrode, which was initiated by the defluorination process. This study contributes to the understanding of the electro-oxidative degradation of perfluoroalkyl ether carboxylic acids and provides guidance for the application of electrochemical advanced oxidation processes.
Collapse
Affiliation(s)
- Yangyuan Ji
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, College of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Enxiang Shang
- College of Science and Technology, Hebei Agricultural University, Huanghua, 061100, PR China
| | - Xiaojia Tang
- College of Environmental, Dalian Maritime University, Dalian, 116026, PR China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Genxiang Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Yuan Tao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, College of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China.
| |
Collapse
|
4
|
Meng Z, Wilsey MK, Müller AM. Role of LiOH in Aqueous Electrocatalytic Defluorination of Perfluorooctanoic Sulfonate: Efficient Li-F Ion Pairing Prevents Anode Fouling by Produced Fluoride. ACS Catal 2024; 14:16577-16588. [PMID: 39569161 PMCID: PMC11574766 DOI: 10.1021/acscatal.4c04523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose a significant environmental and health threat due to their high toxicity, widespread use, and persistence in the environment. Electrochemical methods have emerged as promising approaches for PFAS destruction, offering cost-effective and energy-efficient solutions. We established recently that electrocatalysis with nonprecious materials enabled the complete defluorination of perfluorooctanesulfonate (PFOS) in aqueous 8.0 M LiOH. Here, we reveal the mechanistic role of LiOH in the efficient aqueous electrocatalytic PFOS defluorination. Our results demonstrate that synergistic effects of high lithium and high hydroxide ion concentrations are essential for complete PFOS defluorination. Two-dimensional NMR data of electrolytes post pulsed electrolysis provide experimental evidence for Li-F ion pairing, which plays a crucial role in preventing anode fouling by produced fluoride, thus enabling sustained C-F bond cleavage. This Li-F ion pairing was increased at high pH, and elevated temperatures enhanced diffusion of Li-F ion pairs into the bulk electrolyte. High hydroxide ion concentrations additionally removed fluoride from the anode surface by competitive adsorption, corroborated by XPS data. Our findings provide quantitative mechanistic insights into the electrocatalytic defluorination process and offer a general route of enhancing the efficiency of anodic PFAS defluorination.
Collapse
Affiliation(s)
- Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Astrid M Müller
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
5
|
Zhang B, Li J, Wang X, Zhang C, Yin W, Zhang B, Qin Y, Liu Y, Shi W. Improved ultrafiltration performance through dielectric barrier discharge/sulfite pretreatment: Effects of water matrices and mechanistic insights. WATER RESEARCH 2024; 268:122755. [PMID: 39522128 DOI: 10.1016/j.watres.2024.122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The feasibility of utilizing a dielectric barrier discharge (DBD)/sulfite-ultrafiltration system was investigated in various real water bodies, aiming to clarify the mechanism behind alleviating membrane fouling while synchronously degrading perfluorooctanoic acid (PFOA) during the treatment process of Yangtze River water. The results demonstrated that the DBD/sulfite pretreatment exhibited remarkable rates of membrane flux mitigation (>84.10 %) and efficient degradation rates of PFOA (>85.13 %), which decreased with increasing pH from 3.0 to 11.0. The presence of anions, cations, and natural organic matter slightly hindered the membrane fouling mitigation and PFOA degradation by quenching free radicals; however, the addition of SO42- had a negligible impact. The mitigation of membrane fouling was attributed to the significant involvement of various radicals, including hydroxyl radical (•OH), sulfate radical (SO4•-), electron (e-/eaq-), su-peroxide anion radicals (•O2-), and other radicals such as SO3•-, exhibiting respective contributions of 33.25 %, 28.49 %, 20.56 %, 11.32 %, and 6.39 % in a synergistic redox effect. The pretreatment effectively reduced standard blocking and cake filtration fouling mechanisms by creating a sparse fouling layer on the membrane surface while increasing its roughness. Additionally, the main active species that played a significant role in the degradation of PFOA were identified as SO4•-, •OH, and eaq-. These species contributed approximately 43.63 %, 24.39 %, and 20.65 % respectively to the degradation process. By employing mass spectrometry and density functional theory, a proposed pathway for PFOA degradation was established, effectively reducing the toxicity associated with its degradation byproducts. This study provides innovative insights into membrane-based water treatment technologies that effectively tackle both membrane fouling mitigation and PFOA degradation.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing 409003, China
| | - Jianpeng Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Power China Huadong Engineering Co., Ltd., Hangzhou 311122, China
| | - Xiaoping Wang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Chi Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| | - Wenjie Yin
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yu Qin
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Zhou Z, Zheng W, Ji S, Nanayakkara N, Liu Y. Enhanced degradation of micropollutants using In situ electrogenerated sulfate radical at high flux. CHEMOSPHERE 2024; 366:143418. [PMID: 39341390 DOI: 10.1016/j.chemosphere.2024.143418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The degradation of micropollutants via in situ-generated reactive species from coexisting substances in water is a promising approach for advanced water treatment. However, treatment efficiency and practical applications are hindered by limited operation conditions and prohibitive costs, respectively. Herein, we report an upgraded electrochemical filtration system that is chemical-free and made efficient by achieving in situ SO4•- generation at enhanced flux and in complicated water matrices. The ion transport was enhanced by coupled electric and flow fields, providing an outstanding performance in removing micropollutants. At the optimized conditions, the proposed system degraded 90.5% of bisphenol A (BPA) in 40 min and its degradation kinetics was 14.7 times that of the batch mode, and the treatment efficiency of the proposed system was 2.5 times more efficient than our previous design because of the enhanced flux. Quenching experiments indicate that indirect oxidation by SO4•- and •OH as well as direct electron transfer play critical roles during the BPA degradation. Importantly, the proposed system does not need any added chemicals and uses only the ubiquitous SO42- and electricity. From an environmental point of view, its energy conservation and the lack of additional chemicals ensure its applicability for purifying micropollutants.
Collapse
Affiliation(s)
- Zijun Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wentian Zheng
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Siping Ji
- School of Chemistry Science and Engineering, Yunnan University, Kunming, 650091, China.
| | - Nadeeshani Nanayakkara
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, 20400, Sri Lanka
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
7
|
Ren G, Zhang J, Wang X, Liu G, Zhou M. A critical review of persulfate-based electrochemical advanced oxidation processes for the degradation of emerging contaminants: From mechanisms and electrode materials to applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173839. [PMID: 38871317 DOI: 10.1016/j.scitotenv.2024.173839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The persulfate-based electrochemical advanced oxidation processes (PS-EAOPs) exhibit distinctive advantages in the degradation of emerging contaminants (ECs) and have garnered significant attention among researchers, leading to a consistent surge in related research publications over the past decade. Regrettably, there is still a lack of a critical review gaining deep into understanding of ECs degradation by PS-EAOPs. To address the knowledge gaps, in this review, the mechanism of electro-activated PS at the interface of the electrodes (anode, cathode and particle electrodes) is elaborated. The correlation between these electrode materials and the activation mechanism of PS is systematically discussed. The strategies for improving the performance of electrode material that determining the efficiency of PS-EAOPs are also summarized. Then, the applications of PS-EAOPs for the degradation of ECs are described. Finally, the challenges and outlook of PS-EAOPs are discussed. In summary, this review offers valuable guidance for the degradation of ECs by PS-EAOPs.
Collapse
Affiliation(s)
- Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jie Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xufei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guanyu Liu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Minghua Zhou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Samuel MS, Kadarkarai G, Ryan DR, McBeath ST, Mayer BK, McNamara PJ. Enhanced perfluorooctanoic acid (PFOA) degradation by electrochemical activation of peroxydisulfate (PDS) during electrooxidation for water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173736. [PMID: 38839010 DOI: 10.1016/j.scitotenv.2024.173736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Improved treatment of per- and polyfluoroalkyl substances (PFAS) in water is critically important in light of the proposed United States Environmental Protection Agency (USEPA) drinking water regulations at ng L-1 levels. The addition of peroxymonosulfate (PMS) during electrooxidation (EO) can remove and destroy PFAS, but ng L-1 levels have not been tested, and PMS itself can be toxic. The objective of this research was to test peroxydisulfate (PDS, an alternative to PMS) activation by boron-doped diamond (BDD) electrodes for perfluorooctanoic acid (PFOA) degradation. The influence of PDS concentration, temperature, and environmental water matrix effects, and PFOA concentration on PDS-EO performance were systematically examined. Batch reactor experiments revealed that 99 % of PFOA was degraded and 69 % defluorination was achieved, confirming PFOA mineralization. Scavenging experiments implied that sulfate radicals (SO4-) and hydroxyl radicals (HO) played a more important role for PFOA degradation than 1O2 or electrons (e-). Further identification of PFOA degradation and transformation products by liquid chromatography-mass spectrometry (LC-MS) analysis established plausible PFOA degradation pathways. The analysis corroborates that direct electron transfers at the electrode initiate PFOA oxidation and SO4- improves overall treatment by cleaving the CC bond between the C7F15 and COOH moieties in PFOA, leading to possible products such as C7F15 and F-. The perfluoroalkyl radicals can be oxidized by SO4- and HO, resulting in the formation of shorter chain perfluorocarboxylic acids (e.g., perfluorobutanoic acid [PFBA]), with eventual mineralization to CO2 and F-. At an environmentally relevant low initial concentration of 100 ng L-1 PFOA, 99 % degradation was achieved. The degradation of PFOA was slightly affected by the water matrix as less removal was observed in an environmental river water sample (91 %) compared to tests conducted in Milli-Q water (99 %). Overall, EO with PDS provided a destructive approach for the elimination of PFOA.
Collapse
Affiliation(s)
- Melvin S Samuel
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| | - Govindan Kadarkarai
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| | - Donald R Ryan
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| | - Sean T McBeath
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| | - Patrick J McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States.
| |
Collapse
|
9
|
Chen F, Zhou Y, Wang L, Wang P, Wang T, Ravindran B, Mishra S, Chen S, Cui X, Yang Y, Zhang W. Elucidating the degradation mechanisms of perfluorooctanoic acid and perfluorooctane sulfonate in various environmental matrices: a review of green degradation pathways. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:349. [PMID: 39073492 DOI: 10.1007/s10653-024-02134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Given environmental persistence, potential for bioaccumulation, and toxicity of Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the scientific community has increasingly focused on researching their toxicology and degradation methods. This paper presents a survey of recent research advances in the toxicological effects and degradation methods of PFOA and PFOS. Their adverse effects on the liver, nervous system, male reproductive system, genetics, and development are detailed. Additionally, the degradation techniques of PFOA and PFOS, including photochemical, photocatalytic, and electrochemical methods, are analyzed and compared, highlighted the potential of these technologies for environmental remediation. The biotransformation pathways and mechanisms of PFOA and PFOS involving microorganisms, plants, and enzymes are also presented. As the primary green degradation pathway for PFOA and PFOS, Biodegradation uses specific microorganisms, plants or enzymes to remove PFOA and PFOS from the environment through redox reactions, enzyme catalysis and other pathways. Currently, there has been a paucity of research conducted on the biodegradation of PFOA and PFOS. However, this degradation technology is promising owing to its specificity, cost-effectiveness, and ease of implementation. Furthermore, novel materials/methods for PFOA and PFOS degradation are presented in this paper. These novel materials/methods effectively improve the degradation efficiency of PFOA and PFOS and provide new ideas and tools for the degradation of PFOA and PFOS. This information can assist researchers in identifying flaws and gaps in the field, which can facilitate the formulation of innovative research ideas.
Collapse
Affiliation(s)
- Feiyu Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Yi Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Liping Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Pengfei Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Tianyue Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China.
| | - Wenping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China.
| |
Collapse
|
10
|
Fang X, Jin L, Sun X, Huang H, Wang Y, Ren H. A data-driven analysis to discover research hotspots and trends of technologies for PFAS removal. ENVIRONMENTAL RESEARCH 2024; 251:118678. [PMID: 38493846 DOI: 10.1016/j.envres.2024.118678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/24/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
The frequent detection of persistent per- and polyfluoroalkyl substances (PFAS) in organisms and environment coupled with surging evidence for potential detrimental impacts, have attracted widespread attention throughout the world. In order to reveal research hotspots and trends of technologies for PFAS removal, herein, we performed a data-driven analysis of 3975 papers and 436 patents from Web of Science Core Collection and Derwent Innovation Index databases up to 2023. The results showed that China and the USA led the way in the research of PFAS removal with outstanding contributions to publications. The progression generally transitioned from accidental discovery of decomposition, to experimentation with removal effects and mechanisms of existing methods, and finally to enhanced defluorination and mechanism-driven design approaches. The keywords co-occurrence network and technology classification together revealed the main knowledge framework, which was constructed and correlated through contaminants, substrates, materials, processes and properties. Moreover, adsorption was demonstrated to be the dominant removal process among the current studies. Subsequently, we concluded the principles, advances and drawbacks of enrichment and separation, biological methods, advanced oxidation and reduction processes. Further exploration indicated the hotspots such as alternatives and precursors for PFAS ("genx": 1.258, "f-53b": 0.337), degradable mineralization technologies ("photocatalytic degrad": 0.529, "hydrated electron": 0.374), environment-friendly remediation technologies ("phytoremedi": 0.939, "constructed wetland": 0.462) and combination with novel materials ("metal-organic framework": 1.115, "layered double hydroxid": 0.559) as well as computer science ("molecular dynamics simul": 0.559, "machine learn"). Furthermore, the future direction of technological innovation might lie in high-performance processes that minimize secondary pollution, the development of recyclable and renewable treatment agents, and collaborative control strategies for multiple pollutants. Overall, this study offers comprehensive and objective review for researchers and industry professionals in this field, enabling rapid access to knowledge guidance and insights into research frontiers.
Collapse
Affiliation(s)
- Xiaoya Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Xiangzhou Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
11
|
Shi L, Leng C, Zhou Y, Yuan Y, Liu L, Li F, Wang H. A review of electrooxidation systems treatment of poly-fluoroalkyl substances (PFAS): electrooxidation degradation mechanisms and electrode materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42593-42613. [PMID: 38900403 DOI: 10.1007/s11356-024-34014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The prevalence of polyfluoroalkyls and perfluoroalkyls (PFAS) represents a significant challenge, and various treatment techniques have been employed with considerable success to eliminate PFAS from water, with the ultimate goal of ensuring safe disposal of wastewater. This paper first describes the most promising electrochemical oxidation (EO) technology and then analyses its basic principles. In addition, this paper reviews and discusses the current state of research and development in the field of electrode materials and electrochemical reactors. Furthermore, the influence of electrode materials and electrolyte types on the deterioration process is also investigated. The importance of electrode materials in ethylene oxide has been widely recognised, and therefore, the focus of current research is mainly on the development of innovative electrode materials, the design of superior electrode structures, and the improvement of efficient electrode preparation methods. In order to improve the degradation efficiency of PFOS in electrochemical systems, it is essential to study the oxidation mechanism of PFOS in the presence of ethylene oxide. Furthermore, the factors influencing the efficacy of PFAS treatment, including current density, energy consumption, initial concentration, and other parameters, are clearly delineated. In conclusion, this study offers a comprehensive overview of the potential for integrating EO technology with other water treatment technologies. The continuous development of electrode materials and the integration of other water treatment processes present a promising future for the widespread application of ethylene oxide technology.
Collapse
Affiliation(s)
- Lifeng Shi
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Chunpeng Leng
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063000, People's Republic of China
| | - Yunlong Zhou
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yue Yuan
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Lin Liu
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Fuping Li
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063000, People's Republic of China
| | - Hao Wang
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China.
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China.
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063000, People's Republic of China.
| |
Collapse
|
12
|
Jiang W, Liu Y, Wang S, Yang H, Fan X. Combination of co-pyrolyzed biomass-sludge biochar and ultrasound for persulfate activation in antibiotic degradation: efficiency, synergistic effect, and reaction mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3208-3225. [PMID: 39150421 DOI: 10.2166/wst.2024.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/10/2024] [Indexed: 08/17/2024]
Abstract
A carbon material Cu-corn straw-sludge biochar (Cu-CSBC) was prepared by hydrothermally modifying sewage sludge and corn stover. The composite coupled to ultrasound can effectively catalyze the activation of PS for organic pollutants degradation, and the removal rate of 20 mg/L TC reached 89.15% in 5 min in the presence of 0.5 g/L Cu-CSBC and 3 mM PS. The synergistic effect between the factors in the system, the reaction mechanism, and the efficient removal of TC in the aqueous environment were explored in a Cu-CSBC/US/PS system established for that purpose. Quenching experiments and electron paramagnetic resonance analysis both demonstrated the Cu-CSBC/US/PS system generated •OH, SO4-•, 1O2, and O2- •, which involved in the reaction. The Cu, carboxyl, and hydroxyl groups on the Cu-CSBC surface promoted the generation of radicals and non-radicals for the degradation process, which was dominated by both radical and non-radical pathways. The degradation pathway is proposed by measuring the intermediate products with LC-MS. Finally, the stability of the Cu-CSBC/US/PS system was tested under various reaction conditions. This study not only prepared a novel biochar composite material for the active degradation of organic pollutants by PS but also provided an effective method for the resource utilization of solid waste and sludge treatment.
Collapse
Affiliation(s)
- Wan Jiang
- Jiangsu Fangyang Construction Engineerineg Management Co., LTD, Lianyungang 222065, China
| | - Yiming Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Shenpeng Wang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Haifeng Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China E-mail:
| |
Collapse
|
13
|
Calvillo Solís JJ, Sandoval-Pauker C, Bai D, Yin S, Senftle TP, Villagrán D. Electrochemical Reduction of Perfluorooctanoic Acid (PFOA): An Experimental and Theoretical Approach. J Am Chem Soc 2024; 146:10687-10698. [PMID: 38578843 DOI: 10.1021/jacs.4c00443] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Perfluorooctanoic acid (PFOA) is an artificial chemical of global concern due to its high environmental persistence and potential human health risk. Electrochemical methods are promising technologies for water treatment because they are efficient, cheap, and scalable. The electrochemical reduction of PFOA is one of the current methodologies. This process leads to defluorination of the carbon chain to hydrogenated products. Here, we describe a mechanistic study of the electrochemical reduction of PFOA in gold electrodes. By using linear sweep voltammetry (LSV), an E0' of -1.80 V vs Ag/AgCl was estimated. Using a scan rate diagnosis, we determined an electron-transfer coefficient (αexp) of 0.37, corresponding to a concerted mechanism. The strong adsorption of PFOA into the gold surface is confirmed by the Langmuir-like isotherm in the absence (KA = 1.89 × 1012 cm3 mol-1) and presence of a negative potential (KA = 3.94 × 107 cm3 mol-1, at -1.40 V vs Ag/AgCl). Based on Marcus-Hush's theory, calculations show a solvent reorganization energy (λ0) of 0.9 eV, suggesting a large electrostatic repulsion between the perfluorinated chain and water. The estimated free energy of the transition state of the electron transfer (ΔG‡ = 2.42 eV) suggests that it is thermodynamically the reaction-limiting step. 19F - 1H NMR, UV-vis, and mass spectrometry studies confirm the displacement of fluorine atoms by hydrogen. Density functional theory (DFT) calculations also support the concerted mechanism for the reductive defluorination of PFOA, in agreement with the experimental values.
Collapse
Affiliation(s)
- Jonathan J Calvillo Solís
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), El Paso, Texas 79968, United States
| | - Christian Sandoval-Pauker
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), El Paso, Texas 79968, United States
| | - David Bai
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), El Paso, Texas 79968, United States
| | - Sheng Yin
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), El Paso, Texas 79968, United States
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 770052, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), El Paso, Texas 79968, United States
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), El Paso, Texas 79968, United States
| |
Collapse
|
14
|
Xia D, Zhang H, Ju Y, Xie HB, Su L, Ma F, Jiang J, Chen J, Francisco JS. Spontaneous Degradation of the "Forever Chemicals" Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) on Water Droplet Surfaces. J Am Chem Soc 2024. [PMID: 38584396 DOI: 10.1021/jacs.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Because of their innate chemical stability, the ubiquitous perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been dubbed "forever chemicals" and have attracted considerable attention. However, their stability under environmental conditions has not been widely verified. Herein, perfluorooctanoic acid (PFOA), a widely used and detected PFAS, was found to be spontaneously degraded in aqueous microdroplets under room temperature and atmospheric pressure conditions. This unexpected fast degradation occurred via a unique multicycle redox reaction of PFOA with interfacial reactive species on the droplet surface. Similar degradation was observed for other PFASs. This study extends the current understanding of the environmental fate and chemistry of PFASs and provides insight into aid in the development of effective methods for removing PFASs.
Collapse
Affiliation(s)
- Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Hong Zhang
- School of Marin Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Yun Ju
- School of Marin Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jie Jiang
- School of Marin Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| |
Collapse
|
15
|
Asadi Zeidabadi F, Banayan Esfahani E, Moreira R, McBeath ST, Foster J, Mohseni M. Structural dependence of PFAS oxidation in a boron doped diamond-electrochemical system. ENVIRONMENTAL RESEARCH 2024; 246:118103. [PMID: 38181849 DOI: 10.1016/j.envres.2024.118103] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Driven by long-term persistence and adverse health impacts of legacy perfluorooctanoic acid (PFOA), production has shifted towards shorter chain analogs (C4, perfluorobutanoic acid (PFBA)) or fluorinated alternatives such as hexafluoropropylene oxide dimer acid (HFPO-DA, known as GenX) and 6:2 fluorotelomer carboxylic acid (6:2 FTCA). Yet, a thorough understanding of treatment processes for these alternatives is limited. Herein, we conducted a comprehensive study using an electrochemical approach with a boron doped diamond anode in Na2SO4 electrolyte for the remediation of PFOA common alternatives, i.e., PFBA, GenX, and 6:2 FTCA. The degradability, fluorine recovery, transformation pathway, and contributions from electro-synthesized radicals were investigated. The results indicated the significance of chain length and structure, with shorter chains being harder to break down (PFBA (65.6 ± 5.0%) < GenX (84.9 ± 3.3%) < PFOA (97.9 ± 0.1%) < 6:2 FTCA (99.4 ± 0.0%) within 120 min of electrolysis). The same by-products were observed during the oxidation of both low and high concentrations of parent PFAS (2 and 20 mg L-1), indicating that the fundamental mechanism of PFAS degradation remained consistent. Nevertheless, the ratio of these by-products to the parent PFAS concentration varied which primarily arises from the more rapid PFAS decomposition at lower dosages. For all experiments, the main mechanism of PFAS oxidation was initiated by direct electron transfer at the anode surface. Sulfate radical (SO4•-) also contributed to the oxidation of all PFAS, while hydroxyl radical (•OH) only played a role in the decomposition of 6:2 FTCA. Total fluorine recovery of PFBA, GenX, and 6:2 FTCA were 96.5%, 94.0%, and 76.4% within 240 min. The more complex transformation pathway of 6:2 FTCA could explain its lower fluorine recovery. Detailed decomposition pathways for each PFAS were also proposed through identifying the generated intermediates and fluorine recovery. The proposed pathways were also assessed using 19F Nuclear Magnetic Resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Fatemeh Asadi Zeidabadi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Raphaell Moreira
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Sean T McBeath
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, 01002, United States
| | - Johan Foster
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada.
| |
Collapse
|
16
|
Wang L, Lin Y, Li J, Yu Q, Xu K, Ren H, Geng J. Deciphering Microbe-Mediated Dissolved Organic Matter Reactome in Wastewater Treatment Plants Using Directed Paired Mass Distance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:739-750. [PMID: 38147428 DOI: 10.1021/acs.est.3c06871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Understanding the reaction mechanism of dissolved organic matter (DOM) during wastewater biotreatment is crucial for optimal DOM control. Here, we develop a directed paired mass distance (dPMD) method that constructs a molecular network displaying the reaction pathways of DOM. It couples direction inference and PMD analysis to extract the substrate-product relationships and delta masses of potentially paired reactants directly from sequential mass spectrometry data without formula assignment. Using this method, we analyze the influent and effluent samples from the bioprocesses of 12 wastewater treatment plants (WWTPs) and build a dPMD network to characterize the core reactome of DOM. The network shows that the first step of the transformation triggers reaction cascades that diversify the DOM, but the highly overlapped subsequent reaction pathways result in similar effluent DOM compositions across WWTPs despite varied influents. Mass changes exhibit consistent gain/loss preferences (e.g., +3.995 and -16.031) but different occurrences across WWTPs. Combined with genome-centric metatranscriptomics, we reveal the associations among dPMDs, enzymes, and microbes. Most enzymes are involved in oxygenation, (de)hydrogenation, demethylation, and hydration-related reactions but with different target substrates and expressed by various taxa, as exemplified by Proteobacteria, Actinobacteria, and Nitrospirae. Therefore, a functionally diverse community is pivotal for advanced DOM degradation.
Collapse
Affiliation(s)
- Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Juechun Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
17
|
Lim HJ, Kim DJ, Rigby K, Chen W, Xu H, Wu X, Kim JH. Peroxymonosulfate-Based Electrochemical Advanced Oxidation: Complication by Oxygen Reduction Reaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19054-19063. [PMID: 37943016 PMCID: PMC10691423 DOI: 10.1021/acs.est.3c06156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Peroxymonosulfate (PMS)-based electrochemical advanced oxidation processes (EAOPs) have received widespread attention in recent years, but the precise nature of PMS activation and its impact on the overall process performance remain poorly understood. This study presents the first demonstration of the critical role played by the oxygen reduction reaction in the effective utilization of PMS and the subsequent enhancement of overall pollutant remediation. We observed the concurrent generation of H2O2 via oxygen reduction during the cathodic PMS activation by a model nitrogen-doped carbon nanotube catalyst. A complex interplay between H2O2 generation and PMS activation, as well as a locally increased pH near the electrode due to the oxygen reduction reaction, resulted in a SO4•-/•OH-mixed oxidation environment that facilitated pollutant degradation. The findings of this study highlight a unique dependency between PMS-driven and H2O2-driven EAOPs and a new perspective on a previously unexplored route for further enhancing PMS-based treatment processes.
Collapse
Affiliation(s)
- Hyun Jeong Lim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic
of Korea
| | - David J. Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Kali Rigby
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Wensi Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Huimin Xu
- Department
of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuanhao Wu
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jae-Hong Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
18
|
Fu S, Zhang Y, Xu X, Tan Y, Zhu L. N-doped citrate-sludge-derived carbon (NCSC) effectively promotes peroxymonosulfate activation for perfluorooctanoic acid (PFOA) removal with surface-mediated electron transfer mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115592. [PMID: 37837698 DOI: 10.1016/j.ecoenv.2023.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
In traditional wastewater treatment methods, the removal of emerging contaminants including perfluorooctanoic acid (PFOA) can be challenging. To address this, biochar is commonly utilized as an activator for peroxymonosulphate (PMS) to effectively eliminate organic pollutants. Sewage sludge has shown potential as a biochar precursor, but its complex composition and variable iron content, as well as the low specific surface area of the product limit the practical use of iron-dominated sludge-derived catalysts. To overcome this limitation, N-doped citrate-sludge-derived carbon (NCSC) was synthesized, possessing a low iron content (0.29 at%) and a large specific surface area (315.31 m2 g-1). As a comparison, Fe-/N-doped citrate-sludge-derived carbon (Fe-NCSC) was prepared by introducing exogenous iron, resulting in a higher iron content (2.12 at%) but a significantly reduced specific surface area (73.87 m2 g-1). In performance evaluation, the NCSC/PMS system achieved impressive removal efficiency, effectively eliminating 99.8% of PFOA (at an initial concentration of 2 mg L-1) within 60 min, while Fe-NCSC/PMS only achieved 84.6%. The slightly lower reaction rate per specific surface area of NCSC/PMS proved that large specific surface area was NCSC's key advantage. The lower sensitivity of NCSC to pH and water substrates than FeNCSC suggested different activation mechanisms. Further analysis of reactive sites and species showed that the main oxidation mechanism of NCSC/PMS was forming the surface-bound PMS-NCSC complexes at the N sites, followed by PFOA donating electrons to the complexes to be oxidized, which was different from the Fe/N-dominated singlet oxygen mechanism of Fe-NSC/PMS. Furthermore, the reusability of the NCSC was demonstrated, with the removal rate decreasing to only 90.1% after four cycles and recovering to 94.8% after heated regeneration. In conclusion, this study provides a viable method for the elimination of emerging contaminants such as PFOA in water remediation.
Collapse
Affiliation(s)
- Shiyuan Fu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhang
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Yingyu Tan
- Zhejiang Ecological Environment Scientific Design and Research Institute, Hangzhou 310007, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China.
| |
Collapse
|
19
|
Kang Y, Gu Z, Ma B, Zhang W, Sun J, Huang X, Hu C, Choi W, Qu J. Unveiling the spatially confined oxidation processes in reactive electrochemical membranes. Nat Commun 2023; 14:6590. [PMID: 37852952 PMCID: PMC10584896 DOI: 10.1038/s41467-023-42224-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Electrocatalytic oxidation offers opportunities for sustainable environmental remediation, but it is often hampered by the slow mass transfer and short lives of electro-generated radicals. Here, we achieve a four times higher kinetic constant (18.9 min-1) for the oxidation of 4-chlorophenol on the reactive electrochemical membrane by reducing the pore size from 105 to 7 μm, with the predominate mechanism shifting from hydroxyl radical oxidation to direct electron transfer. More interestingly, such an enhancement effect is largely dependent on the molecular structure and its sensitivity to the direct electron transfer process. The spatial distributions of reactant and hydroxyl radicals are visualized via multiphysics simulation, revealing the compressed diffusion layer and restricted hydroxyl radical generation in the microchannels. This study demonstrates that both the reaction kinetics and the electron transfer pathway can be effectively regulated by the spatial confinement effect, which sheds light on the design of cost-effective electrochemical platforms for water purification and chemical synthesis.
Collapse
Affiliation(s)
- Yuyang Kang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing, 100085, China.
| | - Baiwen Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Wei Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyang Huang
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing, 100085, China
| | - Wonyong Choi
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Wilsey MK, Taseska T, Meng Z, Yu W, Müller AM. Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants. Chem Commun (Camb) 2023; 59:11895-11922. [PMID: 37740361 DOI: 10.1039/d3cc03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Halogenated organic compounds are widespread, and decades of heavy use have resulted in global bioaccumulation and contamination of the environment, including water sources. Here, we introduce the most common halogenated organic water pollutants, their classification by type of halogen (fluorine, chlorine, or bromine), important policies and regulations, main applications, and environmental and human health risks. Remediation techniques are outlined with particular emphasis on carbon-halogen bond strengths. Aqueous advanced redox processes are discussed, highlighting mechanistic details, including electrochemical oxidations and reductions of the water-oxygen system, and thermodynamic potentials, protonation states, and lifetimes of radicals and reactive oxygen species in aqueous electrolytes at different pH conditions. The state of the art of aqueous advanced redox processes for brominated, chlorinated, and fluorinated organic compounds is presented, along with reported mechanisms for aqueous destruction of select PFAS (per- and polyfluoroalkyl substances). Future research directions for aqueous electrocatalytic destruction of organohalogens are identified, emphasizing the crucial need for developing a quantitative mechanistic understanding of degradation pathways, the improvement of analytical detection methods for organohalogens and transient species during advanced redox processes, and the development of new catalysts and processes that are globally scalable.
Collapse
Affiliation(s)
- Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Teona Taseska
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
21
|
Koiki B, Muzenda C, Jayeola KD, Zhou M, Marken F, Arotiba OA. Sulfate Radical in (Photo)electrochemical Advanced Oxidation Processes for Water Treatment: A Versatile Approach. J Phys Chem Lett 2023; 14:8880-8889. [PMID: 37766606 PMCID: PMC10561262 DOI: 10.1021/acs.jpclett.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The search for a simple and clean approach toward the production of sulfate radicals for water treatment gave rise to electrochemical and photoelectrochemical activation techniques. The photoelectrochemical activation method does not just distinguish itself as a promising activation method, it is also used as an efficient water treatment method with the ability to treat a myriad of pollutants due to the complementary effects of highly reactive oxidizing species. This perspective highlights some merits that distinguish sulfate monoanion radicals from hydroxyl radicals. It highlights the electrochemical, photoelectrochemical, and in situ photoelectrochemical routes of generating sulfate radicals for advanced oxidation process approach to water treatment. We provide a detailed account of the few known applications of sulfate radical enhanced photoelectrochemical treatments of water laden with organics. Finally, we placed this area of research in perspective by providing outlooks and conclusive remarks.
Collapse
Affiliation(s)
- Babatunde
A. Koiki
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg,Johannesburg 2028, South Africa
| | - Charles Muzenda
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg,Johannesburg 2028, South Africa
| | - Kehinde D. Jayeola
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg,Johannesburg 2028, South Africa
| | - Minghua Zhou
- Key
Laboratory of Pollution Process and Environmental Criteria, Ministry
of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Frank Marken
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Omotayo A. Arotiba
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg,Johannesburg 2028, South Africa
| |
Collapse
|
22
|
Li B, Pan H, Chen B. A review of factors affecting the formation and roles of primary and secondary reactive species in UV 254-based advanced treatment processes. WATER RESEARCH 2023; 244:120537. [PMID: 37683496 DOI: 10.1016/j.watres.2023.120537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/10/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The presence of organic micropollutants (OMPs) in water has been threatening human health and aquatic ecosystems worldwide. Ultraviolet-based advanced treatment processes (UV-ATPs) are one of the most effective and promising technologies to transform OMPs in water; therefore, an increasing number of emerging UV-ATPs are proposed. However, appropriate selection of UV-ATPs for practical applications is challenging because each UV-ATP generates different types and concentrations of reactive species (RSs) that may not be sufficient to degrade specific types of OMPs. Furthermore, the concentrations and types of RSs are highly influenced by anions and dissolved organic matter (DOM) coexisting in real waters, making systematic understandings of their interfering mechanisms difficult. To identify and address the knowledge gaps, this review provides a comparison of the generations and variations of various types of RSs in different UV-ATPs. These analyses not only prove the importance of water matrices on formation and consumption of primary and secondary RSs under different conditions, but also highlight the non-negligible roles of optical properties and reactivities of DOM and anions. For example, different UV-ATPs may be applicable to different target OMPs under different conditions; and the concentrations and roles of secondary RSs may outperform those of primary RSs in OMP degradation for real applications. With continuous progress and outstanding achievements in the UV-ATPs, it is hoped that the findings and conclusions of this review could facilitate further research and application of UV-ATPs.
Collapse
Affiliation(s)
- Boqiang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Huimei Pan
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
23
|
Ma Q, Gao J, Moussa B, Young J, Zhao M, Zhang W. Electrosorption, Desorption, and Oxidation of Perfluoroalkyl Carboxylic Acids (PFCAs) via MXene-Based Electrocatalytic Membranes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37294711 DOI: 10.1021/acsami.3c03991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MXenes exhibit excellent conductivity, tunable surface chemistry, and high surface area. Particularly, the surface reactivity of MXenes strongly depends on surface exposed atoms or terminated groups. This study examines three types of MXenes with oxygen, fluorine, and chlorine as respective terminal atoms and evaluates their electrosorption, desorption, and oxidative properties. Two perfluorocarboxylic acids (PFCAs), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) are used as model persistent micropollutants for the tests. The experimental results reveal that O-terminated MXene achieves a significantly higher adsorption capacity of 215.9 mg·g-1 and an oxidation rate constant of 3.9 × 10-2 min-1 for PFOA compared to those with F and Cl terminations. Electrochemical oxidation of the two PFCAs (1 ppm) with an applied potential of +6 V in a 0.1 M Na2SO4 solution yields >99% removal in 3 h. Moreover, PFOA degrades about 20% faster than PFBA on O-terminated MXene. The density functional theory (DFT) calculations reveal that the O-terminated MXene surface yielded the highest PFOA and PFBA adsorption energy and the most favorable degradation pathway, suggesting the high potential of MXenes as highly reactive and adsorptive electrocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Qingquan Ma
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jianan Gao
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Botamina Moussa
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Joshua Young
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mengqiang Zhao
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
24
|
Tan L, Liu Y, Zhu G, Fan X, Quan X. Metal-free electro-Fenton degradation of perfluorooctanoic acid with efficient ordered mesoporous carbon catalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162725. [PMID: 36906022 DOI: 10.1016/j.scitotenv.2023.162725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Heterogeneous electro-Fenton with in situ generated H2O2 and •OH is a cost-effective method for the degradation of refractory organic pollutants, in which the catalyst is an important factor affecting its degradation performance. Metal-free catalysts can avoid the potential risk of metal dissolution. However, it remains great challenge to develop efficient metal-free catalyst for electro-Fenton. Herein, ordered mesoporous carbon (OMC) was designed as a bifunctional catalyst for efficient H2O2 and •OH generation in electro-Fenton. The electro-Fenton system showed fast perfluorooctanoic acid (PFOA) degradation with kinetics constant of 1.26 h-1 and high total organic carbon (TOC) removal efficiency of 84.0 % after 3 h reaction. The •OH was the main species responsible for PFOA degradation. Its generation was promoted by the abundant oxygen functional groups such as C-O-C and the nano-confinement effect of mesoporous channels on OMCs. This study indicated that OMC is an efficient catalyst for metal-free electro-Fenton system.
Collapse
Affiliation(s)
- Lijun Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Genwang Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
25
|
Lu J, Lu H, Liang D, Feng S, Li Y, Li J. A review of the occurrence, transformation, and removal technologies for the remediation of per- and polyfluoroalkyl substances (PFAS) from landfill leachate. CHEMOSPHERE 2023; 332:138824. [PMID: 37164196 DOI: 10.1016/j.chemosphere.2023.138824] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants (POPs) that pose significant environmental and human health risks. The presence of PFAS in landfill leachate is becoming an increasingly concerning issue. This article presents a comprehensive review of current knowledge and research gaps in monitoring and removing PFAS from landfill leachate. The focus is on evaluating the effectiveness and sustainability of existing removal technologies, and identifying areas where further research is needed. To achieve this goal, the paper examines the existing technologies for monitoring and treating PFAS in landfill leachate. The review emphasizes the importance of sample preparation techniques and quality assurance/quality control measures in ensuring accurate and reliable results. Then, this paper reviewed the existing technologies for removal and remediation of PFAS in landfill leachates, such as adsorption, membrane filtration, photocatalytic oxidation, electrocatalysis, biodegradation, and constructed wetlands. Additionally, the paper summarizes the factors that exhibit the performance of various treatment technologies: reaction time, experimental conditions, and removal rates. Furthermore, the paper evaluates the potential application of different remediation technologies (i.e., adsorption, membrane filtration, photocatalytic oxidation, electrocatalysis, biodegradation, and constructed wetlands, etc.) in treating landfill leachate containing PFAS and its precursors, such as fluorotelomeres like FTOH and FTSs. The review highlights the importance of considering economic, technical, and environmental factors when selecting control measures. Overall, this article aims to provide guidance for promoting environmental protection and sustainable development in the context of PFAS contamination in landfill leachate.
Collapse
Affiliation(s)
- Jingzhao Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China.
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | - Dongzhe Liang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - SanSan Feng
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Yao Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| | - Jingyu Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| |
Collapse
|
26
|
Kuang C, Zeng G, Zhou Y, Wu Y, Li D, Wang Y, Li C. Integrating anodic sulfate activation with cathodic H 2O 2 production/activation to generate the sulfate and hydroxyl radicals for the degradation of emerging organic contaminants. WATER RESEARCH 2023; 229:119464. [PMID: 36509034 DOI: 10.1016/j.watres.2022.119464] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Conventional electrocatalytic degradation of pollutants involves either cathodic reduction or anodic oxidation process, which caused the low energy utilization efficiency. In this study, we successfully couple the anodic activation of sulfates with the cathodic H2O2 production/activation to boost the generation of sulfate radical (SO4·-) and hydroxyl radical (·OH) for the efficient degradation of emerging contaminants. The electrocatalysis reactor is composed of a modified-graphite-felt (GF) cathode, in-situ prepared by the carbonization of polyaniline (PANI) electrodeposited on a GF substrate, and a boron-doped diamond (BDD) anode. In the presence of sulfates, the electrocatalysis system shows superior activities towards the degradation of pharmaceutical and personal care products (PPCPs), with the optimal performance of completely degrading the representative pollutant carbamazepine (CBZ, 0.2 mg L-1) within 150 s. Radicals quenching experiments indicated that ·OH and SO4·- act as the main reactive oxygen species for CBZ decomposition. Results from the electron paramagnetic resonance (EPR) and chronoamperometry studies verified that the sulfate ions were oxidized to SO4·-radicals at the anode, while the dissolve oxygen molecules were reduced to H2O2 molecules which were further activated to produce ·OH radicals at the cathode. It was also found that during the catalytic reactions SO4·-radicals could spontaneously convert into peroxydisulfate (PDS) which were subsequently reduced back to SO4·-at the cathodes. The quasi-steady-state concentrations of ·OH and SO4·-were estimated to be 0.51×10-12 M and 0.56×10-12 M, respectively. This study provides insight into the synergistic generation of ·OH/SO4·- from the integrated electrochemical anode oxidation of sulfate and cathode reduction of dissolved oxygen, which indicates a potential practical approach to efficiently degrade the emerging organic water contaminants.
Collapse
Affiliation(s)
- Chaozhi Kuang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guoshen Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yangjian Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaoyao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Dexuan Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingfei Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanhao Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Asadi Zeidabadi F, Banayan Esfahani E, McBeath ST, Dubrawski KL, Mohseni M. Electrochemical degradation of PFOA and its common alternatives: Assessment of key parameters, roles of active species, and transformation pathway. CHEMOSPHERE 2023; 315:137743. [PMID: 36608884 DOI: 10.1016/j.chemosphere.2023.137743] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigates an electrochemical approach for the treatment of water polluted with per- and poly-fluoroalkyl substances (PFAS), looking at the impact of different variables, contributions from generated radicals, and degradability of different structures of PFAS. Results obtained from a central composite design (CCD) showed the importance of mass transfer, related to the stirring speed, and the amount of charge passed through the electrodes, related to the current density on decomposition rate of PFOA. The CCD informed optimized operating conditions which we then used to study the impact of solution conditions. Acidic condition, high temperature, and low initial concentration of PFOA accelerated the degradation kinetic, while DO had a negligible effect. The impact of electrolyte concentration depended on the initial concentration of PFOA. At low initial PFOA dosage (0.2 mg L-1), the rate constant increased considerably from 0.079 ± 0.001 to 0.259 ± 0.019 min-1 when sulfate increased from 0.1% to 10%, likely due to the production of SO4•-. However, at higher initial PFOA dosage (20 mg L-1), the rate constant decreased slightly from 0.019 ± 0.001 to 0.015 ± 0.000 min-1, possibly due to the occupation of active anode sites by excess amount of sulfate. SO4•- and •OH played important roles in decomposition and defluorination of PFOA, respectively. PFOA oxidation was initiated by one electron transfer to the anode or SO4•-, undergoing Kolbe decarboxylation where yielded perfluoroalkyl radical followed three reaction pathways with •OH, O2 and/or H2O. PFAS electrooxidation depended on the chemical structures where the decomposition rate constants (min-1) were in the order of 6:2 FTCA (0.031) > PFOA (0.019) > GenX (0.013) > PFBA (0.008). PFBA with a shorter chain length and GenX with -CF3 branching had slower decomposition than PFOA. While presence of C-H bonds makes 6:2 FTCA susceptible to the attack of •OH accelerating its decomposition kinetic. Conducting experiments in mixed solution of all studied PFAS and in natural water showed that the co-presence of PFAS and other water constituents (organic and inorganic matters) had adverse effects on PFAS decomposition efficiency.
Collapse
Affiliation(s)
- Fatemeh Asadi Zeidabadi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Sean T McBeath
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01002, United States
| | - Kristian L Dubrawski
- Department of Civil Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada.
| |
Collapse
|
28
|
Zhang D, Li Y, Dong L, Chen X, Guan Y, Liu W, Wang Z. Efficient degradation of PFOA in water by persulfate-assisted and UV-activated electrocoagulation technique using Fe foam electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Lu Z, Liu L, Gao W, Zhai Z, Song H, Chen B, Zheng Z, Yang B, Geng C, Liang J, Jiang X, Huang N. Manufacturing 3D nano-porous architecture for boron-doped diamond film to efficient abatement of organic pollutant: Synergistic effect of hydroxyl radical and sulfate radical. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Araújo KCF, dos Santos EV, Nidheesh PV, Martínez-Huitle CA. Fundamentals and advances on the mechanisms of electrochemical generation of persulfate and sulfate radicals in aqueous medium. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Kim JG, Kim HB, Lee S, Kwon EE, Baek K. Mechanistic investigation into flow-through electrochemical oxidation of sulfanilamide for groundwater using a graphite anode. CHEMOSPHERE 2022; 307:136106. [PMID: 35988764 DOI: 10.1016/j.chemosphere.2022.136106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The technical effectiveness/merit of electrochemical oxidation (EO) has been recognized. Nonetheless, its practical application to groundwater remediation has not been fully implemented due to several technical challenges. To overcome the technical incompleteness, this study adopted a graphite anode in the flow-through system and studied the mechanistic roles of a graphite anode. To this end, groundwater contaminated with sulfanilamide was remediated by means of EO, and sulfanilamide oxidation was quantitatively determined in this study. Approximately 60% of sulfanilamide was degraded at the anode zone, and such observation offered that the removal of sulfanilamide was not closely related with current variations (10-100 mA). However, this study delineated that sulfanilamide removal is contingent on the flow speed. For example, the removal of sulfanilamide was lowered from 59 to 25% owing to a short contact time when the flow velocity was increased from 0.14 to 0.55 cm/min. This study also delineated that a shorter anode-cathode distance could offer a favorable chance to enhance the removal of sulfanilamide even under an identical current. A shorter distance could offer a chance to save energy due to the lower voltage operation. This study also offered that chloride (Cl-) and sulfate (SO42-) electrolytes served a crucial role in the generation of active species. In contrast, bicarbonate (HCO3-) and synthetic groundwater electrolytes impeded the oxidation rate because HCO3- scavenged the other active species. In an effort to seek the oxidation mechanisms of a graphite anode, scavenger, cyclic voltammetry test, and electron https://en.wikipedia.org/wiki/Electron_paramagnetic_resonanceparamagnetic resonance (EPR) analysis were done. From a series of the tests, it was inferred that a graphite anode did not directly affect the generation of the active species. Thus, the prevalence of the oxygenated functional groups on an anode surface could be the main mechanism in sulfanilamide removal due to the enhanced electron transfer.
Collapse
Affiliation(s)
- Jong-Gook Kim
- Department of Environment & Energy (BK21 FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Hye-Bin Kim
- Department of Environment & Energy (BK21 FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Sumin Lee
- Department of Environment & Energy (BK21 FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy (BK21 FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; School of Civil/Environmental/Resource and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea.
| |
Collapse
|
32
|
Chen Z, Wang X, Feng H, Chen S, Niu J, Di G, Kujawski D, Crittenden JC. Electrochemical Advanced Oxidation of Perfluorooctanoic Acid: Mechanisms and Process Optimization with Kinetic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14409-14417. [PMID: 36173643 DOI: 10.1021/acs.est.2c02906] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) are promising technologies for perfluorooctanoic acid (PFOA) degradation, but the mechanisms and preferred pathways for PFOA mineralization remain unknown. Herein, we proposed a plausible primary pathway for electrochemical PFOA mineralization using density functional theory (DFT) simulations and experiments. We neglected the unique effects of the anode surface and treated anodes as electron sinks only to acquire a general pathway. This was the essential first step toward fully revealing the primary pathway applicable to all anodes. Systematically exploring the roles of valence band holes (h+), hydroxyl radicals (HO•), and H2O, we found that h+, whose contribution was previously underestimated, dominated PFOA mineralization. Notably, the primary pathway did not generate short-chain perfluoroalkyl carboxylic acids (PFCAs), which were previously thought to be the main degradation intermediates, but generated other polyfluorinated alkyl substances (PFASs) that were rapidly degraded upon formation. Also, we developed a simplified kinetic model, which considered all of the main processes (mass transfer with electromigration included, surface adsorption/desorption, and oxidation on the anode surface), to simulate PFOA degradation in EAOPs. Our model can predict PFOA concentration profiles under various current densities, initial PFOA concentrations, and flow velocities.
Collapse
Affiliation(s)
- Zefang Chen
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30308, United States
| | - Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Hualiang Feng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Guanglan Di
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, P. R. China
| | - David Kujawski
- Refinery Water Engineering & Associates, Hydrocarbon Processing Water & Waste Technology, Inc., 15634 Wallisville Road, Houston, Texas 77042, United States
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30308, United States
| |
Collapse
|
33
|
Jakóbczyk P, Skowierzak G, Kaczmarzyk I, Nadolska M, Wcisło A, Lota K, Bogdanowicz R, Ossowski T, Rostkowski P, Lota G, Ryl J. Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments. CHEMOSPHERE 2022; 304:135381. [PMID: 35716709 DOI: 10.1016/j.chemosphere.2022.135381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon felts are flexible and scalable, have high specific areas, and are highly conductive materials that fit the requirements for both anodes and cathodes in advanced electrocatalytic processes. Advanced oxidative modification processes (thermal, chemical, and plasma-chemical) were applied to carbon felt anodes to enhance their efficiency towards electro-oxidation. The modification of the porous anodes results in increased kinetics of acetaminophen degradation in aqueous environments. The utilised oxidation techniques deliver single-step, straightforward, eco-friendly, and stable physiochemical reformation of carbon felt surfaces. The modifications caused minor changes in both the specific surface area and total pore volume corresponding with the surface morphology. A pristine carbon felt electrode was capable of decomposing up to 70% of the acetaminophen in a 240 min electrolysis process, while the oxygen-plasma treated electrode achieved a removal yield of 99.9% estimated utilising HPLC-UV-Vis. Here, the electro-induced incineration kinetics of acetaminophen resulted in a rate constant of 1.54 h-1, with the second-best result of 0.59 h-1 after oxidation in 30% H2O2. The kinetics of acetaminophen removal was synergistically studied by spectroscopic and electrochemical techniques, revealing various reaction pathways attributed to the formation of intermediate compounds such as p-aminophenol and others. The enhancement of the electrochemical oxidation rates towards acetaminophen was attributed to the appearance of surface carbonyl species. Our results indicate that the best-performing plasma-chemical treated CFE follows a heterogeneous mechanism with only approx. 40% removal due to direct electro-oxidation. The degradation mechanism of acetaminophen at the treated carbon felt anodes was proposed based on the detected intermediate products. Estimation of the cost-effectiveness of removal processes, in terms of energy consumption, was also elaborated. Although the study was focussed on acetaminophen, the achieved results could be adapted to also process emerging, hazardous pollutant groups such as anti-inflammatory pharmaceuticals.
Collapse
Affiliation(s)
- Paweł Jakóbczyk
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland; Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Grzegorz Skowierzak
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland; Department of Analytical Chemistry, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland
| | - Iwona Kaczmarzyk
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Małgorzata Nadolska
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Anna Wcisło
- Department of Analytical Chemistry, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland
| | - Katarzyna Lota
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals Division in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362, Poznan, Poland
| | - Robert Bogdanowicz
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Tadeusz Ossowski
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland; Department of Analytical Chemistry, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland
| | - Paweł Rostkowski
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007, Kjeller, Norway
| | - Grzegorz Lota
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals Division in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362, Poznan, Poland; Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Jacek Ryl
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
34
|
Li H, Liu G, Zhou B, Deng Z, Wang Y, Ma L, Yu Z, Zhou K, Wei Q. Periodic porous 3D boron-doped diamond electrode for enhanced perfluorooctanoic acid degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Veciana M, Bräunig J, Farhat A, Pype ML, Freguia S, Carvalho G, Keller J, Ledezma P. Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128886. [PMID: 35436757 DOI: 10.1016/j.jhazmat.2022.128886] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Electrochemical oxidation (EO) is emerging as one of the most promising methods for the degradation of recalcitrant per- and poly-fluoroalkyl substances (PFASs) in water and wastewater, as these compounds cannot be effectively treated with conventional bio- or chemical approaches. This review examines the state of the art of EO for PFASs destruction, and comprehensively compares operating parameters and treatment performance indicators for both synthetic and real contaminated water and wastewater media. The evaluation shows the need to use environmentally-relevant media to properly quantify the effectiveness/efficiency of EO for PFASs treatment. Additionally, there is currently a lack of quantification of sorption losses, resulting in a likely over-estimation of process' efficiencies. Furthermore, the majority of experimental results to date indicate that short-chain PFASs are the most challenging and need to be prioritized as environmental regulations become more stringent. Finally, and with a perspective towards practical implementation, several operational strategies are proposed, including processes combining up-concentration followed by EO destruction.
Collapse
Affiliation(s)
- Mersabel Veciana
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane QLD 4102, Australia
| | - Ali Farhat
- GHD Pty Ltd, Brisbane QLD 4000, Australia
| | - Marie-Laure Pype
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia
| | - Gilda Carvalho
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Jürg Keller
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Pablo Ledezma
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
36
|
Yang W, Deng Z, Wang Y, Ma L, Zhou K, Liu L, Wei Q. Porous boron-doped diamond for efficient electrocatalytic elimination of azo dye Orange G. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Li M, Jin YT, Yan JF, Liu Z, Feng NX, Han W, Huang LW, Li QK, Yeung KL, Zhou SQ, Mo CH. Exploration of perfluorooctane sulfonate degradation properties and mechanism via electron-transfer dominated radical process. WATER RESEARCH 2022; 215:118259. [PMID: 35294910 DOI: 10.1016/j.watres.2022.118259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Polyfluoroalkyl and perfluoroalkyl chemicals (PFCs) widely used in lubricants, surfactant, textiles, paper coatings, cosmetics, and fire-fighting foams can release a large deal of organics contaminants into wastewater and pose great risks to the health of humans and eco-environments. Although advanced oxidation processes can effectively deconstruct various organic contaminants via reactive radicals, the stable structure of PFCs makes it difficult to be degraded. Here, we confirm that electrochemical oxidation process coupled with peroxymonosulfate (PMS) reaction can efficiently destroy stable structure of PFCs via electron transfer and meanwhile completely degrade PFCs via generated active radicals. We further studies via capturing and scavenging radicals, and DFT calculations find that electron hydroxyl radials play a dominant role in degrading PFCs. Based on the calculations of adsorption energy and molecular orbital energy we further demonstrate that many active sites on the surface of Ti4O7 (1 0 4) plane can rapidly take part in electrochemical reaction for generating radials and removing organic contaminants. These results give a promising insight towards high-effective and deep degradation of PFCs via electrochemical reaction coupled with advanced oxidation processes, as well as providing guidance and technical support for the remove of multiple organic contaminants.
Collapse
Affiliation(s)
- Meng Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR. China
| | - Yu-Ting Jin
- School of Environmental and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
| | - Jian-Fang Yan
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR. China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wei Han
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR. China
| | - Long-Wei Huang
- School of Environmental and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
| | - Qin-Ke Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - King-Lun Yeung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR. China; Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR. China.
| | - Shao-Qi Zhou
- School of Environmental and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China; College of Resources and Environmental Engineering, Guizhou University, 2708 Huaxi Road, Guiyang 550025, PR China..
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
38
|
Gu Z, Zhang Z, Ni N, Hu C, Qu J. Simultaneous Phenol Removal and Resource Recovery from Phenolic Wastewater by Electrocatalytic Hydrogenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4356-4366. [PMID: 35194996 DOI: 10.1021/acs.est.1c07457] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient pollutants removal and simultaneous resource recovery from wastewater are of great significance for sustainable development. In this study, an electrocatalytic hydrogenation (ECH) approach was developed to selectively and rapidly transform phenol to cyclohexanol, which possesses high economic value and low toxicity and can be easily recovered from the aqueous solution. A three-dimensional Ru/TiO2 electrode with abundant active sites and massive microflow channels was prepared for efficient phenol transformation. A pseudo-first-order rate constant of 0.135 min-1 was observed for ECH of phenol (1 mM), which was 34-fold higher than that of traditional electrochemical oxidation (EO). Both direct electron transfer and indirect reduction by atomic hydrogen (H*) played pivotal roles in the hydrogenation of phenol ring. The ECH technique also showed excellent performance in a wide pH range of 3-11 and with a high concentration of phenol (10 mM). Moreover, the functional groups (e.g., chloro- and methyl-) on phenol showed little influence on the superiority of the ECH system. This work provides a novel and practical solution for remediation of phenolic wastewater as well as recovery of valuable organic compounds.
Collapse
Affiliation(s)
- Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Zhiyang Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nan Ni
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Fenti A, Jin Y, Rhoades AJH, Dooley GP, Iovino P, Salvestrini S, Musmarra D, Mahendra S, Peaslee GF, Blotevogel J. Performance testing of mesh anodes for in situ electrochemical oxidation of PFAS. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Wang K, Zhao K, Qin X, Chen S, Yu H, Quan X. Treatment of organic wastewater by a synergic electrocatalysis process with Ti 3+ self-doped TiO 2 nanotube arrays electrode as both cathode and anode. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127747. [PMID: 34823953 DOI: 10.1016/j.jhazmat.2021.127747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical anodic oxidation (AO) is a promising technology for wastewater treatment due to its strong oxidation property and environmental compatibility. However, it suffers from high energy consumption for pollutants removal due to the side-reactions of hydrogen evolution reaction on cathode and oxygen evolution reaction on anode. Combining electro-Fenton (EF) with AO not only generated •OH for pollutants degradation but also increased current efficiency. This work investigated a synergic electrocatalysis process between EF and AO with Ti3+ self-doped TiO2 nanotube arrays (Ti3+/TNTAs) electrode as both cathode and anode for wastewater treatment. The pseudo-first-order kinetic rate constant of phenol degradation by EF+AO (0.107 min-1) was 9.7 or 6.3 times as much as that of only EF (0.011 min-1) or AO (0.017 min-1) process, respectively. Enhanced pollutants removal of EF+AO could be attributed to the coexistence of •OH oxidation and direct oxidation on Ti3+/TNTAs surface. The COD of secondary effluent of coking wastewater decreased from 159.3 mg L-1 to 47.0 mg L-1 by EF+AO within 120 min with low specific energy consumption (9.5 kWh kg-1 COD-1). This work provided a new insight into design of the energy-efficient synergic electrocatalysis process for refractory pollutants degradation.
Collapse
Affiliation(s)
- Kaixuan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Kun Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xin Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
41
|
Savarimuthu I, Susairaj MJAM. CuS Nanoparticles Trigger Sulfite for Fast Degradation of Organic Dyes under Dark Conditions. ACS OMEGA 2022; 7:4140-4149. [PMID: 35155908 PMCID: PMC8830066 DOI: 10.1021/acsomega.1c05697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 05/12/2023]
Abstract
CuS nanoparticles (CuS NPs) were synthesized by a simple precipitation method using rice starch water as a capping and reducing agent. The phase composition, morphology, absorbance, chemical bonds, and chemical states of the CuS NPs were investigated systematically and then examined for dye degradation catalytic activity with or without sulfite (SO3 2-) under dark conditions. Herein, we observed two reaction trends after the addition of SO3 2- in a CuS NPs/dye system, first substantially enhanced dye degradation and second greater degradation activity between reaction time interval "t" 0-12 min. The redox cycling of Cu(II)/Cu(I) and oxidized sulfur (SO x 2-) species on the surface of CuS NPs played a major role for the activation of SO3 2- and generation and transformation of a sulfite radical (•SO3 -) into a sulfate radical (•SO4 -). Scavenging studies of reactive oxygen species (ROS) revealed that •SO4 - was major reactive species involved in dye degradation. Our study showed that SO3 2- acted as a source and CuS NP surface acted as an SO3 2- activating agent for the generation of •SO4 -, which degrades the dyes. The activation pathway of SO3 2- and generation pathway of relevant ROS were proposed.
Collapse
Affiliation(s)
- Irudhayaraj Savarimuthu
- Department
of Chemistry, Indira Gandhi National Tribal
University, Amarkantak, Madhya Pradesh 484886, India
| | | |
Collapse
|
42
|
Yuan Y, Feng L, He X, Liu X, Xie N, Ai Z, Zhang L, Gong J. Efficient removal of PFOA with an In 2O 3/persulfate system under solar light via the combined process of surface radicals and photogenerated holes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127176. [PMID: 34555762 DOI: 10.1016/j.jhazmat.2021.127176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The environmental persistence, high toxicity and wide spread presence of perfluorooctanoic acid (PFOA) in aquatic environment urgently necessitate the development of advanced technologies to eliminate PFOA. Here, the simultaneous application of a heterogeneous In2O3 photocatalyst and homogeneous persulfate oxidation (In2O3/PS) was demonstrated for PFOA degradation under solar light irradiation. The synergistic effect of direct hole oxidation and in-situ generated radicals, especially surface radicals, was found to contribute significantly to PFOA defluorination. Fourier infrared transform (FTIR) spectroscopy, Raman, electrochemical scanning microscope (SECM) tests and density functional theory (DFT) calculation showed that the pre-adsorption of PFOA and PS onto In2O3 surface were dramatically critical steps, which could efficiently facilitate the direct hole oxidation of PFOA, and boost PS activation to yield high surface-confined radicals, thus prompting PFOA degradation. Response surface methodology (RSM) was applied to regulate the operation parameters for PFOA defluorination. Outstanding PFOA decomposition (98.6%) and near-stoichiometric equivalents of fluorides release were achieved within illumination 10 h. An underlying mechanism for PFOA destruction was proposed via a stepwise losing CF2 unit. The In2O3/PS remediation system under solar light provides an economical, sustainable and environmentally friendly approach for complete mineralization of PFOA, displaying a promising potential for treatment of PFOA-containing water.
Collapse
Affiliation(s)
- Yijin Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhen Feng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xianqin He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiufan Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Ning Xie
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
43
|
Yao Y, Hu H, Zheng H, Hu H, Tang Y, Liu X, Wang S. Nonprecious bimetallic Fe, Mo-embedded N-enriched porous biochar for efficient oxidation of aqueous organic contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126776. [PMID: 34399226 DOI: 10.1016/j.jhazmat.2021.126776] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Bimetallic Fe- and Mo-embedded N-enriched porous biochar (Fe-Mo@N-BC) is developed and serves as a cost-effective and highly efficient catalyst for mineralization of non-biodegradation organic contaminants. Fe-Mo@N-BC was prepared by pyrolysis of complex Fe/Mo -containing precursors. Transmission electron microscopy and elemental mapping suggested that Fe and Mo are uniformly dispersed in nitrogen-doped biochar with hierarchical mesopores. In comparison to Fe@N-BC and Mo@N-BC, Fe-Mo@N-BC exhibited a superior activity for activating peroxymonosulfate (PMS). The stable activity was ascribed to N-doping and synergistic effect of Fe and Mo species, where both Fe-Nx and Mo-Nx can simultaneously serve as the active sites and N-BC can act as a carrier and an activator as well as an electron mediator. Electron paramagnetic resonance and quenching experiments indicated that HO•, O2•- and 1O2 were responsible for organic degradation. The effects of PMS dosage, initial Orange II concentration, temperature, solution pH, coexisting anions and humic acids on organic degradation were also investigated. With the assistance of an external magnet, Fe-Mo@N-BC can be easily separated after reaction and remains stable in the reusability tests. This work demonstrates a feasible strategy towards the fabrication of Fe, Mo-embedded N-enriched porous biochar catalysts for the detoxification of organic contaminants.
Collapse
Affiliation(s)
- Yunjin Yao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China.
| | - Huanhuan Hu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Hongda Zheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Hongwei Hu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Yinghao Tang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Xiaoyan Liu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
44
|
Encapsulate SrCoO3 perovskite crystal within molybdenum disulfide layer as core-shell structure to enhance electron transfer for peroxymonosulfate activation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Strong hydrophobic affinity and enhanced •OH generation boost energy-efficient electrochemical destruction of perfluorooctanoic acid on robust ceramic/PbO2-PTFE anode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Shi S, Han X, Liu J, Lan X, Feng J, Li Y, Zhang W, Wang J. Photothermal-boosted effect of binary CuFe bimetallic magnetic MOF heterojunction for high-performance photo-Fenton degradation of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148883. [PMID: 34252775 DOI: 10.1016/j.scitotenv.2021.148883] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Overcoming the relatively low catalytic activity and strict acid pH condition of common photo-Fenton reaction is the key to alleviate the serious global burden caused by common organic pollutants. Herein, a binary homologous bimetallic heterojunction of magnetic CuFe2O4@MIL-100(Fe, Cu) metal-organic frameworks (MCuFe MOF) with photothermal-boosted photo-Fenton activity is constructed as an ideal practical photo-Fenton catalyst for the degradation of organic pollutants. Through an in-situ derivation strategy, the formed homologous bimetallic heterojunction with binary redox couples can simultaneously improve the visible light harvesting capacity and expedite the separation and transfer of photogenerated electrons/holes pairs, leading to the continuous and rapid circulation of both FeIII/FeII and CuII/CuI redox couples. Notably, the heterojunction shows intrinsic photo-thermal conversion effect, which is found to be beneficial to boost the photo-Fenton activity. Impressively, MCuFe MOF shows remarkable catalytic performance towards the degradation of various organic pollutants by comprehensively increasing H2O2 decomposition efficiency and decreasing the required dosage of MCuFe MOF (0.05 g L-1) with a wide pH range (3.0-10.0). As such, a photo-Fenton catalyst consisting of binary homologous bimetallic heterojunction is first disclosed, as well as its photothermal-enhanced effect, which is expected to drive great advance in the degradation of organic pollutants for practical applications.
Collapse
Affiliation(s)
- Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Ximei Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xi Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jianxing Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuchen Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
47
|
Deng Y, Liang Z, Lu X, Chen D, Li Z, Wang F. The degradation mechanisms of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) by different chemical methods: A critical review. CHEMOSPHERE 2021; 283:131168. [PMID: 34182635 DOI: 10.1016/j.chemosphere.2021.131168] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of artificial compounds comprised of a perfluoroalkyl main chain and a terminal functional group. With them being applied in a wide range of applications, PFASs have drawn increasing regulatory attention and research interests on their reductions and treatments due to their harmful effects on environment and human beings. Among numerous studies, chemical treatments (e.g., photochemical, electrochemical, and thermal technologies) have been proved to be important methods to degradation PFASs. However, the pathways and mechanisms for the degradation of PFASs through these chemical methods still have not been well documented. This article therefore provides a comprehensive review on the degradation mechanisms of two important PFASs (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)) with photochemical, electrochemical and thermal methods. Different decomposition mechanisms of PFOA and PFOS are reviewed and discussed. Overall, the degradation pathways of PFASs are associated closely with their head groups and chain lengths, and H/F exchange and chain shortening were found to be predominant degradation mechanisms. The clear study on the degradation mechanisms of PFOA and PFOS should be very useful for the complete degradation or mineralization of PFASs in the future.
Collapse
Affiliation(s)
- Yun Deng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Zhihong Liang
- The Pearl River Water Resources Research Institute, Guangzhou, Guangdong, 510611, China
| | - Xingwen Lu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Zhe Li
- School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
48
|
Zhang Q, Ba X, Liu S, Li Y, Cai L, Sun H, Jiang B. Synchronous anodic oxidation-cathodic precipitation strategy for efficient phosphonate wastes mineralization and recovery of phosphorus in the form of hydroxyapatite. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Cai J, Zhou M, Zhang Q, Tian Y, Song G. The radical and non-radical oxidation mechanism of electrochemically activated persulfate process on different cathodes in divided and undivided cell. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125804. [PMID: 33865104 DOI: 10.1016/j.jhazmat.2021.125804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Electrochemically activated persulfate (PS) employing stainless steel (SS), carbon felt (CF) and carbon black modified CF (CB-CF) as the cathode, in the divided and undivided cell, respectively, for degradation of atrazine (ATZ) was first investigated using novel B, Co-doped TiO2 nanotubes (B, Co-TNT) anode. In undivided cell, ATZ degradation was followed the order of CF<CB-CF<SS. The main radical for ATZ removal in SS and CF system was •OH, while on CB-CF cathode, it was the comprehensive contribution of •OH and SO4•-. •OH in SS system was more inclined to free •OH, while in CF and CB-CF systems it was more likely to be surface •OH. In divided anode cell, •OH was responsible for ATZ degradation in all three cathodes system. However, in divided cathode cell, •OH played a major role for ATZ degradation in SS cathode system. In CF and CB-CF cathode systems, the ATZ degradation was the comprehensive effect of •OH and SO4•- with the contribution of •OH and SO4•- was 91.7%, 8.3%, and 96.3%, 3.6%, respectively. The quenching studies showed that non-radical oxidation occurred in anode chamber in the presence of PS. Besides, the intermediates in divided and undivided cell were detected by LC-MS, and the possible degradation pathway was proposed.
Collapse
Affiliation(s)
- Jingju Cai
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qizhan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yusi Tian
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ge Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
50
|
Niu B, Yu M, Sun C, Wang L, Zang K, Hu X, Zhou L, Zheng Y. Open hollow structured Calotropis gigantea fiber activated persulfate for decomposition of perfluorooctanoic acid at room temperature. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|