1
|
Jiang Y, Wang S, Li C, Cai YA, Xiong X, Tang Y, Shao S, Wang C, Ng HY. Unraveling the mechanism of fouling mitigation in AGS-MBR system: From AGS properties to foulant interactions. WATER RESEARCH 2025; 279:123403. [PMID: 40068289 DOI: 10.1016/j.watres.2025.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 05/06/2025]
Abstract
Aerobic granular sludge (AGS) has demonstrated a lower fouling propensity than floc sludge in membrane bioreactors (MBRs) due to various hypotheses, including differences in particle size and the efficacy of physical scouring. However, controversy exists regarding the dominant cause of this lower fouling. Therefore, in this work, we systematically investigated the contribution of four potential mechanisms of AGS on membrane fouling alleviation in MBRs: 1) loosening cake layer; 2) scouring of the membrane surface; 3) regulating soluble microbial product (SMP) secretion; and 4) changing the rheology of the bulk solution. Our results showed that, regardless of granular size range, AGS hardly caused cake fouling due to its low hydraulic resistances (<0.8 × 1012 m-1) and limited accumulation on the membrane surface. Scouring by AGS was ineffective in reducing the thickness and hydraulic resistance of the fouling layer compared with granular activated carbon, a commonly used scouring material for MBRs. Furthermore, liquid chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND) results indicated that the lower fouling was related to reduced SMP secretion by AGS, with an optimal particle size (800-1000 μm) at which SMP secretion was minimized. AGS with this optimal particle size secreted over 54 % less high-molecular-weight SMP compared to floc sludge. As granule size further increased, SMP secretion increased due to biomass decay and cell lysis resulting from substrate transfer limitations in granules. Moreover, compared to floc sludge, granular sludge bulk solution exhibited lower viscosity, particularly in the 450-1000 μm size range. This enhanced rheological behavior could potentially improve shear stress induced by aeration, thereby mitigating membrane fouling. These findings emphasize that the indirect effects of AGS, including reduced SMP secretion and improved rheological properties, played a crucial role in the lower membrane fouling in AGS-MBRs, while direct effects such as loosening cake layer and the scouring effect played minor roles.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Si Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Chaoyu Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Yu-Ang Cai
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Xiuquan Xiong
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Yinghao Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Chuansheng Wang
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - How Yong Ng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
2
|
Trego A, Morabito C, Bourven I, Guibaud G, O'Flaherty V, Collins G, Ijaz UZ. Size matters: Anaerobic granules exhibit distinct ecological and physico-chemical gradients across biofilm size. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 25:100561. [PMID: 40242235 PMCID: PMC12003022 DOI: 10.1016/j.ese.2025.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Anaerobic biological decomposition of organic matter is ubiquitous in Nature wherever anaerobic environments prevail, and is catalysed by hydrolytic, fermentative, acetogenic, methanogenic, and various other groups. It is also harnessed in innovative ways in engineered systems that may rely on small (0.1-4.0 mm), spherical, anaerobic granules. These biofilms are crucial to the operational success of a range of widely applied engineered-ecosystems designed for wastewater treatment. The structure and function of granule microbiomes underpin their utility. Here, granules were separated into ten size fractions (proxies for age), hypothesizing that small granules are 'young' and larger ones are 'old'. Gradients were observed across size in terms of volatile solids, density, settleability, biofilm morphology, methanogenic activity, and profiles of extracellular polymeric substances, suggesting ongoing development of physico-chemical characteristics as granules develop. Short-read amplicon sequencing indicated a negative relationship between granule size and community diversity. Furthermore, as size increased, the methanogenic archaea dominated the microbiome. Small granules were found to harbour a sub-group of highly specific taxa, and the identification of generalists and specialists may point to substantial resilience of the microbiome. The findings of this study indicate opportunities for precision management of wastewater treatment systems. They suggest that size is an important indicator for aggregate utility - size may, indeed, determine many of the characteristics of both the individual-granule microbiomes and the overall function of a wastewater treatment system.
Collapse
Affiliation(s)
- Anna Trego
- Sustainable World Section, School of Biological and Chemical Sciences, University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Cristina Morabito
- Sustainable World Section, School of Biological and Chemical Sciences, University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Isabelle Bourven
- E2lim, UR 24 133, Université de Limoges, Faculté des Sciences Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Giles Guibaud
- E2lim, UR 24 133, Université de Limoges, Faculté des Sciences Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Vincent O'Flaherty
- Sustainable World Section, School of Biological and Chemical Sciences, University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Sustainable World Section, School of Biological and Chemical Sciences, University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Umer Zeeshan Ijaz
- Mazumdar-Shaw Advanced Research Centre (ARC), University of Glasgow, 11 Chapel Lane, Western Site, Glasgow, G11 6EW, United Kingdom
| |
Collapse
|
3
|
Mohamed A, Gill L, Monleon A, Pronk M, van Loosdrecht M, Saikaly PE, Ali M. Genome-resolved metatranscriptomics unveils distinct microbial functionalities across aggregate sizes in aerobic granular sludge. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 25:100560. [PMID: 40235649 PMCID: PMC11999188 DOI: 10.1016/j.ese.2025.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025]
Abstract
Microbial aggregates of different sizes in aerobic granular sludge (AGS) systems have been shown to exhibit distinct microbial community compositions. However, studies comparing the microbial activities of different-sized aggregates in AGS systems remain limited. In this study, genome-resolved metatranscriptomics was used to investigate microbial activity patterns within differently sized aggregates in a full-scale AGS plant. Our analysis revealed a weak correlation between the relative abundance of metagenome-assembled genomes (MAGs) and their transcriptomic activity, indicating that microbial abundance does not directly correspond to metabolic activity within the system. Flocculent sludge (FL; <0.2 mm) predominantly featured active nitrifiers and fermentative polyphosphate-accumulating organisms (PAOs) from Candidatus Phosphoribacter, while small granules (SG; 0.2-1.0 mm) and large granules (LG; >1.0 mm) hosted more metabolically active PAOs affiliated with Ca. Accumulibacter. Differential gene expression analysis further supported these findings, demonstrating significantly higher expression levels of key phosphorus uptake genes associated with Ca. Accumulibacter in granular sludge (SG and LG) compared to flocculent sludge. Conversely, Ca. Phosphoribacter showed higher expression of these genes in the FL fraction. This study highlights distinct functional roles and metabolic activities of crucial microbial communities depending on aggregate size within AGS systems, offering new insights into optimizing wastewater treatment processes.
Collapse
Affiliation(s)
- A.Y.A. Mohamed
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Laurence Gill
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Alejandro Monleon
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, 2629 HZ, the Netherlands
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Delft, 2629 HZ, the Netherlands
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Denmark
| | - Pascal E. Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Ali
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
4
|
Britschgi L, Wei S, Proesl A, Morgenroth E, Derlon N. The critical role of flocs in nitrification in full-scale aerobic granular sludge-based WWTP. WATER RESEARCH 2025; 274:123021. [PMID: 39824018 DOI: 10.1016/j.watres.2024.123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Aerobic granular sludge (AGS) is usually considered to be a biofilm system consisting of granules only, although practical experience suggests that flocs and granules of various sizes co-exist. This study thus focused on understanding the contribution of flocs and granules of various sizes to nitrification in a full-scale AGS-based wastewater treatment plant (WWTP) operated as a sequencing batch reactor (SBR). The size distribution in terms of total suspended solids (TSS) and the distribution of the nitrifying communities and activities were monitored over 14 months. Our results indicate that AGS is a hybrid system in which flocs (<0.25 mm) play a critical role in nitrification. AGS consisted of 36 % flocs and 50 % large granules (>2 mm) at a TSS concentration of 4.7 ± 0.7 gTSS L-1. The growth of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) in large granules was limited due to the high mass transfer limitation in biofilm and the high solids retention time (SRT) of flocs, where favorable conditions for the growth of nitrifiers were maintained during the warm season. The specific activities of the small aggregates (<1 mm) were 5 to 15 times higher than those of large granules. As a result, flocs contributed >50 % to nitrification during the warm season, whereas granules >1 mm contributed <20 %. Such predominance of flocs in nitrification became problematic in the cold season when the minimum SRT of NOB increased to values similar to the floc SRT, resulting in 79 % loss of the NOB. Consequently, NOB activities dropped, and elevated effluent nitrite concentrations of several mgN L-1 were monitored. We suggest operating AGS systems similarly to hybrid systems in order to promote the enrichment of NOB in the granules by controlling the floc SRT at low values smaller than the minimum SRT of NOB throughout the year.
Collapse
Affiliation(s)
- Livia Britschgi
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Stephany Wei
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Andreas Proesl
- VA Tech Wabag GmbH, Dresdner-Strasse 87-91, 1200, Vienna, Austria
| | - Eberhard Morgenroth
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland; Institute of Environmental Engineering, ETH Zürich, 8093, Zürich, Switzerland
| | - Nicolas Derlon
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| |
Collapse
|
5
|
Mohamed AY, Gill L, Monleon A, Pronk M, van Loosdrecht M, Saikaly PE, Ali M. Genome-Resolved Metatranscriptomics Provide Insights on Immigration Influence in Structuring Microbial Community Assembly of a Full-Scale Aerobic Granular Sludge Plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6126-6141. [PMID: 40106496 PMCID: PMC11966751 DOI: 10.1021/acs.est.4c14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Understanding the relative influence of immigration and species sorting in wastewater treatment systems is essential, as bacteria in influent wastewater can significantly impact treatment system functionality. This study investigated the contribution of immigration to the community assembly of different-sized microbial aggregates in a full-scale aerobic granular sludge (AGS) system using genome-resolved metatranscriptomics. Our novel analysis revealed that negative-net-growth-rate populations, which persist due to immigration, can exhibit substantial activity and potentially contribute to the AGS system's functionality. The results also highlighted that sulfate-reducing and fermenting bacteria, along with some nitrifiers and glycogen-accumulating organisms (GAOs), were more active in the influent wastewater, serving as a continuous source of both beneficial and competing immigrants to the AGS system. Granular sludge (size >0.2 mm) demonstrated a robust capacity to resist immigration effects from competing immigrants, whereas flocculent sludge (size <0.2 mm) was more susceptible. Importantly, flocculent sludge harbored functional microbial groups such as active nitrifiers and fermentative polyphosphate-accumulating organisms (PAOs) belonging to Ca. Phosphoribacter, while granular sludge enriched for active conventional PAOs such as Ca. Accumulibacter. These findings provide valuable insights for engineers to design and operate AGS systems by optimizing microbial aggregate sizes and emphasizing the importance of influent microbial characterization in the design of wastewater treatment plants to enhance the functionality and activity of AGS systems.
Collapse
Affiliation(s)
- A. Y.
A. Mohamed
- Department
of Civil, Structural & Environmental Engineering, Trinity College
Dublin, The University of Dublin, Dublin D2, Ireland
| | - Laurence Gill
- Department
of Civil, Structural & Environmental Engineering, Trinity College
Dublin, The University of Dublin, Dublin D2, Ireland
| | - Alejandro Monleon
- Department
of Civil, Structural & Environmental Engineering, Trinity College
Dublin, The University of Dublin, Dublin D2, Ireland
| | - Mario Pronk
- Department
of Biotechnology, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Mark van Loosdrecht
- Department
of Biotechnology, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Pascal E. Saikaly
- Environmental
Science and Engineering Program, Biological and Environmental Science
and Engineering (BESE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Water
Desalination and Reuse Center, Biological and Environmental Science
and Engineering (BESE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Ali
- Department
of Civil, Structural & Environmental Engineering, Trinity College
Dublin, The University of Dublin, Dublin D2, Ireland
| |
Collapse
|
6
|
Cakin I, Marcello L, Morrissey B, Gaffney PPJ, Taggart MA. Long-term monitoring of constructed wetlands in distilleries in Scotland - Evaluating treatment performance and seasonal microbial dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124279. [PMID: 39889426 DOI: 10.1016/j.jenvman.2025.124279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
Constructed wetlands (CWs) have been used to treat industrial wastewater in Scotland, including within the whisky industry to treat the second distillation byproduct known as "spent lees". However, despite the notable advantages of CWs (including simplicity, cost-effectiveness, and energy efficiency) their adoption by distilleries still remains relatively limited. Concerns regarding unstable performance, clogging, and sensitivity to cold temperatures have tended to limit their widespread utilisation. This paper considers these concerns through a comprehensive analysis of water treatment performance and microbial community variation across different seasons in three horizontal subsurface flow constructed wetlands (HSF CWs) situated within several whisky distilleries in Scotland. One of these wetlands operates year-round and the other two are generally only active in autumn and spring. Across these CWs, consistent success was observed in the removal of dissolved copper (dissCu) throughout the seasons. However, significant differences in performance were observed both within the same CW (across different seasons) and between different CWs (during the same season) for various water quality parameters (including suspended solids, turbidity, dissolved organic carbon, chemical oxygen demand, nutrients, and pH). Microbial diversity within each CW showed minimal variation between seasons at the class and order levels. However, substantial differences in bacterial community were detected between different CWs during the same season. Gammaproteobacteria, Alphaproteobacteria, and Bacteroidia consistently ranked among the top 5 most abundant classes in each CW, though their specific abundance rankings varied. At the bacterial class level, redundancy analysis revealed strong correlations between treatment performance metrics and specific taxa, including Planctomycetacia with TON removal, Acidobacteriia with COD and DOC removal and pH buffering, Bacilli with SRP removal, and Alphaproteobacteria with NH₄⁺ removal. At the fungal class level, Rozellomycota_cls_Incertae_sedis demonstrated significant associations with multi-pollutant removal and pH buffering, highlighting its ecological role in treatment processes. This research provides insights regarding the seasonal dynamics of CWs, offering recommendations that could be used to optimise their application within the whisky industry and beyond.
Collapse
Affiliation(s)
- Ilgaz Cakin
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, KW14 7JD, Scotland, UK.
| | - Lucio Marcello
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, 1 Inverness Campus, Inverness, IV2 5NA, Scotland, UK; Biomathematics and Statistics Scotland, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, Scotland, UK
| | - Barbara Morrissey
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, 1 Inverness Campus, Inverness, IV2 5NA, Scotland, UK
| | - Paul P J Gaffney
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, KW14 7JD, Scotland, UK; Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mark A Taggart
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, KW14 7JD, Scotland, UK
| |
Collapse
|
7
|
Feng Z, Schmitt H, van Loosdrecht MCM, Sutton NB. Sludge size affects sorption of organic micropollutants in full-scale aerobic granular sludge systems. WATER RESEARCH 2024; 267:122513. [PMID: 39378732 DOI: 10.1016/j.watres.2024.122513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Aerobic granular sludge (AGS) is gaining popularity as an alternative to activated sludge for wastewater treatment. However, little information is available on AGS regarding the removal of organic micropollutants (OMPs) through sorption. In this study, the sorption behavior of 24 OMPs at environmentally relevant concentrations (1 μg/L) was investigated in six sludge fractions of varying sizes (>4 mm, 2-4 mm, 1-2 mm, 0.6-1 mm, 0.2-0.6 mm, and <0.2 mm) from a full-scale AGS reactor using batch experiments. Sorption was significant (removal efficiency >40 %) for 10 OMPs, including 4 zwitterionic and 6 positively charged pharmaceuticals, indicating the importance of electrostatic interaction for OMP sorption in AGS systems. Larger granules exhibited a higher sorption coefficient and capacity than smaller AGS fractions, probably due to increased extracellular polymeric substance content for larger granules. Equilibrium OMP sorption was only reached after 72 h in granules larger than 2 mm, indicating an effect of longer diffusion distance for OMPs into larger granules. Additionally, compared to activated sludge, AGS demonstrates a similar or even slightly higher sorption capacity for 10 OMPs at 1 μg/L. Overall, this study is the first to investigate the sorption behavior of six AGS size fractions for OMPs at environmentally relevant concentrations (1 μg/L) and propose the possible roles of different-sized sludge in OMP sorption in the full-scale AGS reactor.
Collapse
Affiliation(s)
- Zhaolu Feng
- Environmental Technology, Wageningen University & Research, P.O. Box 17 6700 AA Wageningen, the Netherlands
| | - Heike Schmitt
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, the Netherlands; National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9 3721 MA Bilthoven, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, the Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
8
|
Luo Z, Chen B, Lei M, Li Y, Zhang N, Zhuang Y, Huang L, Li J. Insight into continuous-flow partial nitrification granular sludge system: Long-term performance, formation mechanism, and partial nitrification granular sludge/Anammox coupled system for mature landfill leachate treatment. BIORESOURCE TECHNOLOGY 2024; 413:131501. [PMID: 39299345 DOI: 10.1016/j.biortech.2024.131501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
A continuous-flow partial nitrification granular sludge (PNGS) coupled Anammox system was constructed for mature landfill leachate (MLL) treatment. Stable NO2--N accumulation was achieved with NH4+-N to NO2--N transformation ratio (NTR) of 98-100 % with influent NH4+-N ranged from 342 ± 29 to 1106 ± 20 mg/L. When treating MLL, particular acyl homoserine lactones (AHLs), cyclic dimeric guanosine monophosphate (c-di-GMP) concentration significantly increased and more extracellular polymeric substances (EPS) were secreted, which adsorbed refractory organics and embedded SiO2 derived from MLL for granulation. A strong and positive correlation was found between PNGS average diameter and EPS, indicating that AHLs and c-di-GMP may play a significant role in the formation and evolution of PNGS via regulating EPS secretion. The PNGS/Anammox system could remove COD and nitrogen simultaneously under different MLL loadings, with COD and total inorganic nitrogen removal efficiency of 28 ± 5 %-71 ± 2 % and 66 ± 2 %-89 ± 1 %, respectively.
Collapse
Affiliation(s)
- Zhizhan Luo
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Bohan Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mengen Lei
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yong Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Naixin Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yeyou Zhuang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lusha Huang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
9
|
Zou X, Gao M, Sun H, Zhang Y, Yao Y, Guo H, Liu Y. Influence of residual anaerobic granular sludge (AnGS) from anaerobically digested molasses wastewater in aerobic granular sludge reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175206. [PMID: 39094659 DOI: 10.1016/j.scitotenv.2024.175206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
This study investigated the impact of residual anaerobic granular sludge (AnGS) from anaerobic digesters treating molasses wastewater on ammonium reduction in a downstream aerobic granular sludge (AGS) reactor. Two conditions were tested: raw (high AnGS concentration) and settled (low AnGS concentration) anaerobically digested molasses wastewaters were fed into the AGS reactor. With the introduction of raw wastewater, enhanced nitrite accumulation at 30 % and improved total inorganic nitrogen (TIN) removal at 11 % were observed compared to 1 % nitrite accumulation and 8 % TIN removal with the introduction of settled wastewater. However, AnGS adversely affected other aspects of reactor performance, increasing effluent solid content and decreasing soluble chemical oxygen demand removal efficiency from 20 % in the low AnGS condition to 11 % in the high AnGS condition. Despite the observed retention of AnGS in the reactor, no significant bioaugmentation effects on the microbial community of the AGS were observed. Aerobic granular sludge was consistently observed in both conditions. The study suggests that AnGS may act as a nucleus for granule formation, helping to maintain granule stability in a disturbed environment. This study offers a systematic understanding of the impact of AnGS on subsequent nitrogen removal process using AGS, aiding in the decision making in the treatment of high solid anaerobic digestate.
Collapse
Affiliation(s)
- Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Huijuan Sun
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yihui Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
10
|
Mohamed AYA, Tuohy P, Healy MG, Ó hUallacháin D, Fenton O, Siggins A. Effects of coagulation pre-treatment on chemical and microbial properties of water-soil-plant systems of constructed wetlands. CHEMOSPHERE 2024; 362:142745. [PMID: 38950741 DOI: 10.1016/j.chemosphere.2024.142745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
Chemical coagulation has gained recognition as an effective technique to enhance the removal efficiency of pollutants in wastewater prior to their entry into a constructed wetland (CW) system. However, its potential impact on the chemical and microbial properties of soil and plant systems within CWs requires further research. This study investigated the impact of using ferric chloride (FeCl3) as a pre-treatment stage for dairy wastewater (DWW) on the chemical and microbial properties of water-soil-plant systems of replicated pilot-scale CWs, comparing them to CWs treating untreated DWW. CWs treating amended DWW had better performance than CWs treating raw DWW for all water quality parameters (COD, TSS, TP, and TN), ensuring compliance with the EU wastewater discharge directives. Soil properties remained mostly unaffected except for pH, calcium and phosphorus (P), which were lower in CWs treating amended DWW. As a result of lower nitrogen (N) and P loads, the plants in CWs receiving FeCl3-amended DWW had lower N and P contents than the plants of raw DWW CWs. However, the lower loads of P into amended DWW CWs did not limit the growth of Phragmites australis, which were able to accumulate trace elements higher than CWs receiving raw DWW. Alpha and Beta-diversity analysis revealed minor differences in community richness and composition between both treatments, with only 3.7% (34 genera) showed significant disparities. Overall, the application of chemical coagulation produced superior effluent quality without affecting the properties of soil and plant of CWs or altering the functioning of the microbial community.
Collapse
Affiliation(s)
- A Y A Mohamed
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland; Civil Engineering and Ryan Institute, College of Science and Engineering, University of Galway, Ireland
| | - P Tuohy
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - M G Healy
- Civil Engineering and Ryan Institute, College of Science and Engineering, University of Galway, Ireland.
| | - D Ó hUallacháin
- Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Co. Wexford, Ireland
| | - O Fenton
- Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Co. Wexford, Ireland
| | - A Siggins
- School of Biological and Chemical Sciences, and Ryan Institute, College of Science and Engineering, University of Galway, Ireland
| |
Collapse
|
11
|
Pincam T, Liu YQ, Booth A, Wang Y, Lan G, Zeng P. A comprehensive comparison of microbial communities between aerobic granular sludge and flocculent sludge for nutrient removal in full-scale wastewater treatment plants. CHEMOSPHERE 2024; 362:142644. [PMID: 38901698 DOI: 10.1016/j.chemosphere.2024.142644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Understanding the microbial community structure of sludge is crucial for improving the design, operation and optimisation of full-scale wastewater treatment plants (WWTPs). This study aimed to have a comprehensive comparison of microbial communities between aerobic granular sludge and flocculent sludge from two full-scale sequential batch reactors-based WWTPs with nutrient removal for the first time. To better understand key functional bacteria such as polyphosphate accumulating bacteria (PAOs), competitive bacteria such as glycogen accumulating bacteria (GAOs) and nitrifying bacteria for both nitrogen and phosphorus removal, another two full-scale WWTPs with only carbon (C) removal and C and nitrogen (N) removal were compared too. It was found that the richness and diversity of the microbial population in sludge increased with pollutant removal from only C, C and N, to C,N, P removal. For C, N P removal, granule structure led to a more diverse and rich microbial community structure than flocculent structure. Although more abundant nitrifying bacteria were enriched in granular sludge than flocculent sludge, the abundance of total putative PAOs was equivalent. However, the most typical putative PAOs such as Tetrasphaera and Candidatus Accumulibacter seemed to be more correlated with biological phosphorus removal performance, which might be more proper to be used as an indication for P removal potential. The higher abundance of GAOs in flocculent sludge with better phosphorus removal performance might suggest that further investigation is needed to understand the functions of GAOs. In addition, the equivalent abundances of PAOs in the WWTPs with only C removal and with C, N, and P removal, respectively, indicate that many newly reported putative PAOs might not contribute to P removal. This study provides insight into the microbial communities and functional bacteria in aerobic granular sludge and flocculent sludge in full-scale SBRs, which can provide microbes-informed optimisation of reactor operation for better nutrient removal.
Collapse
Affiliation(s)
- Tararag Pincam
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yong-Qiang Liu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Alexander Booth
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guihong Lan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University (SWPU), Chengdu, 610500, China
| | - Ping Zeng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
12
|
Ekholm J, Persson F, de Blois M, Modin O, Gustavsson DJI, Pronk M, van Loosdrecht MCM, Wilén BM. Microbiome structure and function in parallel full-scale aerobic granular sludge and activated sludge processes. Appl Microbiol Biotechnol 2024; 108:334. [PMID: 38739161 PMCID: PMC11090927 DOI: 10.1007/s00253-024-13165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Aerobic granular sludge (AGS) and conventional activated sludge (CAS) are two different biological wastewater treatment processes. AGS consists of self-immobilised microorganisms that are transformed into spherical biofilms, whereas CAS has floccular sludge of lower density. In this study, we investigated the treatment performance and microbiome dynamics of two full-scale AGS reactors and a parallel CAS system at a municipal WWTP in Sweden. Both systems produced low effluent concentrations, with some fluctuations in phosphate and nitrate mainly due to variations in organic substrate availability. The microbial diversity was slightly higher in the AGS, with different dynamics in the microbiome over time. Seasonal periodicity was observed in both sludge types, with a larger shift in the CAS microbiome compared to the AGS. Groups important for reactor function, such as ammonia-oxidising bacteria (AOB), nitrite-oxidising bacteria (NOB), polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs), followed similar trends in both systems, with higher relative abundances of PAOs and GAOs in the AGS. However, microbial composition and dynamics differed between the two systems at the genus level. For instance, among PAOs, Tetrasphaera was more prevalent in the AGS, while Dechloromonas was more common in the CAS. Among NOB, Ca. Nitrotoga had a higher relative abundance in the AGS, while Nitrospira was the main nitrifier in the CAS. Furthermore, network analysis revealed the clustering of the various genera within the guilds to modules with different temporal patterns, suggesting functional redundancy in both AGS and CAS. KEY POINTS: • Microbial community succession in parallel full-scale aerobic granular sludge (AGS) and conventional activated sludge (CAS) processes. • Higher periodicity in microbial community structure in CAS compared to in AGS. • Similar functional groups between AGS and CAS but different composition and dynamics at genus level.
Collapse
Affiliation(s)
- Jennifer Ekholm
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins Gata 6, 41296, Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins Gata 6, 41296, Gothenburg, Sweden
| | | | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins Gata 6, 41296, Gothenburg, Sweden
| | - David J I Gustavsson
- Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, 22370, Lund, Sweden
- VA SYD, P.O. Box 191, 20121, Malmö, Sweden
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins Gata 6, 41296, Gothenburg, Sweden.
| |
Collapse
|
13
|
Feng W, Zhang Q, Li J, Duan C, Peng Y. Novel anammox granules formation from conventional activated sludge for municipal wastewater treatment through flocs management. BIORESOURCE TECHNOLOGY 2024; 396:130384. [PMID: 38281548 DOI: 10.1016/j.biortech.2024.130384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The direct integration of anammox process into municipal wastewater treatment has caused widespread concern, but the lack of anammox seeds limited its real application. This study successfully cultivated anammox granules (322.0 μm) from conventional activated sludge treating municipal wastewater. Through ultra-low floc sludge retention times of 8d, nitrifiers on flocs were eliminated and partial nitrification was realized. Furthermore, highly bacteria-enriched granules were initially formed, with Nitrosomonas and Ca. Competibacter 4-fold higher than that of flocs. Specific staining results revealed the microbial interaction with Ca. Brocadia, considering that Ca. Competibacter and Nitrosomonas correspondingly identified in the inner and outer layers of granules. The percentage of Ca. Brocadia present on the granules increased substantially from 0.0 % to 3.0 %, accompanied by a nitrogen removal rate of 0.3 kg·m-3·d-1. Our findings revealed a valuable reference for the anammox bacteria in-situ enrichment under mainstream conditions, which provides theoretical guidance for anammox-based processes practical application.
Collapse
Affiliation(s)
- Wanyi Feng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chenxue Duan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
14
|
Zhang L, Adyari B, Hou L, Yang X, Gad M, Wang Y, Ma C, Sun Q, Tang Q, Zhang Y, Yu CP, Hu A. Mass-immigration shapes the antibiotic resistome of wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168193. [PMID: 37914134 DOI: 10.1016/j.scitotenv.2023.168193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Wastewater treatment plants (WWTPs) are the hotspots for the spread of antibiotic resistance genes (ARGs) into the environment. Nevertheless, a comprehensive assessment of the city-level and short-term daily (inter-day) variations of ARG profiles in the whole process (influent-INF, activated sludge-AS and effluent-EF) of WWTPs is still lacking. Here, 285 ARGs and ten mobile gene elements were monitored in seven WWTPs in Xiamen for seven days via high-throughput qPCR. The average daily load of ARGs to WWTPs was about 1.32 × 1020 copies/d, and a total of 1.56 × 1018 copies/d was discharged to the environment across the entire city. Stochastic processes were the main force determining the assembly of ARG communities during sampling campaign, with their relative importance ranked in the order of INF > EFF > AS. There're little daily variations in ARG richness, abundance, β-diversity composition as well as assembly mechanisms. The results of SourceTracker, variation partitioning analysis, and hierarchical partitioning analysis indicated that bacteria and ARGs from upstream treatment processes played an increasingly dominant role in shaping ARG communities in AS and EFF, respectively, suggesting the importance of mass-immigration of bacteria and ARGs from the source on ARG transport in wastewater treatment processes. This emphasizes the need to revise the way we mitigate ARG contamination but focus on the source of ARGs in urban wastewater.
Collapse
Affiliation(s)
- Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, UT 84322, USA; Utah Water Research Laboratory, Utah State University, Logan, UT 84322, USA
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Mahmoud Gad
- Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Yuwen Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Cong Ma
- Xiamen Municipal Environmental Technology Co., Ltd., Xiamen 361001, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiang Tang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
15
|
Liu Y, Liu Y, Zhao T, He Y, Zhu T, Chai H, Peng L. Smaller Aerobic Granules Significantly Reduce N 2O Production by Ammonia-Oxidizing Bacteria: Evidences from Biochemical and Isotopic Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:545-556. [PMID: 38111342 DOI: 10.1021/acs.est.3c06246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The mitigation of nitrous oxide (N2O) is of primary significance to offset carbon footprints in aerobic granular sludge (AGS) systems. However, a significant knowledge gap still exists regarding the N2O production mechanism and its pathway contribution. To address this issue, the impact of varying granule sizes, dissolved oxygen (DO), and nitrite (NO2-) levels on N2O production by ammonia-oxidizing bacteria (AOB) during nitrification in AGS systems was comprehensively investigated. Biochemical and isotopic experiments revealed that increasing DO or decreasing NO2- levels reduced N2O emission factors (by 13.8 or 19.5%) and production rates (by 0.08 or 0.35 mg/g VSS/h) via weakening the role of the AOB denitrification pathway since increasing DO competed for more electrons required for AOB denitrification. Smaller granules (0.5 mm) preferred to diminish N2O production via enhancing the role of NH2OH pathway (i.e., 59.4-100% in the absence of NO2-), while larger granules (2.0 mm) induced conspicuously higher N2O production via the AOB denitrification pathway (approximately 100% at higher NO2- levels). Nitrifying AGS systems with a unified size of 0.5 mm achieved 42% N2O footprint reduction compared with the system with mixed sizes (0.5-2.0 mm) under optimal conditions (DO = 3.0 mg-O2/L and NO2- = 0 mg-N/L).
Collapse
Affiliation(s)
- Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tianhang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| |
Collapse
|
16
|
Zhou Y, Celine Zhang Y, Hu X, Zhou Y, Bai Y, Xiang P, Zhang Z. Overlooked role in bacterial assembly of different-sized granules in same sequencing batch reactor: Insights into bacterial niche of nutrient removal. BIORESOURCE TECHNOLOGY 2024; 391:129992. [PMID: 37949147 DOI: 10.1016/j.biortech.2023.129992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
The unique ecosystem within different-sized granules affects microbial assembly, which is crucial for wastewater treatment performance. This study operated an aerobic granular sludge system to evaluate its performance in treating synthetic municipal wastewater. Subsequently, the microbial community within different-sized granules was characterized to investigate bacterial assembly, and elucidated their biological potential for nutrient removal. The nutrient removal efficiencies were as follows: 93.8 ± 2.8 % chemical oxygen demand, 65.4 ± 4.0 % total nitrogen, and 93.8 ± 6.8 % total phosphorus. The analysis of microbial assembly unveiled remarkable diversity among different-sized sludges, the genus relative abundance displayed 61.4 % positive and 33.0 % negative correlation with sludge size. The excellent potential for organic degradation, denitrification, and polyphosphate accumulation occurred in sludge sizes of > 0.75 mm, 0.20-0.50 mm, and < 0.20 mm, respectively. Functional annotation further confirmed the nutrient removal potential within different-sized sludges. This study provides valuable insights into the bacterial niche of different-sized sludges, which can enhance their practical application.
Collapse
Affiliation(s)
- Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | | | - Xueli Hu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuanhang Zhou
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ping Xiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
17
|
Liébana R, Modin O, Persson F, Hermansson M, Wilén BM. Resistance of aerobic granular sludge microbiomes to periodic loss of biomass. Biofilm 2023; 6:100145. [PMID: 37575957 PMCID: PMC10415711 DOI: 10.1016/j.bioflm.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Granular sludge is a biofilm process used for wastewater treatment which is currently being implemented worldwide. It is important to understand how disturbances affect the microbial community and performance of reactors. Here, two acetate-fed replicate reactors were inoculated with acclimatized sludge and the reactor performance, and the granular sludge microbial community succession were studied for 149 days. During this time, the microbial community was challenged by periodically removing half of the reactor biomass, subsequently increasing the food-to-microorganism (F/M) ratio. Diversity analysis together with null models show that overall, the microbial communities were resistant to the disturbances, observing some minor effects on polyphosphate-accumulating and denitrifying microbial communities and their associated reactor functions. Community turnover was driven by drift and random granule loss, and stochasticity was the governing ecological process for community assembly. These results evidence the aerobic granular sludge process as a robust system for wastewater treatment.
Collapse
Affiliation(s)
- Raquel Liébana
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE 412 96, Gothenburg, Sweden
- AZTI, Marine Research Division, Basque Research Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Bizkaia, Spain
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE 412 96, Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE 412 96, Gothenburg, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9E, SE-413 90, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE 412 96, Gothenburg, Sweden
| |
Collapse
|
18
|
Tan Y, Yu P, Huang D, Yuan MM, Yu Z, Lu H, Alvarez PJJ, Zhu L. Enhanced Bacterium-Phage Symbiosis in Attached Microbial Aggregates on a Membrane Surface Facing Elevated Hydraulic Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17324-17337. [PMID: 37930060 DOI: 10.1021/acs.est.3c05452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Phages are increasingly recognized for their importance in microbial aggregates, including their influence on microbial ecosystem services and biotechnology applications. However, the adaptive strategies and ecological functions of phages in different aggregates remain largely unexplored. Herein, we used membrane bioreactors to investigate bacterium-phage interactions and related microbial functions within suspended and attached microbial aggregates (SMA vs AMA). SMA and AMA represent distinct microbial habitats where bacterial communities display distinct patterns in terms of dominant species, keystone species, and bacterial networks. However, bacteria and phages in both aggregates exhibited high lysogenicity, with 60% lysogenic phages in the virome and 70% lysogenic metagenome-assembled genomes of bacteria. Moreover, substantial phages exhibited broad host ranges (34% in SMA and 42% in AMA) and closely interacted with habitat generalist species (43% in SMA and 49% in AMA) as adaptive strategies in stressful operation environments. Following a mutualistic pattern, phage-carried auxiliary metabolic genes (pAMGs; 238 types in total) presumably contributed to the bacterial survival and aggregate stability. The SMA-pAMGs were mainly associated with energy metabolism, while the AMA-pAMGs were mainly associated with antioxidant biosynthesis and the synthesis of extracellular polymeric substances, representing habitat-dependent patterns. Overall, this study advanced our understanding of phage adaptive strategies in microbial aggregate habitats and emphasized the importance of bacterium-phage symbiosis in the stability of microbial aggregates.
Collapse
Affiliation(s)
- Yixiao Tan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Dan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengting Maggie Yuan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Zhuodong Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pedro J J Alvarez
- Civil and Environmental Engineering Department, Rice University, Houston, Texas 77005, United States
| | - Liang Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| |
Collapse
|
19
|
Kleikamp HBC, Grouzdev D, Schaasberg P, van Valderen R, van der Zwaan R, Wijgaart RVD, Lin Y, Abbas B, Pronk M, van Loosdrecht MCM, Pabst M. Metaproteomics, metagenomics and 16S rRNA sequencing provide different perspectives on the aerobic granular sludge microbiome. WATER RESEARCH 2023; 246:120700. [PMID: 37866247 DOI: 10.1016/j.watres.2023.120700] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
The tremendous progress in sequencing technologies has made DNA sequencing routine for microbiome studies. Additionally, advances in mass spectrometric techniques have extended conventional proteomics into the field of microbial ecology. However, systematic studies that provide a better understanding of the complementary nature of these 'omics' approaches, particularly for complex environments such as wastewater treatment sludge, are urgently needed. Here, we describe a comparative metaomics study on aerobic granular sludge from three different wastewater treatment plants. For this, we employed metaproteomics, whole metagenome, and 16S rRNA amplicon sequencing to study the same granule material with uniform size. We furthermore compare the taxonomic profiles using the Genome Taxonomy Database (GTDB) to enhance the comparability between the different approaches. Though the major taxonomies were consistently identified in the different aerobic granular sludge samples, the taxonomic composition obtained by the different omics techniques varied significantly at the lower taxonomic levels, which impacts the interpretation of the nutrient removal processes. Nevertheless, as demonstrated by metaproteomics, the genera that were consistently identified in all techniques cover the majority of the protein biomass. The established metaomics data and the contig classification pipeline are publicly available, which provides a valuable resource for further studies on metabolic processes in aerobic granular sludge.
Collapse
Affiliation(s)
- Hugo B C Kleikamp
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| | | | - Pim Schaasberg
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ramon van Valderen
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ramon van der Zwaan
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Roel van de Wijgaart
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | | | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
20
|
Wen ZH, Zhang SS, Zhao P, Hang ZY, He ZW, Yu HQ, Li ZH. Roles of high/low nucleic acid bacteria in flocs and probing their dynamic migrations with respirogram. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165108. [PMID: 37356771 DOI: 10.1016/j.scitotenv.2023.165108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Bacterial migration is crucial for the stability of activated sludge but rarely reported. The static distribution was explored by changes in bacteria concentration with extracellular polymeric substances (EPS) extractions. Next, denitrification and aeration were conducted as normal running conditions for examining the bacterial migration between floc-attached and dispersed growth. Above observations were further explored by conducting copper ion (Cu2+) shock as an extreme running condition. After extracting EPS, low nucleic acid (LNA) bacteria migrated from the sludge to the supernatant primarily, and high nucleic acid (HNA) bacteria remained in the residual sludge, suggesting that HNA bacteria mainly distributed inside the sludge while LNA bacteria outside the sludge. During the denitrification process, LNA bacteria migrated out of flocs, which increased by 6.94 × 106 events/mL in the supernatant. During the feast phase of aeration, LNA bacteria grew attached to flocs, causing the increased flocs diameter from 45.60 to 47.40 μm. During the following aerobic famine phase, LNA bacteria grew dispersedly, but HNA bacteria remained unchanged. However, a further severe famine phase drove HNA bacteria to be dispersed, breaking flocs with the decreased diameter from 48.10 to 46.50 μm. When the Cu2+ shock was employed, LNA and HNA bacteria increased but the LNA/HNA ratio decreased in the supernatant, indicating more HNA bacteria migrating to the dispersed phase. From a structural perspective, HNA bacteria distributed inside the sludge and functioned as the backbone of flocs, undertaking the maintenance of flocs stability primarily; while LNA bacteria distributed outside the sludge and functioned as filling materials, having a secondary influence on flocs stability. These processes were also probed by respirogram exactly, correlating the system-scale measurement and microscale migrations and providing an early warning signal under abnormal circumstances. The processed HNA-backbone theory is promising for regulating the stability of activated sludge based on bacterial migrations.
Collapse
Affiliation(s)
- Zheng-Hong Wen
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuang-Shuang Zhang
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pian Zhao
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhen-Yu Hang
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
21
|
Liu J, Han X, Zhu X, Li J, Zhong D, Wei L, Liang H. A systemic evaluation of aerobic granular sludge among granulation, operation, storage, and reactivation processes in an SBR. ENVIRONMENTAL RESEARCH 2023; 235:116594. [PMID: 37467940 DOI: 10.1016/j.envres.2023.116594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
As a biological promising wastewater treatment technology, aerobic granular sludge (AGS) technology had been widely studied in sequencing batch reactors (SBRs) for the decades. Presently, the whole processes of its granulation, long-term operation, storage, and reactivation have not been thoroughly evaluated, and also the relationships among microbial diversity, granular size, and characteristics were still not that clear. Hence, they were systematically evaluated in an AGS-SBR in this work. The results demonstrated that Proteobacteria and Bacteroidetes were the dominant phyla, Flavobacterium, Acinetobacter, Azoarcus, and Chryseobacterium were the core genera with discrepant abundances in diverse stages or granular size. Microbial immigration was significant in various stages due to microbial diversity had a line relationship with COD/MLVSS ratio (R2 = 0.367). However, microbial diversity had no line relationship with granular size (R2 = 0.001), indicating the microbial diversity in different-sized AGS was similar, although granular size had a line relationship with settleability (R2 = 0.978). Overall, compared to sludge traits (e.g., sludge size, settleability), COD/MLVSS played a key role on microbial evolution. This study revealed the relationships between granule characteristics and microbial community, and contributed to the future AGS-related studies.
Collapse
Affiliation(s)
- Jun Liu
- School of Modern Agriculture, Jiaxing Vocational & Technical College, Jiaxing, 314036, PR China; Department of Civil Engineering, Tongji Zhejiang College, Jiaxing, 314051, PR China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
22
|
Ossiansson E, Persson F, Bengtsson S, Cimbritz M, Gustavsson DJI. Seasonal variations in acidogenic fermentation of filter primary sludge. WATER RESEARCH 2023; 242:120181. [PMID: 37343334 DOI: 10.1016/j.watres.2023.120181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Primary treatment of municipal wastewater by rotating belt filtration followed by hydrolysis and acidogenic fermentation of the filter primary sludge (FPS) at ambient temperature was studied at pilot-scale during one year. The seasonal variations of volatile fatty acids (VFAs), nutrient release and soluble COD production as well as microbial community assembly were assessed, leading to novel findings for fermentation at ambient temperature. The reproducibility of VFA production performance was first established by operating the two fermentation reactors under the same conditions, showing similar results regarding VFA production and microbial community structure. One year of operation at 5 d retention time (RT) and 16-29 °C resulted in an average VFA yield of 180±35 mg COD/g VSin and soluble COD yield of 242±40 mg COD/g VSin. The VFA formation was temperature-dependent, with ϴ=1.033±0.005 ( [Formula: see text] . The seasonal variations of the acetic and propionic acid productions were pronounced, whereas the productions of VFAs with longer chains were more stable regardless of temperature. The community structure of the reactor microbiomes was also clearly affected by season and temperature and linked with the production spectrum of VFAs. The ammonium and phosphate releases were stable during the year, leading to a decrease in ratios of soluble COD to NH4+-N and PO43--P during winter. The soluble COD yield was 11% and 27% higher at 5 d RT compared to 3 and 2 d RT respectively, but the corresponding volumetric productivities were lower. The dissimilarities between microbiomes in influent FPS and fermenters were significant even at a short RT of 2 d, and increased with longer RT of 3 and 5 d, primarily caused by selection of bacteria within Bacteroidota in the fermentation reactors.
Collapse
Affiliation(s)
- Elin Ossiansson
- VA SYD, Box 191, SE-20121 Malmö, Sweden; Chalmers University of Technology, Dep. of Architecture and Civil Engineering, SE-412, 96 Gothenburg, Sweden.
| | - Frank Persson
- Chalmers University of Technology, Dep. of Architecture and Civil Engineering, SE-412, 96 Gothenburg, Sweden
| | - Simon Bengtsson
- VA SYD, Box 191, SE-20121 Malmö, Sweden; Sweden Water Research, Scheelevägen 15, SE-22370 Lund, Sweden
| | - Michael Cimbritz
- Lund University, Dep. of Chemical Engineering, Box 124, SE-221 00 Lund, Sweden
| | - David J I Gustavsson
- VA SYD, Box 191, SE-20121 Malmö, Sweden; Sweden Water Research, Scheelevägen 15, SE-22370 Lund, Sweden
| |
Collapse
|
23
|
Ekholm J, de Blois M, Persson F, Gustavsson DJI, Bengtsson S, van Erp T, Wilén BM. Case study of aerobic granular sludge and activated sludge-Energy usage, footprint, and nutrient removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10914. [PMID: 37494966 DOI: 10.1002/wer.10914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
This study demonstrates a comparison of energy usage, land footprint, and volumetric requirements of municipal wastewater treatment with aerobic granular sludge (AGS) and conventional activated sludge (CAS) at a full-scale wastewater treatment plant characterized by large fluctuations in nutrient loadings and temperature. The concentration of organic matter in the influent to the AGS was increased by means of hydrolysis and bypassing the pre-settler. Both treatment lines produced effluent concentrations below 5 mg BOD7 L-1 , 10 mg TN L-1 , and 1 mg TP L-1 , by enhanced biological nitrogen- and phosphorus removal. In this case study, the averages of volumetric energy usage over 1 year were 0.22 ± 0.08 and 0.26 ± 0.07 kWh m-3 for the AGS and CAS, respectively. A larger difference was observed for the energy usage per reduced population equivalents (P.E.), which was on average 0.19 ± 0.08 kWh P.E.-1 for the AGS and 0.30 ± 0.08 kWh P.E.-1 for the CAS. However, both processes had the potential for decreased energy usage. Over 1 year, both processes showed similar fluctuations in energy usage, related to variations in loading, temperature, and DO. The AGS had a lower specific area, 0.3 m2 m-3 d-1 , compared to 0.6 m2 m-3 d-1 of the CAS, and also a lower specific volume, 1.3 m3 m-3 d-1 compared to 2.0 m3 m-3 d-1 . This study confirms that AGS at full-scale can be compact and still have comparable energy usage as CAS. PRACTITIONER POINTS: Full-scale case study comparison of aerobic granular sludge (AGS) and conventional activated sludge (CAS), operated in parallel. AGS had 50 % lower footprint compared to CAS. Energy usage was lower in the AGS, but both processes had potential to improve the energy usage efficiency. Both processes showed low average effluent concentrations.
Collapse
Affiliation(s)
- Jennifer Ekholm
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
24
|
Li YS, Li BB, Tian T, Yu HQ. Quorum sensing unveils the sludge floccule-assisted stabilization of aerobic granules in granule-dominated sequencing batch reactors. Biotechnol Bioeng 2023; 120:444-455. [PMID: 36303067 DOI: 10.1002/bit.28275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 01/13/2023]
Abstract
Floccules are another major form of microbial aggregates in aerobic granular sludge systems. Previous studies mainly attributed the persistence of floccules to their relatively faster nutrient uptake and higher growth rate over aerobic granules; however, they failed to unravel the underlying mechanism of the long-term coexistence of these two aggregates. In this work, the existence and function of the floccules in an aerobic granule-dominated sequencing batch reactor were investigated from the view of quorum sensing (QS) and quorum quenching (QQ). The results showed that though the floccules were closely associated with the granules in terms of similar community structures (including the QS- and QQ-related ones), they exhibited a relatively higher QQ-related activity but a lower QS-related activity. A compatible proportion of floccules might be helpful to maintain the QS-related activity and keep the granules stable. In addition, the structure difference was demonstrated to diversify the QS- and QQ-related activities of the floccules and the aerobic granules. These findings could broaden our understanding of the interactions between the coexistent floccules and granules in aerobic granule-dominated systems and would be instructive for the development of the aerobic granular sludge process.
Collapse
Affiliation(s)
- Yu-Sheng Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Bing-Bing Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.,Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| |
Collapse
|
25
|
Xiao X, Guo H, Ma F, Zhang J, Ma X, You S. New insights into mycelial pellets for aerobic sludge granulation in membrane bioreactor: Bio-functional interactions among metazoans, microbial communities and protein expression. WATER RESEARCH 2023; 228:119361. [PMID: 36402059 DOI: 10.1016/j.watres.2022.119361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Direct cultivation of aerobic granular sludge (AGS) in membrane bioreactor (MBR) has gained increasing attention. Mycelial pellets (MPs) has been shown capable of promoting rapid granulation of aerobic sludge in MBR, yet mechanisms remain unclear and in-depth insight into cross-scale interactions between MPs and indigenous microbiota as well as the corresponding protein expression functions is necessary. Herein, we found that the addition of MPs in MBR resulted in massive growth of metazoans with 40-400 /mL for rotifers, 20-140 /mL for nematodes and 2-420 /mL for oligochaetes in the initial phase of granulation. This facilitated the MPs to rapidly aggregate with bacteria to form defensive granules for physical protection from predation by metazoans, which inhibited the overgrowth of filamentous bacteria Thiothrix and promoted the reproduction of functional bacteria related to nitrogen removal (Nitrospira, Trichococcus and Acinetobacter). Proteomic analysis demonstrated that the upregulation of functional proteins was mainly ascribed to the decrease of Thiothrix and the increase of Nitrospira, resulting in the enhancement of metabolic pathways involved in glycolysis/gluconeogenesis, citrate (TCA) cycle, oxidative phosphorylation, pyruvate metabolism, nitrogen metabolism and biosynthesis of amino acids, which was responsible for MPs-induced AGS with denser structure, more abundant proteins and β-polysaccharides, higher species diversity, significant nitrogen removal (33.12-42.33%) and lower membrane fouling potential. This study provided a novel and comprehensive insight into the enhanced granulation of aerobic sludge by MPs and the functional superiority of MPs-induced AGS in MBR system.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haijuan Guo
- School of Environment, Liaoning University, Shenyang 110036, PR China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiping Ma
- School of Environment, Liaoning University, Shenyang 110036, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
26
|
Zhou Y, Zhou Y, Chen S, Guo N, Xiang P, Lin S, Bai Y, Hu X, Zhang Z. Evaluating the role of algae in algal-bacterial granular sludge: Nutrient removal, microbial community and granular characteristics. BIORESOURCE TECHNOLOGY 2022; 365:128165. [PMID: 36283664 DOI: 10.1016/j.biortech.2022.128165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Algal-bacterial granular sludge (ABGS) and bacterial granular sludge (BGS, control group) were operated over 240 days to investigate the role of algae in treating synthetic municipal wastewater. The results showed that algae significantly improved the removal efficiency of total nitrogen (TN). The nitrogen removal load of ABGS was 2.6 mg-N/g-VSS/day (22.8 %, light) and 1.1 mg-N/g-VSS/day (9.6 %, dark) higher than that of BGS, respectively, which was attributed to algae enhanced NH3-N removal capacity in the anaerobic stage and increased the utilization efficiency of organics in denitrification. Algae increased the relative abundance of denitrifying bacteria, and ABGS (28.83 %) was higher than BGS (14.28 %). Moreover, the dominant phylum of algae was Chlorophyta (98.39 %), the chlorophyll-a was sustained at 1.28 ± 0.26 mg/g-VSS. Algae significantly increased the content of extracellular polymeric substances (EPS), and the increased polysaccharide came from the tightly bound EPS. This study expands the understanding of the role of algae in ABGS.
Collapse
Affiliation(s)
- Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuanhang Zhou
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Siqin Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Niuniu Guo
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ping Xiang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Shutao Lin
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xueli Hu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
27
|
Qin Z, Zhao Z, Xia L, Ohore OE. Unraveling the ecological mechanisms of bacterial succession in epiphytic biofilms on Vallisneria natans and Hydrilla verticillata during bioremediation of phenanthrene and pyrene polluted wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115986. [PMID: 35998537 DOI: 10.1016/j.jenvman.2022.115986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
In wetland ecosystem, the microbial succession in epiphytic biofilms of submerged macrophytes remains to be fully elucidated, especially submerged macrophytes used to remediate organic pollutants contaminated sediment. Herein, 16 S rRNA gene sequencing was used to investigate the bacterial dynamics and ecological processes in the biofilms of two typical submerged macrophytes (Vallisneria natans and Hydrilla verticillata) settled in sediment polluted by polycyclic aromatic hydrocarbons (PAHs) at two growth periods. The results presented that the variations of bacterial community in the biofilms were influenced by attached surfaces (explanation ratio: 17.30%), incubation time (32.30%) and environmental factors (39.10%). Bacterial community assembly was mainly driven by dispersal limitation which triggered more positive co-occurrence associations in microbial networks, maintaining ecological stability in the process of bioremediation of PAHs. Additionally, the functional redundancy strength of bacterial community was more affected by attached surface than incubation time. The structural equation model illustrated that community assembly drove β-diversity and explained a part of ecological functions. Environmental factors, community assembly, and β-diversity jointly affected microbial networks. Overall, our study offers new insights into the microbial ecology in biofilms attached on the submerged macrophytes settled in PAH-polluted sediment, providing important information for deeply understanding submerged macrophyte-biofilm complex and promoting sustainable phytoremediation in shallow lacustrine and marshy ecosystems.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | - Liling Xia
- Nanjing Vocational University of Industry Technology, Nanjing, 210016, China
| | - Okugbe Ebiotubo Ohore
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; Organization of African Academic Doctors, Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| |
Collapse
|
28
|
Alves OIM, Araújo JM, Silva PMJ, Magnus BS, Gavazza S, Florencio L, Kato MT. Formation and stability of aerobic granular sludge in a sequential batch reactor for the simultaneous removal of organic matter and nutrients from low-strength domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156988. [PMID: 35772566 DOI: 10.1016/j.scitotenv.2022.156988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous removal of organic matter, nitrogen, and phosphorus, via simultaneous nitrification and denitrification (SND) and enhanced biological phosphorus removal processes, was evaluated in a pilot-scale sequential batch reactor. The focus was on granule's morphology, stability, microbiological composition, and reactor performance while treating diluted domestic wastewater with total chemical oxygen demand (CODt) of ≈ 200 mg.L-1. The applied organic loading rate was 0.9 ± 0.3 kg CODt.m-3.d-1 in the experiment. Aerobic granular sludge developed gradually. After 87-day operation, granules (diameter ≥ 0.2 mm) were ≥ 50 % of the biomass, and after 168 days, complete granulation was obtained (≥ 80 % of biomass). In the third period (days 168-247, complete granulation), mixed liquor biomass reached a volatile suspended solids (VSS) concentration of 1.2 ± 0.3 g VSS.L-1, with the granules remaining stable until the experimental end. In this period, low effluent concentrations of COD, nitrogen (NH4+-N, NO2--N and NO3--N) and phosphate (PO43-P) were obtained (mg.L-1): 36 ± 11; 4 ± 5; 3 ± 3, 4 ± 5; and 0.9 ± 0.4, respectively. COD, NH4+-N, and PO43--P removal efficiencies (%) were 80 ± 11; 83 ± 20; and 55 ± 24, respectively. Heterotrophic nitrification and SND were observed, resulting in a process efficiency of 31 % even with dissolved oxygen applied to saturation. The phosphate removal was mainly attributed to denitrifying phosphorus accumulating organisms. Pseudomonas, the dominant genus found, acted in nitrogen and phosphorus removal. Pseudoxanthomonas also assisted in phosphorus removal. Bacterial communities in the flocs (≈ 20 % of biomass) during the last period were similar to those in the granules; therefore, they constituted the basis for granule formation, directly contributed to the simultaneous good removal of organic matter and nutrients.
Collapse
Affiliation(s)
- Oucilane I M Alves
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Julliana M Araújo
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Federal Institute of Education, Science and Technology of Sertão Pernambucano, Campus Ouricuri, Estrada do Tamboril s/n, Zona Rural, Ouricuri, Pernambuco, Brazil
| | - Poliana M J Silva
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Bruna S Magnus
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Sávia Gavazza
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Lourdinha Florencio
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Mario T Kato
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
29
|
Chen Y, Geng N, Hu T, Baeyens J, Wang S, Su H. Adaptive regulation of activated sludge's core functional flora based on granular internal spatial microenvironment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115714. [PMID: 35839647 DOI: 10.1016/j.jenvman.2022.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A great deal of efforts has been put into studying the influence of the external macroenvironment for activated sludge to survive on microbial community succession, while granular internal spatial microenvironment should be given equal attention, because it is more directly involved in the information exchange and material transfer among microorganisms. This study systematically investigated the effects of granular microenvironment on spatial colonization and composition of sludge's core functional flora, and the corresponding difference of biological treatment performance. High content of extracellular-proteins (67.53 mg/gVSS) or extracellular-polysaccharide (65.02 mg/gVSS) stimulated the microbial flocculation and aggregation of 0.5-1.5 mm granules (GS) or 1.5-3.0 mm granules (GM), respectively, which was resulted from excellent cell hydrophobicity (59.26%) or viscosity (3.47 mPa s), therefore, constituted relatively dense porous frame. More hollow space existed in 3.0-5.0 mm granules (GL), which formed loose skeleton with 0.213 mL/g of total pore volume and 17.21 nm of average pore size. Combining scanning electron microscope images and fluorescent in-situ hybridization based microbiological analysis, aerobic nitrifiers were observed to wrap or surround anaerobic bacteria, or facultative/anaerobic bacteria were self-encapsulated, which created granule's unique microenvironment with alternating aerobic and anaerobic zones. GS has the most rich organic matter degrading bacteria and anaerobic heterotrophic denitrifiers, while GM and GL presented the greatest relative abundance of facultative and aerobic denitrifiers, respectively. The activity of dehydrogenase and nitrogen invertase of GM showed be 1.32-3.09 times higher than those of GS and GL, contributing to its higher carbon and nitrogen removal. These findings highlight the importance of granular microenvironment to adaptive regulation of activated sludge's core functional flora and corresponding pollutant removal performance.
Collapse
Affiliation(s)
- Yingyun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Nanfei Geng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Tenghui Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jan Baeyens
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
30
|
Wang YC, Lin YT, Wang C, Tong Z, Hu XR, Lv YH, Jiang GY, Han MF, Deng JG, Hsi HC, Lee CH. Microbial community regulation and performance enhancement in gas biofilters by interrupting bacterial communication. MICROBIOME 2022; 10:150. [PMID: 36117217 PMCID: PMC9484056 DOI: 10.1186/s40168-022-01345-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Controlling excess biomass accumulation and clogging is important for maintaining the performance of gas biofilters and reducing energy consumption. Interruption of bacterial communication (quorum quenching) can modulate gene expression and alter biofilm properties. However, whether the problem of excess biomass accumulation in gas biofilters can be addressed by interrupting bacterial communication remains unknown. RESULTS In this study, parallel laboratory-scale gas biofilters were operated with Rhodococcus sp. BH4 (QQBF) and without Rhodococcus sp. BH4 (BF) to explore the effects of quorum quenching (QQ) bacteria on biomass accumulation and clogging. QQBF showed lower biomass accumulation (109 kg/m3) and superior operational stability (85-96%) than BF (170 kg/m3; 63-92%) at the end of the operation. Compared to BF, the QQBF biofilm had lower adhesion strength and decreased extracellular polymeric substance production, leading to easier detachment of biomass from filler surface into the leachate. Meanwhile, the relative abundance of quorum sensing (QS)-related species was found to decrease from 67 (BF) to 56% (QQBF). The QS function genes were also found a lower relative abundance in QQBF, compared with BF. Moreover, although both biofilters presented aromatic compounds removal performance, the keystone species in QQBF played an important role in maintaining biofilm stability, while the keystone species in BF exhibited great potential for biofilm formation. Finally, the possible influencing mechanism of Rhodococcus sp. BH4 on biofilm adhesion was demonstrated. Overall, the results of this study achieved excess biomass control while maintaining stable biofiltration performance (without interrupting operation) and greatly promoted the use of QQ technology in bioreactors. Video Abstract.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China.
| | - Zhen Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Meng-Fei Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Ji-Guang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 106, Taiwan
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
31
|
Toja Ortega S, van den Berg L, Pronk M, de Kreuk MK. Hydrolysis capacity of different sized granules in a full-scale aerobic granular sludge (AGS) reactor. WATER RESEARCH X 2022; 16:100151. [PMID: 35965888 PMCID: PMC9364025 DOI: 10.1016/j.wroa.2022.100151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In aerobic granular sludge (AGS) reactors, granules of different sizes coexist in a single reactor. Their differences in settling behaviour cause stratification in the settled granule bed. In combination with substrate concentration gradients over the reactor height during the anaerobic plug-flow feeding regime, this can result in functional differences between granule sizes. In this study, we compared the hydrolytic activity in granules of 4 size ranges (between 0.5 and 4.8 mm diameter) collected from a full-scale AGS installation. Protease and amylase activities were quantified through fluorescent activity assays. To visualise where the hydrolytic active zones were located within the granules, the hydrolysis sites were visualized microscopically after incubating intact and sliced granules with fluorescent casein and starch. The microbial community was studied using fluorescent in situ hybridization (FISH) and sequencing. The results of these assays indicated that hydrolytic capacity was present throughout the granules, but the hydrolysis of bulk substrates was restricted to the outer 100 µm, approximately. Many of the microorganisms studied by FISH, such as polyphosphate and glycogen accumulating organisms (PAO and GAO), were abundant in the vicinity of the hydrolytically active sites. The biomass-specific hydrolysis rate depended mainly on the available granule surface area, suggesting that different sized granules are not differentiated in terms of hydrolytic capacity. Thus, the substrate concentration gradients that are present during the anaerobic feeding in AGS reactors do not seem to affect hydrolytic activity at the granule surfaces. In this paper, we discuss the possible reasons for this and reflect about the implications for AGS technology.
Collapse
Key Words
- AGS, aerobic granular sludge
- AS, activated sludge
- Activity staining
- Aerobic granular sludge
- Biomass segregation
- COD, chemical oxygen demand
- EBPR, enhanced biological phosphorus removal
- EPS, extracellular polymeric substances
- FISH, fluorescence in situ hybridization
- GAO, glycogen-accumulating organism
- Hydrolysis
- PAO, polyphosphate-accumulating organism
- Polymeric substrates
- SBR, sequencing batch reactor
- SND, simultaneous nitrification-denitrification
- SRT, solids retention time
- TSS, total suspended solids
- VFA, volatile fatty acid
- VSS, volatile suspended solids
- WWTP, wastewater treatment plant
- Wastewater treatment
Collapse
Affiliation(s)
- Sara Toja Ortega
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands
| | - Lenno van den Berg
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands
- Royal HaskoningDHV, Laan 1914 35, Amersfoort, AL 3800, the Netherlands
| | - Merle K. de Kreuk
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands
| |
Collapse
|
32
|
Calderón-Franco D, Sarelse R, Christou S, Pronk M, van Loosdrecht MCM, Abeel T, Weissbrodt DG. Metagenomic profiling and transfer dynamics of antibiotic resistance determinants in a full-scale granular sludge wastewater treatment plant. WATER RESEARCH 2022; 219:118571. [PMID: 35576763 DOI: 10.1016/j.watres.2022.118571] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 05/25/2023]
Abstract
In the One Health context, wastewater treatment plants (WWTPs) are central to safeguarding water resources. Nonetheless, many questions remain about their effectiveness in preventing antimicrobial resistance (AMR) dissemination. Most surveillance studies monitor the levels and removal of selected antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in intracellular DNA (iDNA) extracted from WWTP influents and effluents. The role of extracellular free DNA (exDNA) in wastewater is mostly overlooked. This study analyzed the transfer of ARGs and MGEs in a full-scale Nereda® reactor removing nutrients with aerobic granular sludge. We tracked the composition and fate of the iDNA and exDNA pools of influent, sludge, and effluent samples. Metagenomics was used to profile the microbiome, resistome, and mobilome signatures of iDNA and exDNA extracts. Selected ARGs and MGEs were analyzed by qPCR. From 2,840 ARGs identified, the genes arr-3 (2%), tetC (1.6%), sul1 (1.5%), oqxB (1.2%), and aph(3")-Ib (1.2%) were the most abundant among all sampling points and bioaggregates. Pseudomonas, Acinetobacter, Aeromonas, Acidovorax, Rhodoferax, and Streptomyces populations were the main potential hosts of ARGs in the sludge. In the effluent, 478 resistance determinants were detected, of which 89% were from exDNA potentially released by cell lysis during aeration in the reactor. MGEs and multiple ARGs were co-localized on the same extracellular genetic contigs. Total intracellular ARGs decreased 3-42% due to wastewater treatment. However, the ermB and sul1 genes increased by 2 and 1 log gene copies mL-1, respectively, in exDNA from influent to effluent. The exDNA fractions need to be considered in AMR surveillance, risk assessment, and mitigation strategies.
Collapse
Affiliation(s)
- David Calderón-Franco
- Department of Biotechnology, Weissbrodt Group for Environmental Life Science Engineering, Environmental Biotechnology Section, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Roel Sarelse
- Department of Biotechnology, Weissbrodt Group for Environmental Life Science Engineering, Environmental Biotechnology Section, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Stella Christou
- Department of Biotechnology, Weissbrodt Group for Environmental Life Science Engineering, Environmental Biotechnology Section, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Weissbrodt Group for Environmental Life Science Engineering, Environmental Biotechnology Section, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands; Royal HaskoningDHV, Amersfoort, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Weissbrodt Group for Environmental Life Science Engineering, Environmental Biotechnology Section, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, USA
| | - David G Weissbrodt
- Department of Biotechnology, Weissbrodt Group for Environmental Life Science Engineering, Environmental Biotechnology Section, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands.
| |
Collapse
|
33
|
Criado Monleon AJ, Knappe J, Somlai C, Betancourth CO, Ali M, Curtis TP, Gill LW. Spatial Variation of the Microbial Community Structure of On-Site Soil Treatment Units in a Temperate Climate, and the Role of Pre-treatment of Domestic Effluent in the Development of the Biomat Community. Front Microbiol 2022; 13:915856. [PMID: 35814661 PMCID: PMC9263727 DOI: 10.3389/fmicb.2022.915856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
The growth of microbial mats or "biomats" has been identified as an essential component in the attenuation of pollutants within the soil treatment unit (STU) of conventional on-site wastewater treatment systems (OWTSs). This study aimed to characterize the microbial community which colonizes these niches and to determine the influence of the pre-treatment of raw-domestic wastewater on these communities. This was achieved through a detailed sampling campaign of two OWTSs. At each site, the STU areas were split whereby half received effluent directly from septic tanks, and half received more highly treated effluents from packaged aerobic treatment systems [a coconut husk media filter on one site, and a rotating biodisc contactor (RBC) on the other site]. Effluents from the RBC had a higher level of pre-treatment [~90% Total Organic Carbon (TOC) removal], compared to the media filter (~60% TOC removal). A total of 92 samples were obtained from both STU locations and characterized by 16S rRNA gene sequencing analysis. The fully treated effluent from the RBC resulted in greater microbial community richness and diversity within the STUs compared to the STUs receiving partially treated effluents. The microbial community structure found within the STU receiving fully treated effluents was significantly different from its septic tank, primary effluent counterpart. Moreover, the distance along each STU appears to have a greater impact on the community structure than the depth in each STU. Our findings highlight the spatial variability of diversity, Phylum- and Genus-level taxa, and functional groups within the STUs, which supports the assumption that specialized biomes develop around the application of effluents under different degrees of treatment and distance from the source. This research indicates that the application of pre-treated effluents infers significant changes in the microbial community structure, which in turn has important implications for the functionality of the STU, and consequently the potential risks to public health and the environment.
Collapse
Affiliation(s)
- Alejandro Javier Criado Monleon
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| | - Jan Knappe
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
- Mathematics Applications Consortium for Science and Industry (MASCI), Limerick University, Limerick, Ireland
| | - Celia Somlai
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| | | | - Muhammad Ali
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas P. Curtis
- Department of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laurence William Gill
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| |
Collapse
|
34
|
van Dijk EJH, Haaksman VA, van Loosdrecht MCM, Pronk M. On the mechanisms for aerobic granulation - model based evaluation. WATER RESEARCH 2022; 216:118365. [PMID: 35413626 DOI: 10.1016/j.watres.2022.118365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
In this study a mathematical framework was developed to describe aerobic granulation based on 6 main mechanisms: microbial selection, selective wasting, maximizing transport of substrate into the biofilm, selective feeding, substrate type and breakage. A numerical model was developed using four main components; a 1D convection/dispersion model to describe the flow dynamics in a reactor, a reaction/diffusion model describing the essential conversions for granule growth, a setting model to track granules during settling and feeding, and a population model containing up to 100,000 clusters of granules to model the stochastic behaviour of the granulation process. With this approach the model can explain the dynamics of the granulation process observed in practice. This includes the presence of a lag phase and a granulation phase. Selective feeding was identified as an important mechanism that was not yet reported in literature. When aerobic granules are grown from activated sludge flocs, a lag phase occurs, in which not many granules are formed, followed by a granulation phase in which granules rapidly appear. The ratio of granule forming to non-granule forming substrate together with the feast/famine ratio determine if the transition from the lag phase to the granulation phase is successful. The efficiency of selective wasting and selective feeding both determine the rate of this transition. Brake-up of large granules into smaller well settling particles was shown to be an important source for new granules. The granulation process was found to be the combined result from all 6 mechanisms and if conditions for either one are not optimal, other mechanisms can, to some extent, compensate. This model provides a theoretical framework to analyse the different relevant mechanisms for aerobic granular sludge formation and can form the basis for a comprehensive model that includes detailed nutrient removal aspects.
Collapse
Affiliation(s)
- Edward J H van Dijk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands; Royal HaskoningDHV, Laan1914 35, Amersfoort 3800 AL, the Netherlands.
| | - Viktor A Haaksman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands; Royal HaskoningDHV, Laan1914 35, Amersfoort 3800 AL, the Netherlands
| |
Collapse
|
35
|
Ji Y, Yu H, Cao R, Xu X, Zhu L. Promoting the granulation process of aerobic sludge via a sustainable strategy of effluent reflux in view of AHLs-mediated quorum sensing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114091. [PMID: 34861497 DOI: 10.1016/j.jenvman.2021.114091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Aerobic granular sludge (AGS) has excellent performance in wastewater treatment. However, the formation and mechanism of AGS by effluent reflux are not fully understood in sequential batch reactors (SBRs). In this study, two reactors were constructed, among which R1 was the control group, and the R2 reactor refluxed one-fourth of the supernatant of the effluent to the influent water. In the reactor of R2, the granules had better COD and TN removal efficiencies and resistance to external shocks, and AGS produced more extracellular polymeric substances (EPS). Analysis of microbial community indicated that AHLs-mediated microbes, denitrifying microbes, and EPS producers were enriched. At the same time, the correlation between 3OC6-HSL, C8-HSL, C12-HSL and PN was 0.89*, 0.94** and 0.92* respectively, the possible mechanism of enhanced granulation was mainly the promotion of AHLs by effluent reflux. Therefore, the effluent reflux strategy could be an innovative and sustainable strategy that validates the function of AHLs-mediated QS to accelerate aerobic sludge granulation and maintain its structural stability.
Collapse
Affiliation(s)
- Yatong Ji
- Institution of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Haitian Yu
- Institution of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Runjuan Cao
- Institution of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyang Xu
- Institution of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou, 310058, China
| | - Liang Zhu
- Institution of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Wang Y, Wang J, Liu Z, Huang X, Fang F, Guo J, Yan P. Effect of EPS and its forms of aerobic granular sludge on sludge aggregation performance during granulation process based on XDLVO theory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148682. [PMID: 34328949 DOI: 10.1016/j.scitotenv.2021.148682] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Different forms of extracellular polymeric substances (EPS) play different roles in the formation process of aerobic granular sludge (AGS). This work focused on the contribution of loosely bound EPS (LB-EPS), tightly bound EPS (TB-EPS) and EPS to the aggregation between sludge cells during the start-up of aerobic granular sludge in a sequencing batch reactor. By analyzing the changes of sludge surface characteristics before and after the extraction of each layer of EPS, the contribution of LB-EPS, TB-EPS and EPS to the adhesion and aggregation of sludge cells in the granulation was calculated by surface thermodynamics and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The experimental results showed that AGS reactor basically completed the granulation process and kept stable operation within 40 d. In the process of sludge granulation, the effect of LB-EPS on the aggregation of sludge cells shifted from attraction to repulsion. TB-EPS could improve the surface zeta potential and hydrophobicity and show an attractive effect in the granulation process, which was conducive to the adhesion between sludge cells and was the main contributor to the formation of granules. Additionally, EPS played an apparently positive role in sludge flocculation and could promoted cell aggregation in the whole granulation process.
Collapse
Affiliation(s)
- Yaying Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jiaqin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiping Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Xiaohua Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
37
|
Sun H, Zhang L, Zhang Y, Guo B, Liu Y. A new non-steady-state mass balance model for quantifying microbiome responses to disturbances in wastewater bioreactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113370. [PMID: 34351289 DOI: 10.1016/j.jenvman.2021.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Herein we proposed an ecology model, based on a non-steady-state mass balance (16S rRNA MiSeq reads normalized by volatile suspended solids), to quantify microbiome responses to disturbances in wastewater bioreactors. Rather than focusing on the most abundant microbial groups commonly used in the literature, the goal of the model was to identify active species within the community. The model incorporated the temporal changes of operational taxonomic units following a disturbance, through considering the density and type of genotypes in the influent entering the bioreactor, in the effluent leaving the bioreactor, growing in the bioreactor, and in the waste sludge discharged from the bioreactor continuously or instantaneously, as well as the prior microbial community and the sludge characteristics. One application of this model demonstrated that significant differences existed between the key populations responding to an increasing organic loading rate and the dominant species in a high-rate thermophilic upflow anaerobic sludge blanket reactor.
Collapse
Affiliation(s)
- Huijuan Sun
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yingdi Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
38
|
Baeten JE, Walgraeve C, Granja RC, van Loosdrecht MCM, Volcke EIP. Unaerated feeding alters the fate of dissolved methane during aerobic wastewater treatment. WATER RESEARCH 2021; 204:117619. [PMID: 34509867 DOI: 10.1016/j.watres.2021.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
In municipal wastewater treatment plants, some dissolved methane can enter the aerobic bioreactors. This greenhouse gas originates from sewers and return flows from anaerobic sludge treatment. In well-mixed conventional activated sludge reactors, methane emissions are largely avoided because methane oxidizing bacteria consume a large fraction, even without optimizing for this purpose. In this work, the fate of dissolved methane is studied in aerobic granular sludge reactors, as they become increasingly popular. The influence of the characteristic design and operating conditions of these reactors are studied with a mathematical model with apparent conversion kinetics and stripping: the separation of feeding and aeration in time, a higher substrate transport resistance, a high retention time of granular biomass and a taller water column. Even for a best-case scenario combining an unrealistically low intragranule substrate transport resistance, a high retention time, a tall reactor, an extremely high influent methane concentration and no oxygen limitation, the methane conversion efficiency was only 12% when feeding and aeration were separated in time, which is lower than for continuous activated sludge reactors under typical conditions. A more rigorous model was used to confirm the limited conversion, considering the multi-species and multi-substrate biofilm kinetics, anoxic methane consumers and the high substrate concentration at the bottom during upward plug flow feeding. The observed limited methane conversion is mainly due to the high concentration that accumulates during unaerated feeding phases, which favours stripping more than conversion in the subsequent aeration phase. Based on these findings, strategies were proposed to mitigate methane emissions from wastewater treatment plants with sequentially operated reactors.
Collapse
Affiliation(s)
- Janis E Baeten
- Department of Green chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Christophe Walgraeve
- Department of Green chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Rafael Cesar Granja
- Department of Green chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Eveline I P Volcke
- Department of Green chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| |
Collapse
|
39
|
Matar GK, Ali M, Bagchi S, Nunes S, Liu WT, Saikaly PE. Relative Importance of Stochastic Assembly Process of Membrane Biofilm Increased as Biofilm Aged. Front Microbiol 2021; 12:708531. [PMID: 34566913 PMCID: PMC8461090 DOI: 10.3389/fmicb.2021.708531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
The relative importance of different ecological processes controlling biofilm community assembly over time on membranes with different surface characteristics has never been investigated in membrane bioreactors (MBRs). In this study, five ultrafiltration hollow-fiber membranes - having identical nominal pore size (0.1μm) but different hydrophobic or hydrophilic surface characteristics - were operated simultaneously in the same MBR tank with a constant flux of 10 liters per square meter per hour (LMH). In parallel, membrane modules operated without permeate flux (0 LMH) were submerged in the same MBR tank, to investigate the passive microbial adsorption onto different hydrophobic or hydrophilic membranes. Samples from the membrane biofilm were collected after 1, 10, 20, and 30days of continuous filtration. The membrane biofilm microbiome were investigated using 16S rRNA gene amplicon sequencing from DNA and cDNA samples. Similar beta diversity trends were observed for both DNA- and cDNA-based analyses. Beta diversity analyses revealed that the nature of the membrane surface (i.e., hydrophobic vs. hydrophilic) did not seem to have an effect in shaping the bacterial community, and a similar biofilm microbiome evolved for all types of membranes. Similarly, membrane modules operated with and without permeate flux did not significantly influence alpha and beta diversity of the membrane biofilm. Nevertheless, different-aged membrane biofilm samples exhibited significant differences. Proteobacteria was the most dominant phylum in early-stage membrane biofilm after 1 and 10days of filtration. Subsequently, the relative reads abundance of the phyla Bacteroidetes and Firmicutes increased within the membrane biofilm communities after 20 and 30days of filtration, possibly due to successional steps that lead to the formation of a relatively aged biofilm. Our findings indicate distinct membrane biofilm assembly patterns with different-aged biofilm. Ecological null model analyses revealed that the assembly of early-stage biofilm community developed after 1 and 10days of filtration was mainly governed by homogenous selection. As the biofilm aged (days 20 and 30), stochastic processes (e.g., ecological drift) started to become important in shaping the assembly of biofilm community.
Collapse
Affiliation(s)
- Gerald K Matar
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Ali
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Samik Bagchi
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Suzana Nunes
- Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Wen-Tso Liu
- 3207 Newmark Civil Engineering Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
40
|
Wei SP, Stensel HD, Ziels RM, Herrera S, Lee PH, Winkler MKH. Partitioning of nutrient removal contribution between granules and flocs in a hybrid granular activated sludge system. WATER RESEARCH 2021; 203:117514. [PMID: 34407486 DOI: 10.1016/j.watres.2021.117514] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Sludge granulation in continuous-flow systems is an emerging technology to intensify existing activated sludge infrastructure for nutrient removal. In these systems, the nutrient removal contributions and partitioning of microbial functions between granules and flocs can offer insights into process implementations. To this end, a reactor system that simulates the continuous-flow environment using an equal amount of initial granule and floc biomass was investigated. The two operational strategies for maintaining granule growth in the continuous-flow system were (a) the higher solids retention time (SRT) for the granules versus flocs, as well as (b) selective feeding of carbon to the granules. The SRT of the large granule fractions (>425 µm, LG) and floc/small granule fractions (<425 µm, FSG) were controlled at 20 and 2.7-6.0 days, respectively. Long term operation of the hybrid granule/floc system achieved high PO43- and NH4+ removal efficiencies. Higher polyphosphate-accumulating organisms (PAO) activity was observed in the FSG than LG, while ammonia-oxidizing bacteria (AOB) activities were similar in the two biomass fractions. Nitrite shunt was observed in the FSG, possibly due to out-competition by the high NOB activity in LG. More importantly, washing out the FSG caused a reduction in LG's AOB and PAO activity, indicating a possible dependency of LG on FSG for maintaining its nutrient removal capacity. Our findings highlighted the partitioning and potential competition/cooperation of key microbial functional groups between LG and FSG, facilitating nutrient removal in a hybrid granular activated sludge system, as well as implications for practical application of the treatment platform.
Collapse
Affiliation(s)
- Stephany P Wei
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - H David Stensel
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA.
| | - Ryan M Ziels
- University of British Columbia, Department of Civil Engineering, Vancouver BC V6T 1Z4, Canada.
| | - Stephanie Herrera
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Po-Heng Lee
- Imperial College London, Department of Civil and Environmental Engineering, Skempton Building, South Kensington Campus, London SW7 2AZ, United Kingdom.
| | - Mari-K H Winkler
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA.
| |
Collapse
|
41
|
Yuan S, Xu R, Wang D, Lin Q, Zhou S, Lin J, Xia L, Fu Y, Gan Z, Meng F. Ecological Linkages between a Biofilm Ecosystem and Reactor Performance: The Specificity of Biofilm Development Phases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11948-11960. [PMID: 34415760 DOI: 10.1021/acs.est.1c02486] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In biofilm-based engineered ecosystems, the reactor performance was closely linked to interspecies interactions within a biofilm ecosystem, whereas the ecological processes underpinning such linkage were still unenlightened. Herein, the principles of community succession and assembly were integrated to capture the ecological laws of biofilm development by molecular ecological networks and assembly model analysis based on the 16S rRNA sequencing analysis and metagenomics in a well-controlled moving bed biofilm reactor. At the initial colonization phase (days 0-2, driven by initial colonizers), interspecific cooperation (74.18%) facilitated initial biofilm formation, whereas some pioneers, and keystone species disappeared at later phases. At the accumulation phase (days 3-30, rapid biofilm development), interspecific cooperation (81.41 ± 5.07%) contributed to rapid biofilm development and keystone species were mainly involved in quorum sensing or positively correlated with extracellular polymeric substance production. At the maturation phase (days 31-106, a well-adapted quasi-equilibrium state), increased interspecific competition (32.74 ± 4.77%) and higher small-world property facilitated the rapid information transportation and pollutant treatment, and keystone species were positively correlated with the removal of COD and NH4+-N. Homogenizing dispersal diminished the contemporary community dissimilarities, while turnover but rather nestedness governed the temporal variations in the biofilm succession period. This study highlighted the specificity of ecological processes at distinct biofilm development phases, which would advance our understanding on the development-to-function linkages in biofilm-based treatment processes.
Collapse
Affiliation(s)
- Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Qining Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Shunyi Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Jieying Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Lichao Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| |
Collapse
|
42
|
Effect of an Increased Particulate COD Load on the Aerobic Granular Sludge Process: A Full Scale Study. Processes (Basel) 2021. [DOI: 10.3390/pr9081472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
High concentrations of particulate COD (pCOD) in the influent of aerobic granular sludge (AGS) systems are often associated to small granule diameter and a large fraction of flocculent sludge. At high particulate concentrations even granule stability and process performance might be compromised. However, pilot- or full-scale studies focusing on the effect of real wastewater particulates on AGS are scarce. This study describes a 3-month period of increased particulate loading at a municipal AGS wastewater treatment plant. The pCOD concentration of the influent increased from 0.5 g COD/L to 1.3 g COD/L, by adding an untreated slaughterhouse wastewater source to the influent. Sludge concentration, waste sludge production and COD and nutrient removal performance were monitored. Furthermore, to investigate how the sludge acclimatises to a higher influent particulate content, lipase and protease hydrolytic activities were studied, as well as the microbial community composition of the sludge. The composition of the granule bed and nutrient removal efficiency did not change considerably by the increased pCOD. Interestingly, the biomass-specific hydrolytic activities of the sludge did not increase during the test period either. However, already during normal operation the aerobic granules and flocs exhibited a hydrolytic potential that exceeded the influent concentrations of proteins and lipids. Microbial community analysis also revealed a high proportion of putative hydrolysing and fermenting organisms in the sludge, both during normal operation and during the test period. The results of this study highlight the robustness of the full-scale AGS process, which can bear a substantial increase in the influent pCOD concentration during an extended period.
Collapse
|
43
|
Tavares Ferreira TJ, Luiz de Sousa Rollemberg S, Nascimento de Barros A, Machado de Lima JP, Bezerra Dos Santos A. Integrated review of resource recovery on aerobic granular sludge systems: Possibilities and challenges for the application of the biorefinery concept. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112718. [PMID: 33962280 DOI: 10.1016/j.jenvman.2021.112718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Aerobic Granular Sludge (AGS) is a biological treatment technology that has been extensively studied in the last decade. The possibility of resource recovery has always been highlighted in these systems, but real-scale applications are still scarce. Therefore, this paper aimed to present a systematic review of resources recovery such as water, energy, chemicals, raw materials, and nutrients from AGS systems, also analyzing aspects of engineering and economic viability. In the solid phase, sludge application in agriculture is an interesting possibility. However, the biosolids' metal concentration (the granules have high adsorption capacity due to the high concentration of extracellular polymeric substances, EPS) may be an issue. Another possibility is the recovery of Polyhydroxyalkanoates (PHAs) and Alginate-like exopolymers (bio-ALE) in the solid phase, emphasizing the last one, which has already been made in some Wastewater Treatment Plants (WWTPs), named and patented as Kaumera® process. The Operational Expenditure (OPEX) can be reduced by 50% in the WWTP when recovery of ALE is made. The ALE recovery reduced sludge yield by up to 35%, less CO2 emissions, and energy saving. Finally, the discharged sludge can also be evaluated to be used for energetic purposes via anaerobic digestion (AD) or combustion. However, the AD route has faced difficulties due to the low biodegradability of aerobic granules.
Collapse
Affiliation(s)
| | | | - Amanda Nascimento de Barros
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - João Pedro Machado de Lima
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
44
|
Anaerobic hydrolysis of complex substrates in full-scale aerobic granular sludge: enzymatic activity determined in different sludge fractions. Appl Microbiol Biotechnol 2021; 105:6073-6086. [PMID: 34302200 PMCID: PMC8390406 DOI: 10.1007/s00253-021-11443-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022]
Abstract
Abstract Complex substrates, like proteins, carbohydrates, and lipids, are major components of domestic wastewater, and yet their degradation in biofilm-based wastewater treatment technologies, such as aerobic granular sludge (AGS), is not well understood. Hydrolysis is considered the rate-limiting step in the bioconversion of complex substrates, and as such, it will impact the utilization of a large wastewater COD (chemical oxygen demand) fraction by the biofilms or granules. To study the hydrolysis of complex substrates within these types of biomass, this paper investigates the anaerobic activity of major hydrolytic enzymes in the different sludge fractions of a full-scale AGS reactor. Chromogenic substrates were used under fully mixed anaerobic conditions to determine lipase, protease, α-glucosidase, and β-glucosidase activities in large granules (>1 mm in diameter), small granules (0.2–1 mm), flocculent sludge (0.045–0.2 mm), and bulk liquid. Furthermore, composition and hydrolytic activity of influent wastewater samples were determined. Our results showed an overcapacity of the sludge to hydrolyze wastewater soluble and colloidal polymeric substrates. The highest specific hydrolytic activity was associated with the flocculent sludge fraction (1.5–7.5 times that of large and smaller granules), in agreement with its large available surface area. However, the biomass in the full-scale reactor consisted of 84% large granules, making the large granules account for 55–68% of the total hydrolytic activity potential in the reactor. These observations shine a new light on the contribution of large granules to the conversion of polymeric COD and suggest that large granules can hydrolyze a significant amount of this influent fraction. The anaerobic removal of polymeric soluble and colloidal substrates could clarify the stable granule formation that is observed in full-scale installations, even when those are fed with complex wastewaters. Key points • Large and small granules contain >70% of the hydrolysis potential in an AGS reactor. • Flocculent sludge has high hydrolytic activity but constitutes <10% VS in AGS. • AGS has an overcapacity to hydrolyze complex substrates in domestic wastewater. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11443-3.
Collapse
|
45
|
Abstract
Wastewater treatment plants are engineering technologies used worldwide to protect the environment and human health. Microbial communities sustain these plants, so it is crucial to know the key factors responsible for the community assembly. We show, in contrast to existing understanding, that microbial immigration largely controls the community structure in these plants and that the fate (growth or death) of immigrating species in the plants is controlled by local factors. The community structure was quantitatively predicted by the immigrating microbial community, highlighting the need to revise the way we today understand, design, and manage microbial communities in wastewater treatment plants. The assembly of bacterial communities in wastewater treatment plants (WWTPs) is affected by immigration via wastewater streams, but the impact and extent of bacterial immigrants are still unknown. Here, we quantify the effect of immigration at the species level in 11 Danish full-scale activated sludge (AS) plants. All plants have different source communities but have very similar process design, defining the same overall environmental growth conditions. The AS community composition in each plant was strongly reflected by the corresponding influent wastewater (IWW) microbial composition. Most species in AS across the plants were detected and quantified in the corresponding IWW, allowing us to identify their fate in the AS: growing, disappearing, or surviving. Most of the abundant species in IWW disappeared in AS, so their presence in the AS biomass was only due to continuous mass-immigration. In AS, most of the abundant growing species were present in the IWW at very low abundances. We predicted the AS species abundances from their abundance in IWW by using a partial least square regression model. Some species in AS were predicted by their own abundance in IWW, while others by multiple species abundances. Detailed analyses of functional guilds revealed different prediction patterns for different species. We show, in contrast to the present understanding, that the AS microbial communities were strongly controlled by the IWW source community and could be quantitatively predicted by taking into account immigration. This highlights a need to revise the way we understand, design, and manage the microbial communities in WWTPs.
Collapse
|
46
|
Nguyen Quoc B, Armenta M, Carter JA, Bucher R, Sukapanpotharam P, Bryson SJ, Stahl DA, Stensel HD, Winkler MKH. An investigation into the optimal granular sludge size for simultaneous nitrogen and phosphate removal. WATER RESEARCH 2021; 198:117119. [PMID: 33957310 DOI: 10.1016/j.watres.2021.117119] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
An aerobic granular sludge (AGS) pilot plant fed with a mixture of acetate amended centrate and secondary effluent was used to investigate the optimal granule size range for simultaneous nitrification and denitrification (SND) and ortho-phosphate removal. The anaerobic phase was mixed to understand how AGS will perform if integrated with a continuous flow activated sludge system that cannot feed the influent through the settled sludge bed. Five different granule size fractions were taken from the pilot (operated at DO setpoint of 2mgO2/L) and each size was subjected to activity tests in a well-controlled lab-scale AGS reactor at four dissolved oxygen (DO) concentrations of 1, 2, 3, and 4 mgO2/L. The size fractions were: 212 - 600 µm, 600 - 1000 µm, 1000 - 1400 µm, 1400 - 2000 µm, and >2000 µm. The smallest size range (212 - 600 µm) had the highest nitrification and phosphate removal rates at DO setpoints from 1 - 3 mgO2/L, which was attributed to the higher aerobic volume fraction in small granules and hence a higher abundance of phosphorus accumulating organisms (PAO) and ammonia oxidizing bacteria (AOB). In comparison, large granules (>1000 µm) had 1.4 - 4.7 times lower ammonia oxidation rates than the smallest size range, which aligned with their lower AOB abundance relative to granule biomass. The granules with the highest anoxic volume fraction had the highest abundance of nitrite reductase genes (nir gene) but did not show the highest specific nitrogen removal rate. Instead, smaller granules (212 - 600 and 600 - 1000 µm), which had a lower nir gene abundance, had the highest specific nitrogen removal rates (1.2 - 3.1 times higher than larger granules) across all DO values except at 4 mgO2/L. At a DO setpoint of 4 mgO2/L, nitrite production by ammonia oxidation (ammonia monooxygenase) exceeded nitrite reduction by nitrite reductase in granules smaller than 1000 µm, in addition, some denitrifying heterotrophs switched to oxygen utilization in deeper layers hence suppressing denitrification activity. At the DO range of 2 - 4 mg/L, granular size had a greater effect on nutrient removal than DO. Therefore, for AGS developed at an average DO setpoint of 2 mgO2/L, selecting for size fractions in the range of 212 - 1000 µm and avoiding DO values higher than 3 mgO2/L can achieve both a higher nitrogen removal capacity and energy savings. This study is the first to investigate the influence of different DO values on SND and biological phosphorus removal performance of different aerobic granular sludge sizes.
Collapse
Affiliation(s)
- Bao Nguyen Quoc
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | - Maxwell Armenta
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - John A Carter
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Robert Bucher
- Resource Recovery Section, Wastewater Treatment Division, King County Department of Natural Resources, Parks, WA, USA
| | - Pardi Sukapanpotharam
- Resource Recovery Section, Wastewater Treatment Division, King County Department of Natural Resources, Parks, WA, USA
| | - Samuel J Bryson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - H David Stensel
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
47
|
Trego AC, McAteer PG, Nzeteu C, Mahony T, Abram F, Ijaz UZ, O'Flaherty V. Combined Stochastic and Deterministic Processes Drive Community Assembly of Anaerobic Microbiomes During Granule Flotation. Front Microbiol 2021; 12:666584. [PMID: 34054772 PMCID: PMC8160314 DOI: 10.3389/fmicb.2021.666584] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/20/2021] [Indexed: 12/01/2022] Open
Abstract
Advances in null-model approaches have resulted in a deeper understanding of community assembly mechanisms for a variety of complex microbiomes. One under-explored application is assembly of communities from the built-environment, especially during process disturbances. Anaerobic digestion for biological wastewater treatment is often underpinned by retaining millions of active granular biofilm aggregates. Flotation of granules is a major problem, resulting in process failure. Anaerobic aggregates were sampled from three identical bioreactors treating dairy wastewater. Microbiome structure was analysed using qPCR and 16S rRNA gene amplicon sequencing from DNA and cDNA. A comprehensive null-model approach quantified assembly mechanisms of floating and settled communities. Significant differences in diversity were observed between floating and settled granules, in particular, we highlight the changing abundances of Methanosaeta and Lactococcus. Both stochastic and deterministic processes were important for community assembly. Homogeneous selection was the primary mechanism for all categories, but dispersal processes also contributed. The lottery model was used to identify clade-level competition driving community assembly. Lottery “winners” were identified with different winners between floating and settled groups. Some groups changed their winner status when flotation occurred. Spirochaetaceae, for example, was only a winner in settled biomass (cDNA-level) and lost its winner status during flotation. Alternatively, Arcobacter butzerli gained winner status during flotation. This analysis provides a deeper understanding of changes that occur during process instabilities and identified groups which may be washed out—an important consideration for process control.
Collapse
Affiliation(s)
- Anna Christine Trego
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - Paul G McAteer
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland.,Functional Environmental Microbiology, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Corine Nzeteu
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - Therese Mahony
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Umer Zeeshan Ijaz
- Water Engineering Group, School of Engineering, The University of Glasgow, Glasgow, United Kingdom
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
48
|
Xu R, Fan F, Lin Q, Yuan S, Meng F. Overlooked Ecological Roles of Influent Wastewater Microflora in Improving Biological Phosphorus Removal in an Anoxic/Aerobic MBR Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6270-6280. [PMID: 33830745 DOI: 10.1021/acs.est.0c07891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ecological roles of influent microflora in activated sludge communities have not been well investigated. Herein, parallel lab-scale anoxic/aerobic (A/O) membrane bioreactors (MBRs), which were fed with raw (MBR-C) and sterilized (MBR-T) municipal wastewater, were operated. The MBRs showed comparable nitrogen removal but superior phosphorus removal in MBR-C than MBR-T over the long-term operation. The MBR-C sludge community had higher diversity and deterministic assembly than the MBR-T sludge community as revealed by 16S rRNA gene sequencing and null model analysis. Moreover, the MBR-C sludge community had higher abundance of polyphosphate accumulating organisms (PAOs) and hydrolytic/fermentative bacteria (HFB) but lower abundance of glycogen-accumulating organisms (GAOs), in comparison with MBR-T sludge. Intriguingly, the results of both the net growth rate and Sloan's neutral model demonstrated that HFB in the sludge community were generally slow-growing or nongrowing and their consistent presence in activated sludge was primarily attributed to the HFB immigration from influent microflora. Positive correlations between PAOs and HFB and potential competitions between HFB and GAOs were observed, as revealed by the putative species-species associations in the ecological networks. Taken together, this work deciphers the positive ecological roles of influent microflora, particularly HFB, in system functioning and highlights the necessity of incorporating influent microbiota for the design and modeling of A/O MBR plants.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Qining Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| |
Collapse
|
49
|
Barrios-Hernández ML, Bettinelli C, Mora-Cabrera K, Vanegas-Camero MC, Garcia H, van de Vossenberg J, Prats D, Brdjanovic D, van Loosdrecht MCM, Hooijmans CM. Unravelling the removal mechanisms of bacterial and viral surrogates in aerobic granular sludge systems. WATER RESEARCH 2021; 195:116992. [PMID: 33714012 DOI: 10.1016/j.watres.2021.116992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The aerobic granular sludge (AGS) process is an effective wastewater treatment technology for organic matter and nutrient removal that has been introduced in the market rapidly. Until now, limited information is available on AGS regarding the removal of bacterial and viral pathogenic organisms present in sewage. This study focussed on determining the relation between reactor operational conditions (plug flow feeding, turbulent aeration and settling) and physical and biological mechanisms on removing two faecal surrogates, Escherichia coli and MS2 bacteriophages. Two AGS laboratory-scale systems were separately fed with influent spiked with 1.0 × 106 CFU/100 mL of E. coli and 1.3 × 108 PFU/100 mL of MS2 bacteriophages and followed during the different operational phases. The reactors contained only granular sludge and no flocculent sludge. Both systems showed reductions in the liquid phase of 0.3 Log10 during anaerobic feeding caused by a dilution factor and attachment of the organisms on the granules. Higher removal efficiencies were achieved during aeration, approximately 1 Log10 for E. coli and 0.6 Log10 for the MS2 bacteriophages caused mainly by predation. The 18S sequencing analysis revealed high operational taxonomic units (OTUs) of free-living protozoa genera Rhogostoma and Telotrochidium concerning the whole eukaryotic community. Attached ciliates propagated after the addition of the E. coli, an active contribution of the genera Epistylis, Vorticella, and Pseudovorticella was found when the reactor reached stability. In contrast, no significant growth of predators occurred when spiking the system with MS2 bacteriophages, indicating a low contribution of protozoa on the phage removal. Settling did not contribute to the removal of the studied bacterial and viral surrogates.
Collapse
Affiliation(s)
- Mary Luz Barrios-Hernández
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago, 159-7050, Costa Rica.
| | - Carolina Bettinelli
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
| | - Karen Mora-Cabrera
- Institute of the Water and the Environmental Sciences, University of Alicante, 03690, Alicante, Spain
| | - Maria-Clara Vanegas-Camero
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
| | - Hector Garcia
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
| | - Jack van de Vossenberg
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
| | - Daniel Prats
- Institute of the Water and the Environmental Sciences, University of Alicante, 03690, Alicante, Spain
| | - Damir Brdjanovic
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Christine M Hooijmans
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
| |
Collapse
|
50
|
Vučić V, Süring C, Harms H, Müller S, Günther S. A framework for P-cycle assessment in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143392. [PMID: 33223155 DOI: 10.1016/j.scitotenv.2020.143392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Phosphorus (P) in wastewater has a variety of negative effects and is usually permanently lost as a non-renewable resource. To mitigate future P shortage, P must be recovered from wastewater, preferably by bio-based technologies to avoid toxic side streams. A standardized procedure for the determination of P types and P concentrations in all liquid and solid process stages was established, which is applicable to all full-scale wastewater treatment plants (WWTPs). Based on this, an equally universal calculation framework for P-cycle assessment based on volume flow and mass load rates was designed to identify the most promising process streams for biological P recovery. As an example, in 16 process streams of a typical WWTP, concentrations of free, bound and total P were calculated and microbial communities were analyzed by flow cytometry over 748 days. The most promising process streams for the recovery of free P were anaerobic digester sludge, centrate and the water-extracts of the biosolids with 0.510 kg P m-3, 0.075 kg P m-3 and 1.023 kg P m-3, while the best process streams for the recovery of bound P were return sludge, excess sludge, anaerobic digester sludge, and the solids of the biosolids with 0.300 kg P m-3, 0.268 kg P m-3, 0.213 kg P m-3 and 1.336 kg P m-3, respectively. Microorganisms capable of P accumulation were active in all process stages and it was observed that chemical P precipitation antagonizes biological P removal. The framework for P-cycle assessment was able to identify process streams that are economically viable to make future in-stream technologies for biological P removal feasible.
Collapse
Affiliation(s)
- Vedran Vučić
- Helmholtz Centre for Environmental Research - UFZ, Department Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Christine Süring
- Helmholtz Centre for Environmental Research - UFZ, Department Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research - UFZ, Department Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research - UFZ, Department Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany.
| | - Susanne Günther
- Helmholtz Centre for Environmental Research - UFZ, Department Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|