1
|
Sánchez-Arévalo CM, García-Suarez L, Camilleri-Rumbau MS, Vogel J, Álvarez-Blanco S, Cuartas-Uribe B, Vincent-Vela MC. Treatment of industrial textile wastewater by means of forward osmosis aiming to recover dyes and clean water. Heliyon 2024; 10:e40742. [PMID: 39687120 PMCID: PMC11648163 DOI: 10.1016/j.heliyon.2024.e40742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The textile industry is one of the largest water consumers, and, as a result of its activity, it generates tons of wastewater. In this research, forward osmosis has been employed to tackle the critical need of treating textile wastewater. The HFFO2 membrane (Aquaporin) was used to process large volumes of real cotton dyeing wastewater, wool dyeing wastewater, and several types of textile end-of-pipe wastewater. In all cases, the permeate flux was between 6 and 8 L·h- 1 m- 2 during the major part of the process. The recovery of clean water from each wastewater surpassed 90 %, whereas the membrane rejected more than 87 % of total dissolved solids. As a result, textile dyes were concentrated on the feed side of the membrane, which enables their recovery and potential reutilization in a subsequent dying process, along with the reclaimed water. The HFFO2 membrane was efficiently cleaned by a backwash process, restoring the initial water flux. These results indicate the suitability of forward osmosis to reuse dyes and water from textile wastewater, reducing the environmental impact of this industry and favoring its sustainability.
Collapse
Affiliation(s)
- Carmen M. Sánchez-Arévalo
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Laura García-Suarez
- Jeanologia S.L., Ronda de Guglielmo Marconi, 12, 46980, Paterna, Valencia, Spain
| | | | - Jorg Vogel
- Aquaporin, Nymøllevej 78, 2800 Kongens Lyngby, Denmark
| | - Silvia Álvarez-Blanco
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Beatriz Cuartas-Uribe
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - M. Cinta Vincent-Vela
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
2
|
Li S, Duan L, Zhang H, Zhao Y, Li M, Jia Y, Gao Q, Yu H. Critical review on salt tolerance improvement and salt accumulation inhibition strategies of osmotic membrane bioreactors. BIORESOURCE TECHNOLOGY 2024; 406:130957. [PMID: 38876283 DOI: 10.1016/j.biortech.2024.130957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The osmotic membrane bioreactor (OMBR) is a novel wastewater treatment and resource recovery technology combining forward osmosis (FO) and membrane bioreactor. It has attracted attention for its low energy consumption and high contaminant removal performance. However, in the long-term operation, OMBR faces the problem of salt accumulation due to high salt rejection and reverse salt flux, which affects microbial activity and contaminants removal efficiency. This review analyzed the feasibility of screening salt-tolerant microorganisms and determining salinity thresholds to improve the salt tolerance of OMBR. Combined with recent research, the inhibition strategies for salt accumulation were reviewed, including the draw solution, FO membrane, operating conditions and coupling with other systems. It is hoped to provide a theoretical basis and practical guidance for the further development of OMBR. Finally, future research directions were prospected. This review provides new insights for achieving stable operation of OMBR and promotes its wide application.
Collapse
Affiliation(s)
- Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Hengliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yang Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
3
|
Wu Q, Siddique MS, Wu M, Wang H, Zhang Y, Yang R, Cui L, Ma W, Yan J, Yang Y. Synergistically enhancing the selective adsorption of cationic dyes through copper impregnation and amino functionality into iron-based metal-organic frameworks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171280. [PMID: 38423330 DOI: 10.1016/j.scitotenv.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Dyes contaminating the sewages have seriously threatened the living beings and their separation from wastewater in terms of potential resource recovery is of high value. Herein, both of metal node doping and ligand group grafting were taken into account to enhance the adsorption selectivity of Fe-MOFs towards cationic dyes. The positive correlation between copper doping amount and selective coefficient (∂MOMB) for methylene blue (MB) over methyl orange (MO) within a certain range was mainly attributed to the increased surface negative charges via partial replacement of Fe(III) with Cu(II). Moreover, the amount of surface negative charges was further increased after amino functionalization and there was a synergism between Cu(II) and -NH2 in selectivity enhancement. As a result, Fe0.6Cu0.4-BDC-NH2 exhibited a 22.5-times increase in ∂MOMB and other cationic dyes including malachite green (MG) and rhodamine B (Rh. B) could also be selectively separated from binary and quaternary mixed dye systems. Moreover, Fe0.6Cu0.4-BDC-NH2 showed many superiorities like a wide pH range of 4.0-8.0, strong anti-interference ability over various inorganic ions, good recyclability, and stability. The adsorption kinetics and isotherm suggested that the MB adsorption process was a homogeneous single-layer chemisorption. Additionally, the thermodynamics manifested that the overall process was exothermic and spontaneous. According to the FT-IR and XPS spectra analysis, the electrostatic interaction and hydrogen bonding were determined as the main driving forces, and π-π interaction also contributed to the adsorption process.
Collapse
Affiliation(s)
- Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Muhammad Saboor Siddique
- Institute of Environment and Ecology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Mi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huijuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yonghao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ruili Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Weixing Ma
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yadong Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
4
|
Jabbarvand Behrouz S, Khataee A, Vatanpour V, Orooji Y. Surface Bioengineering of Mo 2Ga 2C MAX Phase to Develop Blended Loose Nanofiltration Membranes for Textile Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10508-10521. [PMID: 38365188 DOI: 10.1021/acsami.3c16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The potential of blended loose nanofiltration membranes (LNMs) to fractionate dyes and inorganic salts in textile wastewater has become a focus of attention in recent years. In this research work, we fabricated LNMs based on polysulfone (PSf) membranes blended with l-histidine amino acid-functionalized Mo2Ga2C MAX phase (His-MAX). Scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), contact angle, ζ-potential, porosity, and pore size analyses were employed to characterize the LNMs. Blending 0.75 wt % of His-MAX additive with the PSf tailored the LNM's features by making it more water-friendly, increasing its porosity, enlarging its pores, and making its surface smoother. The pure water flux of 127.6 L/m2 h was achieved by LNM containing 0.75 wt % His-MAX, which was 2.5 times greater than the bare one. The mentioned LNM displayed a flux recovery ratio (FRR) of 68.27 and 98.57, 98.31, and 99.7% rejections for Direct red 23, Acid brown 75, and Reactive blue 21 solutions (100 mg/L), respectively. The 0.75 wt % His-MAX LNM could reject 99.1% of dye and 11.5% of salt while maintaining an FRR of 91.19% after four cycles of filtering a binary mixture solution containing Reactive blue 21 and Na2SO4. These findings highlight the potential of the fabricated LNM for desalinating dye solutions.
Collapse
Affiliation(s)
- Samira Jabbarvand Behrouz
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Chemical Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
- Environmental Engineering Department & National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Roy N, Das C, Paul M, Im J, Biswas G. Adsorptive Elimination of a Cationic Dye and a Hg (II)-Containing Antiseptic from Simulated Wastewater Using a Metal Organic Framework. Molecules 2024; 29:886. [PMID: 38398637 PMCID: PMC10892504 DOI: 10.3390/molecules29040886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Several types of pollutants have acute adverse effects on living bodies, and the effective removal of these pollutants remains a challenge. Safranin O (a biological dye) and merbromin (a topical mercury-containing antiseptic) are considered organic pollutants, and there are only a few reports on their removal. Synthesized and well-characterized (through PXRD, FTIR, FESEM, and EDS analysis) MOF-5 was used for the first time in the removal of safranin O and merbromin from simulated wastewater and real wastewater. In both cases, MOF-5 effectively removed contaminants. We found that in simulated wastewater, the highest efficiency of removal of safranin O was 53.27% (for 15 mg/L) at pH 10, and for merbromin, it was 41.49% (for 25 mg/L) at pH 6. In the case of real wastewater containing natural ions (Na+, K+, F-, Cl-, SO42-, PO43-, Mg2+, and Ca2+) and other molecules, the removal efficiencies of these two dyes decreased (34.00% and 26.28% for safranin O and merbromin, respectively) because of the presence of other ions and molecules. A plausible mechanism for the removal of these pollutants using MOF-5 was proposed.
Collapse
Affiliation(s)
- Nilanjan Roy
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar 736101, West Bengal, India; (N.R.); (C.D.)
| | - Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar 736101, West Bengal, India; (N.R.); (C.D.)
| | - Mohuya Paul
- Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic of Korea;
| | - Jungkyun Im
- Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic of Korea;
- Department of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar 736101, West Bengal, India; (N.R.); (C.D.)
| |
Collapse
|
6
|
Wang H, Yang J, Zhang H, Zhao J, Liu H, Wang J, Li G, Liang H. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168277. [PMID: 37939956 DOI: 10.1016/j.scitotenv.2023.168277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
In this review, the application of membrane-based technology in water social circulation was summarized. Water social circulation encompassed the entire process from the acquirement to discharge of water from natural environment for human living and development. The focus of this review was primarily on the membrane-based technology in recovery of water and other valuable resources such as mineral ions, nitrogen and phosphorus. The main text was divided into four main sections according to water flow in the social circulation: drinking water treatment, agricultural utilization, industrial waste recycling, and urban wastewater reuse. In drinking water treatment, the acquirement of water resources was of the most importance. Pressure-driven membranes, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) were considered suitable in natural surface water treatment. Additionally, electrodialysis (ED) and membrane capacitive deionization (MCDI) were also effective in brackish water desalination. Agriculture required abundant water with relative low quality for irrigation. Therefore, the recovery of water from other stages of the social circulation has become a reasonable solution. Membrane bioreactor (MBR) was a typical technique attributed to low-toxicity effluent. In industrial waste reuse, the osmosis membranes (FO and PRO) were utilized due to the complex physical and chemical properties of industrial wastewater. Especially, membrane distillation (MD) might be promising when the wastewater was preheated. Resources recovery in urban wastewater was mainly divided into recovery of bioenergy (via anaerobic membrane bioreactors, AnMBR), nitrogen (utilizing MD and gas-permeable membrane), and phosphorus (through MBR with chemical precipitation). Furthermore, hybrid/integrated systems with membranes as the core component enhanced their performance and long-term working ability in utilization. Generally, concentrate management and energy consumption control might be the key areas for future advancements of membrane-based technology.
Collapse
Affiliation(s)
- Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
7
|
Kallawar GA, Bhanvase BA. A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1748-1789. [PMID: 38055170 DOI: 10.1007/s11356-023-31175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
This comprehensive review explores the complex environment of textile wastewater treatment technologies, highlighting both well-established and emerging techniques. Textile wastewater poses a significant environmental challenge, containing diverse contaminants and chemicals. The review presents a detailed examination of conventional treatments such as coagulation, flocculation, and biological processes, highlighting their effectiveness and limitations. In textile industry, various textile operations such as sizing, de-sizing, dyeing, bleaching, and mercerization consume large quantities of water generating effluent high in color, chemical oxygen demand, and solids. The dyes, mordants, and variety of other chemicals used in textile processing lead to effluent variable in characteristics. Furthermore, it explores innovative and emerging techniques, including advanced oxidation processes, membrane filtration, and nanotechnology-based solutions. Future perspectives in textile wastewater treatment are discussed in-depth, emphasizing the importance of interdisciplinary research, technological advancements, and the integration of circular economy principles. Numerous dyes used in the textile industry have been shown to have mutagenic, cytotoxic, and ecotoxic potential in studies. Therefore, it is necessary to assess the methods used to remediate textile waste water. Major topics including the chemical composition of textile waste water, the chemistry of the dye molecules, the selection of a treatment technique, the benefits and drawbacks of the various treatment options, and the cost of operation are also addressed. Overall, this review offers a valuable resource for researchers and industry professionals working in the textile industry, pointing towards a more sustainable and environmentally responsible future.
Collapse
Affiliation(s)
- Gauri A Kallawar
- Department of Chemical Technology, Dr. Babasaheb Ambedkar, Marathwada University, Chatrapati Sambhajinagar, 431004, MS, India
- Department of Chemical Engineering, Laxminarayan Innovation Technological University (Formerly Laxminarayan Institute of Technology), Nagpur, 440033, MS, India
| | - Bharat A Bhanvase
- Department of Chemical Engineering, Laxminarayan Innovation Technological University (Formerly Laxminarayan Institute of Technology), Nagpur, 440033, MS, India.
| |
Collapse
|
8
|
Wang R, Li J, Xu C, Xu X, Tang F, Huang M. Integrating reverse osmosis and forward osmosis (RO-FO) for printing and dyeing wastewater treatment: impact of FO on water recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92495-92506. [PMID: 37491487 DOI: 10.1007/s11356-023-28853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Reverse osmosis (RO) alone has low water recovery efficiency because of membrane fouling and limited operating pressure. In this study, a combined reverse osmosis-forward osmosis (RO-FO) process was used for the first time to improve the water recovery efficiency of secondary effluent in printing and dyeing wastewater. The effects of operating pressure and pH on water recovery and removal efficiency of RO-FO were investigated. The results showed that the optimum conditions were an operating pressure of 1.5 MPa and a feed solution pH of 9.0. Under optimal operating conditions, most of the organic and inorganic substances in the wastewater can be removed, and the rejection of total organic carbon (TOC), Sb, Ca, and K were 98.7, 99.3, 97.0, and 92.7%, respectively. Fluorescence excitation-emission matrices coupled with parallel factor (EEM-PARAFAC) analysis indicated that two components (tryptophan and tyrosine) in the influent were effectively rejected by the hybrid process. The maximum water recovery (Rw, max) could reach 95%, which was higher than the current single RO process (75%). This research provided a feasible strategy to effectively recover water from printing and dyeing wastewater.
Collapse
Affiliation(s)
- Ruizhe Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jun Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chao Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoyang Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fengchen Tang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
9
|
Baruah S, Patel A, Mungray AK, Mungray AA. Performance evaluation of deep eutectic solvent as a draw solute and vertical up-flow forward osmosis module for desalination of seawater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32108-32116. [PMID: 36462072 DOI: 10.1007/s11356-022-24192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Forward osmosis (FO) has gained prominence in recent years particularly in desalination due to its ability to operate at low or no hydraulic pressure, with relatively limited membrane fouling and high-water recovery. However, pre-treatment of seawater is required to reduce membrane fouling caused by the presence of suspended solid particles. Also, a significant area of research in forward osmosis is still finding a suitable draw solute (DS) with the ideal characteristics. In this study, a novel deep eutectic solvent (DES) draw solute was used and able to extract water after the 500% dilution of DS. This signifies it as the potential candidate for the ideal DS. A comparative study of plate and frame and vertical up-flow forward osmosis (VUF) FO modules has been evaluated to eliminate the drawbacks associated with FO in terms of membrane fouling and draw solute. In addition, the performance of a novel DES as reline (choline chloride-urea) has been tested in both the modules. In VUF module, significantly less fouling was observed than in the plate and frame module. The initial water flux in plate and frame module was 2.30 LMH with seawater (without pre-treatment) as feed. However, it dropped to 1 LMH after 26 h of run. However, initial water flux in VUF was 1.90 LMH, and it was maintained to 1.50 LMH after 89 h of run. Regeneration of draw solute was carried out using a phase separation method and it was observed that phase separation was only observed for 10% dilution of DES.
Collapse
Affiliation(s)
- Sristina Baruah
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Asfak Patel
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Alka A Mungray
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India.
| |
Collapse
|
10
|
Yasmeen M, Nawaz MS, Khan SJ, Ghaffour N, Khan MZ. Recovering and reuse of textile dyes from dyebath effluent using surfactant driven forward osmosis to achieve zero hazardous chemical discharge. WATER RESEARCH 2023; 230:119524. [PMID: 36584660 DOI: 10.1016/j.watres.2022.119524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This experimental study explores the feasibility of the reuse of dyes recovered from denim and polyester dyebath effluents using forward osmosis (FO) system to achieve zero hazardous material discharge. In batch experiments, the sodium dodecyl sulfate (SDS) at 0.5 M concentration generated an average flux of 3.5 L/m2/h (LMH) and reverse salt flux (RSF) of only 0.012 g/m2/h (GMH), while maintaining 100% dye rejection. This flux stability comes from the property of surfactants to form micelles and exert a stable osmotic pressure (π) above their critical micelle concentration (CMC). The low RSF is due to the greater micelle size. A colored fouling layer was formed on the membrane active layer (AL), which was easily removed using sodium hydroxide (NaOH) and citric acid. According to Fourier transform infrared spectra and atomic forces microscopy images of the AL, the interaction between foulants and membrane active groups did not significantly affect the physiochemical properties of the membrane. In the semi-continuous experiment, a very stable average flux of 7.3 LMH and RSF of 0.03 GMH was obtained using 0.75 M SDS as draw solution. The stacked 1D proton nuclear magnetic resonance analysis (1HNMR) spectra of both original and recovered disperse dyes showed 100% similarity, which validates the concept that the recovered dyes maintained their integrity during reconcentration and can be reused in the next batch dyeing process. Importantly, the diluted SDS concentration can be directly reused within the same textile industry in scouring and finishing processes. The processes of dye recovery and reuse developed in this study do not produce any waste or hazardous by-products and are suitable for scale-up and onsite industrial applications.
Collapse
Affiliation(s)
- Maria Yasmeen
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Muhammad Saqib Nawaz
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sher Jamal Khan
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Noreddine Ghaffour
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Zafar Khan
- School of Chemicals and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
11
|
Zhao X, Fan Y, Wang C, Su Z, Huo H, Yang X, Cai Y, Geng Z, Wang C. Multi-functional Ag@NH2-UiO-66/PAES-COOH self-supporting symmetric hybrid membrane for forward osmosis separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
12
|
Hydrothermally-Derived Silver-Decorated Nanocrystalline Anatase Photocatalyst for Reactive Violet 2 Photodegradation. Processes (Basel) 2023. [DOI: 10.3390/pr11010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A photocatalyst comprised of Ag nanoparticles dispersed on an anatase matrix has been prepared using a simple hydrothermal method without additional thermal treatment. The prepared material was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-Vis spectroscopy, and N2 adsorption–desorption isotherms. The prepared catalyst activity was evaluated by photocatalytic degradation of C.I. Reactive Violet 2 (RV2) aqueous solution under UVA and visible light illumination. SEM revealed the non-uniform dispersion of silver particles throughout the matrix composed of fine particles. According to XRD analysis, the matrix was composed of pure anatase with a crystallite size of 8 nm calculated through the Scherrer equation. HRTEM micrograph analysis showed that anatase nanoparticles possess a spherical morphology and a narrow size distribution with an average particle size of 8 nm with more active anatase {100} crystal surface exposed, while silver nanoparticles were between 60 and 90 nm. A bandgap of 3.26 eV has been calculated on the basis of the DRS UV-Vis spectrum, while a specific surface area of 209 m2g−1 has been established from adsorption isotherms. Thus, through a simple synthesis approach without subsequent thermal treatment, the agglomeration of nanoparticles and the reduction of specific surface area have been avoided. Prepared nano Ag/anatase photocatalyst exhibits excellent efficiency for the photodegradation of RV2 under UVA and visible irradiation.
Collapse
|
13
|
New Materials and Phenomena in Membrane Distillation. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In recent decades, membrane-based processes have been extensively applied to a wide range of industrial processes, including gas separation, food industry, drug purification, and wastewater treatment. Membrane distillation is a thermally driven separation process, in which only vapour molecules transfer through a microporous hydrophobic membrane. At the operational level, the performance of membrane distillation is negatively affected by wetting and temperature polarization phenomena. In order to overcome these issues, advanced membranes have been developed in recent years. This review, which focuses specifically on membrane distillation presents the basic concepts associated with the mass and heat transfer through hydrophobic membranes, membrane properties, and advances in membrane materials. Photothermal materials for solar-driven membrane distillation applications are also presented and discussed.
Collapse
|
14
|
Golgoli M, Khiadani M, Sen TK, Razmjou A, Johns ML, Zargar M. Synergistic effects of microplastics and organic foulants on the performance of forward osmosis membranes. CHEMOSPHERE 2023; 311:136906. [PMID: 36270521 DOI: 10.1016/j.chemosphere.2022.136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are emerging contaminants that are abundantly present in the influent and effluent of wastewater treatment plants (WWTPs). Forward osmosis (FO) is an advanced treatment technology with potential applications in WWTPs. The presence of MPs in WWTP effluents can contribute to FO fouling and performance deterioration. This study focuses on FO membrane fouling by MPs of different sizes, and the interactional impacts of MPs and Humic acid (HA) (as the most common organic foulant in WWTPs) on FO membrane performance. The synergistic effect of combined MPs and HA fouling is shown to cause higher flux decline for FO membranes than that of HA or MPs alone. Reverse salt flux increased in the presence of MPs, and decreased when HA was present. Further, full flux recovery was obtained for all fouled membranes after hydraulic cleaning. This indicates the efficiency of FO systems for treating wastewater with high fouling potential. This study highlights the necessity of considering MPs in studying fouling behaviour, and for mitigation strategies of membranes used in WWT. The fundamentals created here can be further extended to other membrane-assisted separation processes.
Collapse
Affiliation(s)
- Mitra Golgoli
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Tushar Kanti Sen
- Chemical Engineering Department, King Faisal University, P.O. Box: 380, Al-Ahsa, 31982, Saudi Arabia
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia
| | - Michael L Johns
- Fluid Science & Resources Division, Department of Chemical Engineering, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia.
| |
Collapse
|
15
|
Wu L, Li Q, Ma C, Li M, Yu Y. A novel conductive carbon-based forward osmosis membrane for dye wastewater treatment. CHEMOSPHERE 2022; 308:136367. [PMID: 36088972 DOI: 10.1016/j.chemosphere.2022.136367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO) membrane fouling is one of the main reasons that hinder the further application of FO technology in the treatment of dye wastewater. To alleviate membrane fouling, a conductive coal carbon-based substrate and polydopamine nanoparticles (PDA NPs) interlayer composite FO membrane (CPFO) was prepared by interfacial polymerization (IP). CPFO-10 membrane prepared by depositing 10 mL of PDA NPs solution exhibited an optimum performance with water flux of 7.56 L/(m2h) for FO mode and 10.75 L/(m2h) for pressure retarded osmosis (PRO) mode, respectively. For rhodamine B and chrome black T dye wastewater treatment, the water flux losses were reduced by 21.6%, and 14.5% under the voltages of +1.5 V, and -1.5 V, respectively, compared with no voltage applied after the device was operated for 8 h. The applied voltage had little effect on the fouling mitigation performance of the CPFO membrane for neutral charged cresol red. After the device was operated for 4 cycles, the rejection rates of dyes wastewater treated by the CPFO membranes with applied voltage were close to 100%. The flux decline rate and flux recovery rate of CPFO membrane for rhodamine B and chrome black T wastewater treatment under application of +1.5 V and -1.5 V voltage after 4 cycles were 11.6%, 99.2%, and 16.7%, 98.9%, respectively. Therefore, the voltage-applied CPFO membrane still maintained good rejection and antifouling performance in long-term operation. This study provides a new insight into the preparation of conductive FO membranes for dye wastewater treatment and membrane fouling control.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Qianqian Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China.
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Yujuan Yu
- Center of Environmental Emergency and Accident Investigation of Changchun, Changchun, 130000, China
| |
Collapse
|
16
|
Wang B, Peng J, Cao Z, Zhang Y, Ding L, Cao X, Chang Y, Liu H. Dye recovery with photoresponsive citric acid-modified BiOCOOH smart material: Simple synthesis, adsorption-desorption properties, and mechanisms. ENVIRONMENTAL RESEARCH 2022; 214:114137. [PMID: 36030913 DOI: 10.1016/j.envres.2022.114137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Dye recovery is of great significance for a circular economy and sustainable development. However, green recovery strategies without secondary pollution remain a significant challenge. To resolve this issue, a light-responsive smart material (citric acid-modified BiOCOOH (m-BOCH)) was synthesized and applied for dye recovery through adsorption in the dark, and desorption under visible light. With the modification of citric acid, the adsorption level of methylene blue (MB) on m-BOCH (43.4%) was more than six times that of pure BiOCOOH (7.1%). The desorption rate was ∼90% in 120 min under 420 nm light irradiation (there was no desorption for pure BOCH). Further, the adsorption rate was improved to 83.9% and the desorption rate remained stable at an optimal pH of 10.09. Characterization results indicated that carboxyl groups were modified onto the surface of BiOCOOH and served as adsorption sites for MB. Under visible light exposure, the connections between the carboxyl groups and BiOCOOH were damaged, which led to the desorption of MB from the surface of the m-BOCH. The recovered MB exhibited a good staining effect on hepatic stellate cells (HSC) as a fresh dye. The regeneration of m-BOCH was achieved through a moderate hydrothermal process, and the adsorption and desorption capacities were restored to 80.8% and 85.7%, respectively. This research provides a novel environmentally compatible strategy for dye recovery without secondary pollution. This is a very promising treatment technique for dye effluents, which highlights the application of smart materials resource recycling for environmental remediation.
Collapse
Affiliation(s)
- Bingjie Wang
- School of Environmental Science, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Jianbiao Peng
- School of Environmental Science, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Zhiguo Cao
- School of Environmental Science, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Yakun Zhang
- School of Environmental Science, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Li Ding
- School of Environmental Science, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Xin Cao
- School of Environmental Science, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Yu Chang
- School of Environmental Science, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Haijin Liu
- School of Environmental Science, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China.
| |
Collapse
|
17
|
Li Y, Wei T, Chen L, Wang K, Shi Y. Regeneration and reuse of salt-tolerant zwitterionic polymer fluids by simple salt/water system. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128203. [PMID: 34999402 DOI: 10.1016/j.jhazmat.2021.128203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Highly-efficient separation of adsorbent and pollutant from chemical sludge is urgent for the recycled materials and chemical resources and minimization of sludge production in industry. Herein, an effortless and cost-efficient salt/water system is developed for efficient zwitterionic polymer/dye separation from chemical sludge. To achieve this aim, a novel salt-tolerant zwitterionic polymer (STZP) is synthesized through etherifying 2-chloro-4,6-bis(4-carboxyphenyl amino)-1,3,5-triazine onto corn starch. It is found that "all-surface-area" adsorption of dye can be achieved by in-situ sol-gel transition of STZP. Spent polymer fluid and solid-state dye can be easily regenerated and separated from sewage sludge by a simple salt/water system. At a high NaCl concentration (225 g/L), the separation factor between zwitterionic polymer and dye is up to 50.4, which is 50 times larger than that of salt-free solution. More importantly, the regenerated polymer fluids exhibit an outstanding reusability ability and can maintain over 92.8% decoloration efficiency for dyeing effluent after multiple adsorption-desorption cycles. This study thus provides a technically feasible and economically acceptable strategy for the recycling and reuse of polymer from hazardous textile sludge waste, greatly promising to achieve zero emissions toward conventional adsorption units.
Collapse
Affiliation(s)
- Yinuo Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Tingting Wei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Long Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Kaixiang Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yulin Shi
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
18
|
Ismail GA, Sakai H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. CHEMOSPHERE 2022; 291:132906. [PMID: 34785181 DOI: 10.1016/j.chemosphere.2021.132906] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The textile industry is one of the most valuable industries, especially in developing countries, because it employs a large portion of the workforce. However, the development of the textile industry has led to increasing concern about environmental issues. Wastewater from the textile industry has a high COD and an undesirable color. Color is one of the problems with the wastewater due to its toxicity and low biodegradability. Color in textile wastewater mainly originates from the dyestuff used during the dyeing or printing process. Amongst all of available technology for color removal, advanced oxidation processes (AOPs) are considered one of the best and the most potential technology. However, the understanding of AOPs reaction mechanism to degrade dyestuff is still limited. In general, dyes degradation mechanism will vary and mainly depend on the chemical structure of the dyes itself. Some reaction pathway that seems less favorable thermodynamically can still happen during the process. Understanding the mechanism will be beneficial for future dyes improvement, especially on developing the moiety of the aromatic compound in order to produce easily degraded dyes while maintaining the fastness quality.
Collapse
Affiliation(s)
- Guntur Adisurya Ismail
- Department of Civil and Environmental Engineering, School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-city, Tokyo, Japan; Laboratory of Microbiology and Bioprocess Technology, Chemical Engineering Department, Bandung Institute of Technology, Ganesa Street no. 8, Bandung, Indonesia
| | - Hiroshi Sakai
- Department of Civil and Environmental Engineering, School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-city, Tokyo, Japan.
| |
Collapse
|
19
|
Samanta A, Pal SK, Jana S. Exploring flowery MnO 2/Ag nanocomposite as an efficient solar-light-driven photocatalyst. NEW J CHEM 2022. [DOI: 10.1039/d1nj04880e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient approach was developed to boost the solar light driven photocatalytic efficacy of pristine flowery MnO2 NCs through the immobilization of Ag NPs, which in turn produces MnO2/Ag NCs.
Collapse
Affiliation(s)
- Arnab Samanta
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata-700106, India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata-700106, India
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata-700106, India
| | - Subhra Jana
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata-700106, India
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata-700106, India
| |
Collapse
|
20
|
Bouchareb R, Bilici Z, Dizge N. Water recovery from yarn fabric dyeing wastewater using electrochemical oxidation and membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e1681. [PMID: 35075710 DOI: 10.1002/wer.1681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
This study intended to evaluate and compare the efficiency of electrochemical oxidation (EO), nanofiltration (NF), and reverse osmosis (RO) membranes processes in the treatment of yarn fabric dyeing wastewater (YFDW) in terms of chemical oxygen demand (COD) removal, color removal, salinity reduction, and conductivity removal. EO tests of the textile effluent were conducted under various current densities and solution pH conditions employing a graphite electrode. Membrane filtration experiments were conducted using two different NF membranes: NP010 and NP030 and two distinct RO membranes: BW30 and SW30 flat-sheet membranes. The experimental results showed that NF membrane process is not suitable for yarn fabric wastewater treatment showing low removal efficiencies for COD, color, and conductivity. However, both EO and RO membranes could reduce COD and color to high removal performances. EO results showed more than 99% of color removal and 80% of COD elimination at pH = 6 and current density of 50 mA/cm2 after 180 min of reaction. Using RO membrane for yarn fabric wastewater treatment demonstrated relatively complete removal of color concentration and 98% of COD elimination. However, EO process showed less performance in conductivity removal efficiency compared to the RO membranes. EO treatment of YFDW decreased conductivity by 31.2%, whereas RO membrane process reduced conductivity to a greater extent and recorded 97.1% of removal elimination percentage. Therefore, the treated water by RO membrane could be recycled back to the process such as washing and dyeing, in that way offering economic profits by decreasing water consumption and wastewater treatment cost. PRACTITIONER POINTS: Electrochemical oxidation and membrane filtration processes were combined for the treatment of yarn fabric dyeing wastewater (YFDW). A 100% color removal of color and 98.5% COD elimination efficiencies were obtained for the electrochemical oxidation (EO) + RO combined process. EO treatment of YFDW decreased conductivity by 32.7%, whereas the RO membrane process reduced conductivity to a greater extent and recorded 97.7% of removal elimination percentage.
Collapse
Affiliation(s)
- Raouf Bouchareb
- Department of Environmental Engineering, Process Engineering Faculty, Saleh Boubnider University, Constantine, Algeria
| | - Zeynep Bilici
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
21
|
Abbasi H, Khan SJ, Manzoor K, Adnan M. Optimization of nutrient rich solution for direct fertigation using novel side stream anaerobic forward osmosis process to treat textile wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113691. [PMID: 34530367 DOI: 10.1016/j.jenvman.2021.113691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The current study focused on the performance of a lab scale side stream anaerobic fertilizer drawn forward osmosis (An-FDFO) setup and optimization of nutrient rich solution to achieve sustainable water reuse from high strength synthetic textile wastewater. Three fertilizer draw solutes including Mono Ammonium Phosphate (MAP), Ammonium Sulphate (SOA) and Mono Potassium Phosphate (MKP) were blended in six different ratios with total molar concentration not exceeding 1 M. Among six blended draw solutions (DS), combination with high concentration of SOA have shown highest flux and combination with high concentration of MKP have shown highest reverse solute flux, while those with high concentration of MAP remain moderate both in flux and RSF. During long term runs, SOA: MKP (0.75: 0.25 M) showed longest filtration duration of 217 h in Run 1, with highest initial flux of 8.29 LMH and minimum dilution factor to achieve final nutrients concentration fit for direct fertigation, followed by Run 3 MAP: SOA: MKP (0.2: 0.6: 0.2 M) and then Run 2 MAP: MKP (0.75: 0.25). Moreover, deterioration of mixed liquor characteristics occurs in membrane tank due to high RSF. Similarly, the same inhibitory effect of reverse salt on biogas production was also assessed through Bio-Methane Potential experiments. However, Anaerobic Continuous Stirring Tank Reactor exhibited high performance efficacy, highlighting the importance of side stream submerged configuration in forward osmosis (FO) process.
Collapse
Affiliation(s)
- Hassam Abbasi
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Kamran Manzoor
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Muhammad Adnan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
22
|
Bi J, Tao Q, Huang X, Wang J, Wang T, Hao H. Simultaneous decontamination of multi-pollutants: A promising approach for water remediation. CHEMOSPHERE 2021; 284:131270. [PMID: 34323782 DOI: 10.1016/j.chemosphere.2021.131270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/08/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Water remediation techniques have been extensively investigated due to the increasing threats of soluble pollutants posed on the human health, ecology and sustainability. Confronted with the complex composition matrix of wastewater, the simultaneous elimination of coexisting multi-pollutants remains a great challenge due to their different physicochemical properties. By integrating multi-contaminants elimination processes into one unit operation, simultaneous decontamination attracted more and more attention under the consideration of versatile applications and economical benefits. In this review, the state-of-art simultaneous decontamination methods were systematically summarized as chemical precipitation, adsorption, photocatalysis, oxidation-reduction, biological removal and membrane filtration. Their applications, mechanisms, mutual interactions, sustainability and recyclability were outlined and discussed in detail. Finally, the prospects and opportunities for future research were proposed for further development of simultaneous decontamination. This work could provide guidelines for the design and fabrication of well-organized simultaneous decontaminating system.
Collapse
Affiliation(s)
- Jingtao Bi
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qingqing Tao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xin Huang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| | - Jingkang Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China; State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, China
| | - Ting Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Hongxun Hao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China; State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Li M, Hu J, Li B, Deng S, Zhang X. Graphene oxide nanofiltration membrane with trimethylamine-N-oxide zwitterions for robust biofouling resistance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Hemine K, Łukasik N, Gazda M, Nowak I. β-cyclodextrin-containing polymer based on renewable cellulose resources for effective removal of ionic and non-ionic toxic organic pollutants from water. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126286. [PMID: 34098262 DOI: 10.1016/j.jhazmat.2021.126286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
A novel, bio-derived cyclodextrin-based trifunctional adsorbent has been successfully synthesized for efficient, rapid and simultaneous removal of a broad-spectrum of toxic ionic (anionic and cationic dyes) and non-ionic organic pollutants from water. The composition, morphology and the presence of functional groups in the obtained sorption material were characterized by elemental analysis, XRD, SEM, and FTIR spectroscopy. The adsorption results were represented by cationic dye (crystal violet, CV) and endocrine disrupting compound (bisphenol A, BPA) as an adsorbate. The sorption processes of the model pollutants were studied with both kinetic and equilibrium models. The results showed that the sorption was rapid (less than 1 min) and the time evolution could be fitted using a pseudo-second order model. According to Langmuir isotherm model, the maximum adsorption capacities were found at 113.64 and 43.10 mg g-1 for BPA and CV, respectively. The adsorption ability of β-CDPs was kept nearly on the same level after five regeneration cycles. Furthermore, almost complete removal of the pollutants was observed during the treatment of real effluents samples thus the bio-derived, cheap and reusable BAN-EPI-CDP has a promising potential for practical applications.
Collapse
Affiliation(s)
- Koleta Hemine
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Natalia Łukasik
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Maria Gazda
- Institute of Nanotechnology and Materials Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Izabela Nowak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland
| |
Collapse
|
25
|
Al-Hetlani E, Rajendran N, BabuVelappan A, Amin MO, Ghazal B, Makhseed S. Design and Synthesis of a Nanopolymer for CO 2 Capture and Wastewater Treatment. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Entesar Al-Hetlani
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, 13060 Safat, Kuwait
| | - Narendran Rajendran
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, 13060 Safat, Kuwait
| | - Anand BabuVelappan
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, 13060 Safat, Kuwait
| | - Mohamed O. Amin
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, 13060 Safat, Kuwait
| | - Basma Ghazal
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, 13060 Safat, Kuwait
| | - Saad Makhseed
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, 13060 Safat, Kuwait
| |
Collapse
|
26
|
Carbon quantum dots (CQDs) and polyethyleneimine (PEI) layer-by-layer (LBL) self-assembly PEK-C-based membranes with high forward osmosis performance. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Methylene Blue Dye Adsorption from Wastewater Using Hydroxyapatite/Gold Nanocomposite: Kinetic and Thermodynamics Studies. NANOMATERIALS 2021; 11:nano11061403. [PMID: 34073274 PMCID: PMC8227305 DOI: 10.3390/nano11061403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
The present work demonstrates the development of hydroxyapatite (HA)/gold (Au) nanocomposites to increase the adsorption of methylene blue (MB) dye from the wastewater. HA nanopowder was prepared via a wet chemical precipitation method by means of Ca(OH)2 and H3PO4 as starting materials. The biosynthesis of gold nanoparticles (AuNPs) has been reported for the first time by using the plant extract of Acrocarpus fraxinifolius. Finally, the as-prepared HA nanopowder was mixed with an optimized AuNPs solution to produce HA/Au nanocomposite. The prepared HA/Au nanocomposite was studied by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) analysis. Adsorption studies were executed by batch experiments on the synthesized composite. The effect of the amount of adsorbent, pH, dye concentration and temperature was studied. Pseudo-first-order and pseudo-second-order models were used to fit the kinetic data and the kinetic modeling results reflected that the experimental data is perfectly matched with the pseudo-first-order kinetic model. The dye adsorbed waste materials have also been investigated against Pseudomonas aeruginosa, Micrococcus luteus, and Staphylococcus aureus bacteria by the agar well diffusion method. The inhibition zones of dye adsorbed samples are more or less the same as compared to as-prepared samples. The results so obtained indicates the suitability of the synthesized sample to be exploited as an adsorbent for effective treatment of MB dye from wastewater and dye adsorbed waste as an effective antibacterial agent from an economic point of view.
Collapse
|
28
|
Guo J, Yang Q, Meng QW, Lau CH, Ge Q. Membrane Surface Functionalization with Imidazole Derivatives to Benefit Dye Removal and Fouling Resistance in Forward Osmosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6710-6719. [PMID: 33512147 DOI: 10.1021/acsami.0c22685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water contaminated with low concentrations of pollutants is more difficult to clean up than that with high pollutant content levels. Membrane separation provides a solution for removing low pollutant content from water. However, membranes are prone to fouling, losing separation performances over time. Here we synthesized neutral (IM-NH2) and positively charged (IL-NH2) imidazole derivatives to chemically functionalize membranes. With distinct properties, these imidazole grafts could tailor membrane physicochemical properties and structures to benefit forward osmosis (FO) processes for the removal of 20-100 ppm of Safranin O dye-a common dye employed in the textile industry. The water fluxes produced by IM-NH2- and IL-NH2-modified membranes increased by 67% and 122%, respectively, with DI water as the feed compared to that with the nascent membrane. A 39% flux increment with complete dye retention (∼100%) was achieved for the IL-NH2-modified membrane against 100 ppm of Safranin O dye. Regardless of the dye concentration, the IL-NH2-modified membrane exhibited steadily higher permeation performance than the original membrane in long-term experiments. Reproducible experimental results were obtained with the IL-NH2-modified membrane after cleaning with DI water, demonstrating the good antifouling properties and renewability of the newly developed membrane.
Collapse
Affiliation(s)
- Jie Guo
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| | - Qiaoli Yang
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| | - Qing-Wei Meng
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Robert Stevenson Road, The King's Buildings, Edinburgh EH9 3FB, Scotland, U.K
| | - Qingchun Ge
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| |
Collapse
|
29
|
Polydopamine nanoparticles modified nanofiber supported thin film composite membrane with enhanced adhesion strength for forward osmosis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118673] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Hu J, Li M, Wang L, Zhang X. Polymer brush-modified graphene oxide membrane with excellent structural stability for effective fractionation of textile wastewater. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Wang Y, Qi Q, Fan J, Wang W, Yu D. Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117615] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Tran T, Pan S, Chen X, Lin XC, Blevins AK, Ding Y, Lin H. Zwitterionic Hydrogel-Impregnated Membranes with Polyamide Skin Achieving Superior Water/Salt Separation Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49192-49199. [PMID: 33064439 DOI: 10.1021/acsami.0c13363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Support-free nonporous membranes have emerged as a new material platform for osmotic pressure-driven processes due to its insusceptibility to internal concentration polarization (ICP). Herein, we demonstrate high-performance membranes of zwitterionic hydrogels impregnated in porous membranes with a skin layer of highly cross-linked polyamides on both sides prepared by gel-liquid interfacial polymerization (GLIP). Such a configuration eliminates the pores and thus ICP, while the thin polyamide layer provides high salt rejection but negligible resistance to the water transport compared with the hydrogels. The polyamide skin layers are characterized using scanning electron microscopy and atomic force microscopy. The effect of the hydrogel compositions and polyamide formation conditions on the water/salt separation properties is thoroughly investigated. Example membranes show water permeance and salt rejection comparable to state-of-the-art commercial forward osmosis membranes and essentially no ICP.
Collapse
Affiliation(s)
- Thien Tran
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Shiwei Pan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Wanhua Chemical Group Co., Ltd., Economic Development Zone, Yantai, Shandong 264006, China
| | - Xiaoyi Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Xiao-Ci Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Adrienne K Blevins
- Materials Science and Engineering Program and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Yifu Ding
- Materials Science and Engineering Program and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
33
|
Cruz-Tato P, Richardson TMJ, Romero-Mangado J, Flynn M, Nicolau E. Performance Evaluation of 1-Cyclohexylpiperidine as a Draw Solute for Forward Osmosis Water Separation and CO 2 Recovery. ACS OMEGA 2020; 5:25919-25926. [PMID: 33073118 PMCID: PMC7558060 DOI: 10.1021/acsomega.0c03301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Membrane-based technologies, such as forward osmosis (FO), offer the advantage of treating water through a spontaneous process that requires minimal energy input while achieving favorable water permeability and selectivity. However, the FO process still has some challenges that need to be solved or improved to become entirely feasible. The main impediment for this technology is the recovery of the draw solute used to generate the osmotic potential in the process. In this paper, we discuss the use of a switchable polarity solvent, 1-cyclohexylpiperidine (CHP), as a draw solute that responds to external stimuli. Specifically, the miscibility of CHP can be switched by the presence of carbon dioxide (CO2) and is reversible by applying heat. Thus, in this study, the hydrophobic CHP is first converted to the hydrophilic ammonium salt (CHPH+), and its capability as a draw solution (DS) is thoroughly evaluated against the typical osmotic agent, sodium chloride (NaCl). Our results show that the water permeability across the thin film composite membrane increases by 69% when CHPH+ is used as the DS. Also, the water permeability when using different feed solutions: aqueous solutions of (a) urea and (b) NaCl were evaluated. In both cases, the CHPH+ generates water fluxes in the range of 65 ± 4 LMH and 69 ± 2 LMH, respectively. We then separate the diluted DS by applying 75 °C to the solution to recover the pure CHP and water. The results of this work provide a proof-of-concept of a CHP wastewater and desalination method via an FO process.
Collapse
Affiliation(s)
- Perla Cruz-Tato
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 University
Ave. 1701, San Juan, Puerto
Rico 00925, United
States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | | | - Jaione Romero-Mangado
- Bioengineering
Branch, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Michael Flynn
- Bioengineering
Branch, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Eduardo Nicolau
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 University
Ave. 1701, San Juan, Puerto
Rico 00925, United
States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| |
Collapse
|
34
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
35
|
Peng LE, Yao Z, Chen J, Guo H, Tang CY. Highly selective separation and resource recovery using forward osmosis membrane assembled by polyphenol network. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Rajendran S, Manoj D, Nimita Jebaranjitham J, Kumar BG, Bharath G, Banat F, Qin J, Vadivel S, Gracia F. Nanosized Titania-Nickel mixed oxide for visible light photocatalytic activity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Lei H, Hao Z, Chen K, Chen Y, Zhang J, Hu Z, Song Y, Rao P, Huang Q. Insight into Adsorption Performance and Mechanism on Efficient Removal of Methylene Blue by Accordion-like V 2CT x MXene. J Phys Chem Lett 2020; 11:4253-4260. [PMID: 32374607 DOI: 10.1021/acs.jpclett.0c00973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dye-bearing wastewaters leading to the water pollution and ecological upset is a crucial issue in the textile industry. Herein, we report a facile method using two-dimensional transition metal carbides (MXenes) for the removal of the methylene blue (MB) in the water. The accordion-like V2CTx MXene is originally demonstrated to have high and spontaneous adsorption capacity of MB at 111.11 mg·g-1, thrice over that of Ti3C2Tx as previously reported. The wide lamellar space of V2CTx is certain to have large accommodation for MB. The electrostatic interaction effect and hydrogen bond between V2CTx and MB not only promote the efficient adsorption process but also provide the selectivity between anionic and cationic dyes. Combined with good reusability, we anticipate that the V2CTx MXene is a promising candidate for the removal of cationic dyes from textile-dye-bearing wastewaters.
Collapse
Affiliation(s)
- Huan Lei
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zongdi Hao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ke Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Qianwan Institute of CNiTECH, Ningbo 315336, China
| | - Youhu Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianning Zhang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhengjie Hu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yujie Song
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Pinhua Rao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Qing Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Qianwan Institute of CNiTECH, Ningbo 315336, China
| |
Collapse
|
38
|
Ma ZY, Zhang X, Liu C, Dong SN, Yang J, Wu GP, Xu ZK. Polyamide nanofilms synthesized via controlled interfacial polymerization on a "jelly" surface. Chem Commun (Camb) 2020; 56:7249-7252. [PMID: 32467954 DOI: 10.1039/d0cc02555k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A thermal-sensitive "jelly" was used to control the diffusion of a diamine monomer for synthesizing polyamide free-standing nanofilms with an adjustable thickness of 5-35 nm. The reduced reaction rate of the interfacial polymerization at the hexane-"jelly" interface made the synthesized nanofilms show high water permeation flux and suitable salt rejection, and they also have highly negative surface charges and fairly smooth surfaces.
Collapse
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Li M, Li K, Wang L, Zhang X. Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: Performance and economic evaluation. WATER RESEARCH 2020; 172:115488. [PMID: 31951948 DOI: 10.1016/j.watres.2020.115488] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
The forward osmosis-membrane distillation (FO-MD) hybrid process has shown great promise in achieving zero liquid discharge in the textile industry, recovering valuable dye molecules while producing large amounts of clean water. However, the progress of this technology seems to have stagnated with the direct coupling of commercial asymmetric FO and MD membranes, because water management in the system is found to be rather complicated owing to the processing of the different membranes. Herein, we propose, for the first time, an FO-MD hybrid process using a custom-made self-standing and symmetric membrane and a hydrophobic polytetrafluoroethylene membrane in the FO and MD units, respectively. Three types of operation modes were investigated to systematically study the process performance in the concentration treatment of model textile wastewater; two commercial FO membranes were also tested for comparison. Owing to its low fouling propensity and lack of an internal concentration polarization effect, the water transfer rate of our symmetric FO membrane quickly reaches equilibrium with that in the MD unit, resulting in continuous and stable operation. Consequently, the hybrid process using the symmetric FO membrane was found to consume the least energy, as indicated by its lowest total cost in both lab- and large-scale systems. Overall, our study provides a new strategy for using a symmetric FO membrane in the FO-MD hybrid process and highlights its great potential for use in the treatment of textile wastewater.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kun Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xuan Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
40
|
Polyphenol engineered membranes with dually charged sandwich structure for low-pressure molecular separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Lou XY, Xu Z, Bai AP, Resina-Gallego M, Ji ZG. Separation and Recycling of Concentrated Heavy Metal Wastewater by Tube Membrane Distillation Integrated with Crystallization. MEMBRANES 2020; 10:E19. [PMID: 31968616 PMCID: PMC7022982 DOI: 10.3390/membranes10010019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 01/16/2023]
Abstract
Tube membrane distillation (MD) integrated with a crystallization method is used in this study for the concurrent productions of pure water and salt crystals from concentrated single and mixed system solutions. The effects of concentrated Zn2+ and Ni2+ on performance in terms of membrane flux, permeate conductivity, crystal recovery rates, and crystal grades are investigated. Preferred crystallization and co-crystallization determinations were performed for mixed solutions. The results revealed that membrane fluxes remained at 2.61 kg·m-2·h-1 and showed a sharp decline until the saturation increased to 1.38. Water yield conductivity was below 10 μs·cm-1. High concentrated zinc and nickel did not have a particular effect on the rejection of the membrane process. For the mixed solutions, membrane flux showed a sharp decrease due to the high saturation, while the conductivity of permeate remained below 10 μs·cm-1 during the whole process. Co-crystallization has been proven to be a better method due to the existence of the SO42- common-ion effect. Membrane fouling studies have suggested that the membrane has excellent resistance to fouling from highly concentrated solutions. The MD integrated with crystallization proves to be a promising technology for treating highly concentrated heavy metal solutions.
Collapse
Affiliation(s)
- Xiang-Yang Lou
- National Engineering Lab. of Biohydrometallurgy, GRINM Technology Group Co., Ltd., Beijing 101407, China; (X.-Y.L.); (Z.X.)
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08290 Bellaterra, Spain;
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Zheng Xu
- National Engineering Lab. of Biohydrometallurgy, GRINM Technology Group Co., Ltd., Beijing 101407, China; (X.-Y.L.); (Z.X.)
- GRINM Resources and Environmental Tech. Co., Ltd., Beijing 101407, China
| | - An-Ping Bai
- Beijing Vocational College of Labor and Social Security, Beijing 102200, China;
| | - Montserrat Resina-Gallego
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08290 Bellaterra, Spain;
| | - Zhong-Guang Ji
- National Engineering Lab. of Biohydrometallurgy, GRINM Technology Group Co., Ltd., Beijing 101407, China; (X.-Y.L.); (Z.X.)
- GRINM Resources and Environmental Tech. Co., Ltd., Beijing 101407, China
| |
Collapse
|
42
|
Hu X, Hu Y, Xu G, Li M, Zhu Y, Jiang L, Tu Y, Zhu X, Xie X, Li A. Green synthesis of a magnetic β-cyclodextrin polymer for rapid removal of organic micro-pollutants and heavy metals from dyeing wastewater. ENVIRONMENTAL RESEARCH 2020; 180:108796. [PMID: 31629085 DOI: 10.1016/j.envres.2019.108796] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 05/12/2023]
Abstract
Adsorption is one of the most preferred techniques in the advanced treatment of dyeing wastewater. Magnetic porous materials with good adsorption performance, excellent reusability, and a green synthesis route are highly desirable adsorbents in commerce. In this study, we synthesized a magnetic β-cyclodextrin polymer (MNP-CM-CDP) containing many macro- and ultramicropores in aqueous phase. CO2 adsorption-desorption isotherms and a dye adsorption method provided Langmuir specific surface areas for the MNP-CM-CDP of 114.4 m2 g-1 and 153 m2 g-1, respectively. Model pollutants (BPA, MB, BO2, RhB, Cr(III), Pb(II), Zn(II), and Cu(II)) were rapidly and efficiently removed from the aqueous solution by the MNP-CM-CDP. In addition, the polymer could be easily separated from the solution under an external magnetic field. The adsorption of the contaminants was dependent on pH, while the effects of ionic strength and humic acid were slight in the concentration range studied. The polymer could be easily regenerated at room temperature and retained good adsorption performance. Moreover, the MNP-CM-CDP showed good feasibility for the removal of pollutants from actual dyeing wastewater samples.
Collapse
Affiliation(s)
- Xuejiao Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Yue Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Meng Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Yuanting Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Lu Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Xingqi Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China; Nanjing Innovation Center for Environmental Protection Industry CO;Ltd., Nanjing, PR China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| |
Collapse
|
43
|
Jingxi EZ, De Jager D, Augustine R, Petrinic I, Helix-Nielsen C, Sheldon MS. Forward osmosis: dyeing draw solutions for water reclamation from feed water resources. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1053-1062. [PMID: 31799949 DOI: 10.2166/wst.2019.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reactive Black 5 and Basic Blue 41 GRL dyeing solutions (dye-to-salt mixture in a 1:10 dye-to-salt mass ratio) were investigated as draw solutions (DS) in a forward osmosis (FO) system with a biomimetic membrane. Synthetic seawater (SSW) and textile wastewater (TWW1 and TWW2) were evaluated as feed solutions (FS) for water reclamation. Reactive Black 5 and Basic Blue 41 GRL were diluted from 0.02 M to concentrations of 0.002 and 0.004 M, respectively. With Reactive Black 5 as DS and SSW as FS, an initial flux of 20.24 L/m2 h and water recovery of 75% was achieved. Using TWW1 and TWW2, initial water fluxes of 19.51 and 13.43 L/m2 h were achieved, respectively, with a 30% water recovery. Using Basic Blue 41 GRL, initial water fluxes of 18.72, 15.13 and 13.42 L/m2 h were achieved with SSW, TWW1, and TWW2 as FS with water recoveries of 50%, 20% and 20%, respectively. The average reverse solute fluxes for Reactive Black 5 and Basic Blue 41 GRL were 0.06 to 0.34 g/m2 h, respectively. Diluted dyeing solutions were produced, with simultaneous water reclamation from SSW and TWW resulting in similar or higher water fluxes and lower reverse solute fluxes compared with other commercially available membranes.
Collapse
Affiliation(s)
- Estella Z Jingxi
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa E-mail:
| | - Debbie De Jager
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa E-mail:
| | - Robyn Augustine
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa E-mail:
| | - Irena Petrinic
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa E-mail: ; Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Claus Helix-Nielsen
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark
| | - Marshall S Sheldon
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa E-mail:
| |
Collapse
|
44
|
Haupt A, Marx C, Lerch A. Modelling Forward Osmosis Treatment of Automobile Wastewaters. MEMBRANES 2019; 9:membranes9090106. [PMID: 31443491 PMCID: PMC6780785 DOI: 10.3390/membranes9090106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 05/12/2023]
Abstract
Forward osmosis (FO) has rarely been investigated as a treatment technology for industrial wastewaters. Within this study, common FO model equations were applied to simulate forward osmosis treatment of industrial wastewaters from the automobile industry. Three different models from literature were used and compared. Permeate and reverse solute flux modelling was implemented using MS Excel with a Generalized Reduced Gradient (GRG) Nonlinear Solver. For the industrial effluents, the unknown diffusion coefficients were calibrated and the influences of the membrane parameters were investigated. Experimental data was used to evaluate the models. It could be proven that common model equations can describe FO treatment of industrial effluents from the automobile industry. Even with few known solution properties, it was possible to determine permeate fluxes and draw conclusions about mass transport. However, the membrane parameters, which are apparently not solution independent and seem to differ for each industrial effluent, are critical values. Fouling was not included in the model equations although it is a crucial point in FO treatment of industrial wastewaters. But precisely for this reason, modelling is a good complement to laboratory experiments since the difference between the results allows conclusions to be drawn about fouling.
Collapse
Affiliation(s)
- Anita Haupt
- Chair of Process Engineering in Hydro Systems, Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Marx
- Chair of Process Engineering in Hydro Systems, Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| | - André Lerch
- Chair of Process Engineering in Hydro Systems, Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|