1
|
Huang HN, Yang Z, Guo Y, Ma JJ, Ming BW, Yang J, Guo C, Li L, Ou CQ. Impact of agricultural straw open-field burning on concentrations of six criteria air pollutants in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126109. [PMID: 40147748 DOI: 10.1016/j.envpol.2025.126109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Agricultural straw open-field burning (ASOB) is a major source of fine particles and carbonaceous aerosols, particularly in China, India, and Southeast Asia. However, the exposure-lag-response relationship between straw burning and urban air pollution in China remains insufficiently investigated. This study compiled satellite-based ASOB data along with daily meteorological and air pollution monitoring data for 156 Chinese cities from 2015 to 2020. The ASOB points detected by the Moderate Resolution Imaging Spectroradiometer (MODIS) were identified as exposure events, and their exposure-lag-response relationships with daily pollutant levels were elucidated using distributed lag nonlinear models. The nation-level estimate of the impact of ASOB points on urban air quality was obtained by a meta-analysis. The results revealed significant short-term elevation in the daily concentrations of six pollutants. Each increase of 10 straw burning points is associated with an increase of 8.89, 8.52, 8.17, 2.43, and 0.84 μg/m3 in PM10, O3, PM2.5, NO2, and SO2, respectively, and an increase of 0.048 mg/m3 in CO with a lag of 0-3 days. Regional and seasonal ASOB variations and their effects were observed, revealing a pronounced effect in East China, particularly from October to December. ASOB contributed 4.54 % of O3 and 2.72 % of PM2.5 concentrations in air pollution waves in the high-intensity ASOB burning seasons. This study highlights the adverse impact of open-field straw burning on air quality, even under China's strict ASOB ban, providing scientific evidence for future assessments of the cost-effectiveness of straw-burning bans and policy refinements.
Collapse
Affiliation(s)
- Hao-Neng Huang
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhou Yang
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Jia-Jun Ma
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bo-Wen Ming
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cui Guo
- Department of Urban Planning and Design, Faculty of Architecture, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Chun-Quan Ou
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Ma S, Cheng D, Tang Y, Fan Y, Li Q, He C, Zhao Z, Xu T. Investigation of oxidative potential of fresh and O 3-aging PM 2.5 from various emission sources across urban and rural regions. J Environ Sci (China) 2025; 151:608-615. [PMID: 39481966 DOI: 10.1016/j.jes.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 11/03/2024]
Abstract
Inhalation of atmospheric PM2.5 can induce the generation of excessive reactive oxygen species (ROS) in human alveoli, triggering local and systemic inflammation, which can directly or indirectly result in respiratory and cardiovascular diseases. In this study, we assessed the oxidative potential (OP) of fresh and O3-aged PM2.5 particles from various urban and rural emission sources using the dithiothreitol (DTT) method. Our results revealed variations in the OP of fresh PM2.5 among different emission sources, with biomass burning sources exhibiting the highest OP, followed by industrial areas, vehicular emissions, cooking emissions, and suburban areas, respectively. Water-soluble organics and transition metals might potentially exert significant influence on particle OP. O3 aging notably decreased the OP of PM2.5 particles, possibly due to the oxidation of highly DTT-active components into low redox-active small molecules. Moreover, the evolution of OP in different PM2.5 components, including methanol-soluble and insoluble fractions, exhibited distinct responses to O3 aging for source-oriented PM2.5. Additionally, differences in chemical composition between fresh and aged PM2.5 were further elucidated through measurements of component-dependent hygroscopic behaviors and phase transitions. This study systematically delineates variances in the toxic potential of fresh and O3-aged PM2.5 from various anthropogenic sources. The findings highlight the intrinsic compositional dependence of particle OP and provide essential insights for assessing the health effects of source-oriented PM2.5, as well as for formulating human health protection policies.
Collapse
Affiliation(s)
- Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China.
| | - Dongsheng Cheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yingying Tang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Younuo Fan
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Chengxiang He
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Zhiqing Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Tianyou Xu
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China.
| |
Collapse
|
3
|
Xu K, Hao H, Zhang D, Wang W, Li H, Deng Y, Ma T, Steenland K, Chang H, Liu Y. Long-term exposure to smoke PM 2.5 and COPD caused mortality for elderly people in the contiguous United States. ENVIRONMENT INTERNATIONAL 2025; 199:109513. [PMID: 40319632 DOI: 10.1016/j.envint.2025.109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/08/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Wildfire events in the US are becoming more frequent and more intensive due to climate change. Fire smoke can significantly contribute to ambient PM2.5 (PM2.5, particles smaller than 2.5 µm in diameter) levels and alter its chemical composition. An emerging body of literature has linked COPD mortality and episodic wildfire smoke exposure, but studies on the effect of long-term fire smoke exposure is lacking. We aimed to evaluate how long-term exposure to smoke PM2.5 can affect COPD mortality among elderly people and to explore the spatial variability in this effect. We investigated all elderly people aged 65-100 years in the contiguous United States using Medicare and National Death Index data from 2008 to 2016. We identified three subregions based on wildfire smoke risk to indicate spatial differences in smoke exposure. We used time-varying Cox Proportional Hazards Models to explore the effect of smoke PM2.5 on COPD mortality. We found that smoke PM2.5 is strongly associated with COPD mortality. An increase of 1 µg/m3 in smoke PM2.5 was associated with a 9.2 % increase in COPD mortality among elderly people (95 % CI: 8.8 %-9.7 %). Specifically, A 1 µg/m3 increase in smoke PM2.5 may increase deaths by 40.4 %, 9.6 % and 3.9 % in low, moderate, and high wildfire risk areas, respectively. Our study reveals that long-term exposure to smoke PM2.5 significantly contributes to COPD mortality among elderly people. Notably, those living in regions with relatively lower wildfire risk appear vulnerable. Therefore, wildfire prevention should be emphasized in areas that are not typically wildfire active.
Collapse
Affiliation(s)
- Ke Xu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Hua Hao
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Danlu Zhang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Wenhao Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Haomin Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yanling Deng
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Tszshan Ma
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Howard Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Wu PC, Wen HJ, Huang KF, Huang SK, Liang MC. Transition metals and chemical compositions determine the oxidation capacity of atmospheric particulate matters. ENVIRONMENTAL RESEARCH 2025; 278:121661. [PMID: 40268221 DOI: 10.1016/j.envres.2025.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/07/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
The knowledge of the causal relationship between exposure to airborne particulate matter (PM) and respiratory-related health issues remains unsatisfactory, owing to the complexities of physical and chemical characteristics in PM. One measure that greatly lifts the complexity is oxidative potential (OP), the overall production capacity of reactive oxygen species. We analyzed PM at different size fractions from three localities, exhibiting different source emission properties and photochemical aging states. We also investigated possible causes for their OPs, which were assessed using cellular and acellular assays. We found that higher PM mass did not always yield higher OP. Instead, chemical composition, modified by photochemical alteration (particle oxidation), played a critical role in the PM's reactivity. From a pollution hot spot to a downwind country town, the PM2.5 levels (mean ± SD) were 9.3 ± 4.5, 9.7 ± 4.9, and 6.6 ± 4.7 μg/m3, respectively. In contrast, the PM mass-normalized OP values in the downwind region were approximately 20 % higher than those in the upwind region based on the cellular assay and about three times higher from the acellular assay. Enhanced PM OP is associated with atmospheric oxidation, approximated by sulfur and nitrogen oxidation ratios. We further identified transition metals, particularly copper, a single most important species group, the primary determinant to the values of OP measured, contributing directly to OP and indirectly through metal-oxides enhanced photochemical alterations to PM.
Collapse
Affiliation(s)
- Po-Chao Wu
- Environmental Governance Research Center, National Environmental Research Academy, Taoyuan, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuo-Fang Huang
- Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Mao-Chang Liang
- Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
Krieg CA. Depressed nestling growth during exposure to smoke from distant wildfires. Sci Rep 2025; 15:8200. [PMID: 40065127 PMCID: PMC11894070 DOI: 10.1038/s41598-025-93101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Human and animal populations increasingly encounter smoke pollution as climate change enhances the frequency and intensity of wildfires. Most work on smoke effects in animals has studied populations close to fires, populations experiencing small, prescribed burns, or animals in the lab. In June of 2023, smoke from distant Canadian wildfires quickly elevated particulate matter (PM2.5) pollution in a wild house wren (Troglodytes aedon) population for three days before returning to baseline levels. Compared to previous years, nestlings experiencing three days of elevated PM2.5 within the first 6 days of life weighed less on days 6 and 10 after hatching and had shorter tarsometatarsus bones, a sign of smaller skeletal size. In contrast, nestlings that hatched before or after this event did not differ in size from previous years. Although sublethal, these effects may have important consequences for survival and reproduction. As wildfire activity increases, more wildlife populations are at risk of smoke-related fitness consequences, even those distant from the blaze.
Collapse
Affiliation(s)
- Cara A Krieg
- Department of Biology, The University of Scranton, 800 Linden Street, Scranton, PA, 18510, USA.
| |
Collapse
|
6
|
Krasovich Southworth E, Qiu M, Gould CF, Kawano A, Wen J, Heft-Neal S, Kilpatrick Voss K, Lopez A, Fendorf S, Burney JA, Burke M. The Influence of Wildfire Smoke on Ambient PM 2.5 Chemical Species Concentrations in the Contiguous US. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2961-2973. [PMID: 39899563 DOI: 10.1021/acs.est.4c09011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Wildfires significantly contribute to ambient air pollution, yet our understanding of how wildfire smoke influences specific chemicals and their resulting concentration in smoke remains incomplete. We combine 15 years of daily species-specific PM2.5 concentrations from 700 air pollution monitors with satellite-derived ambient wildfire smoke PM2.5, and use a panel regression to estimate wildfire smoke's contribution to the concentrations of 27 different chemical species in PM2.5. Wildfire smoke drives detectable increases in the concentration of 25 out of the 27 species with the largest increases observed for organic carbon, elemental carbon, and potassium. We find that smoke originating from wildfires that burned structures had higher concentrations of copper, lead, zinc, and nickel relative to smoke from fires that did not burn structures. Wildfire smoke is responsible for an increasing share of ambient concentrations of multiple species, some of which are particularly harmful to health. Using a risk assessment approach, we find that wildfire-induced enhancement of carcinogenic species concentrations could cause increases in population cancer risk, but these increases are very small relative to other environmental risks. We demonstrate how combining ground-monitored and satellite-derived data can be used to measure wildfire smoke's influence on chemical concentrations and estimate population exposures at large scales.
Collapse
Affiliation(s)
- Emma Krasovich Southworth
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California 94305, United States
- Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Minghao Qiu
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, United States
- Program in Public Health, Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York 11794, United States
| | - Carlos F Gould
- School of Public Health, UC San Diego, La Jolla, California 92093, United States
| | - Ayako Kawano
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California 94305, United States
- Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Jeff Wen
- Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, California 94305, United States
| | - Kara Kilpatrick Voss
- School of Global Policy and Strategy, UC San Diego, San Diego, California 92093, United States
- Scripps Institution of Oceanography, UC San Diego, San Diego, California 92093, United States
| | - Alandra Lopez
- Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Scott Fendorf
- Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Jennifer Anne Burney
- School of Global Policy and Strategy, UC San Diego, San Diego, California 92093, United States
- Scripps Institution of Oceanography, UC San Diego, San Diego, California 92093, United States
| | - Marshall Burke
- Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
- Center on Food Security and the Environment, Stanford University, Stanford, California 94305, United States
- National Bureau of Economic Research, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
7
|
Lin S, Xue Y, Thandra S, Qi Q, Thurston SW, Croft DP, Utell MJ, Hopke PK, Rich DQ. Source specific fine particles and rates of asthma and COPD healthcare encounters pre- and post-implementation of the Tier 3 vehicle emissions control regulations. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136737. [PMID: 39642739 DOI: 10.1016/j.jhazmat.2024.136737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
We examined associations between seven source-specific PM2.5 concentrations and rates of asthma and COPD hospitalizations and emergency department (ED) visits in New York State and compared the changes in excess rates (ERs) between pre- (2014-2016) and post-implementation (2017-2019) of the Tier 3 automobile emission controls on new vehicles policy. A modified time-stratified case-crossover design and conditional logistic regression were employed to estimate the ERs of asthma and COPD hospitalizations and ED visits associated with interquartile range (IQR) increases in source-specific PM2.5 concentrations. The 7 PM2.5 sources were spark-ignition emissions (GAS), diesel (DIE), biomass burning (BB), road dust (RD), secondary nitrate (SN), secondary sulfate (SS), and pyrolyzed organic rich (OP). Residual PM2.5 (PM2.5 - specific source [e.g., GAS]), daily temperature, relative humidity, weekday, and holidays were included in the model. IQR increases in GAS, SS, RD, BB, and SN were associated with increased ERs of asthma ED visits (highest ERs: 0.5 %-3.1 %), while a negative association was observed with DIE and OP. The rate of asthma hospitalizations was associated with increased RD concentrations (ERs: 1.3 %-1.7 %). Both COPD ED visit and hospitalization rates were associated with increased OP (ERs: 2.1 %-3.4 %), and increased SS was positively associated with COPD ED visits (ER = 3.8 %). In summary, after Tier 3 implementation (2017-2019), we found lower ERs for COPD admissions associated with BB, RD, SN, and SS compared to 2014-2016. However, rates of asthma ED visits associated with source-specific PM2.5 concentrations were generally higher for all sources, except DIE, post- versus pre-implementation, requiring further research for validation.
Collapse
Affiliation(s)
- Shao Lin
- Department of Environmental Health Sciences, College of Integrated Health Science, University at Albany, the State University of New York, Albany, New York; Department of Epidemiology/Biostatistics, College of Integrated Health Science, University at Albany, the State University of New York, Albany, New York
| | - Yukang Xue
- Department of Educational and Counseling Psychology, University at Albany, the State University of New York, Albany, New York
| | - Sathvik Thandra
- Department of Mathematics and Statistics, University at Albany, State University of New York, Albany, New York
| | - Quan Qi
- Department of Economics, University at Albany, the State University of New York, Albany, New York
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | - Daniel P Croft
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, New York
| | - Mark J Utell
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, New York
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York; Institute for a Sustainable Environment, Clarkson University, Potsdam, New York
| | - David Q Rich
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, New York; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
8
|
Sacks JD, Migliaccio CT, Reid CE, Montrose L. Shifting the Conversation on Wildland Fire Smoke Exposures: More Smoke Within and Across Years Requires a New Approach to Inform Public Health Action. ACS ES&T AIR 2025; 2:122-129. [PMID: 40182508 PMCID: PMC11964113 DOI: 10.1021/acsestair.4c00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
With the increase in acres burned from wildfire over the last few decades, wildfire smoke is an increasing global public health threat. To date, wildfire smoke research, risk communication, and public health action has focused on short-term (or daily) smoke exposures. However, the patterns of wildfire smoke exposure are transitioning to include longer duration and repeated exposures occurring within and across years. Epidemiologic and experimental studies represent important lines of evidence that have informed risk communication and public health actions for short-term smoke exposures; however, they have yet to provide the science needed to refine public health approaches to include other dynamic exposure durations such as repeated, episodic, or cumulative. This commentary provides an overview of methodological approaches used and recent findings from epidemiologic and experimental studies that examined longer duration, repeated smoke exposures. Based on the current science, we recommend that future epidemiologic and experimental studies of wildfire smoke examine multiple exposure metrics to capture the duration, frequency, and intensity of exposures. Such studies would improve the science produced to best support the needs of the public as we strive to further protect public health in a world projected to have more smoke.
Collapse
Affiliation(s)
- Jason D. Sacks
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27709, United States
| | - Christopher T. Migliaccio
- Center for Environmental Health Sciences, Department of Biomedical Sciences, University of Montana, Missoula, MT, 59812, United States
| | - Colleen E. Reid
- Geography Department and Institute of Behavioral Science, University of Colorado, Boulder, Colorado, 80309, United States
| | - Luke Montrose
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, 80523, United States
| |
Collapse
|
9
|
Cheung RK, Zhang J, Wang T, Kattner L, Bogler S, Puthussery JV, Huang RJ, Gysel-Beer M, Slowik JG, Verma V, Prevot AS, El Haddad I, Bell DM, Modini RL. Online Measurements during Simulated Atmospheric Aging Track the Strongly Increasing Oxidative Potential of Complex Combustion Aerosols Relative to Their Primary Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2025; 12:64-72. [PMID: 39830725 PMCID: PMC11736845 DOI: 10.1021/acs.estlett.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Oxidative potential (OP) is increasingly recognized as a more health-relevant metric than particulate matter (PM) mass concentration because of its response to varying chemical compositions. Given the limited research on the OP of complex combustion aerosols, the effects of aging processes on their OP remain underexplored. We used online instruments to track the evolution of OP [via dithiothreitol (DTT) assays] during the aging of wood burning and coal combustion emissions by hydroxyl-radical-driven photooxidation and dark ozonolysis. We observed very substantial increases in the intrinsic OP (OPm DTT) of complex combustion aerosols (e.g., OPm DTT up to 100 pmol min-1 μg-1 for OH-aged wood burning emissions) within 1 day of equivalent aging. Further analysis in relation to the degree of oxidation revealed a potential for generalizing the OP of carbonaceous aerosols with average carbon oxidation state values ranging from -1.5 to -0.5 by assuming they have a constant OPm DTT value of ∼10 ± 6 pmol min-1 μg-1. Additionally, we uncovered a strong dependency of OPm DTT on both the source/precursor and aging pathway with above ∼-0.5. OH photooxidation was identified as an exceptionally efficient pathway for generating highly oxidized, multifunctionalized, and DTT-active products, particularly from wood burning emissions.
Collapse
Affiliation(s)
- Rico K.
Y. Cheung
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jun Zhang
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Tiantian Wang
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Lisa Kattner
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Sophie Bogler
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Joseph V. Puthussery
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ru-Jin Huang
- Institute
of Earth and Environment, Chinese Academy of Sciences, Xi’an 710061, China
| | - Martin Gysel-Beer
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jay G. Slowik
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Vishal Verma
- Department
of Civil & Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - André S.
H. Prevot
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Imad El Haddad
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - David M. Bell
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Robin L. Modini
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
10
|
Attah R, Kaur K, Reilly CA, Deering-Rice CE, Kelly KE. The effects of photochemical aging and interactions with secondary organic aerosols on cellular toxicity of combustion particles. JOURNAL OF AEROSOL SCIENCE 2025; 183:106473. [PMID: 39372219 PMCID: PMC11449255 DOI: 10.1016/j.jaerosci.2024.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Fine particulate matter (PM2.5) is associated with numerous adverse health effects, including pulmonary and cardiovascular diseases and premature death. Significant contributors to ambient PM2.5 include combustion particles and secondary organic aerosols (SOA). Combustion particles enter the atmosphere and undergo an aging process that changes their shape and composition, but there is limited study on the health effects of combustion particle aging and interactions with SOA. This study aimed to understand how biological responses to combustion particles would be affected by atmospheric aging and interaction with anthropogenic SOA. Fresh combustion particles underwent photochemical aging in a potential aerosol mass (PAM) oxidation flow reactor and interacted with SOA produced by the oxidation of toluene vapor in the PAM reactor. Photochemical aging and SOA interactions lead to significant changes in the PAH content and oxidative potential of the particle. Photochemical aging and SOA interactions also affected the biological responses, such as the inflammatory response and CYP1A1 induction of the particles in monoculture and coculture cells. These findings highlight the significance of photochemical aging and SOA interactions on the composition and cellular responses of combustion particles.
Collapse
Affiliation(s)
- Reuben Attah
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Kamaljeet Kaur
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, United States
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, United States
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
11
|
Xing C, Zeng Y, Yang X, Zhang A, Zhai J, Cai B, Shi S, Zhang Y, Zhang Y, Fu TM, Zhu L, Shen H, Ye J, Wang C. Molecular characterization of major oxidative potential active species in ambient PM 2.5: Emissions from biomass burning and ship exhaust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125291. [PMID: 39542165 DOI: 10.1016/j.envpol.2024.125291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Ambient fine particulate matter (PM2.5) can catalyze the generation of reactive oxygen species in vivo, causing hazardous effects on human health. Molecular-level analysis of major oxidative potential (OP) active species is still limited. In this study, we used non-targeted high-resolution mass spectrometry to analyze the water-soluble organic components of ambient PM2.5 samples in winter and summer. Chemical components and back trajectory analysis revealed significant impacts of biomass burning and ship emissions on PM2.5 in winter and summer, respectively. Significance Analysis of the Microarray method and correlation analyses were combined to identify OP (OPDTT and OPOH) active species in characteristic organic compounds emitted from ship and biomass combustion emissions and to explore possible mechanisms. The results showed that the characteristic compounds emitted from ship were mainly organic amine compounds and contained more sulfur-containing components, while the characteristic compounds emitted from biomass burning were mainly oxygen-containing aromatic compounds of CHO and CHON groups. The high toxicity of summer PM2.5 might derive from reduced organic nitrogen compounds (C6H14N2O3S, C6H12N2O3S, C10H9N3O, C6H9N5O3S, and C6H14N4O) emission from ship sources. These reduced organic nitrogen compounds can form complexes with metals, affecting their solubility and reactivity in aerosols. Phenolic hydroxyl compounds were the main contributors to the PM2.5 OP from biomass burning in winter. Semiquinone radicals produced by oxidation of phenolic compounds can further promote the generation of reactive oxygen species through Fenton-like reactions. Our studies based on ambient PM2.5 samples further deepened the understanding of the molecular level of organic compounds emitted from ships and biomass burning, and their association with OP.
Collapse
Affiliation(s)
- Chunbo Xing
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen, Guangdong, 518055, China.
| | - Antai Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao Shi
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yin Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Tsiodra I, Grivas G, Bougiatioti A, Tavernaraki K, Parinos C, Paraskevopoulou D, Papoutsidaki K, Tsagkaraki M, Kozonaki FA, Oikonomou K, Nenes A, Mihalopoulos N. Source apportionment of particle-bound polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and their associated long-term health risks in a major European city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175416. [PMID: 39142411 DOI: 10.1016/j.scitotenv.2024.175416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Many studies have drawn attention to the associations of oxygenated polycyclic aromatic hydrocarbons (OPAHs) with harmful health effects, advocating for their systematic monitoring alongside simple PAHs to better understand the aerosol carcinogenic potential in urban areas. To address this need, this study conducted an extensive PM2.5 sampling campaign in Athens, Greece, at the Thissio Supersite of the National Observatory of Athens, from December 2018 to July 2021, aiming to characterize the levels and variability of polycyclic aromatic compounds (PACs), perform source apportionment, and assess health risk. Cumulative OPAH concentrations (Σ-OPAHs) were in the same range as Σ-PAHs (annual average 4.2 and 5.6 ng m-3, respectively). They exhibited a common seasonal profile with enhanced levels during the heating seasons, primarily attributed to residential wood burning (RWB). The episodic impact of biomass burning was also observed during a peri-urban wildfire event in May 2021, when PAH and OPAH concentrations increased by a factor of three compared to the monthly average. The study period also included the winter 2020-2021 COVID-19 lockdown, during which PAH and OPAH levels decreased by >50 % compared to past winters. Positive matrix factorization (PMF) source apportionment, based on a carbonaceous aerosol speciation dataset, identified PAC sources related to RWB, local traffic (gasoline vehicles) and urban traffic (including diesel emissions), as well as an impact of regional organic aerosol. Despite its seasonal character, RWB accounted for nearly half of Σ-PAH and over two-thirds of Σ-OPAH concentrations. Using the estimated source profiles and contributions, the source-specific carcinogenic potency of the studied PACs was calculated, revealing that almost 50 % was related to RWB. These findings underscore the urgent need to regulate domestic biomass burning at a European level, which can provide concrete benefits for improving urban air quality, towards the new stricter EU standards, and reducing long-term health effects.
Collapse
Affiliation(s)
- Irini Tsiodra
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece; Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece
| | - Georgios Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece
| | - Aikaterini Bougiatioti
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece
| | - Kalliopi Tavernaraki
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Constantine Parinos
- Hellenic Centre for Marine Research, Institute of Oceanography, 190 13 Anavyssos, Attiki, Greece
| | - Despina Paraskevopoulou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Kyriaki Papoutsidaki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Maria Tsagkaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Faidra-Aikaterini Kozonaki
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | | | - Athanasios Nenes
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece; Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Nikolaos Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece.
| |
Collapse
|
13
|
Tang R, Cao J, Shang J, Kuang Y, Geng H, Qiu X. Coupling Effect of Elemental Carbon and Organic Carbon on the Changes of Optical Properties and Oxidative Potential of Soot Particles under Visible Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19832-19842. [PMID: 39431524 DOI: 10.1021/acs.est.4c09217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Soot particles, coming from the incomplete combustion of fossil or biomass fuels, feature a core-shell structure with inner elemental carbon (EC) and outer organic carbon (OC). Both EC and OC are known to be photoactive under solar radiation. However, research on their coupling effect during photochemical aging remains limited. This study examines how the optical properties and oxidative potential (OP) of wood, coal, and diesel soot particles with varying EC and OC levels are affected by exposure to visible light. Wood soot, which has the highest OC content, showed the most significant changes in both optical properties and OP, indicating its highest sensitivity to visible light aging. Molecular composition analysis revealed that the reduction of polycyclic aromatic hydrocarbons (PAHs) and methyl-PAHs primarily affects the optical properties, while oxygenated PAHs play a major role in OP. Combined with the results from reactive oxygen species detection, it is suggested that EC initiates photoreactions by generating superoxide anions, while OC undergoes compositional changes that result in subsequent atmospheric effects. These findings enhance our understanding of the photochemical aging process of soot particles and their implications for climate and health.
Collapse
Affiliation(s)
- Rui Tang
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jiong Cao
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yu Kuang
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Hong Geng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Xinghua Qiu
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Sun Y, Zhang Q, Qin Z, Li K, Zhang Y. Laboratory study on the characteristics of fresh and aged PM 1 emitted from typical forest vegetation combustion in Southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124505. [PMID: 38968986 DOI: 10.1016/j.envpol.2024.124505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The frequency and intensity of forest fires are amplified by climate change. Substantial quantities of PM1 emitted from forest fires can undergo gradual atmospheric dispersion and long-range transport, thus impacting air quality far from the source. However, the chemical composition and physical properties of PM emitted from forest fires and its changes during atmospheric transport remain uncertain. In this study, the evolution of organic carbon (OC), elemental carbon (EC), water-soluble ions, and water-soluble metals in the particulate phase of smoke emitted from the typical forest vegetation combustion in Southwest China before and after photo-oxidation was investigated in the laboratory. Two aging periods of 5 and 9 days were selected. The OC and TC mass concentrations tended to decrease after 9-days aged compared to fresh emissions. OP, OC2, and OC3 in PM1 are expected to be potential indicators of fresh smoke, while OC3 and OC4 may serve as suitable markers for identifying aged carbon sources from the typical forest vegetation combustion in Southwest China. K+ exhibited the highest abundant water-soluble ion in fresh PM1, whereas NO3- became the most abundant water-soluble ion in aged PM1. NH4NO3 emerged as the primary secondary inorganic aerosol emitted from typical forest vegetation combustion in Southwest China. Notably, a 5-day aging period proved insufficient for the complete formation of the secondary inorganic aerosols NH4NO3 and (NH4)2SO4. After aging, the mass concentration of the water-soluble metal Ni in PM1 from typical forest vegetation combustion in Southwest China decreased, while the mean mass concentrations of all other water-soluble metals increased in varying degrees. These findings provide valuable data support and theoretical guidance for studying the atmospheric evolution of forest fire aerosols, as well as contribute to policy formulation and management of atmospheric environment safety and human health.
Collapse
Affiliation(s)
- Yuping Sun
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qixing Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Zhenhai Qin
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Kaili Li
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yongming Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
15
|
Shahpoury P, Lelieveld S, Srivastava D, Baccarini A, Mastin J, Berkemeier T, Celo V, Dabek-Zlotorzynska E, Harner T, Lammel G, Nenes A. Seasonal Changes in the Oxidative Potential of Urban Air Pollutants: The Influence of Emission Sources and Proton- and Ligand-Mediated Dissolution of Transition Metals. ACS ES&T AIR 2024; 1:1262-1275. [PMID: 39417159 PMCID: PMC11474821 DOI: 10.1021/acsestair.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
The inhalation of fine particulate matter (PM2.5) is a major contributor to adverse health effects from air pollution worldwide. An important toxicity pathway is thought to follow oxidative stress from the formation of exogenous reactive oxygen species (ROS) in the body, a proxy of which is oxidative potential (OP). As redox-active transition metals and organic species are important drivers of OP in urban environments, we investigate how seasonal changes in emission sources, aerosol chemical composition, acidity, and metal dissolution influence OP dynamics. Using a kinetic model of the lung redox chemistry, we predicted ROS (O2 •-, H2O2, •OH) formation with input parameters comprising the ambient concentrations of PM2.5, water-soluble Fe and Cu, secondary organic matter, nitrogen dioxide, and ozone across two years and two urban sites in Canada. Particulate species were the largest contributors to ROS production. Soluble Fe and Cu had their highest and lowest values in summer and winter, and changes in Fe solubility were closely linked to seasonal variations in chemical aging, the acidity of aerosol, and organic ligand levels. The results indicate three conditions that influence OP across various seasons: (a) low aerosol pH and high organic ligand levels leading to the highest OP in summer, (b) opposite trends leading to the lowest OP in winter, and (c) intermediate conditions corresponding to moderate OP in spring and fall. This study highlights how atmospheric chemical aging modifies the oxidative burden of urban air pollutants, resulting in a seasonal cycle with a potential effect on population health.
Collapse
Affiliation(s)
- Pourya Shahpoury
- Environmental
and Life Sciences, Trent University, Peterborough K9L0G2, Canada
| | - Steven Lelieveld
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Deepchandra Srivastava
- Division
of Environmental Health and Risk Management, School of Geography,
Earth & Environmental Sciences, University
of Birmingham, Edgbaston, Birmingham B152TT, United Kingdom
| | - Andrea Baccarini
- Laboratory
of Atmospheric Processes and their Impacts, School of Architecture,
Civil and Environmental Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Jacob Mastin
- Air
Quality Processes Research Section, Environment
and Climate Change Canada, Toronto M3H5T4, Canada
| | - Thomas Berkemeier
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Valbona Celo
- Analysis
and Air Quality Section, Environment and
Climate Change Canada, Ottawa K1V1C7, Canada
| | - Ewa Dabek-Zlotorzynska
- Analysis
and Air Quality Section, Environment and
Climate Change Canada, Ottawa K1V1C7, Canada
| | - Tom Harner
- Air
Quality Processes Research Section, Environment
and Climate Change Canada, Toronto M3H5T4, Canada
| | - Gerhard Lammel
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Athanasios Nenes
- Laboratory
of Atmospheric Processes and their Impacts, School of Architecture,
Civil and Environmental Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Institute
of Chemical Engineering Sciences, Foundation for Research and Technology
Hellas, Patras GR-26504, Greece
| |
Collapse
|
16
|
Jeon JW, Park SW, Han YJ, Lee T, Lee SH, Park JM, Yoo MS, Shin HJ, Hopke PK. Nitrate formation mechanisms causing high concentration of PM 2.5 in a residential city with low anthropogenic emissions during cold season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124141. [PMID: 38740243 DOI: 10.1016/j.envpol.2024.124141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
During the cold season in South Korea, NO3- concentrations are known to significantly increase, often causing PM2.5 to exceed air quality standards. This study investigated the formation mechanisms of NO3- in a suburban area with low anthropogenic emissions. The average PM2.5 was 25.3 μg m-3, with NO3- identified as the largest contributor. Ammonium-rich conditions prevailed throughout the study period, coupled with low atmospheric temperature facilitating the transfer of gaseous HNO3 into the particulate phase. This result indicates that the formation of HNO3 played a crucial role in determining particulate NO3- concentration. Nocturnal increases in NO3- were observed alongside increasing ozone (O3) and relative humidity (RH), emphasizing the significance of heterogeneous reactions involving N2O5. NO3- concentrations at the study site were notably higher than in Seoul, the upwind metropolitan area, during a high concentration episode. This difference could potentially attributed to lower local NO concentrations, which enhanced the reaction between O3 and NO2, to produce NO3 radicals. High concentrations of Cl- and dust were also identified as contributors to the elevated NO3- concentrations.
Collapse
Affiliation(s)
- Ji-Won Jeon
- Dept. of Environmental Science, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Sung-Won Park
- Dept. of Environmental Science, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Young-Ji Han
- Dept. of Environmental Science, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea; Gangwon particle pollution research and management center, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Taehyoung Lee
- Dept. of Environmental Science, Hankuk University of Foreign Studies, Yongin, 17035, Republic of Korea
| | - Seung-Ha Lee
- Air quality research division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Jung-Min Park
- Air quality research division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Myung-Soo Yoo
- Air quality research division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Hye-Jung Shin
- Air quality research division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA; Dept. of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| |
Collapse
|
17
|
Qu K, Yan Y, Wang X, Jin X, Vrekoussis M, Kanakidou M, Brasseur GP, Lin T, Xiao T, Cai X, Zeng L, Zhang Y. The effect of cross-regional transport on ozone and particulate matter pollution in China: A review of methodology and current knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174196. [PMID: 38942314 DOI: 10.1016/j.scitotenv.2024.174196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
China is currently one of the countries impacted by severe atmospheric ozone (O3) and particulate matter (PM) pollution. Due to their moderately long lifetimes, O3 and PM can be transported over long distances, cross the boundaries of source regions and contribute to air pollution in other regions. The reported contributions of cross-regional transport (CRT) to O3 and fine PM (PM2.5) concentrations often exceed those of local emissions in the major regions of China, highlighting the important role of CRT in regional air pollution. Therefore, further improvement of air quality in China requires more joint efforts among regions to ensure a proper reduction in emissions while accounting for the influence of CRT. This review summarizes the methodologies employed to assess the influence of CRT on O3 and PM pollution as well as current knowledge of CRT influence in China. Quantifying CRT contributions in proportion to O3 and PM levels and studying detailed CRT processes of O3, PM and precursors can be both based on targeted observations and/or model simulations. Reported publications indicate that CRT contributes by 40-80 % to O3 and by 10-70 % to PM2.5 in various regions of China. These contributions exhibit notable spatiotemporal variations, with differences in meteorological conditions and/or emissions often serving as main drivers of such variations. Based on trajectory-based methods, transport pathways contributing to O3 and PM pollution in major regions of China have been revealed. Recent studies also highlighted the important role of horizontal transport in the middle/high atmospheric boundary layer or low free troposphere, of vertical exchange and mixing as well as of interactions between CRT, local meteorology and chemistry in the detailed CRT processes. Drawing on the current knowledge on the influence of CRT, this paper provides recommendations for future studies that aim at supporting ongoing air pollution mitigation strategies in China.
Collapse
Affiliation(s)
- Kun Qu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
| | - Yu Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Sichuan Academy of Environmental Policy and Planning, Chengdu 610041, China
| | - Xuesong Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China.
| | - Xipeng Jin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mihalis Vrekoussis
- Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany; Center of Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany; Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Maria Kanakidou
- Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece; Center of Studies of Air quality and Climate Change, Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Guy P Brasseur
- Max Planck Institute for Meteorology, Hamburg, Germany; National Center for Atmospheric Research, Boulder, CO, USA
| | - Tingkun Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Teng Xiao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Xuhui Cai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
18
|
Yang Y, Battaglia MA, Mohan MK, Robinson ES, DeCarlo PF, Edwards KC, Fang T, Kapur S, Shiraiwa M, Cesler-Maloney M, Simpson WR, Campbell JR, Nenes A, Mao J, Weber RJ. Assessing the Oxidative Potential of Outdoor PM 2.5 in Wintertime Fairbanks, Alaska. ACS ES&T AIR 2024; 1:175-187. [PMID: 38482267 PMCID: PMC10928717 DOI: 10.1021/acsestair.3c00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 11/01/2024]
Abstract
The oxidative potential (OP) of outdoor PM2.5 in wintertime Fairbanks, Alaska, is investigated and compared to those in wintertime Atlanta and Los Angeles. Approximately 40 filter samples collected in January-February 2022 at a Fairbanks residential site were analyzed for OP utilizing dithiothreitol-depletion (OPDTT) and hydroxyl-generation (OPOH) assays. The study-average PM2.5 mass concentration was 12.8 μg/m3, with a 1 h average maximum of 89.0 μg/m3. Regression analysis, correlations with source tracers, and contrast between cold and warmer events indicated that OPDTT was mainly sensitive to copper, elemental carbon, and organic aerosol from residential wood burning, and OPOH to iron and organic aerosol from vehicles. Despite low photochemically-driven oxidation rates, the water-soluble fraction of OPDTT was unusually high at 77%, mainly from wood burning emissions. In contrast to other locations, the Fairbanks average PM2.5 mass concentration was higher than Atlanta and Los Angeles, whereas OPDTT in Fairbanks and Atlanta were similar, and Los Angeles had the highest OPDTT and OPOH. Site differences were observed in OP when normalized by both the volume of air sampled and the particle mass concentration, corresponding to exposure and the intrinsic health-related properties of PM2.5, respectively. The sensitivity of OP assays to specific aerosol components and sources can provide insights beyond the PM2.5 mass concentration when assessing air quality.
Collapse
Affiliation(s)
- Yuhan Yang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael A. Battaglia
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Magesh Kumaran Mohan
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ellis S. Robinson
- Department
of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter F. DeCarlo
- Department
of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kasey C. Edwards
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Ting Fang
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Sukriti Kapur
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Manabu Shiraiwa
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Meeta Cesler-Maloney
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - William R. Simpson
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - James R. Campbell
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Athanasios Nenes
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory
of Atmospheric Processes and their Impacts (LAPI), School of Architecture,
Civil & Environmental Engineering, Ecole
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Center for
Studies of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research
and Technology Hellas, Patras 26504, Greece
| | - Jingqiu Mao
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Rodney J. Weber
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
Mylonaki M, Gini M, Georgopoulou M, Pilou M, Chalvatzaki E, Solomos S, Diapouli E, Giannakaki E, Lazaridis M, Pandis SN, Nenes A, Eleftheriadis K, Papayannis A. Wildfire and African dust aerosol oxidative potential, exposure and dose in the human respiratory tract. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169683. [PMID: 38160832 DOI: 10.1016/j.scitotenv.2023.169683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Exposure to wildfire smoke and dust can severely affect air quality and health. Although particulate matter (PM) levels and exposure are well-established metrics linking to health outcomes, they do not consider differences in particle toxicity or deposition location in the respiratory tract (RT). Usage of the oxidative potential (OP) exposure may further shape our understanding on how different pollution events impact health. Towards this goal, we estimate the aerosol deposition rates, OP and resulting OP deposition rates in the RT for a typical adult Caucasian male residing in Athens, Greece. We focus on a period when African dust (1-3 of August 2021) and severe wildfires at the northern part of the Attika peninsula and the Evia island, Greece (4-18 of August 2021) affected air quality in Athens. During these periods, the aerosol levels increased twofold leading to exceedances of the World Health Organization (WHO) [15(5) μg m-3] PM10 (PM2.5) air quality standard by almost 100 %. We show that the OP exposure is 1.5-times larger during the wildfire smoke events than during the dust intrusion, even if the latter was present in higher mass loads - because wildfire smoke has a higher specific OP than dust. This result carries two important implications: OP exposure should be synergistically used with other metrics - such as PM levels - to efficiently link aerosol exposure with the resulting health effects, and, certain sources of air pollution (in our case, exposure to biomass burning smoke) may need to be preferentially controlled, whenever possible, owing to their disproportionate contribution to OP exposure and ability to penetrate deeper into the human RT.
Collapse
Affiliation(s)
- Maria Mylonaki
- Laser Remote Sensing Unit, Department of Physics, National and Technical University of Athens, Zografou 15780, Greece; Meteorological Institute, Ludwig-Maximilians-Universität München, Munich 80333, Germany
| | - Maria Gini
- ENRACT, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", Ag. Paraskevi 15310, Greece
| | - Maria Georgopoulou
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Marika Pilou
- Thermal Hydraulics and Multiphase Flow Laboratory, INRaSTES, NCSR "Demokritos", Agia Paraskevi 15310, Greece
| | - Eleftheria Chalvatzaki
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania 73100, Greece
| | - Stavros Solomos
- Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens 10679, Greece
| | - Evangelia Diapouli
- ENRACT, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", Ag. Paraskevi 15310, Greece
| | - Elina Giannakaki
- Department of Environmental Physics and Meteorology, Faculty of Physics, National and Kapodistrian University of Athens, Athens, Greece
| | - Mihalis Lazaridis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania 73100, Greece
| | - Spyros N Pandis
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece; Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - Athanasios Nenes
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece; Laboratory of Atmospheric Processes and their Impacts, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", Ag. Paraskevi 15310, Greece
| | - Alexandros Papayannis
- Laser Remote Sensing Unit, Department of Physics, National and Technical University of Athens, Zografou 15780, Greece; Laboratory of Atmospheric Processes and their Impacts, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
| |
Collapse
|
20
|
Luo Y, Yang X, Wang D, Xu H, Zhang H, Huang S, Wang Q, Zhang N, Cao J, Shen Z. Insights the dominant contribution of biomass burning to methanol-soluble PM 2.5 bounded oxidation potential based on multilayer perceptron neural network analysis in Xi'an, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168273. [PMID: 37918731 DOI: 10.1016/j.scitotenv.2023.168273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Atmospheric fine particulate matter (PM2.5) is associated with cardiorespiratory morbidity and mortality due to its ability to generate reactive oxygen species (ROS). Ambient PM2.5 samples were collected during heating and nonheating seasons in Xi'an, China, and the ROS-generation potential of PM2.5 was quantified using the dithiothreitol (DTT) assay. Additionally, positive matrix factorization combined with multilayer perceptron was employed to apportion sources contributing to the oxidation potential of PM2.5. Both the mass concentration of PM2.5 and the volume-based DTT activity (DTTv) were higher during the heating season than during the nonheating season. The primary contributors to DTTv were combustion (biomass and coal) sources during the heating season (>52 %), whereas secondary formation dominated DTT activity during the nonheating season (35.7 %). In addition, the secondary reaction process promoted the generation of intrinsic oxidation potential (OP) of sources. Among all the sources investigated (traffic source, industrial emission, mineral dust, biomass burning, secondary formation and coal combustion), the inherent oxidation potential of biomass burning was the highest, whereas that of mineral dust was the lowest. Our study indicates that anthropogenic sources, especially biomass burning, should be prioritized in PM2.5 toxicity control strategies.
Collapse
Affiliation(s)
- Yu Luo
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Xueting Yang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Diwei Wang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Hongai Zhang
- Department of Neonatology, Shanghai General Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Rd, Songjiang District, Shanghai 201620, China
| | - Shasha Huang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Ningning Zhang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China.
| |
Collapse
|
21
|
Shahpoury P, Lelieveld S, Johannessen C, Berkemeier T, Celo V, Dabek-Zlotorzynska E, Harner T, Lammel G, Nenes A. Influence of aerosol acidity and organic ligands on transition metal solubility and oxidative potential of fine particulate matter in urban environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167405. [PMID: 37777133 DOI: 10.1016/j.scitotenv.2023.167405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
The adverse health effects of air pollution around the world have been associated with the inhalation of fine particulate matter (PM2.5). Such outcomes are thought to be related to the induction of oxidative stress due to the excess formation of reactive oxygen species (ROS) in the respiratory and cardiovascular systems. The ability of airborne chemicals to deplete antioxidants and to form ROS is known as oxidative potential (OP). Here we studied the influence of aerosol acidity and organic ligands on the solubility of transition metals, in particular iron (Fe) and copper (Cu), and on the OP of PM2.5 from Canadian National Air Pollution Surveillance urban sites in Toronto, Vancouver, and Hamilton. Using chemical assays and model simulations of the lung redox chemistry, we quantified ROS formation in the lung lining fluid, targeting superoxide anion (O2•-), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), as well as the PM2.5 redox potential (RP). Experimental •OH formation (OPOH) showed high correlations with RP and model-predicted ROS metrics. Both aerosol acidity and oxalate content enhanced the solubility of transition metals, with oxalate showing a stronger association. While experimental OP metrics were primarily associated with species of primary origin such as elemental carbon, Fe, and Cu, model-predicted ROS were associated with secondary processes including proton- and ligand-mediated dissolution of Fe. Model simulations showed that water-soluble Cu was the main contributor to O2•- formation, while water-soluble Fe dominated the formation of highly reactive •OH radical, particularly at study sites with highly acidic aerosol and elevated levels of oxalate. This study underscores the importance of reducing transition metal emissions in urban environments to improve population health.
Collapse
Affiliation(s)
- Pourya Shahpoury
- Environmental and Life Sciences, Trent University, Peterborough, Canada; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
| | - Steven Lelieveld
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Valbona Celo
- Analysis and Air Quality Section, Environment and Climate Change Canada, Ottawa, Canada
| | | | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Switzerland; Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| |
Collapse
|
22
|
Wen J, Heft-Neal S, Baylis P, Boomhower J, Burke M. Quantifying fire-specific smoke exposure and health impacts. Proc Natl Acad Sci U S A 2023; 120:e2309325120. [PMID: 38085772 PMCID: PMC10743475 DOI: 10.1073/pnas.2309325120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/21/2023] [Indexed: 12/18/2023] Open
Abstract
Rapidly changing wildfire regimes across the Western United States have driven more frequent and severe wildfires, resulting in wide-ranging societal threats from wildfires and wildfire-generated smoke. However, common measures of fire severity focus on what is burned, disregarding the societal impacts of smoke generated from each fire. We combine satellite-derived fire scars, air parcel trajectories from individual fires, and predicted smoke PM2.5 to link source fires to resulting smoke PM2.5 and health impacts experienced by populations in the contiguous United States from April 2006 to 2020. We quantify fire-specific accumulated smoke exposure based on the cumulative population exposed to smoke PM2.5 over the duration of a fire and estimate excess asthma-related emergency department (ED) visits as a result of this exposure. We find that excess asthma visits attributable to each fire are only moderately correlated with common measures of wildfire severity, including burned area, structures destroyed, and suppression cost. Additionally, while recent California fires contributed nearly half of the country's smoke-related excess asthma ED visits during our study period, the most severe individual fire was the 2007 Bugaboo fire in the Southeast. We estimate that a majority of smoke PM2.5 comes from sources outside the local jurisdictions where the smoke is experienced, with 87% coming from fires in other counties and 60% from fires in other states. Our approach could enable broad-scale assessment of whether specific fire characteristics affect smoke toxicity or impact, inform cost-effectiveness assessments for allocation of suppression resources, and help clarify the growing transboundary nature of local air quality.
Collapse
Affiliation(s)
- Jeff Wen
- Department of Earth System Science, Stanford University, Stanford, CA94305
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, CA94305
| | - Patrick Baylis
- Department of Economics, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Judson Boomhower
- Department of Economics, University of California, San Diego, CA92093
- National Bureau of Economic Research, Cambridge, MA02138
| | - Marshall Burke
- Center on Food Security and the Environment, Stanford University, Stanford, CA94305
- National Bureau of Economic Research, Cambridge, MA02138
- Doerr School of Sustainability, Stanford University, Stanford, CA94305
| |
Collapse
|
23
|
Desservettaz M, Pikridas M, Stavroulas I, Bougiatioti A, Liakakou E, Hatzianastassiou N, Sciare J, Mihalopoulos N, Bourtsoukidis E. Emission of volatile organic compounds from residential biomass burning and their rapid chemical transformations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166592. [PMID: 37640072 DOI: 10.1016/j.scitotenv.2023.166592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Biomass combustion releases a complex array of Volatile Organic Compounds (VOCs) that pose significant challenges to air quality and human health. Although biomass burning has been extensively studied at ecosystem levels, understanding the atmospheric transformation and impact on air quality of emissions in urban environments remains challenging due to complex sources and burning materials. In this study, we investigate the VOC emission rates and atmospheric chemical processing of predominantly wood burning emissions in a small urban centre in Greece. Ioannina is situated in a valley within the Dinaric Alps and experiences intense atmospheric pollution accumulation during winter due to its topography and high wood burning activity. During pollution event days, the ambient mixing ratios of key VOC species were found to be similar to those reported for major urban centres worldwide. Positive matrix factorisation (PMF) analysis revealed that biomass burning was the dominant emission source (>50 %), representing two thirds of OH reactivity, which indicates a highly reactive atmospheric mixture. Calculated OH reactivity ranges from 5 s-1 to an unprecedented 278 s-1, and averages at 93 ± 66 s-1 at 9 PM, indicating the presence of exceptionally reactive VOCs. The highly pronounced photochemical formation of organic acids coincided with the formation of ozone, highlighting the significance of secondary formation of pollutants in poorly ventilated urban areas. Our findings underscore the pressing need to transition from wood burning to environmentally friendly sources of energy in poorly ventilated urban areas, in order to improve air quality and safeguard public health.
Collapse
Affiliation(s)
| | - Michael Pikridas
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Iasonas Stavroulas
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus; Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - Aikaterini Bougiatioti
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - Eleni Liakakou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - Nikolaos Hatzianastassiou
- Laboratory of Meteorology and Climatology, Department of Physics, University of Ioannina, Ioannina 45110, Greece
| | - Jean Sciare
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Nikolaos Mihalopoulos
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus; Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | | |
Collapse
|
24
|
Liu F, Joo T, Ditto JC, Saavedra MG, Takeuchi M, Boris AJ, Yang Y, Weber RJ, Dillner AM, Gentner DR, Ng NL. Oxidized and Unsaturated: Key Organic Aerosol Traits Associated with Cellular Reactive Oxygen Species Production in the Southeastern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14150-14161. [PMID: 37699525 PMCID: PMC10538939 DOI: 10.1021/acs.est.3c03641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) is associated with millions of premature deaths annually. Oxidative stress through overproduction of reactive oxygen species (ROS) is a possible mechanism for PM2.5-induced health effects. Organic aerosol (OA) is a dominant component of PM2.5 worldwide, yet its role in PM2.5 toxicity is poorly understood due to its chemical complexity. Here, through integrated cellular ROS measurements and detailed multi-instrument chemical characterization of PM in urban southeastern United States, we show that oxygenated OA (OOA), especially more-oxidized OOA, is the main OA type associated with cellular ROS production. We further reveal that highly unsaturated species containing carbon-oxygen double bonds and aromatic rings in OOA are major contributors to cellular ROS production. These results highlight the key chemical features of ambient OA driving its toxicity. As more-oxidized OOA is ubiquitous and abundant in the atmosphere, this emphasizes the need to understand its sources and chemical processing when formulating effective strategies to mitigate PM2.5 health impacts.
Collapse
Affiliation(s)
- Fobang Liu
- Department
of Environmental Science and Engineering, School of Energy and Power
Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Taekyu Joo
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jenna C. Ditto
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Maria G. Saavedra
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Masayuki Takeuchi
- School of
Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandra J. Boris
- Air
Quality Research Center, University of California
Davis, Davis, California 95618, United States
| | - Yuhan Yang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rodney J. Weber
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ann M. Dillner
- Air
Quality Research Center, University of California
Davis, Davis, California 95618, United States
| | - Drew R. Gentner
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Nga L. Ng
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School of
Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
25
|
Tang R, Zhang R, Ma J, Song K, Go BR, Cuevas RAI, Zhou L, Liang Z, Vogel AL, Guo S, Chan CK. Sulfate Formation by Photosensitization in Mixed Incense Burning-Sodium Chloride Particles: Effects of RH, Light Intensity, and Aerosol Aging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10295-10307. [PMID: 37418292 DOI: 10.1021/acs.est.3c02225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Elevated particulate sulfate concentrations have been frequently observed in coastal areas when air masses are influenced by continental emissions, especially combustion sources like biomass burning. We studied the SO2 uptake by laboratory-generated droplets containing incense smoke extracts and sodium chloride (IS-NaCl) under irradiation and found enhanced sulfate production over pure NaCl droplets, attributable to photosensitization induced by constituents in IS. Low relative humidity and high light intensity facilitated sulfate formation and increased the SO2 uptake coefficient by IS-NaCl particles. Aging of the IS particles further enhanced sulfate production, attributable to the enhanced secondary oxidant production promoted by increased proportions of nitrogen-containing CHN and oxygen- and nitrogen-containing CHON species under light and air. Experiments using model compounds of syringaldehyde, pyrazine, and 4-nitroguaiacol verified the enhancements of CHN and CHON species in sulfate formation. This work provides experimental evidence of enhanced sulfate production in laboratory-generated IS-NaCl droplets via enhanced secondary oxidant production triggered by photosensitization in multiphase oxidation processes under light and air. Our results can shed light on the possible interactions between sea salt and biomass burning aerosols in enhancing sulfate production.
Collapse
Affiliation(s)
- Rongzhi Tang
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Ruifeng Zhang
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Jialiang Ma
- Institute for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Kai Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Brix Raphael Go
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Rosemarie Ann Infante Cuevas
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Liyuan Zhou
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Zhancong Liang
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Alexander L Vogel
- Institute for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Low-Carbon and Climate Impact Research Centre, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
26
|
Xiang W, Wang W, Du L, Zhao B, Liu X, Zhang X, Yao L, Ge M. Toxicological Effects of Secondary Air Pollutants. Chem Res Chin Univ 2023; 39:326-341. [PMID: 37303472 PMCID: PMC10147539 DOI: 10.1007/s40242-023-3050-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 06/13/2023]
Abstract
Secondary air pollutants, originating from gaseous pollutants and primary particulate matter emitted by natural sources and human activities, undergo complex atmospheric chemical reactions and multiphase processes. Secondary gaseous pollutants represented by ozone and secondary particulate matter, including sulfates, nitrates, ammonium salts, and secondary organic aerosols, are formed in the atmosphere, affecting air quality and human health. This paper summarizes the formation pathways and mechanisms of important atmospheric secondary pollutants. Meanwhile, different secondary pollutants' toxicological effects and corresponding health risks are evaluated. Studies have shown that secondary pollutants are generally more toxic than primary ones. However, due to their diverse source and complex generation mechanism, the study of the toxicological effects of secondary pollutants is still in its early stages. Therefore, this paper first introduces the formation mechanism of secondary gaseous pollutants and focuses mainly on ozone's toxicological effects. In terms of particulate matter, secondary inorganic and organic particulate matters are summarized separately, then the contribution and toxicological effects of secondary components formed from primary carbonaceous aerosols are discussed. Finally, secondary pollutants generated in the indoor environment are briefly introduced. Overall, a comprehensive review of secondary air pollutants may shed light on the future toxicological and health effects research of secondary air pollutants.
Collapse
Affiliation(s)
- Wang Xiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Bin Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 P. R. China
| | - Xingyang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| |
Collapse
|
27
|
Sengupta D, Samburova V, Bhattarai C, Moosmüller H, Khlystov A. Emission factors for polycyclic aromatic hydrocarbons from laboratory biomass-burning and their chemical transformations during aging in an oxidation flow reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161857. [PMID: 36731568 PMCID: PMC10990481 DOI: 10.1016/j.scitotenv.2023.161857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric polycyclic aromatic hydrocarbons (PAHs) can be emitted from different combustion sources including domestic biomass burning, internal combustion engines, and biomass burning (BB) in wild, prescribed, and agricultural fires. With climate warming and consequent global increases in frequency and severity of wildfires, BB is a dominant source of PAHs emitted into the atmosphere. In this study, six globally and regionally important and representative fuels (Alaskan peat, Moscow peat, Pskov peat, eucalyptus, Malaysian peat, and Malaysian agricultural peat) were burned under controlled conditions in the combustion chamber facility at the Desert Research Institute (DRI, Reno, NV, USA). Gas- and particle-phase BB emissions were aged in an oxidation flow reactor (OFR) to mimic five to sevendays of atmospheric aging. To sample gas- and particle-phase BB emissions, fresh and OFR-aged biomass-burning aerosols were collected on Teflon-impregnated glass fiber filters (TIGF) in tandem with XAD resin media for organic carbon speciation. The objectives of this study were to i) quantify the emission factors for 113 PAHs emitted from the combustion of the six selected fuels, ii) characterize the distribution of PAH compounds between gas and particle phases for these fuels, iii) identify the changes in PAHs during OFR-aging, and iv) evaluate toxicity potential with characterized compounds. We found that combustion emissions of gas-phase PAHs were more abundant (>80 % by mass) than particle-phase PAHs, for emissions from all combusted fuels. The mass fraction of substituted napthalenes in Moscow peat and Malaysian peat emissions were ∼70 % & 84 %, respectively, whereas in Eucalyptus the same fraction was <50 %, which indicates that these substituted compounds can be used as tracers for peat emissions. Mass concentrations of gas- and particle-phase PAHs were reduced by ∼70 % after OFR oxidation. However, the understanding of the fate of PAHs during OFR oxidation requires further investigations. Our results also indicate that the PAH toxicity of BB samples would be underestimated by 10-100 times if only the BaPeq for the 16 US EPA priority PAHs in the particle phase are included.
Collapse
Affiliation(s)
- Deep Sengupta
- Desert Research Institute, Reno, NV, USA; University of California, Berkeley, CA, USA.
| | | | | | | | | |
Collapse
|
28
|
Witkowski B, al-Sharafi M, Błaziak K, Gierczak T. Aging of α-Pinene Secondary Organic Aerosol by Hydroxyl Radicals in the Aqueous Phase: Kinetics and Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6040-6051. [PMID: 37014140 PMCID: PMC10116591 DOI: 10.1021/acs.est.2c07630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The reaction of hydroxyl radicals (OH) with a water-soluble fraction of the α-pinene secondary organic aerosol (SOA) was investigated using liquid chromatography coupled with negative electrospray ionization mass spectrometry. The SOA was generated by the dark ozonolysis of α-pinene, extracted into the water, and subjected to chemical aging by the OH. Bimolecular reaction rate coefficients (kOH) for the oxidation of terpenoic acids by the OH were measured using the relative rate method. The unaged SOA was dominated by the cyclobutyl-ring-retaining compounds, primarily cis-pinonic, cis-pinic, and hydroxy-pinonic acids. Aqueous oxidation by the OH resulted in the removal of early-stage products and dimers, including well-known oligomers with MW = 358 and 368 Da. Furthermore, a 2- to 5-fold increase in the concentration of cyclobutyl-ring-opening products was observed, including terpenylic and diaterpenylic acids and diaterpenylic acid acetate as well as some of the newly identified OH aging markers. At the same time, results obtained from the kinetic box model showed a high degree of SOA fragmentation following the reaction with the OH, which indicates that non-radical reactions occurring during the evaporation of water likely contribute to the high yields of terpenoic aqSOAs reported previously. The estimated atmospheric lifetimes showed that in clouds, terpenoic acids react with the OH exclusively in the aqueous phase. Aqueous OH aging of the α-pinene SOA results in a 10% increase of the average O/C ratio and a 3-fold decrease in the average kOH value, which is likely to affect the cloud condensation nuclei activity of the aqSOA formed after the evaporation of water.
Collapse
|
29
|
Wang S, Gallimore PJ, Liu-Kang C, Yeung K, Campbell SJ, Utinger B, Liu T, Peng H, Kalberer M, Chan AWH, Abbatt JPD. Dynamic Wood Smoke Aerosol Toxicity during Oxidative Atmospheric Aging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1246-1256. [PMID: 36630690 DOI: 10.1021/acs.est.2c05929] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wildfires are a major source of biomass burning aerosol to the atmosphere, with their incidence and intensity expected to increase in a warmer future climate. However, the toxicity evolution of biomass burning organic aerosol (BBOA) during atmospheric aging remains poorly understood. In this study, we report a unique set of chemical and toxicological metrics of BBOA from pine wood smoldering during multiphase aging by gas-phase hydroxyl radicals (OH). Both the fresh and OH-aged BBOA show activity relevant to adverse health outcomes. The results from two acellular assays (DTT and DCFH) show significant oxidative potential (OP) and reactive oxygen species (ROS) formation in OH-aged BBOA. Also, radical concentrations in the aerosol assessed by electron paramagnetic resonance (EPR) spectroscopy increased by 50% following heterogeneous aging. This enhancement was accompanied by a transition from predominantly carbon-centered radicals (85%) in the fresh aerosol to predominantly oxygen-centered radicals (76%) following aging. Both the fresh and aged biomass burning aerosols trigger prominent antioxidant defense during the in vitro exposure, indicating the induction of oxidative stress by BBOA in the atmosphere. By connecting chemical composition and toxicity using an integrated approach, we show that short-term aging initiated by OH radicals can produce biomass burning particles with a higher particle-bound ROS generation capacity, which are therefore a more relevant exposure hazard for residents in large population centers close to wildfire regions than previously studied fresh biomass burning emissions.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Peter J Gallimore
- Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Carolyn Liu-Kang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Kirsten Yeung
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Steven J Campbell
- Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Battist Utinger
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Tengyu Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3E8, Canada
| | - Markus Kalberer
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3E8, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3E8, Canada
| |
Collapse
|
30
|
Singh D, Tassew DD, Nelson J, Chalbot MCG, Kavouras IG, Tesfaigzi Y, Demokritou P. Physicochemical and toxicological properties of wood smoke particulate matter as a function of wood species and combustion condition. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129874. [PMID: 36084462 PMCID: PMC9532370 DOI: 10.1016/j.jhazmat.2022.129874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 05/26/2023]
Abstract
Wood burning is a major source of ambient particulate matter (PM) and has been epidemiologically linked to adverse pulmonary health effects, however the impact of fuel and burning conditions on PM properties has not been investigated systematically. Here, we employed our recently developed integrated methodology to characterize the physicochemical and biological properties of emitted PM as a function of three common hardwoods (oak, cherry, mesquite) and three representative combustion conditions (flaming, smoldering, incomplete). Differences in PM and off-gas emissions (aerosol number/mass concentrations; carbon monoxide; volatile organic compounds) as well as inorganic elemental composition and organic carbon functional content of PM0.1 were noted between wood types and combustion conditions, although the combustion scenario exerted a stronger influence on the emission profile. More importantly, flaming combustion PM0.1 from all hardwoods significantly stimulated the promoter activity of Sterile Alpha Motif (SAM) pointed domain containing ETS (E-twenty-six) Transcription Factor (SPDEF) in human embryonic kidney 293 (HEK-293 T) cells, a biomarker for mucin gene expression associated with mucus production in pulmonary diseases. However, no bioactivity was observed for smoldering and incomplete combustion, which was likely driven by differences in the organic composition of PM0.1. Detailed chemical speciation of organic components of wood smoke is warranted to identify the individual compounds that drive specific biological responses.
Collapse
Affiliation(s)
- Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115, USA; Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Dereje Damte Tassew
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, 75 Francis Street, Boston, MA 02115, USA
| | - Jordan Nelson
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1600 University Blvd, Birmingham, AL 35216, USA
| | - Marie-Cecile G Chalbot
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1600 University Blvd, Birmingham, AL 35216, USA
| | - Ilias G Kavouras
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health & Health Policy, 55 West 125th Street, New York, NY 10027, USA
| | - Yohannes Tesfaigzi
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, 75 Francis Street, Boston, MA 02115, USA.
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115, USA; Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| |
Collapse
|
31
|
Ma J, Li L, Zhang Z, Pei Z, Zuo P, Li H, Yang R, Li Y, Zhang Q. Insight into the oxidation of glutathione mediated by black carbon from three typical emission sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120647. [PMID: 36375575 DOI: 10.1016/j.envpol.2022.120647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Black carbon (BC) is released into the atmosphere in large quantities from different emission sources each year and poses a serious threat to human health. These BC possessed a variety of characteristics and different mediation abilities for the reactive oxygen species (ROS) generation. In this study, we collected BC (i.e., diesel BC, coal BC and wood BC) from three typica emission sources, and examined their mediation abilities to the oxidation of glutathione (GSH). Results showed that all three BC significantly promoted the GSH oxidation, and the mediation efficiencies were as follows: diesel BC > coal BC > wood BC. In comparison with the water-soluble fraction, the mediation abilities of three BC mainly came from their solid phase fractions. In the coal BC and wood BC systems, the oxidation of GSH was attributed to the catalysis of transition metals in BC. By contrast, the transition metals, phenolic -OH and persistent free radicals in diesel BC were identified as the active sites responsible for the GSH oxidation. In addition, the graphitic surface of diesel BC could synergize with these active sites to accelerate the oxidation of GSH. Under the catalysis of BC, dissolved oxygen was first reduced to ROS (O2•- and H2O2) and then caused the GSH oxidation. These findings not only help to better assess the adverse health effects of different BC, but also deepen the understanding of the reaction mechanisms.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingyun Li
- Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ziyu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peijie Zuo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Huiqian Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Puthussery JV, Dave J, Shukla A, Gaddamidi S, Singh A, Vats P, Salana S, Ganguly D, Rastogi N, Tripathi SN, Verma V. Effect of Biomass Burning, Diwali Fireworks, and Polluted Fog Events on the Oxidative Potential of Fine Ambient Particulate Matter in Delhi, India. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14605-14616. [PMID: 36153963 DOI: 10.1021/acs.est.2c02730] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We investigated the influence of biomass burning (BURN), Diwali fireworks, and fog events on the ambient fine particulate matter (PM2.5) oxidative potential (OP) during the postmonsoon (PMON) and winter season in Delhi, India. The real-time hourly averaged OP (based on a dithiothreitol assay) and PM2.5 chemical composition were measured intermittently from October 2019 to January 2020. The peak extrinsic OP (OPv: normalized by the volume of air) was observed during the winter fog (WFOG) (5.23 ± 4.6 nmol·min-1·m-3), whereas the intrinsic OP (OPm; normalized by the PM2.5 mass) was the highest during the Diwali firework-influenced period (29.4 ± 18.48 pmol·min-1·μg-1). Source apportionment analysis using positive matrix factorization revealed that traffic + resuspended dust-related emissions (39%) and secondary sulfate + oxidized organic aerosols (38%) were driving the OPv during the PMON period, whereas BURN aerosols dominated (37%) the OPv during the WFOG period. Firework-related emissions became a significant contributor (∼32%) to the OPv during the Diwali period (4 day period from October 26 to 29), and its contribution peaked (72%) on the night of Diwali. Discerning the influence of seasonal and episodic sources on health-relevant properties of PM2.5, such as OP, could help better understand the causal relationships between PM2.5 and health effects in India.
Collapse
Affiliation(s)
- Joseph V Puthussery
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jay Dave
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N5C9, Canada
| | - Ashutosh Shukla
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sreenivas Gaddamidi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Atinderpal Singh
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India
- Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Pawan Vats
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Dilip Ganguly
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Neeraj Rastogi
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| | - Sachchida Nand Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
D’Evelyn SM, Jung J, Alvarado E, Baumgartner J, Caligiuri P, Hagmann RK, Henderson SB, Hessburg PF, Hopkins S, Kasner EJ, Krawchuk MA, Krenz JE, Lydersen JM, Marlier ME, Masuda YJ, Metlen K, Mittelstaedt G, Prichard SJ, Schollaert CL, Smith EB, Stevens JT, Tessum CW, Reeb-Whitaker C, Wilkins JL, Wolff NH, Wood LM, Haugo RD, Spector JT. Wildfire, Smoke Exposure, Human Health, and Environmental Justice Need to be Integrated into Forest Restoration and Management. Curr Environ Health Rep 2022; 9:366-385. [PMID: 35524066 PMCID: PMC9076366 DOI: 10.1007/s40572-022-00355-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Increasing wildfire size and severity across the western United States has created an environmental and social crisis that must be approached from a transdisciplinary perspective. Climate change and more than a century of fire exclusion and wildfire suppression have led to contemporary wildfires with more severe environmental impacts and human smoke exposure. Wildfires increase smoke exposure for broad swaths of the US population, though outdoor workers and socially disadvantaged groups with limited adaptive capacity can be disproportionally exposed. Exposure to wildfire smoke is associated with a range of health impacts in children and adults, including exacerbation of existing respiratory diseases such as asthma and chronic obstructive pulmonary disease, worse birth outcomes, and cardiovascular events. Seasonally dry forests in Washington, Oregon, and California can benefit from ecological restoration as a way to adapt forests to climate change and reduce smoke impacts on affected communities. RECENT FINDINGS Each wildfire season, large smoke events, and their adverse impacts on human health receive considerable attention from both the public and policymakers. The severity of recent wildfire seasons has state and federal governments outlining budgets and prioritizing policies to combat the worsening crisis. This surging attention provides an opportunity to outline the actions needed now to advance research and practice on conservation, economic, environmental justice, and public health interests, as well as the trade-offs that must be considered. Scientists, planners, foresters and fire managers, fire safety, air quality, and public health practitioners must collaboratively work together. This article is the result of a series of transdisciplinary conversations to find common ground and subsequently provide a holistic view of how forest and fire management intersect with human health through the impacts of smoke and articulate the need for an integrated approach to both planning and practice.
Collapse
Affiliation(s)
- Savannah M. D’Evelyn
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | - Jihoon Jung
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | - Ernesto Alvarado
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
| | - Jill Baumgartner
- Dept of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Canada
| | | | - R. Keala Hagmann
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
- Applegate Forestry, LLC, Corvallis, USA
| | | | - Paul F. Hessburg
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
- USDA Forest Service, Pacific Northwest Research Station, Wenatchee, WA USA
| | - Sean Hopkins
- Washington State Department of Ecology, Lacey, USA
| | - Edward J. Kasner
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | - Meg A. Krawchuk
- Dept. of Forest Ecosystems and Society, Oregon State University, Corvallis, USA
| | - Jennifer E. Krenz
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | - Jamie M. Lydersen
- California Department of Forestry and Fire Protection, Sacramento, USA
| | - Miriam E. Marlier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, USA
| | | | | | | | - Susan J. Prichard
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
| | - Claire L. Schollaert
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | | | - Jens T. Stevens
- Department of Biology, University of New Mexico, Albuquerque, NM USA
| | - Christopher W. Tessum
- Dept. of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Carolyn Reeb-Whitaker
- Safety & Health Assessment & Research for Prevention Program, Washington State Department of Labor and Industries, Tumwater, USA
| | - Joseph L. Wilkins
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
- Interdisciplinary Studies Department, Howard University, Washington, DC USA
| | | | - Leah M. Wood
- Evan’s School of Public Policy and Governance and The Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | | | - June T. Spector
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| |
Collapse
|
34
|
Li C, Fang Z, Czech H, Schneider E, Rüger CP, Pardo M, Zimmermann R, Chen J, Laskin A, Rudich Y. pH modifies the oxidative potential and peroxide content of biomass burning HULIS under dark aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155365. [PMID: 35460777 DOI: 10.1016/j.scitotenv.2022.155365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Humic-like substances (HULIS) account for a major redox-active fraction of biomass burning organic aerosols (BBOA). During atmospheric transport, fresh acidic BB-HULIS in droplets and humid aerosols are subject to neutralization and pH-modified aging process. In this study, solutions containing HULIS isolated from wood smoldering emissions were first adjusted with NaOH and NH3 to pH values in the range of 3.6-9.0 and then aged under oxic dark conditions. Evolution of HULIS oxidative potential (OP) and total peroxide content (equivalent H2O2 concentration, H2O2eq) were measured together with the changes in solution absorbance and chemical composition. Notable immediate responses such as peroxide generation, HULIS autoxidation, and an increase in OP and light absorption were observed under alkaline conditions. Initial H2O2eq, OP, and absorption increased exponentially with pH, regardless of the alkaline species added. Dark aging further oxidized the HULIS and led to pH-dependent toxic and chemical changes, exhibiting an alkaline-facilitated initial increase followed by a decrease of OP and H2O2eq. Although highly correlated with HULIS OP, the contributions of H2O2eq to OP are minor but increased both with solution pH and dark aging time. Alkalinity-assisted autoxidation of phenolic compounds and quinoids with concomitant formation of H2O2 and other alkalinity-favored peroxide oxidation reactions are proposed here for explaining the observed HULIS OP and chemical changes in the dark. Our findings suggest that alkaline neutralization of fresh BB-HULIS represents a previously overlooked peroxide source and pathway for modifying aerosol redox-activity and composition. Additionally, these findings imply that the lung fluid neutral environment can modify the OP and peroxide content of inhaled BB-HULIS. The results also suggest that common separation protocols of HULIS using base extraction methods should be treated with caution when evaluating and comparing their composition, absorption, and relative toxicity.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Zheng Fang
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hendryk Czech
- Joint Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 81379 München, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 81379 München, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 81379 München, Germany
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Alexandre Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
35
|
Yu Q, Chen J, Qin W, Ahmad M, Zhang Y, Sun Y, Xin K, Ai J. Oxidative potential associated with water-soluble components of PM 2.5 in Beijing: The important role of anthropogenic organic aerosols. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128839. [PMID: 35397338 DOI: 10.1016/j.jhazmat.2022.128839] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Oxidative stress is the mainstream toxicological mechanism for the adverse health outcomes of ambient aerosols. However, our understanding of the crucial redox-active species affecting the oxidative potential of water-soluble aerosols (OPWS) remains limited. In this study, the OPWS of PM2.5 in Beijing was measured using dithiothreitol (DTT) assay, including DTT consumption rate and ·OH formation rate. OPWS was more closely related to water-soluble organic compounds (WSOC) rather than transition metals. Laboratory simulations were conducted to investigate the effects of individual target species in the context of complex metal-organic interactions. The results showed that reducing WSOC can effectively decrease OPWS, while reducing Cu2+ increased OPWS. Parallel factor analysis demonstrated that OPWS was the most significantly correlated with the highly oxidized humic-like or quinone-like substances. Multiple linear regression showed that aromatic secondary organic carbon (SOC) (34.4%), other primary combustion sources of WSOC (20.0%), primary biomass burning WSOC (19.8%), transition metal ions (12.9%) and biomass burning SOC (12.8%) made significant contributions to DTTV. In addition to the anthropogenic sources of WSOC, the aged biogenic SOC also contributed to OHV, particularly in summer. Reducing anthropogenic WSOC was the key to the effective control of OPWS of PM2.5 in Beijing.
Collapse
Affiliation(s)
- Qing Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Weihua Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mushtaq Ahmad
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuepeng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuewei Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ke Xin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jing Ai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
36
|
Effects of Chemical Reactions on the Oxidative Potential of Humic Acid, a Model Compound of Atmospheric Humic-like Substances. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atmospheric particulate matter (PM) contains various chemicals, some of which generate in vivo reactive oxygen species (ROS). Owing to their high reactivity and oxidation ability, ROS can cause various diseases. To understand how atmospheric PM affects human health, we must clarify the PM components having oxidative potential (OP) leading to ROS production. According to previous studies, OP is exhibited by humic-like substances (HULIS) in atmospheric PM. However, the OP-dependence of the chemical structures of HULIS has not been clarified. Therefore, in this study, humic acid (HA, a model HULIS material) was exposed to ozone and ultraviolet (UV) irradiation, and its OP and structures were evaluated before and after the reactions using dithiothreitol (DTT) assay and Fourier transform infrared (FT-IR), respectively. The OP of HA was more significantly increased by UV irradiation than by ozone exposure. FT-IR analysis showed an increased intensity of the C=O peak in the HA structure after UV irradiation, suggesting that the OP of HA was increased by a chemical change to a more quinone-like structure after irradiation.
Collapse
|
37
|
Wang J, Zhao S, Jiang H, Geng X, Li J, Mao S, Ma S, Bualert S, Zhong G, Zhang G. Oxidative potential of solvent-extractable organic matter of ambient total suspended particulate in Bangkok, Thailand. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:400-413. [PMID: 35137735 DOI: 10.1039/d1em00414j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxidative stress is a key mechanism by which ambient particulate matter induces adverse health effects. Most studies have focused on the oxidative potential (OP) of water-soluble constituents, while there has been limited work on the OP of solvent-extractable organic matter (EOM OP). In this study, the EOM OP of ambient total suspended particulate (TSP) from Bangkok, Thailand, was determined using the dithiothreitol (DTT) assay. Positive matrix factorization (PMF), combined with chemical analysis of molecular markers, was employed to apportion the contributions of various emission sources to EOM OP. The volume-normalized OP initially increased with organic carbon (OC) concentration and plateaued gradually, while the mass-normalized OP fitted well with OC concentration using a power function. Fossil fuel combustion (62%) and plastic waste burning (23%) were the major contributors to EOM OP, while biomass burning demonstrated only a limited contribution. EOM OP correlated well with each group of polycyclic aromatic hydrocarbons (PAHs), suggesting that secondary formation of quinones associated with fossil fuel combustion and plastic waste burning could be an important pathway of TSP toxicity. This study underscores the importance of considering different emission sources when evaluating potential health impacts and the implementation of air pollution regulations.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Haoyu Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Xiaofei Geng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Shuduan Mao
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Shexia Ma
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Surat Bualert
- Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
38
|
Farley R, Bernays N, Jaffe DA, Ketcherside D, Hu L, Zhou S, Collier S, Zhang Q. Persistent Influence of Wildfire Emissions in the Western United States and Characteristics of Aged Biomass Burning Organic Aerosols under Clean Air Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3645-3657. [PMID: 35229595 DOI: 10.1021/acs.est.1c07301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wildfire-influenced air masses under regional background conditions were characterized at the Mt. Bachelor Observatory (∼2800 m a.s.l.) in summer 2019 to provide a better understanding of the aging of biomass burning organic aerosols (BBOAs) and their impacts on the remote troposphere in the western United States. Submicron aerosol (PM1) concentrations were low (average ± 1σ = 2.2 ± 1.9 μg sm-3), but oxidized BBOAs (average O/C = 0.84) were constantly detected throughout the study. The BBOA correlated well with black carbon, furfural, and acetonitrile and comprised above 50% of PM1 during plume events when the peak PM1 concentration reached 18.0 μg sm-3. Wildfire plumes with estimated transport times varying from ∼10 h to >10 days were identified. The plumes showed ΔOA/ΔCO values ranging from 0.038 to 0.122 ppb ppb-1 with a significant negative relation to plume age, indicating BBOA loss relative to CO during long-range transport. Additionally, increases of average O/C and aerosol sizes were seen in more aged plumes. The mass-based size mode was approximately 700 nm (Dva) in the most oxidized plume that likely originated in Siberia, suggesting aqueous-phase processing during transport. This work highlights the widespread impacts that wildfire emissions have on aerosol concentration and properties, and thus climate, in the western United States.
Collapse
Affiliation(s)
- Ryan Farley
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California Davis, Davis, California 95616, United States
| | - Noah Bernays
- School of Science, Technology, Engineering, and Mathematics, University of Washington Bothell, Bothell, Washington 98011, United States
| | - Daniel A Jaffe
- School of Science, Technology, Engineering, and Mathematics, University of Washington Bothell, Bothell, Washington 98011, United States
| | - Damien Ketcherside
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Lu Hu
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Shan Zhou
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Sonya Collier
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Qi Zhang
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
39
|
Schneider SR, Abbatt JP. Wildfire atmospheric chemistry: climate and air quality impacts. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Kaskaoutis DG, Grivas G, Stavroulas I, Bougiatioti A, Liakakou E, Dumka UC, Gerasopoulos E, Mihalopoulos N. Apportionment of black and brown carbon spectral absorption sources in the urban environment of Athens, Greece, during winter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149739. [PMID: 34467915 DOI: 10.1016/j.scitotenv.2021.149739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
This study examines the spectral properties and source characteristics of absorbing aerosols (BC: Black Carbon; BrC: Brown Carbon, based on aethalometer measurements) in the urban background of Athens during December 2016-February 2017. Using common assumptions regarding the spectral dependence of absorption due to BC (AAEBC = 1) and biomass burning (AAEbb = 2), and calculating an optimal AAEff value for the dataset (1.18), the total spectral absorption was decomposed into five components, corresponding to absorption of BC and BrC from fossil-fuel (ff) combustion and biomass burning (bb), and to secondary BrC estimated using the BC-tracer minimum R-squared (MRS) method. Substantial differences in the contribution of various components to the total absorption were found between day and night, due to differences in emissions and meteorological dynamics, while BrC and biomass burning aerosols presented higher contributions at shorter wavelengths. At 370 nm, the absorption due to BCff contributed 36.3% on average, exhibiting a higher fraction (58.1%) during daytime, while the mean BCbb absorption was estimated at 18.4%. The mean absorption contributions due to BrCff, BrCbb and BrCsec were 6.7%, 32.3% and 4.9%, respectively. The AbsBCff,370 component maximized during the morning traffic hours and was strongly correlated with NOx (R2 = 0.76) and CO (R2 = 0.77), while a similar behavior was seen for the AbsBrCff,370 component. AbsBCbb and AbsBrCbb levels escalated during nighttime and were highly associated with nss-K+ and with the organic aerosol (OA) components related to fresh and fast-oxidized biomass burning (BBOA and SV-OOA) as obtained from ACSM measurements. Multiple linear regression was used to attribute BrC absorption to five OA components and to determine their absorption contributions and efficiencies, revealing maximum contributions of BBOA (33%) and SV-OOA (21%). Sensitivity analysis was performed in view of the methodological uncertainties and supported the reliability of the results, which can have important implications for radiative transfer models.
Collapse
Affiliation(s)
- D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece; Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital 263 001, India.
| | - G Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece.
| | - I Stavroulas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece
| | - A Bougiatioti
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece
| | - E Liakakou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece
| | - U C Dumka
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Crete, Greece
| | - E Gerasopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece; Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital 263 001, India
| |
Collapse
|
41
|
Fang Z, Li C, He Q, Czech H, Gröger T, Zeng J, Fang H, Xiao S, Pardo M, Hartner E, Meidan D, Wang X, Zimmermann R, Laskin A, Rudich Y. Secondary organic aerosols produced from photochemical oxidation of secondarily evaporated biomass burning organic gases: Chemical composition, toxicity, optical properties, and climate effect. ENVIRONMENT INTERNATIONAL 2021; 157:106801. [PMID: 34343933 DOI: 10.1016/j.envint.2021.106801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Biomass burning (BB) is an important source of primary organic aerosols (POA). These POA contain a significant fraction of semivolatile organic compounds, and can release them into the gas phase during the dilution process in transport. Such evaporated compounds were termed "secondarily evaporated BB organic gases (SBB-OGs)" to distinguish them from the more studied primary emissions. SBB-OGs contribute to the formation of secondary organic aerosols (SOA) through reactions with atmospheric oxidants, and thus may influence human health and the Earth's radiation budget. In this study, tar materials collected from wood pyrolysis were taken as proxies for POA from smoldering-phase BB and were used to release SBB-OGs constantly in the lab. OH-initiated oxidation of the SBB-OGs in the absence of NOx was investigated using an oxidation flow reactor, and the chemical, optical, and toxicological properties of SOA were comprehensively characterized. Carbonyl compounds were the most abundant species in identified SOA species. Human lung epithelial cells exposed to an environmentally relevant dose of the most aged SOA did not exhibit detectable cell mortality. The oxidative potential of SOA was characterized with the dithiothreitol (DTT) assay, and its DTT consumption rate was 15.5 ± 0.5 pmol min-1 μg-1. The SOA present comparable light scattering to BB-POA, but have lower light absorption with imaginary refractive index less than 0.01 within the wavelength range of 360-600 nm. Calculations based on Mie theory show that pure airborne SOA with atmospherically relevant sizes of 50-400 nm have a cooling effect; when acting as the coating materials, these SOA can counteract the warming effect brought by airborne black carbon aerosol.
Collapse
Affiliation(s)
- Zheng Fang
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Quanfu He
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hendryk Czech
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 81379 München, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 81379 München, Germany
| | - Jianqiang Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hua Fang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shaoxuan Xiao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elena Hartner
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 81379 München, Germany
| | - Daphne Meidan
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 81379 München, Germany
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
42
|
Application of Single-Particle Mass Spectrometer to Obtain Chemical Signatures of Various Combustion Aerosols. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111580. [PMID: 34770093 PMCID: PMC8583169 DOI: 10.3390/ijerph182111580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022]
Abstract
A single-particle mass spectrometer (SPMS) with laser ionization was constructed to determine the chemical composition of single particles in real time. The technique was evaluated using various polystyrene latex particles with different sizes (125 nm, 300 nm, 700 nm, and 1000 nm); NaCl, KCl, MgCO3, CaCO3, and Al2O3 particles with different chemical compositions; an internal mixture of NaCl and KCl; and an internal mixture of NaCl, KCl, and MgCl2 with different mixing states. The results show that the SPMS can be useful for the determination of chemical characteristics and mixing states of single particles in real time. The SPMS was then applied to obtain the chemical signatures of various combustion aerosols (diesel engine exhaust, biomass burning (rice straw), coal burning, and cooking (pork)) based on their single-particle mass spectra. Elemental carbon (EC)-rich and EC-organic carbon (OC) particles were the predominant particle types identified in diesel engine exhaust, while K-rich and EC-OC-K particles were observed among rice straw burning emissions. Only one particle type (ash-rich particles) was detected among coal burning emissions. EC-rich and EC-OC particles were observed among pork burning particles. The single-particle mass spectra of the EC or OC types of particles differed among various combustion sources. The observed chemical signatures could be useful for rapidly identifying sources of atmospheric fine particles. In addition, the detected chemical signatures of the fine particles may be used to estimate their toxicity and to better understand their effects on human health.
Collapse
|
43
|
Pardo M, Li C, Fang Z, Levin-Zaidman S, Dezorella N, Czech H, Martens P, Käfer U, Gröger T, Rüger CP, Friederici L, Zimmermann R, Rudich Y. Toxicity of Water- and Organic-Soluble Wood Tar Fractions from Biomass Burning in Lung Epithelial Cells. Chem Res Toxicol 2021; 34:1588-1603. [PMID: 34033466 PMCID: PMC8277191 DOI: 10.1021/acs.chemrestox.1c00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/28/2022]
Abstract
Widespread smoke from wildfires and biomass burning contributes to air pollution and the deterioration of air quality and human health. A common and major emission of biomass burning, often found in collected smoke particles, is spherical wood tar particles, also known as "tar balls". However, the toxicity of wood tar particles and the mechanisms that govern their health impacts and the impact of their complicated chemical matrix are not fully elucidated. To address these questions, we generated wood tar material from wood pyrolysis and isolated two main subfractions: water-soluble and organic-soluble fractions. The chemical characteristics as well as the cytotoxicity, oxidative damage, and DNA damage mechanisms were investigated after exposure of A549 and BEAS-2B lung epithelial cells to wood tar. Our results suggest that both wood tar subfractions reduce cell viability in exposed lung cells; however, these fractions have different modes of action that are related to their physicochemical properties. Exposure to the water-soluble wood tar fraction increased total reactive oxygen species production in the cells, decreased mitochondrial membrane potential (MMP), and induced oxidative damage and cell death, probably through apoptosis. Exposure to the organic-soluble fraction increased superoxide anion production, with a sharp decrease in MMP. DNA damage is a significant process that may explain the course of toxicity of the organic-soluble fraction. For both subfractions, exposure caused cell cycle alterations in the G2/M phase that were induced by upregulation of p21 and p16. Collectively, both subfractions of wood tar are toxic. The water-soluble fraction contains chemicals (such as phenolic compounds) that induce a strong oxidative stress response and penetrate living cells more easily. The organic-soluble fraction contained more polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs and induced genotoxic processes, such as DNA damage.
Collapse
Affiliation(s)
- Michal Pardo
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Zheng Fang
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | | | - Nili Dezorella
- Electron
Microscopy Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hendryk Czech
- Joint
Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA), Cooperation Group Helmholtz Zentrum München
- German Research Center for Environmental Health GmbH, Gmunder Str. 37, 81379 München, Germany
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Patrick Martens
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Uwe Käfer
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Thomas Gröger
- Joint
Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA), Cooperation Group Helmholtz Zentrum München
- German Research Center for Environmental Health GmbH, Gmunder Str. 37, 81379 München, Germany
| | - Christopher P. Rüger
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Lukas Friederici
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Ralf Zimmermann
- Joint
Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA), Cooperation Group Helmholtz Zentrum München
- German Research Center for Environmental Health GmbH, Gmunder Str. 37, 81379 München, Germany
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
44
|
Korsiak J, Perepeluk KL, Peterson NG, Kulka R, Weichenthal S. Air pollution and retinal vessel diameter and blood pressure in school-aged children in a region impacted by residential biomass burning. Sci Rep 2021; 11:12790. [PMID: 34140605 PMCID: PMC8211781 DOI: 10.1038/s41598-021-92269-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
Little is known about the early-life cardiovascular health impacts of fine particulate air pollution (PM2.5) and oxidant gases. A repeated-measures panel study was used to evaluate associations between outdoor PM2.5 and the combined oxidant capacity of O3 and NO2 (using a redox-weighted average, Ox) and retinal vessel diameter and blood pressure in children living in a region impacted by residential biomass burning. A median of 6 retinal vessel and blood pressure measurements were collected from 64 children (ages 4-12 years), for a total of 344 retinal measurements and 432 blood pressure measurements. Linear mixed-effect models were used to estimate associations between PM2.5 or Ox (same-day, 3-day, 7-day, and 21-day means) and retinal vessel diameter and blood pressure. Interactions between PM2.5 and Ox were also examined. Ox was inversely associated with retinal arteriolar diameter; the strongest association was observed for 7-day mean exposures, where each 10 ppb increase in Ox was associated with a 2.63 μm (95% CI - 4.63, - 0.63) decrease in arteriolar diameter. Moreover, Ox modified associations between PM2.5 and arteriolar diameter, with weak inverse associations observed between PM2.5 and arteriolar diameter only at higher concentrations of Ox. Our results suggest that outdoor air pollution impacts the retinal microvasculature of children and interactions between PM2.5 and Ox may play an important role in determining the magnitude and direction of these associations.
Collapse
Affiliation(s)
- Jill Korsiak
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1100 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Kay-Lynne Perepeluk
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1100 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Nicholas G Peterson
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1100 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, 269 Laurier Ave West, Ottawa, ON, K1A 0K9, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1100 Pine Avenue West, Montreal, QC, H3A 1A3, Canada.
- Air Health Science Division, Health Canada, 269 Laurier Ave West, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
45
|
Shahpoury P, Zhang ZW, Arangio A, Celo V, Dabek-Zlotorzynska E, Harner T, Nenes A. The influence of chemical composition, aerosol acidity, and metal dissolution on the oxidative potential of fine particulate matter and redox potential of the lung lining fluid. ENVIRONMENT INTERNATIONAL 2021; 148:106343. [PMID: 33454608 PMCID: PMC7868889 DOI: 10.1016/j.envint.2020.106343] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/28/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Air pollution is a major environmental health risk and it contributes to respiratory and cardiovascular diseases and excess mortality worldwide. The adverse health effects have been associated with the inhalation of fine particulate matter (PM2.5) and induction of respiratory oxidative stress. In this work, we quantified the oxidative potential (OP) of PM2.5 from several Canadian cities (Toronto, Hamilton, Montreal, Vancouver) using a recently developed bioanalytical method which measures the oxidation of lung antioxidants, glutathione, cysteine, and ascorbic acid, the formation of glutathione disulfide and cystine, and the related redox potential (RP) in a simulated epithelial lining fluid (SELF). We evaluated the application of empirical SELF RP as a new metric for aerosol OP. We further investigated how PM2.5 chemical composition and OP are related across various emission source sectors and whether these features are linked to specific properties of aerosol aqueous phase, such as pH and metal-ligand complexation. The OP indicators including SELF RP were strongly correlated among each other, indicating that the empirical RP could be used as a reliable metric in future studies. OP based on ascorbic acid showed dependency on the emission source sectors, most likely due to variation in the solubility of Fe. Traffic emissions resulted in the highest OP, followed by industrial emissions and resuspended crustal matter. OP presented low correlation with PM2.5 concentrations, low-moderate correlation with the aerosol organic matter, and moderate-strong association with black carbon and transition metals across the sites. We did not find strong association between the concentration of biomass burning tracers and OP. Copper was the only metal that showed high association with OP across all sites, whereas the correlation with other metals, such as iron, manganese, and titanium, showed clear dependency on the source sectors. The aerosol pH correlated negatively with ambient temperature and positively with biomass burning tracers and the levels of nitrate, ammonium, and aerosol liquid water content. The solubility of Fe was associated with sulfate and aerosol pH at most sites, suggesting the involvement of proton-mediated dissolution pathway, while this was not visible at the site influenced by industrial emission, most likely due to the abundance of pyrogenic Fe. The effect of metal-ligand complexation on the solubility of transition metals, in particular Fe, was clearly observed at all sites, whereas a combined effect with aerosol pH, and a subsequent impact on OP, was only seen at the traffic site in Toronto. The enhanced solubility of Fe due to proton- and ligand-mediated dissolution pathways and subsequent formation of reactive oxygen species may in part explain the health effects of PM2.5 seen in previous epidemiological studies.
Collapse
Affiliation(s)
- Pourya Shahpoury
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada.
| | - Zheng Wei Zhang
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
| | - Andrea Arangio
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Valbona Celo
- Air Quality Research Division, Environment and Climate Change Canada, Ottawa, Canada
| | | | - Tom Harner
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Switzerland; Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| |
Collapse
|
46
|
Li J, Li J, Wang G, Ho KF, Dai W, Zhang T, Wang Q, Wu C, Li L, Li L, Zhang Q. Effects of atmospheric aging processes on in vitro induced oxidative stress and chemical composition of biomass burning aerosols. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123750. [PMID: 33113732 DOI: 10.1016/j.jhazmat.2020.123750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/30/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Biomass burning (BB) has an important impact on local/regional air quality and human health in China, but most previous studies overlooked the influence of atmospheric aging processes on cytotoxicity and chemical composition of BB aerosols. In this study, we combined a combustion chamber and an oxidation flow reactor to generate fresh and aged BB PM2.5. Human bronchial epithelial BEAS-2B cells were exposed to PM2.5 preparation for 24 h, and then determined for particle-induced reactive oxygen species (ROS) in vitro. The particle-induced ROS production increased by 11 %-64 % after two days of aging, suggesting an enhancement of in vitro-induced oxidative stress (OS) of aged BB particles. Chemical analysis showed that organic matter (OM) was the dominant component with no changes in relative abundance for the fresh and aged BB particles. Organic polycyclic aromatic compounds and some metals showed strong correlations with ROS in fresh particles, indicating the important effects of these harmful components on the OS of fresh BB aerosols. However, such correlations were not found for the aged particles, which is possibly related to the loss of non- or low-toxic semivolatile compounds and the formation of secondary harmful OM (such as some N-containing organic compounds) during the atmospheric aging processes.
Collapse
Affiliation(s)
- Jianjun Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
| | - Jin Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Gehui Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai, 200062, China.
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Wenting Dai
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Ting Zhang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Qiyuan Wang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Can Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Lijuan Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Li Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| |
Collapse
|
47
|
Zhu K, Jia H, Sun Y, Dai Y, Zhang C, Guo X, Wang T, Zhu L. Enhanced cytotoxicity of photoaged phenol-formaldehyde resins microplastics: Combined effects of environmentally persistent free radicals, reactive oxygen species, and conjugated carbonyls. ENVIRONMENT INTERNATIONAL 2020; 145:106137. [PMID: 32961468 DOI: 10.1016/j.envint.2020.106137] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 05/23/2023]
Abstract
Phenol-formaldehyde resin microplastic (PF-MP) is one of the major inhalable microplastics in environments released from the manufacture, processing and usage of PF materials. The associated toxicities of PF-MP might be affected by photoaging. In this study, the dynamic evolutions of the oxidative potential (OP) and redox-active species, including environmentally persistent free radicals (EPFRs), reactive oxygen species (ROS), peroxides and conjugated carbonyls, as well as the associated cytotoxicity of PF-MP were systematically investigated as a result of the simulated sunlight irradiation. As the photoaging time extended, the OP of PF-MP increased. The contents of the produced conjugated carbonyls, ROS and PF-bound EPFRs due to light irradiation increased as well, and displayed significant correlations with the OP (Spearman r > 0.6, p < 0.05). The photoaged PF-MP distinctly increased the cellular ROS and reduced the cell viability of human lung epithelial adenocarcinoma cells (A549). The cytotoxicity of PF-MP showed a similar trend with the OP level in PF-MP, suggesting that the produced active species induced the in vitro toxicities. The results not only highlight the adverse health effects of photoaged PF-MP, but also provide new perspectives for the environmental risks of airborne MPs.
Collapse
Affiliation(s)
- Kecheng Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Yajiao Sun
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yunchao Dai
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Chi Zhang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xuetao Guo
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Tiecheng Wang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Lingyan Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
48
|
Xu R, Yu P, Abramson MJ, Johnston FH, Samet JM, Bell ML, Haines A, Ebi KL, Li S, Guo Y. Wildfires, Global Climate Change, and Human Health. N Engl J Med 2020; 383:2173-2181. [PMID: 33034960 DOI: 10.1056/nejmsr2028985] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Rongbin Xu
- From the School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (R.X., P.Y., M.J.A., S.L., Y.G.), and Menzies Institute for Medical Research, University of Tasmania, Hobart (F.H.J.) - both in Australia; the Colorado School of Public Health, University of Colorado, Aurora (J.M.S.); the School of the Environment, Yale University, New Haven, CT (M.L.B.); the Department of Public Health, Environments, and Society and Department of Population Health, Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London (A.H.); and the Center for Health and the Global Environment, University of Washington, Seattle (K.L.E.)
| | - Pei Yu
- From the School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (R.X., P.Y., M.J.A., S.L., Y.G.), and Menzies Institute for Medical Research, University of Tasmania, Hobart (F.H.J.) - both in Australia; the Colorado School of Public Health, University of Colorado, Aurora (J.M.S.); the School of the Environment, Yale University, New Haven, CT (M.L.B.); the Department of Public Health, Environments, and Society and Department of Population Health, Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London (A.H.); and the Center for Health and the Global Environment, University of Washington, Seattle (K.L.E.)
| | - Michael J Abramson
- From the School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (R.X., P.Y., M.J.A., S.L., Y.G.), and Menzies Institute for Medical Research, University of Tasmania, Hobart (F.H.J.) - both in Australia; the Colorado School of Public Health, University of Colorado, Aurora (J.M.S.); the School of the Environment, Yale University, New Haven, CT (M.L.B.); the Department of Public Health, Environments, and Society and Department of Population Health, Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London (A.H.); and the Center for Health and the Global Environment, University of Washington, Seattle (K.L.E.)
| | - Fay H Johnston
- From the School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (R.X., P.Y., M.J.A., S.L., Y.G.), and Menzies Institute for Medical Research, University of Tasmania, Hobart (F.H.J.) - both in Australia; the Colorado School of Public Health, University of Colorado, Aurora (J.M.S.); the School of the Environment, Yale University, New Haven, CT (M.L.B.); the Department of Public Health, Environments, and Society and Department of Population Health, Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London (A.H.); and the Center for Health and the Global Environment, University of Washington, Seattle (K.L.E.)
| | - Jonathan M Samet
- From the School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (R.X., P.Y., M.J.A., S.L., Y.G.), and Menzies Institute for Medical Research, University of Tasmania, Hobart (F.H.J.) - both in Australia; the Colorado School of Public Health, University of Colorado, Aurora (J.M.S.); the School of the Environment, Yale University, New Haven, CT (M.L.B.); the Department of Public Health, Environments, and Society and Department of Population Health, Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London (A.H.); and the Center for Health and the Global Environment, University of Washington, Seattle (K.L.E.)
| | - Michelle L Bell
- From the School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (R.X., P.Y., M.J.A., S.L., Y.G.), and Menzies Institute for Medical Research, University of Tasmania, Hobart (F.H.J.) - both in Australia; the Colorado School of Public Health, University of Colorado, Aurora (J.M.S.); the School of the Environment, Yale University, New Haven, CT (M.L.B.); the Department of Public Health, Environments, and Society and Department of Population Health, Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London (A.H.); and the Center for Health and the Global Environment, University of Washington, Seattle (K.L.E.)
| | - Andy Haines
- From the School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (R.X., P.Y., M.J.A., S.L., Y.G.), and Menzies Institute for Medical Research, University of Tasmania, Hobart (F.H.J.) - both in Australia; the Colorado School of Public Health, University of Colorado, Aurora (J.M.S.); the School of the Environment, Yale University, New Haven, CT (M.L.B.); the Department of Public Health, Environments, and Society and Department of Population Health, Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London (A.H.); and the Center for Health and the Global Environment, University of Washington, Seattle (K.L.E.)
| | - Kristie L Ebi
- From the School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (R.X., P.Y., M.J.A., S.L., Y.G.), and Menzies Institute for Medical Research, University of Tasmania, Hobart (F.H.J.) - both in Australia; the Colorado School of Public Health, University of Colorado, Aurora (J.M.S.); the School of the Environment, Yale University, New Haven, CT (M.L.B.); the Department of Public Health, Environments, and Society and Department of Population Health, Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London (A.H.); and the Center for Health and the Global Environment, University of Washington, Seattle (K.L.E.)
| | - Shanshan Li
- From the School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (R.X., P.Y., M.J.A., S.L., Y.G.), and Menzies Institute for Medical Research, University of Tasmania, Hobart (F.H.J.) - both in Australia; the Colorado School of Public Health, University of Colorado, Aurora (J.M.S.); the School of the Environment, Yale University, New Haven, CT (M.L.B.); the Department of Public Health, Environments, and Society and Department of Population Health, Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London (A.H.); and the Center for Health and the Global Environment, University of Washington, Seattle (K.L.E.)
| | - Yuming Guo
- From the School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (R.X., P.Y., M.J.A., S.L., Y.G.), and Menzies Institute for Medical Research, University of Tasmania, Hobart (F.H.J.) - both in Australia; the Colorado School of Public Health, University of Colorado, Aurora (J.M.S.); the School of the Environment, Yale University, New Haven, CT (M.L.B.); the Department of Public Health, Environments, and Society and Department of Population Health, Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London (A.H.); and the Center for Health and the Global Environment, University of Washington, Seattle (K.L.E.)
| |
Collapse
|
49
|
Massimi L, Ristorini M, Simonetti G, Frezzini MA, Astolfi ML, Canepari S. Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115271. [PMID: 32814272 DOI: 10.1016/j.envpol.2020.115271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The ability of particulate matter (PM) to induce oxidative stress is frequently estimated by acellular oxidative potential (OP) assays, such as ascorbic acid (AA) and 1,4-dithiothreitol (DTT), used as proxy of reactive oxygen species (ROS) generation in biological systems, and particle-bound ROS measurement, such as 2',7'-dichlorodihydrofluorescein (DCFH) assay. In this study, we evaluated the spatial and size distribution of OP results obtained by three OP assays (OPAA, OPDCFH and OPDTT), to qualitative identify the relative relevance of single source contributions in building up OP values and to map the PM potential to induce oxidative stress in living organisms. To this aim, AA, DCFH and DTT assays were applied to size-segregated PM samples, collected by low-pressure cascade impactors, and to PM10 samples collected at 23 different sampling sites (about 1 km between each other) in Terni, an urban and industrial hot-spot of Central Italy, by using recently developed high spatial resolution samplers of PM, which worked in parallel during three monitoring periods (February, April and December 2017). The sampling sites were chosen for representing the main spatially disaggregated sources of PM (vehicular traffic, rail network, domestic heating, power plant for waste treatment, steel plant) present in the study area. The obtained results clearly showed a very different sensitivity of the three assays toward each local PM source. OPAA was particularly sensitive toward coarse particles released from the railway, OPDCFH was sensible to fine particles released from the steel plant and domestic biomass heating, and OPDTT was quite selectively sensitive toward the fine fraction of PM released by industrial and biomass burning sources.
Collapse
Affiliation(s)
- Lorenzo Massimi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy.
| | - Martina Ristorini
- Department of Bioscience and Territory, University of Molise, Pesche, IS, 86090, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Maria Agostina Frezzini
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Silvia Canepari
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| |
Collapse
|
50
|
Li J, Li J, Wang G, Zhang T, Dai W, Ho KF, Wang Q, Shao Y, Wu C, Li L. Molecular characteristics of organic compositions in fresh and aged biomass burning aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140247. [PMID: 32585482 DOI: 10.1016/j.scitotenv.2020.140247] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Biomass burning (BB) is the most important source of primary organic aerosols (OA) in the atmosphere that has significant impact on local/regional air quality and human health. However, few studies paid attention to the evolution of molecular characteristics of BB OA in the atmospheric aging processes. In this study, both fresh and aged PM2.5 aerosols from burning of rice, maize, and wheat straws were collected from a combined system of combustion chamber and oxidation flow reactor, and were analyzed for >100 organic species. The emission factors (EFs) of anhydrosugars and some fatty acids showed slight variations between fresh and aged samples, indicating that these compounds are relatively stable. However, the EFs of n-alkanes, fatty alcohols, and parent-PAHs decreased 8-57% from fresh to aged samples, suggesting that they can undergo further oxidation to form other organic materials in the atmosphere. Phthalic acids, nitrophenols and isoprene-derived products were mainly secondarily formed by aging processes. Thus their EFs increased by 2-23 times from fresh to aged samples. Levoglucosan was the most abundant individual organic tracer, and its EF varied slightly between fresh and aged samples, proving its indicative role on BB emission. Moreover, the ratio of vanillic acid to levoglucosan and p-hydroxybenzoic acid to levoglucosan increased 2-13 times from fresh to aged samples. Therefore they can be used to investigate the impact of aging processes on BB aerosols in the atmosphere. RO2 + HO2 pathway derived 2-methyltetrols (2-MTs) predominated the EFs of isoprene-derived products (SOAi) in the fresh samples. However, RO2 + NO pathway derived 2-methylglyceric acid (2-MGA) increased by >30 times and became comparable with 2-MTs in aged particles. The ratio of 2-MGA/2-MTs increased from 0.06-0.27 in fresh samples to 0.94-1.18 in aged samples, because the high loading of NOx in BB smoke enhanced the formation of SOAi through RO2 + NO reactions.
Collapse
Affiliation(s)
- Jianjun Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Jin Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Gehui Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai 200062, China.
| | - Ting Zhang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wenting Dai
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Qiyuan Wang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yue Shao
- Chemical and Biological Engineering Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Can Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai 200062, China
| | - Li Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|