1
|
Pan Q, Zhang Y, Zhang X, Yang Y, Huang K, Liu C. Co-exposure of pyraclostrobin and biochar promoted antibiotic resistance genes transfer from soil to lettuce. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137756. [PMID: 40015044 DOI: 10.1016/j.jhazmat.2025.137756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
The widespread presence of antibiotic resistance genes (ARGs) threatens ecological security and human health. In agricultural production, the simultaneous presence of non-antibiotic substances fungicides and biochar utilized for soil remediation has unclear effects on the spread of ARGs in the soil-vegetable systems. Herein, this study conducted a pots experiment and found that biochar significantly reduced pyraclostrobin accumulation in the soil and lettuce roots. Simultaneously, the co-exposure of pyraclostrobin and biochar increased the microbial community alpha diversity and the abundance of ARGs in soil, while promoting the transfer of ARGs from soil to lettuce. Proteobacteria were identified as potential primary carriers of ARGs. Planting lettuce mitigated the effects of pyraclostrobin or/and biochar on ARGs accumulation in soil. Furthermore, MGEs and bacterial community abundance were the most important direct factors increasing ARGs in soil and lettuce. Overall, these findings evaluated the combined effects of non-antibiotic substances fungicides and soil remediation materials biochar on the generation and transmission of ARGs, providing potential strategies for controlling ARGs transfer in soil-vegetable systems.
Collapse
Affiliation(s)
- Qianhui Pan
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yirong Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiangyu Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yi Yang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Kecheng Huang
- Shenzhen Noposion Crop Science CO., Ltd, Shenzhen 518102, China.
| | - Chenglan Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Ding Y, Zheng JT, Du S, Wu D, Hu F, Zhu D. Pivotal role of earthworm gut protists in mediating antibiotic resistance genes under microplastic and sulfamethoxazole stress in soil-earthworm systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138681. [PMID: 40412325 DOI: 10.1016/j.jhazmat.2025.138681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/08/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Microplastics (MPs) are currently receiving widespread attention worldwide, and their co-occurrence with antibiotics is unavoidable. However, our understanding of how protists respond to co-pollution and mediate antibiotic resistance genes (ARGs) profiles remains exceedingly limited, particularly within non-target animals' guts. To bridge these gaps, we investigated the individual and combined effects of polyethylene and sulfamethoxazole (SMZ) on microbial communities and ARGs in soil and earthworm guts. We found that the MP-SMZ combination significantly elevated the abundance and richness of ARGs in the soil and earthworm. Protistan compositions (particularly consumers) responded more strongly to pollutants than did bacterial and fungal communities, especially under combined pollution. Interkingdom cooccurrence network analysis revealed that protists had stronger and more effective interactions with the resistome in the earthworm guts, suggesting that the impact of these protists on ARGs compositional changes was potentially modulated through the "top-down" regulation of bacteria and fungi. Meta-cooccurrence networks further confirmed that protist-related networks had more keystone pollution-sensitive ASVs (psASVs) and these psASVs were mostly associated with protistan consumers. Our study highlights protists as promising agents for regulating and monitoring microbial functions, as well as the ecological risks of the antibiotic resistome associated with MPs and SMZ pollution in agricultural ecosystems.
Collapse
Affiliation(s)
- Ying Ding
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Jin-Ting Zheng
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Shuai Du
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Di Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dong Zhu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| |
Collapse
|
3
|
Song Y, Li T, Zhao F, Li Z, Bao R. Arsenic-induced modulation of virulence and drug resistance in Pseudomonas aeruginosa. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137352. [PMID: 39862784 DOI: 10.1016/j.jhazmat.2025.137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Arsenic contamination of water sources, whether from natural or industrial origins, represents a significant risk to human health. However, its impact on waterborne pathogens remains understudied. This research explores the effects of arsenic exposure on the opportunistic pathogen Pseudomonas aeruginosa, a bacterium found in diverse environments. The arsenic exposure at concentrations of 0.12-20 mg/L As(III) resulted in rapid growth arrest of P. aeruginosa. Moreover, arsenic exposure significantly reduced the production of key virulence factors such as elastase (by 1.48- to 9.24-fold), pyocyanin, and flagella while increasing siderophore and extracellular polysaccharide production (by 1.44-1.75 and 1.36-2.59 times, respectively). Proteomic analysis revealed that both low (0.12 mg/L) and high (1.2 mg/L) As(III) levels activated an antioxidant defense response, with upregulation of Fnr-2, TrxB2, and Ohr. Furthermore, arsenic-induced the overexpression of multidrug resistance efflux proteins MexAB-OprM, MexCD-OprJ, and MexEF-OprN. At the same time, proteins associated with quorum sensing (QS), type III secretion system (T3SS), pyocyanin biosynthesis, and flagellar assembly were downregulated. In vitro assays confirmed that arsenic reduced bacterial virulence and significantly enhanced survival and proliferation under antibiotic treatment. These results indicate that arsenic exposure modulates the virulence and antibiotic resistance of P. aeruginosa, raising concerns about the public health risks posed by the convergence of arsenic-contaminated water and multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu 610101, China.
| | - Tao Li
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 654399, China
| | - Fang Zhao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Ze Li
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Rui Bao
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China.
| |
Collapse
|
4
|
Zhang H, Zhang X, Sun H, Ling H, Xie R, Fang L, Guo M, Wu X. Polyvinyl chloride microplastic triggers bidirectional transmission of antibiotic resistance genes in soil-earthworm systems. ENVIRONMENT INTERNATIONAL 2025; 198:109414. [PMID: 40194477 DOI: 10.1016/j.envint.2025.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/02/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
The diffusion and distribution of ubiquitous microplastics and antibiotic resistance genes (ARGs) in soil ecosystems are easily influenced by earthworm activity. However, minimal research exists on the bidirectional dissemination of ARGs in the soil-earthworm ecosystems under microplastic stress. Focusing on the typical microplastic polyvinyl chloride (PVC) microspheres in simulated soil-earthworm (Eisenia fetida) systems, we characterized the PVC-triggered interactive transmission of ARGs between earthworm guts and their dwelling soils using shotgun metagenomics and qPCR methodologies. PVC exposure did not alter the diversity and relative abundance of ARGs in earthworm-uninoculated soils but significantly increased those in earthworm-inoculated soils. Meanwhile, the abundance of ARGs increased in the earthworm gut under PVC stress. Source tracking analysis showed a higher source proportion of soil-borne ARGs into earthworm gut under PVC treatments. Mechanistically, PVC-triggered increasing prevalence of ARGs was significantly related to both the bacterial community and mobile genetic elements-mediated horizontal transfer in the soils, whereas the bacterial community predominated the process in the earthworm guts. Overall, our findings reveal a PVC-triggered bidirectional transmission pattern of ARGs between earthworm guts and their dwelling soils and highlight the overlooked ecotoxicological risk of microplastics in soil-earthworm systems.
Collapse
Affiliation(s)
- Houpu Zhang
- College of Resources and Environment, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei 230036, PR China
| | - Xueyi Zhang
- College of Resources and Environment, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei 230036, PR China
| | - Hao Sun
- College of Resources and Environment, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei 230036, PR China
| | - Hong Ling
- College of Resources and Environment, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei 230036, PR China
| | - Rui Xie
- College of Plant Protection, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, PR China
| | - Liancheng Fang
- College of Resources and Environment, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei 230036, PR China
| | - Min Guo
- College of Plant Protection, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
5
|
Gu P, Ding Y, Zhang W, Yang K, Zhang Z, Ren X, Su H, Miao H. Microcystin-Lr-Induced Changes in Growth Performance, Intestinal Microbiota, and Lipid Metabolism of Black Soldier Fly Larvae (Hermetia illucens). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70036. [PMID: 39948762 DOI: 10.1002/arch.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 05/09/2025]
Abstract
Biological treatment by black soldier fly larvae (BSFL) has proven to be an effective method for the resource utilization of cyanobacteria, but the effects of microcystin-LR (MC-LR) in cyanobacteria on BSFL growth have not been adequately explored. To evaluate the inhibitory effect and toxic mechanism of MC-LR on BSFL, the growth performance and intestinal microbiota were examined after exposure to 0, 10, 100, and 1000 μg/kg of MC-LR. The larval weight and survival rate were each significantly inhibited by 21.53% and 21.49% compared with the control group, respectively, after exposure at a concentration of 1000 μg/kg MC-LR for 16 days. Lipid accumulation, intestinal inflammation, and oxidative stress were observed in three treatment groups, with dose-dependent inflammation ocurring in the intestine. Compared with the control group, superoxide dismutase and catalase activity levels were significantly increased by 74.91% and 49.58%, respectively, which confirmed the occurrence of oxidative stress induced by MC-LR. Furthermore, MC-LR altered the diversity of intestinal microbiota and increased the relative abundance of pathogenic bacteria (e.g., Paenibacillus, Clostridium_sensu_stricto_1, and Lachnoclostridium), which increased the risk of disease in BSFL and contributed to observed metabolic disorders. On the other hand, qRT-PCR analysis further confirmed the occurrence of oxidative stress and the activation of the peroxisome proliferator-activated receptor signaling pathway, resulting in the upregulation of fatty acid synthesis-related genes, ultimately leading to lipid accumulation and apoptosis. These findings provide valuable insights into the ecological risks associated with MC-LR during the process of cyanobacterial resource utilization.
Collapse
Affiliation(s)
- Peng Gu
- School of Environmental and Ecology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yi Ding
- School of Environmental and Ecology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanqing Zhang
- School of Environmental and Ecology, Jiangnan University, Wuxi, Jiangsu, China
| | - Kunlun Yang
- School of Environmental and Ecology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zengshuai Zhang
- School of Environmental and Ecology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xueli Ren
- School of Environmental and Ecology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hua Su
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Hengfeng Miao
- School of Environmental and Ecology, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi River and Lake Treatment and Water Resources Management Center, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Simbanegavi TT, Makuvara Z, Marumure J, Alufasi R, Karidzagundi R, Chaukura N, Musvuugwa T, Okiobe ST, Rzymski P, Gwenzi W. Are earthworms the victim, facilitator or antidote of antibiotics and antibiotic resistance at the soil-animal-human interface? A One-Health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173882. [PMID: 38866146 DOI: 10.1016/j.scitotenv.2024.173882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The transfer of antibiotics and antibiotic resistance (AR) to the soil systems poses ecological hazards to various organisms, including earthworms. Understanding the complex interactions between earthworms, antibiotics, and AR in the soil system requires a comprehensive assessment. Hence, the present review investigates the behaviour, fate, impacts, and mechanisms involved in the interaction of earthworms with antibiotics and AR. The antibiotics and AR detected in earthworms and their associated media, such as vermicompost, are presented, but several other antibiotics and AR widely detected in soils remain understudied. As receptors and bioassay organisms, earthworms are adversely affected by antibiotics and AR causing (1) acute and chronic toxicity, and (2) emergence of AR in previously susceptible earthworm gut microbiota, respectively. The paper also highlights that, apart from this toxicity, earthworms can also mitigate against antibiotics, antibiotic-resistant bacteria and antibiotic-resistance genes by reducing bacterial diversity and abundance. The behaviour and fate processes, including biodegradation pathways, biomarkers of antibiotics and AR in earthworms, are discussed. In addition, the factors controlling the behaviour and fate of antibiotics and AR and their interactions with earthworms are discussed. Overall, earthworms mitigate antibiotics and AR via various proximal and distal mechanisms, while dual but contradictory functions (i.e., mitigatory and facilitatory) were reported for AR. We recommend that future research based on the One-World-One-Health approach should address the following gaps: (1) under-studied antibiotics and AR, (2) degradation mechanisms and pathways of antibiotics, (3) effects of environmentally relevant mixtures of antibiotics, (4) bio-augmentation in earthworm-based bioremediation of antibiotics, (5) long-term fate of antibiotics and their metabolites, (6) bio-transfers of antibiotics and AR by earthworms, (7) development of earthworm biomarkers for antibiotics and AR, (8) application of earthworm-based bioremediation of antibiotics and AR, (9) cascading ecological impacts of antibiotics and AR on earthworms, and (10) pilot-scale field applications of earthworm-based bioremediation systems.
Collapse
Affiliation(s)
- Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119, Mount Pleasant, Harare, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8301, South Africa
| | - Tendai Musvuugwa
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8301, South Africa
| | - Simon Thierry Okiobe
- Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Willis Gwenzi
- Formerly Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany; Formerly Alexander von Humboldt Fellow and Guest Professor, Grassland Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
| |
Collapse
|
7
|
Chi T, Liu Z, Zhang B, Zhu L, Dong C, Li H, Jin Y, Zhu L, Hu B. Fluoranthene slow down sulfamethazine migration in soil via π-π interaction to increase the abundance of antibiotic resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124532. [PMID: 38996991 DOI: 10.1016/j.envpol.2024.124532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Sulfonamide antibiotics and polycyclic aromatic hydrocarbons (PAHs) often coexist in soil, leading to compound pollution through various pathways. This study focuses on sulfamethazine (SMZ) and PAHs (fluoranthene) as the subject for compound pollution research. Using a soil-groundwater simulation system, we investigated the migration characteristics of SMZ under coexistence with fluoranthene (Fla) and observed variations in the abundance of antibiotic resistance genes (ARGs). Through molecular docking simulations and isothermal adsorption experiments, we discovered that Fla bound with SMZ via π-π interactions, resulting in a 20.9% increase in the SMZ soil-water partition coefficient. Under compound conditions, the concentration of SMZ in surface soil could reach 1.4 times that of SMZ added alone, with an 13.4% extension in SMZ half-life. The deceleration of SMZ's vertical migration rate placed additional stress on surface soil microbiota, leading to a proliferation of ARGs by 66.3%-125.8%. Moreover, under compound pollution, certain potential hosts like Comamonadaceae and Gemmatimonas exhibited a significant positive correlation with resistance genes such as sul 1 and sul 2. These findings shed light on the impact of PAHs on sulfonamide antibiotic migration and the abundance of ARGs. They also provide theoretical insights for the development of technologies aimed at mitigating compound pollution in soil.
Collapse
Affiliation(s)
- Taolve Chi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Baofeng Zhang
- Zhejiang Hangzhou Ecological Environment Monitoring Center, Hangzhou, China.
| | - Lin Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Chifei Dong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Haofei Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Yan Jin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
8
|
Xie ST, Zhu D, Song YQ, Zhu YG, Ding LJ. Unveiling potential roles of earthworms in mitigating the presence of virulence factor genes in terrestrial ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135133. [PMID: 38986408 DOI: 10.1016/j.jhazmat.2024.135133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Earthworms can redistribute soil microbiota, and thus might affect the profile of virulence factor genes (VFGs) which are carried by pathogens in soils. Nevertheless, the knowledge of VFG profile in the earthworm guts and its interaction with earthworm gut microbiome is still lacking. Herein, we characterized earthworm gut and soil microbiome and VFG profiles in natural and agricultural ecosystems at a national scale using metagenomics. VFG profiles in the earthworm guts significantly differed from those in the surrounding soils, which was mainly driven by variations of bacterial communities. Furthermore, the total abundance of different types of VFGs in the earthworm guts was about 20-fold lower than that in the soils due to the dramatic decline (also by approximately 20-fold) of VFG-carrying bacterial pathogens in the earthworm guts. Additionally, five VFGs related to nutritional/metabolic factors and stress survival were identified as keystones merely in the microbe-VFG network in the earthworm guts, implying their pivotal roles in facilitating pathogen colonization in earthworm gut microhabitats. These findings suggest the potential roles of earthworms in reducing risks related to the presence of VFGs in soils, providing novel insights into earthworm-based bioremediation of VFG contamination in terrestrial ecosystems.
Collapse
Affiliation(s)
- Shu-Ting Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Ya-Qiong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101400, China; Sino-Danish Centre for Education and Research, Beijing 100049, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Jimei District, Xiamen 361021, China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
9
|
Zhang SN, Zhou YT, Xia J, Wang YM, Ma JW, Wang LK, Hayat K, Bai SS, Li CH, Qian MR, Lin H. Combined effects of cadmium and sulfamethoxazole on Eisenia fetida: Insights into accumulation, subcellular partitioning, biomarkers and toxicological responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173303. [PMID: 38761948 DOI: 10.1016/j.scitotenv.2024.173303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Cadmium (Cd) and sulfamethoxazole (SMX) frequently coexist in farmlands, yet their synergistic toxicological impacts on terrestrial invertebrates remain unexplored. In this study, earthworms were exposed to artificial soils percolated with Cd (5 mg/kg), SMX (5 mg/kg) or combination of them for 7 days, followed by a 12-day elimination phase in uncontaminated soil. The uptake of Cd and SMX by the earthworms, along with their subcellular distribution, was meticulously analyzed. Additionally, a suite of biomarkers-including superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and weight loss-were evaluated to assess the health status of the earthworms and the toxicological effects of the Cd and SMX mixture. Notably, the cotreatment with Cd and SMX resulted in a significantly higher weight loss in Eisenia fetida (41.25 %) compared to exposure to Cd alone (26.84 %). Moreover, the cotreatment group exhibited substantially higher concentrations of Cd in the total internal body, fraction C (cytosol), and fraction E (tissue fragments and cell membranes) in Eisenia fetida compared to Cd alone counterparts. The combined exposure also significantly elevated the SMX levels in the total body and fraction C compared with the SMX-only treated earthworms. Additionally, Eisenia fetida subjected to the combined treatment showed markedly increased activities of SOD, CAT, and MDA compared to those treated with Cd alone. The effect addition indices (EAIs), ranging from 1.00 to 2.23, unequivocally demonstrated a synergistic effect of the combined treatments. Interestingly, relocating the earthworms to clean soil did not mitigate the observed adverse effects. These findings underscore the increased risk posed by the Cd-SMX complex to terrestrial invertebrates in agricultural areas.
Collapse
Affiliation(s)
- Sheng-Nan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yi-Tong Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun Xia
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu-Meng Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun-Wei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li-Kun Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Shan-Shan Bai
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Cheng-Han Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ming-Rong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
10
|
Gao X, Zhang H, Xu L, Wang L, Li X, Jiang Y, Yu H, Zhu G. Impact of earthworms on antibiotic resistance genes removal in ampicillin-contaminated soil through bacterial community alteration. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:521-534. [PMID: 38708516 DOI: 10.1002/jeq2.20567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
The emergence of antibiotic resistance genes (ARGs) as contaminants in soil poses a significant threat to public health. Earthworms (Eisenia foetida), which are common inhabitants of soil, have been extensively studied for their influence on ARGs. However, the specific impact of earthworms on penicillin-related ARGs remains unclear. In this study, we investigate the role of earthworms in mitigating ARGs, specifically penicillin-related ARGs, in ampicillin-contaminated soil. Utilizing high-throughput quantitative PCR (HT-qPCR), we quantified a significant reduction in the relative abundance of penicillin-related ARGs in soil treated with earthworms, showing a decrease with a p-value of <0.01. Furthermore, high-throughput 16S rRNA gene sequencing revealed that earthworm intervention markedly alters the microbial community structure, notably enhancing the prevalence of specific bacterial phyla such as Proteobacteria, Firmicutes, Chloroflexi, and Tenericutes. Our findings not only demonstrate the effectiveness of earthworms in reducing the environmental load of penicillin-related ARGs but also provide insight into the alteration of microbial communities as a potential mechanism. This research contributes to our understanding of the role of earthworms in mitigating the spread of antibiotic resistance and provides valuable insights for the development of strategies to combat this global health issue.
Collapse
Affiliation(s)
- Xuan Gao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal Unversity, Wuhu, China
| | - Hong Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal Unversity, Wuhu, China
| | - Longhui Xu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal Unversity, Wuhu, China
| | - Lida Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal Unversity, Wuhu, China
- Hefei Yuanzai Biotechnology Co., Ltd., Hefei, China
| | - Xiqing Li
- Hefei Yuanzai Biotechnology Co., Ltd., Hefei, China
| | - Yongbin Jiang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, China
| | - Hongmei Yu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal Unversity, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal Unversity, Wuhu, China
| |
Collapse
|
11
|
Ruan M, Li Y, Ma C, Xie Y, Chen W, Luo L, Li X, Hu W, Hu B. Treatment of landfill leachate by black soldier fly (Hermetia illucens L.) larvae and the changes of intestinal microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121193. [PMID: 38772238 DOI: 10.1016/j.jenvman.2024.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Black soldier fly larvae (BSFL) (Hermetia illucens) are commonly used to treat organic waste. This work aims to evaluate the transformation effect, heavy metal migration, and alterations in the gut microbiota of BSFL in addition to treating landfill leachate (LL) with BSFL. We found that BSFL may grow in various landfill leachate concentrations without obvious toxicity and growth inhibition. In addition, the results indicated a significant increase in the content of ammonia nitrogen and the activity of urease and β-glucosidase (β-GC) in LL, increased from 2570.17 mg/L to 5853.67 mg/L, 1859.17 mg/(g·d) to 517,177.98 mg/(g·d), 313.73 μg/(g·h) to 441.91 μg/(g·h) respectively. Conversely, the content of total nitrogen (TN) and total organic carbon (TOC) decreased in LL, decreasing by 31.24% and 29.45% respectively. Heavy metals are accumulated in the leachate by the BSFL to differing degrees, the descending sequence of accumulation is Cd > As > Cu > Cr. As dropped by 26.0%, Cd increased by 22.6%, Cu reduced by 5.23%, and Cr increased by 317.1% in the remaining matrix. The concentration of heavy metals satisfies the organic fertilizers' limit index (NY/T1978). The diversity of intestinal microorganisms in BSFL decreased, from 2819 OTUs to 2338 OTUs, with Providencia and Morganella emerging as the core flora. The gene abundance of nitrogen metabolism in the microbiota increased significantly. The TOC, β-GC, and Copper (Cu) content in BSFL correlated significantly with the gut microbiota. In Summary, this study revealed the treatment effect of BSFL on LL, the migration of heavy metals, and changes in the intestinal microorganisms of BSFL. The content of heavy metals in BSFL was found to be much lower than the upper limit of feed protein raw materials, demonstrating that BSFL is a sustainable method to treat LL.
Collapse
Affiliation(s)
- Mingjun Ruan
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - You Li
- Everbright Environmental Technology (China) Co., Ltd., Nanjing, 211102, Jiangsu Province, China
| | - Chong Ma
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518118, China
| | - Yingying Xie
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenying Chen
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518118, China
| | - Limei Luo
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xueling Li
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenfeng Hu
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Bin Hu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, China.
| |
Collapse
|
12
|
Zhang Y, Qin K, Liu C. Low-density polyethylene enhances the disturbance of microbiome and antibiotic resistance genes transfer in soil-earthworm system induced by pyraclostrobin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133459. [PMID: 38219581 DOI: 10.1016/j.jhazmat.2024.133459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Non-antibiotic chemicals in farmlands, including microplastics (MPs) and pesticides, have the potential to influence the soil microbiome and the dissemination of antibiotic resistance genes (ARGs). Despite this, there is limited understanding of the combined effects of MPs and pesticides on microbial communities and ARGs transmission in soil ecosystems. In this study, we observed that low-density polyethylene (LDPE) microplastic enhance the accumulation of pyraclostrobin in earthworms, resulting in reduced weight and causing severe oxidative damage. Analysis of 16 S rRNA amplification revealed that exposure to pyraclostrobin and/or LDPE disrupts the microbial community structure at the phylum and genus levels, leading to reduced alpha diversity in both the soil and earthworm gut. Furthermore, co-exposure to LDPE and pyraclostrobin increased the relative abundance of ARGs in the soil and earthworm gut by 2.15 and 1.34 times, respectively, compared to exposure to pyraclostrobin alone. It correlated well with the increasing relative abundance of genera carrying ARGs. Our findings contribute novel insights into the impact of co-exposure to MPs and pesticides on soil and earthworm microbiomes, highlighting their role in promoting the transfer of ARGs. This knowledge is crucial for managing the risk associated with the dissemination of ARGs in soil ecosystems.
Collapse
Affiliation(s)
- Yirong Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
13
|
Lin XL, Guo F, Rillig MC, Chen C, Duan GL, Zhu YG. Effects of common artificial sweeteners at environmentally relevant concentrations on soil springtails and their gut microbiota. ENVIRONMENT INTERNATIONAL 2024; 185:108496. [PMID: 38359549 DOI: 10.1016/j.envint.2024.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Artificial sweeteners (AS) are extensively utilized as sugar substitutes and have been recognized as emerging environmental contaminants. While the effect of AS on aquatic organisms has garnered recent attention, their effects on soil invertebrates and gut microbial communities remain unclear. To address this knowledge gap, we exposed springtails (Folsomia candida) to both single and combined treatments of four typical AS (sucralose [SUC], saccharin [SAC], cyclamate [CYC], and acesulfame [ACE]) at environmentally relevant concentrations of 0.01, 0.1 and 1 mg kg-1 in soil. Following the first-generational exposure, the reproduction of juveniles showed a significant increase under all the AS treatments of 0.1 mg kg-1. The transcriptomic analysis revealed significant enrichment of several Kyoto Encyclopedia of Gene and Genome pathways (e.g., glycolysis/gluconeogenesis, pentose and glucuronate interconversions, amino sugar, and nucleotide sugar metabolism, ribosome, and lysosome) in springtails under all AS treatments. Analysis of gut bacterial microbiota indicated that three AS (SUC, CYC, and ACE) significantly decreased alpha diversity, and all AS treatments increased the abundance of the genus Achromobacter. After the sixth-generational exposure to CYC, weight increased, but reproduction was inhibited. The pathways that changed significantly (e.g., extracellular matrix-receptor interaction, amino sugar and nucleotide sugar metabolism, lysosome) were generally similar to those altered in first-generational exposure, but with opposite regulation directions. Furthermore, the effect on the alpha diversity of gut microbiota was contrary to that after first-generational exposure, and more noticeable disturbances in microbiota composition were observed. These findings underscore the ecological risk of AS in soils and improve our understanding of the toxicity effects of AS on living organisms.
Collapse
Affiliation(s)
- Xiang-Long Lin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Matthias C Rillig
- Institut Für Biologie, Freie Universität Berlin, Berlin 14195, Germany
| | - Chun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
14
|
Wang L, Wang S, Yang R, Zhang B, Xu L, Hu Q, Zhao Z, Cao Z. Effect of moisture content on larval gut microbiome and the conversion of pig manure by black soldier fly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169579. [PMID: 38145667 DOI: 10.1016/j.scitotenv.2023.169579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The study investigated the influence of varied moisture levels in pig manure on the gut microbiome of black soldier fly larvae (BSFL) and their waste conversion efficiency. This encompassed alterations in nutrient components of both BSFL and pig manure, diversity and characterization of the BSFL gut microbiota, and the reciprocal effects between the BSFL gut microbiota and their growth performance and nutrient composition. Additionally, the investigation delved into the changes in the bacterial community and the presence of potential pathogenic bacteria in pig manure. An initial mixture of fresh pig manure and wheat bran was prepared with a 60 % moisture content (Group A). Distilled water was subsequently added to adjust the moisture levels, resulting in mixtures with 65 % (Group B), 70 % (Group C), and 75 % (Group D) moisture content. Each group underwent BSFL digestion over ten days. Groups C (3.87 ± 0.05 mg/worm) and D (3.97 ± 0.08 mg/worm) showed significantly higher bioconversion efficiencies and enhanced BSFL growth compared to Groups A (2.66 ± 0.21 mg/worm) and B (3.09 ± 0.09 mg/worm) (P < 0.05). A 75 % moisture level was identified as ideal, positively influencing fecal conversion efficiency (FCE) (9.57 ± 0.14 %), crude fat intake (8.92 ± 0.56 %), protein (46.60 ± 0.54 %), and total phosphorus (1.37 ± 0.08 %) from pig manure, and subsequent nutrient accumulation in BSFLs. A decline in larval crude ash content indicated higher organic matter and an increased pig manure conversion rate with elevated moisture. High-throughput sequencing and diversity analyses confirmed different moisture contents influenced the BSFL gut microbiota. Bacteroidetes (32.7-62.0 %), Proteobacteria (6.8-29.3 %), Firmicutes (5.8-23.4 %), and Actinobacteria (1.9-29.0 %) were predominant phyla. A 75 % moisture content significantly impacted the BSFL biomass conversion and growth performance. Additionally, Larval feces met non-hazardous fertilizer standards, according to NY-525 (2012).
Collapse
Affiliation(s)
- Lili Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shengwen Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Rencan Yang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Bin Zhang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Le Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qingquan Hu
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Zhiyong Zhao
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China.
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
15
|
Ren J, Lu H, Lu S, Huang Z. Impacts of sulfamethoxazole stress on vegetable growth and rhizosphere bacteria and the corresponding mitigation mechanism. Front Bioeng Biotechnol 2024; 12:1303670. [PMID: 38390364 PMCID: PMC10882545 DOI: 10.3389/fbioe.2024.1303670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024] Open
Abstract
Antibiotics are an important pharmaceutical class excessively used by humans. Its presence in the soil can impact plant growth and induce antibiotic resistance. This research studies the effect of sulfamethoxazole (SMX) on plant growth, rhizosphere bacteria composition, and resistance genes. Two sets of vegetables (basil, cilantro, and spinach) were treated separately with water and SMX solution. The plant growth data and soil samples were collected and analyzed. The results revealed that SMX increased spinach leaf length (34.0%) while having no significant impacts on basil and cilantro. On the other hand, SMX improved the bacterial diversity in all samples. The shifts in the abundance of plant growth-promoting bacteria could indirectly affect vegetable stem and leaf length. SMX also significantly increased the abundance of resistance genes Sul1 and Sul2. A further study into the correlation between bacteria highlights the importance of Shingomonas and Alfipia for inhibiting the spread of key resistance gene hosts, namely, Pseudomonas, Stenotrophomonas, and Agrobacterium. This research provides insight into SMX's impact on vegetable growth and microbial diversity. It also points out important microbial interactions that could potentially be utilized to mitigate ARG proliferation.
Collapse
Affiliation(s)
- Jiawei Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
- Lake Forest Academy, Lake Forest, IL, United States
| | - Hongbin Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhanggen Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| |
Collapse
|
16
|
Lin X, Liu Z, Wang W, Duan G, Zhu Y. Effects of artificial sweetener acesulfame on soil-dwelling earthworms (Eisenia fetida) and its gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167641. [PMID: 37806587 DOI: 10.1016/j.scitotenv.2023.167641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Artificial sweeteners (AS) are the emerging contaminants with potential toxicity to living organisms. The effects of AS to soil typical invertebrates have not been revealed. In this study, the responses of earthworms (Eisenia fetida) and gut microbial communities to acesulfame-contaminated soils (0.1, 1 and 10 mg kg-1) were studied using transcriptomics, metabolomics and metagenomics analyses. The fresh weight of earthworms was significantly stimulated by acesulfame at concentrations of 1 mg kg-1. Sphingolipid metabolism, purine metabolism, cutin, suberine and wax biosynthesis pathways were significantly affected. At 10 mg kg-1 treatment, the amount and weight of cocoons were significantly increased and decreased, respectively, accompanied by the significant disorder of ECM-receptor interaction, and carbon fixation in photosynthetic organisms pathways. Lysosome pathway was significantly affected in all the treatments. Moreover, the acesulfame significantly increased the relative abundance of Bacteroidetes and Mucoromycota, and decreased Proteobacteria in the gut of earthworms. Our multi-level investigation indicated that AS at a relatively low concentration induced toxicity to earthworms and AS pollution has significant environmental risks for soil fauna.
Collapse
Affiliation(s)
- Xianglong Lin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhelun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiran Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-, Beijing, Beijing 100083, China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
17
|
Wang HT, Gan QY, Li G, Zhu D. Effects of Zinc Thiazole and Oxytetracycline on the Microbial Metabolism, Antibiotic Resistance, and Virulence Factor Genes of Soil, Earthworm Gut, and Phyllosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:160-170. [PMID: 38148496 DOI: 10.1021/acs.est.3c06513] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pesticides and antibiotics are believed to increase the incidence of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs), constituting a serious threat to global health. However, the impact of this combined pollution on the microbiome and that of the related ARGs and VFGs on soil-plant-animal systems remain unknown. In this study, a 60-day microcosm experiment was conducted to reveal the effects of zinc thiazole (ZT) and oxytetracycline (OTC) on microbial communities, antibiotic resistomes, and virulence factors in soil, earthworm gut, and phyllosphere samples using metagenomics. ZT exposure perturbed microbial communities and nutrient metabolism and increased the abundance of ARGs and VFGs in the gut. Combined exposure changed the profiles of ARGs and VFGs by decreasing microbial diversity in the phyllosphere. Host-tracking analysis identified some genera, such as Citrobacter and Aeromonas, as frequent hosts of ARGs and VFGs in the gut. Notably, some co-occurrence patterns of ARGs and MGEs were observed on the metagenome-assembled contigs. More importantly, ZT markedly increased the abundance of potentially drug-resistant pathogens Acinetobacter soli and Acinetobacter junii in the phyllosphere. Overall, this study expands our current understanding of the spread of ARGs and VFGs in soil-plant-animal systems under pollutant-induced stress and the associated health risks.
Collapse
Affiliation(s)
- Hong-Tao Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Qiu-Yu Gan
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
18
|
Wang X, Zhang X, Li N, Yang Z, Li B, Zhang X, Li H. Prioritized regional management for antibiotics and heavy metals in animal manure across China. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132706. [PMID: 37804761 DOI: 10.1016/j.jhazmat.2023.132706] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
High levels of antibiotics and heavy metals in animal manure pose a potential threat to both the ecological environment and public health. A regional knowledge of their distribution and risk assessment across China remains unclear. A dataset containing 4082 records covering a total of forty-two antibiotics and eight heavy metals was established for animal manure across China. The results showed that the residual concentration of antibiotics was in the order of tetracyclines > aminoglycosides > fluoroquinolones > macrolides > sulfonamides > β-lactams, and that of heavy metals is Zn > Cu > Cr > Pb > Ni > As > Cd > Hg. The mean concentration of antibiotics and heavy metals was higher in pig manure compared to chicken and cow manure (Kruskal-Wallis test). The lowest level of antibiotics was observed in Northwest China based on geographic distribution characteristics. It was related to the high ratio of cow and sheep farming that less antibiotics were administered to. The pollution status of heavy metals was more severe in East China. Furthermore, high correlations were observed between antibiotics (tetracyclines) and heavy metals (Cu, Zn, and As). Especially, tetracycline in North China and Cd in Northeast China exhibited a high risk in manure; thus, they were priority regions for antibiotics/heavy metals pollution control. This study identified risk assessment of typical antibiotics and heavy metals in animal manure and emphasized the necessity of regional management across China.
Collapse
Affiliation(s)
- Xuerong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Na Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenzhen Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Binxu Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoli Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
19
|
Wang D, Shang J, Lin H, Liang J, Wang C, Sun Y, Bai Y, Qu J. Identifying ARG-carrying bacteriophages in a lake replenished by reclaimed water using deep learning techniques. WATER RESEARCH 2024; 248:120859. [PMID: 37976954 DOI: 10.1016/j.watres.2023.120859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
As important mobile genetic elements, phages support the spread of antibiotic resistance genes (ARGs). Previous analyses of metaviromes or metagenome-assembled genomes (MAGs) failed to assess the extent of ARGs transferred by phages, particularly in the generation of antibiotic pathogens. Therefore, we have developed a bioinformatic pipeline that utilizes deep learning techniques to identify ARG-carrying phages and predict their hosts, with a special focus on pathogens. Using this method, we discovered that the predominant types of ARGs carried by temperate phages in a typical landscape lake, which is fully replenished by reclaimed water, were related to multidrug resistance and β-lactam antibiotics. MAGs containing virulent factors (VFs) were predicted to serve as hosts for these ARG-carrying phages, which suggests that the phages may have the potential to transfer ARGs. In silico analysis showed a significant positive correlation between temperate phages and host pathogens (R = 0.503, p < 0.001), which was later confirmed by qPCR. Interestingly, these MAGs were found to be more abundant than those containing both ARGs and VFs, especially in December and March. Seasonal variations were observed in the abundance of phages harboring ARGs (from 5.62 % to 21.02 %) and chromosomes harboring ARGs (from 18.01 % to 30.94 %). In contrast, the abundance of plasmids harboring ARGs remained unchanged. In summary, this study leverages deep learning to analyze phage-transferred ARGs and demonstrates an alternative method to track the production of potential antibiotic-resistant pathogens by metagenomics that can be extended to microbiological risk assessment.
Collapse
Affiliation(s)
- Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiayu Shang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Hui Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinsong Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
20
|
Xing M, Zhao R, Yang G, Li Z, Sun Y, Xue Z. Elimination of antibiotic-resistant bacteria and resistance genes by earthworms during vermifiltration treatment of excess sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7853-7871. [PMID: 38170354 DOI: 10.1007/s11356-023-31287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Vermifiltration (VF) and a conventional biofilter (BF, no earthworm) were investigated by metagenomics to evaluate the removal rates of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and class 1 integron-integrase (intI1), as well as the impact mechanism in combination with the microbial community. According to the findings of qPCR and metagenomics, the VF facilitated greater removal rates of ARGs (78.83% ± 17.37%) and ARB (48.23% ± 2.69%) than the BF (56.33% ± 14.93%, 20.21% ± 6.27%). Compared to the control, the higher biological activity of the VF induced an increase of over 60% in the inhibitory effect of earthworm coelomic fluid on ARB. The removal rates of ARGs by earthworm guts also reached over 22%. In addition, earthworms enhanced the decomposition of refractory organics, toxic, and harmful organics, which led to a lower selective pressure on ARGs and ARB. It provides a strategy for reducing resistant pollution in sewage treatment plants and recognizing the harmless stability of sludge.
Collapse
Affiliation(s)
- Meiyan Xing
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China.
| | - Ran Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| | - Gege Yang
- Tongji Architectural Design (Group) Co., Ltd, Shanghai, 200092, China
| | - Zhan Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| | - Yuzhu Sun
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| | - Zitao Xue
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| |
Collapse
|
21
|
Zhang L, Zhang Y, Li J, Qi Y, Li L, Qin K, Lu Y, Liu C. Effect of fertilization on the degradation and enantioselectivity of fipronil in soil. PEST MANAGEMENT SCIENCE 2023; 79:5283-5291. [PMID: 37615248 DOI: 10.1002/ps.7737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Fertilizers and pesticides are commonly used simultaneously in agriculture. However, the effects of common fertilizers on the dissipation, enantioselectivity, and metabolites of the chiral insecticide fipronil in soil are yet to be reported. RESULT An enantioselective method for detecting fipronil enantiomers and their metabolites in different soil matrices was developed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results showed that organic and compound fertilizers significantly decreased the degradation of S- and R-fipronil, whereas phosphate and microbial fertilizers slightly reduced fipronil dissipation. The half-life values for S- and R-fipronil were 43.3 and 28.9 days, 99.0 and 63.0 days, 69.3 and 43.3 days, 46.2 and 30.1 days, and 43.3 and 31.5 days, respectively, in the control and the four fertilizer treatments, respectively. The enantioselectivity of fipronil enantiomers occurred and R-fipronil exhibited preferential degradation with an enantiomeric fraction (EF) of 0.4900-0.6238 in all treatments; but the four tested fertilizers decreased enantioselectivity with EF values changed from 0.4970 to 0.6238 in the control to 0.4900-0.6171 in fertilizer treatments. Two metabolites, fipronil sulfone and sulfide, were produced, and their amounts increased with culture time in all treatments. Fertilization reduced the content of fipronil sulfide and sulfone but hardly reduced the total amount of fipronil and its metabolites. CONCLUSION Fertilizers affect the environmental behavior of fipronil in the soil. Fertilization alters the soil bacterial community, which may be an important factor. This influence is relatively complicated and should be comprehensively considered in the environmental risk assessment of pesticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leihong Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Yirong Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Jindong Li
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Taiyuan), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Taiyuan, China
| | - Yanli Qi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Taiyuan), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Taiyuan, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Kaikai Qin
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Yongyue Lu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Chenglan Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Yin X, Li Y, Liu Y, Zheng J, Yu X, Li Y, Achterberg EP, Wang X. Dietary exposure to sulfamethazine alters fish intestinal homeostasis and promotes resistance gene transfer. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106733. [PMID: 37875383 DOI: 10.1016/j.aquatox.2023.106733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
The present study was undertaken to explore the effects of sulfamethazine (SMZ) dietary exposure on the enrichment of the intestine microbial structure, and antibiotic resistance gene (ARGs) transmission in marine medaka, with respect to antibiotic dose, duration, and sex. In male fish, a dietary exposure of 10 μg/L SMZ led to a heightened SMZ enrichment in the intestine, whereas metabolite (N-SMZ) levels were elevated at a higher exposure concentration (100 μg/L). Conversely, female fish exhibited stable levels of accumulation and metabolic rates across the exposure period. The composition of intestinal microorganisms revealed that exposure duration exerted a greater impact on the abundance and diversity of gut microbes, and microbial responses to SMZ varied across exposure time points. The expansion of Bacteroidetes and Ruegeria likely stimulated SMZ metabolism and contributed to the more balanced level of SMZ and N-SMZ observed in females. In males, short-term SMZ stress resulted in a disruption of intestinal homeostasis, while the rise in the abundance of the Fusobacteria and Propionigeniuma suggested a potential enhancement in intestinal anti-inflammatory capacity over time. Overall, female medaka exhibited greater adaptability to SMZ, and males appear to experience prolonged effects due to SMZ. A total of 11 ARGs and 5 mobile genetic elements (MGEs) were identified. Ruegeria is the main carrier of two types of MGEs (IS1247, ISSm2-Xanthob), and may serve as an indicator of ARG transmission. Therefore, it is rational to consider some fish breeding areas in natural waters as potential "reservoirs" of antibiotic resistance. This research will provide a valuable reference for the transmission of drug resistance along the food chain.
Collapse
Affiliation(s)
- Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Youshen Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yawen Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Jingyi Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Xiaoxuan Yu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | | | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
23
|
Li CF, Zhang YR, Tan ZC, Xu HJ, Liu CL. Enantioselective effect of the chiral fungicide tebuconazole on the microbiota community and antibiotic resistance genes in the soil and earthworm gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165381. [PMID: 37422227 DOI: 10.1016/j.scitotenv.2023.165381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Tebuconazole, consisting of two enantiomers, has a high detectable rate in the soil. The residue of tebuconazole in the soil may cause risk to microbiota community. Antibiotic resistance genes (ARGs) are considered as emerging environmental contaminants, and they can be transferred vertically and horizontally between microbiota community in the soil. Until now, the enantioselective effect of tebuconazole on the microbiota community and ARGs in the soil and earthworm gut has remained largely unknown. Tebuconazole enantiomers showed different bioconcentration behaviors in earthworms. The relative abundances of bacteria belonging to Actinobacteriota, Crenarchaeota and Chloroflexi in R-(-)-tebuconazole-treated soil were higher than those in S-(+)-tebuconazole-treated soil at same concentrations. In the earthworm gut, bacteria belonging to Proteobacteria and Bacteroidota exhibited different relative abundances between the S-(+)-tebuconazole and R-(-)-tebuconazole treatments. The numbers and abundances of ARGs in the soil treated with fungicides were higher than those in the control. In earthworm gut, the diversities of ARGs in all treatments were higher than that in the control, and the relative abundances of Aminoglycoside, Chloramphenicol, Multidrug resistance genes and mobile genetic elements (MGEs) in R-(-)-tebuconazole-treated earthworm gut were higher than those in S-(+)-tebuconazole-treated earthworm gut. Most of ARGs showed a significantly positive correlation with MGEs. Based on network analysis, many ARGs may be carried by bacteria belonging to Bacteroidota and Proteobacteria. These results provide valuable information for understanding the enantioselective effect of tebuconazole on the microbiota community and ARGs.
Collapse
Affiliation(s)
- Chao-Feng Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Yi-Rong Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Zhen-Chao Tan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Hui-Juan Xu
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Cheng-Lan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
24
|
Qiu M, Wu Z, Song J, Zheng C, Zhan X, Shan M, Cui M, Chen L, Zhang L, Yu Y, Fang H. Chlorothalonil drives the antibiotic resistome in earthworm guts. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132831. [PMID: 39492104 DOI: 10.1016/j.jhazmat.2023.132831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Earthworms are recognized as carriers of pollutants; however, how fungicide residues affect microbiota and antibiotic resistance genes (ARGs) in earthworm guts has remained unclear. In this work, changes in the earthworm gut microbiome and resistome were investigated after chlorothalonil (CTL) application. Earthworm activity accelerated the dissipation of CTL in soil, while metagenomic analysis revealed that CTL altered the ARG profile, leading to an increased abundance of ARGs in earthworm guts, particularly with respect to ARG subtypes CRP and OXA-427. CTL also reduced bacterial diversity and elevated the relative abundance of the phylum Proteobacteria, including a potential ARG host, Aeromonas, which is a known pathogen. Various bacterial genera from the Actinobacteria and Proteobacteria phyla were identified as broad-spectrum hosts for ARGs in earthworm guts. CTL could increase the abundance of multidrug efflux pump genes and enhance the abundance of mobile genetic elements, especially plasmids. Various co-occurrence patterns between plasmids and ARGs were also found after CTL treatments. It is concluded that CTL may act as a selective stress for ARGs and lead to an increase in their abundance by facilitating the proliferation of potential ARG hosts and enhancing plasmid-mediated horizontal transfer frequency of ARGs in earthworm guts.
Collapse
Affiliation(s)
- Mengting Qiu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zishan Wu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Song
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Conglai Zheng
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension Service Center, Shanghai 201103, China
| | - Mei Shan
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Minrong Cui
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liezhong Chen
- Zhejiang Academy of Agricultural Sciences, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
| | - Luqing Zhang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Yan M, Zhu C, Yang Z, Li H. Pig manure-derived fulvic acid more strongly drives the fate of arsenic and antibiotic resistance genes in paddy soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118683. [PMID: 37531670 DOI: 10.1016/j.jenvman.2023.118683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Antibiotic resistance genes (ARGs) can threaten the clean production of rice owing to continuous selective pressure in heavy metal-antibiotic co-contaminated paddy soils. As an important soil carbon reservoir, the role of humic substances from different types of manure in the regulation of soil ARGs remains unclear. In this study, fulvic acid (FA) and humic acid (HA) were extracted from pig manure (PM), cow dung (CD), and chicken manure (CM). The influence of their characteristics and doses on the fate of ARGs was investigated in arsenic (As)-antibiotic co-contaminated paddy soils. The release of As and degradation of antibiotics were promoted in 1% PM-FA treatment, with increases of 4.8%-5.6% and 8.3%-8.8% compared with CM-FA and CD-FA treatments, respectively. The coexistence of FA/HA, Fe, As, and antibiotics in soil pore water affected the environmental behavior of ARGs, with FA showing a more positive effect. Species including Bacillus, Geobacter, Desulfitobacterium, and Christensenellaceae_R-7_group were considered potential hosts of ARGs, and their resistance to co-contamination increased after the addition of FA. Membrane transport is a potential strategy for host bacteria of ARGs to cope with As-antibiotic complex pressure. These results demonstrate the coupling mechanisms of As, antibiotics, and ARGs regulated by different humic substances in co-contaminated paddy soils, which could support the clean production of rice in agricultural practice.
Collapse
Affiliation(s)
- Mengmeng Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; National Navel Orange Engineering Research Center/School of Life Sciences, Gannan Normal University, Ganzhou, 341000, PR China.
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Zhonglan Yang
- National Navel Orange Engineering Research Center/School of Life Sciences, Gannan Normal University, Ganzhou, 341000, PR China.
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
26
|
Hussain A, Kumar SHK, Prathiviraj R, Kumar AA, Renjith K, Kiran GS, Selvin J. The genome of Symbiodiniaceae-associated Stutzerimonas frequens CAM01 reveals a broad spectrum of antibiotic resistance genes indicating anthropogenic drift in the Palk Bay coral reef of south-eastern India. Arch Microbiol 2023; 205:319. [PMID: 37626254 DOI: 10.1007/s00203-023-03656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
An increase in antibiotic pollution in reef areas will lead to the emergence of antibiotic-resistant bacteria, leading to ecological disturbances in the sensitive coral holobiont. This study provides insights into the genome of antibiotics-resistant Stutzerimonas frequens CAM01, isolated from Favites-associated Symbiodiniaceae of a near-shore polluted reef of Palk Bay, India. The draft genome contains 4.67 Mbp in size with 52 contigs. Further genome analysis revealed the presence of four antibiotic-resistant genes, namely, adeF, rsmA, APH (3")-Ib, and APH (6)-Id that provide resistance by encoding resistance-nodulation-cell division (RND) antibiotic efflux pump and aminoglycoside phosphotransferase. The isolate showed resistance against 73% of the antibiotics tested, concurrent with the predicted AMR genes. Four secondary metabolites, namely Aryl polyene, NRPS-independent-siderophore, terpenes, and ectoine were detected in the isolate, which may play a role in virulence and pathogenicity adaptation in microbes. This study provides key insights into the genome of Stutzerimonas frequens CAM01 and highlights the emergence of antibiotic-resistant bacteria in coral reef ecosystems.
Collapse
Grants
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Afreen Hussain
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - S Hari Krishna Kumar
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Ashish Ashwin Kumar
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Kalyani Renjith
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - G Seghal Kiran
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
27
|
Li Z, Wang X, Zhang B, Li B, Du H, Wu Z, Rashid A, Mensah CO, Lei M. Transmission mechanisms of antibiotic resistance genes in arsenic-contaminated soil under sulfamethoxazole stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121488. [PMID: 36958659 DOI: 10.1016/j.envpol.2023.121488] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Numerous studies have revealed the spread mechanism of antibiotic resistance genes (ARGs) in single antibiotic-contaminated soils. However, the comprehensive impacts of heavy metals and antibiotics on ARGs and the underlying mechanisms are still unknown. Here, high-throughput quantitative PCR and high-throughput sequencing were used to investigate changes in ARGs and bacterial communities under various sulfamethoxazole (SMX) regimes (0, 1, 10, 50 mg kg-1) in arsenic (As) contaminated soils. The study found that the abundances of ARGs, mobile genetic elements (MGEs), and heavy metal resistance genes (HMRGs) significantly increased in the soil fortified at 10 and 50 mg kg-1 SMX concentrations. The ARGs abundance increased with the increase in the MGEs abundance. Many significant positive correlations between various ARGs subtypes and HMRGs subtypes were found. These results indicate that the HMRGs and MGEs positively contributed to the enrichment of ARGs in As-contaminated soils under SMX stress. Meanwhile, the abundance of copiotrophic (Actinobacteriota) reduced and oligotrophic (Gemmatimonadota) increased, indicating that the life history strategy of the community changed. In addition, Gemmatimonadota was positively correlated to ARGs, HMRGs, and MGEs, suggesting that Gemmatimonadota, which can cope with As and SMX stress, was the host for resistance genes in the soil. Finally, the study found that MGEs play a determinant role in ARGs proliferation due to the direct utilization of HGT, and the indirect effect for ARGs spread under a co-selection mechanism of ARGs and HMRGs, while the bacterial community showed indirect influences by altering environmental factors to act on MGEs. Collectively, this study revealed new insights into the mechanisms of resistance gene transmission under combined SMX and As contamination in soil ecosystems.
Collapse
Affiliation(s)
- Zhuoqing Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Xinqi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Beibei Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Bingyu Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Huihui Du
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Azhar Rashid
- Department of Environmental Sciences, The University of Haripur, Haripur, Pakistan
| | - Caleb Oppong Mensah
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Ming Lei
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
28
|
Xu M, Xiang Q, Xu F, Guo L, Carter LJ, Du W, Zhu C, Yin Y, Ji R, Wang X, Guo H. Elevated CO 2 alleviated the dissemination of antibiotic resistance genes in sulfadiazine-contaminated soil: A free-air CO 2 enrichment study. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131079. [PMID: 36857828 DOI: 10.1016/j.jhazmat.2023.131079] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Climate change affects soil microbial communities and their genetic exchange, and subsequently modifies the transfer of antibiotic resistance genes (ARGs) among bacteria. However, how elevated CO2 impacts soil antibiotic resistome remains poorly characterized. Here, a free-air CO2 enrichment system was used in the field to investigate the responses of ARGs profiles and bacterial communities to elevated CO2 (+200 ppm) in soils amended with sulfadiazine (SDZ) at 0, 0.5 and 5 mg kg-1. Results showed that SDZ exposure induced the co-occurrence of beta-lactamase and tetracycline resistance genes, and SDZ at 5 mg kg-1 enhanced the abundance of aminoglycoside, sulfonamide and multidrug resistance genes. However, elevated CO2 weakened the effects of SDZ at 0.5 mg kg-1 following an observed reduction in the total abundance of ARGs and mobile genetic elements. Additionally, elevated CO2 significantly decreased the abundance of vancomycin resistance genes and alleviated the stimulation of SDZ on the dissemination of aminoglycoside resistance genes. Correlation analysis and structural equation models revealed that elevated CO2 could directly influence the spread of ARGs or impose indirect effects on ARGs by affecting soil properties and bacterial communities. Overall, our results furthered the knowledge of the dissemination risks of ARGs under future climate scenarios.
Collapse
Affiliation(s)
- Meiling Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Fen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lei Guo
- Department of Cadre Ward, Eastern Theater General Hospital of Chinese People's Liberation Army, Nanjing 210002, China
| | - Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
29
|
Cui H, Zhu D, Ding L, Wang Y, Su J, Duan G, Zhu Y. Co-occurrence of genes for antibiotic resistance and arsenic biotransformation in paddy soils. J Environ Sci (China) 2023; 125:701-711. [PMID: 36375951 DOI: 10.1016/j.jes.2022.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/16/2023]
Abstract
Paddy soils are potential hotspots of combined contamination with arsenic (As) and antibiotics, which may induce co-selection of antibiotic resistance genes (ARGs) and As biotransformation genes (ABGs), resulting in dissemination of antimicrobial resistance and modification in As biogeochemical cycling. So far, little information is available for these co-selection processes and specific patterns between ABGs and ARGs in paddy soils. Here, the 16S rRNA amplicon sequencing and high-throughput quantitative PCR and network analysis were employed to investigate the dynamic response of ABGs and ARGs to As stress and manure application. The results showed that As stress increased the abundance of ARGs and mobile genetic elements (MGEs), resulting in dissemination risk of antimicrobial resistance. Manure amendment increased the abundance of ABGs, enhanced As mobilization and methylation in paddy soil, posing risk to food safety. The frequency of the co-occurrence between ABGs and ARGs, the host bacteria carrying both ARGs and ABGs were increased by As or manure treatment, and remarkably boosted in soils amended with both As and manure. Multidrug resistance genes were found to have the preference to be co-selected with ABGs, which was one of the dominant co-occurring ARGs in all treatments, and manure amendment increased the frequency of Macrolide-Lincosamide-Streptogramin B resistance (MLSB) to co-occur with ABGs. Bacillus and Clostridium of Firmicutes are the dominant host bacteria carrying both ABGs and ARGs in paddy soils. This study would extend our understanding on the co-selection between genes for antibiotics and metals, also unveil the hidden environmental effects of combined pollution.
Collapse
Affiliation(s)
- Huiling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longjun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
30
|
Su W, Wang X, Yang J, Yu Q, Li X, Zhang S, Li H. Multi-omics methods reveal that putrescine and cadaverine cause different degrees of enrichment of high-risk resistomes and opportunistic pathogens in the water and sediment of the Yellow River. ENVIRONMENTAL RESEARCH 2023; 219:115069. [PMID: 36549489 DOI: 10.1016/j.envres.2022.115069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Contamination of antibiotic resistomes due to animal carcass decay has become a serious environmental concern. However, the relationship between main metabolite compounds of corpse decomposition (i.e., putrescine and cadaverine) and antibiotic resistomes remains unclear. To tackle this issue, the response of antibiotic resistance genes (ARGs) and microbiome in aquatic environment to excess putrescine, cadaverine and a mixture of both based on laboratory simulation experiment was investigated by high-throughput quantitative PCR and amplicon sequencing methods. Our results showed putrescine and cadaverine led to the increasing of TC (total carbon) and TN (total nitrogen) both in water and sediment. Under the exposure of putrescine and cadaverine, the total abundance of mobile genetic elements (MGEs) and most ARGs in water was higher than in sediment. In particular, putrescine and cadaverine caused significantly different decreases in alpha diversity of microbial community in water and sediment compared with the control group. Microbial community structures both in water and sediment were also significantly affected by cadaverine and putrescine. Furthermore, putrescine and cadaverine led to different degrees of increases of high-risk ARGs (like mecA) and opportunistic pathogens (like Delftia) in sediment, promoting the prevalence of antibiotic resistant bacteria. In conclusion, our findings revealed the influences of main metabolites of carcass decay on microbiome and resistomes, providing references for risk assessment and pollution management.
Collapse
Affiliation(s)
- Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaocheng Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoshan Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou 404120, China
| | - Shiheng Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou 404120, China.
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
31
|
Yang F, Wang X, Tian X, Zhang Z, Zhang K, Zhang K. Cow manure simultaneously reshaped antibiotic and metal resistome in the earthworm gut tract by metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159010. [PMID: 36174681 DOI: 10.1016/j.scitotenv.2022.159010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Earthworm conversion is an eco-friendly biological process that converts livestock waste into a benign nutrient-rich organic fertilizer. However, little is known about the impacts of earthworm-converted livestock manure on the antibiotic resistome in the earthworm gut microbiota. Herein, lab-scale vermicomposting was performed to comprehensively evaluate the shift of antibiotic resistance genes (ARGs) in the earthworm gut-feeding on cow manure (CM)-by metagenomic analysis. The effects of copper (Cu) as a food addictive were also evaluated. CM substantially enriched the antibiotic resistome in the foregut and midgut, while it decreased in the hindgut. A similar trend was observed for metal resistance genes (MRGs). Notably, Cu in the CM had little effect on composition of ARGs and MRGs in earthworm gut. The earthworm gut microbiome altered by CM was responsible for the shift of ARGs and MRGs. In wormcast, Cu (100 and 300 mg/kg) significantly increased the abundance of ARGs and MRGs. Our study provides valuable insight into the response of ARGs and MRGs to CM in earthworm gut, and underscores the need for the judicious use of heavy metals as feed additives in livestock and poultry farming.
Collapse
Affiliation(s)
- Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Xueli Tian
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zulin Zhang
- The James Hutton Institute, Aberdeen AB158QH, UK
| | - Kai Zhang
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
32
|
Sun Y, Li X, Ding C, Pan Q, Wang J. Host species and microplastics differentiate the crop root endophytic antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130091. [PMID: 36206714 DOI: 10.1016/j.jhazmat.2022.130091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The increasing One-Health concept calls for a more in-depth understanding of the dissemination of antibiotic resistance in plant microbiomes. While there is considerable published evidence that microplastics can promote the spread of antibiotic resistance genes (ARGs) in the environment, whether and how microplastics impact the plant endophytic resistome are largely unknown. Here we examined the ARGs along the soil-root continuum of maize and wheat under the pressure of microplastics. Amendment with heavy metals was also included as they can apply the selective pressure for ARG spread as well. The crop species and genotypes had significant effects on the root endophytic ARG abundance and diversity. The greatest ARG abundance was observed in the maize ZD958 endophytes (0.215 copies per 16S rRNA gene), followed by the maize XY335 (0.092 copies per 16S rRNA gene). For each crop genotype, amendment with microplastics and heavy metals significantly increased the ARG abundances and changed their profiles in root endophytes. The endophytic ARG variances were closely associated with the endophytic microbiome, the rhizosphere bacterial communities and resistome. Additionally, the level of endophytic ARGs was positively relevant to the abundance of mobile genetic elements (MGEs). These findings suggested that the root endophytic resistome was primarily affected by the crop species, and microplastics might show enhancement effects on the endophytic resistome via changing the root-associated microbiome and facilitating the MGE mediation. Overall, this study, for the first time, highlights the root endophytic ARG emergence and dissemination induced by microplastics.
Collapse
Affiliation(s)
- Yuanze Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xinfei Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China.
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Yan M, Zhu C, Li B, Su S, Li H. Manure application facilitated electrokinetic remediation of antibiotic-arsenic co-contaminated paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129897. [PMID: 36084469 DOI: 10.1016/j.jhazmat.2022.129897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The co-existence of antibiotics and heavy metals in soil with manure application poses high risk to both environment and human health, and thus effective remediation methods are in urgent need. This study investigated the synergistic effects of electrokinetic remediation (EKR) on antibiotic resistance and arsenic (As) in co-contaminated paddy soils. EKR treatments in soil amended with pig manure (EKR-PD) showed better remediation efficiency compared with that without pig manure. In detail, the content of available As and the abundance of antibiotic-resistant bacteria (ARB) decreased by 25.2 %-41.4 % and 9.5 %-21.1 % after 7-d remediation, respectively, due to a relatively higher current density for EKR-PD. The role of the electric field contributed to 33.9 % of antibiotic degradation. Antibiotic resistance genes (ARGs) with ribosomal-protection and enzymatic-deactivation types were easier to remove, with the removal ratio of 37.8 %-41.6 % in EKR-PD. Brevundimonas was the most significantly different species during remediation. Bacillus and Clostridium_ sensu_stricto_1 were potential host bacteria of ARGs in the electric field. Membrane transport might be an effective strategy for microorganisms to respond to the stress of both electric field and co-contaminated environments. This study supports the potential role of EKR in the co-contamination of heavy metals and antibiotic resistance under manure application.
Collapse
Affiliation(s)
- Mengmeng Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Binxu Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
34
|
Zhang T, Wang X, Qu Y, Zhang X, Zhang Q, Yang D, Wang Q, Dong Z, Zhao J. Intestinal microbiota perturbations in the gastropod Trochus niloticus concurrently exposed to ocean acidification and environmentally relevant concentrations of sulfamethoxazole. CHEMOSPHERE 2023; 311:137115. [PMID: 36356817 DOI: 10.1016/j.chemosphere.2022.137115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Ocean acidification (OA) and antibiotic pollution pose severe threats to the fitness of keystone species in marine ecosystems. However, the combined effects of OA and antibiotic pollution on the intestinal microbiota of marine organisms are still not well known. In this study, we exposed the herbivorous gastropod Trochus niloticus, a keystone species to maintains the stability of coral reef ecosystems, to acidic seawater (pH 7.6) and/or sulfamethoxazole (SMX, 100 ng/L, 1000 ng/L) for 28 days and determined their impacts on (1) the accumulation of SMX in the intestine of T. niloticus; (2) the characteristics of the intestinal microbiota in T. niloticus; (3) the relative abundances of sulfonamide resistance genes (i.e., sul1 and sul2) and intI1 in the intestinal microbiota of T. niloticus. Our results show that OA exposure leads to dramatic microbiota dysbiosis in the intestine of T. niloticus, including changes in bacterial community diversity and structure, decreased abundances of dominant species, existences of characteristic taxa, and altered functional predictions. In addition, SMX exposure at environmentally relevant concentrations had little effect on the intestinal microbiota of T. niloticus, whether in isolation or in combination with OA. However, after exposure to the higher SMX concentration (1000 ng/L), the accumulation of SMX in the intestine of T. niloticus could induce an increase in the copies of sul2 in the intestinal microbiota. These results suggest that the intestinal health of T. niloticus might be affected by OA and SMX, which might lead to fitness loss of the keystone species in coral reef ecosystems.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yi Qu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China.
| |
Collapse
|
35
|
Zhou L, Li S, Li F. Damage and elimination of soil and water antibiotic and heavy metal pollution caused by livestock husbandry. ENVIRONMENTAL RESEARCH 2022; 215:114188. [PMID: 36030917 DOI: 10.1016/j.envres.2022.114188] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The combination of antibiotics and heavy metals (HMs) increases the toxicity range of influence and requires additional research attention. This article analyzed the toxicity mechanisms and damage of combined pollution. Cross-resistance, co-resistance, and co-regulation are the primary toxicity mechanisms. Combined pollution increases antibiotic resistance genes (ARGs), increases bacterial resistance, and promotes the horizontal transfer of ARGs, affecting the types and distribution of microorganisms. The hazard of combined pollution varies with concentration and composition. The physicochemical and biological technologies for eliminating combined pollution are primarily elaborated. Adsorption, photocatalytic degradation, and microbial treatment show high removal rates and good recyclability, indicating good application potential. This review provides a basis and reference for the further study the elimination of combined antibiotic and HM pollution.
Collapse
Affiliation(s)
- Lu Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
36
|
Amin MB, Talukdar PK, Asaduzzaman M, Roy S, Flatgard BM, Islam MR, Saha SR, Sharker Y, Mahmud ZH, Navab-Daneshmand T, Kile ML, Levy K, Julian TR, Islam MA. Effects of chronic exposure to arsenic on the fecal carriage of antibiotic-resistant Escherichia coli among people in rural Bangladesh. PLoS Pathog 2022; 18:e1010952. [PMID: 36480516 PMCID: PMC9731454 DOI: 10.1371/journal.ppat.1010952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is a leading cause of hospitalization and death worldwide. Heavy metals such as arsenic have been shown to drive co-selection of antibiotic resistance, suggesting arsenic-contaminated drinking water is a risk factor for antibiotic resistance carriage. This study aimed to determine the prevalence and abundance of antibiotic-resistant Escherichia coli (AR-Ec) among people and drinking water in high (Hajiganj, >100 μg/L) and low arsenic-contaminated (Matlab, <20 μg/L) areas in Bangladesh. Drinking water and stool from mothers and their children (<1 year) were collected from 50 households per area. AR-Ec was detected via selective culture plating and isolates were tested for antibiotic resistance, arsenic resistance, and diarrheagenic genes by PCR. Whole-genome sequencing (WGS) analysis was done for 30 E. coli isolates from 10 households. Prevalence of AR-Ec was significantly higher in water in Hajiganj (48%) compared to water in Matlab (22%, p <0.05) and among children in Hajiganj (94%) compared to children in Matlab (76%, p <0.05), but not among mothers. A significantly higher proportion of E. coli isolates from Hajiganj were multidrug-resistant (83%) compared to isolates from Matlab (71%, p <0.05). Co-resistance to arsenic and multiple antibiotics (MAR index >0.2) was observed in a higher proportion of water (78%) and child stool (100%) isolates in Hajiganj than in water (57%) and children (89%) in Matlab (p <0.05). The odds of arsenic-resistant bacteria being resistant to third-generation cephalosporin antibiotics were higher compared to arsenic-sensitive bacteria (odds ratios, OR 1.2-7.0, p <0.01). WGS-based phylogenetic analysis of E. coli isolates did not reveal any clustering based on arsenic exposure and no significant difference in resistome was found among the isolates between the two areas. The positive association detected between arsenic exposure and antibiotic resistance carriage among children in arsenic-affected areas in Bangladesh is an important public health concern that warrants redoubling efforts to reduce arsenic exposure.
Collapse
Affiliation(s)
- Mohammed Badrul Amin
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Prabhat Kumar Talukdar
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Muhammad Asaduzzaman
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Subarna Roy
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Brandon M. Flatgard
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Md. Rayhanul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sumita Rani Saha
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yushuf Sharker
- Center for Data Research and Analytics LLC, Bethesda, Maryland, United States of America
| | - Zahid Hayat Mahmud
- Laboratory of Environmental Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tala Navab-Daneshmand
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States of America
| | - Molly L. Kile
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington, Washington, United States of America
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Mohammad Aminul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
37
|
Li Z, Chen C, Zhang K, Zhang Z, Zhao R, Han B, Yang F, Ding Y. Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14475. [PMID: 36361352 PMCID: PMC9658359 DOI: 10.3390/ijerph192114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance pollution in livestock manure is a persistent issue that has drawn public attention. Vermicomposting is an ecofriendly biological process that can render livestock manure harmless and resourceful. However, little is known about the impact of vermicomposting on antibiotic resistance in livestock manure under stress caused by potentially toxic arsenic levels. Herein, lab-scale vermicomposting was performed to comprehensively evaluate the shift in antibiotic resistance genes (ARGs) and related microorganisms in fresh earthworm casts as well as vermicompost product health (i.e., nutrient availability and enzyme activity) when they were fed on arsenic-contaminated cow manure. The results showed that the earthworms' interaction with cow dung led to a significant reduction in ARG concentrations, especially for tetracycline ARGs (tet-ARGs), β-lactam ARGs (bla-ARGs), and quinolone ARGs (qnr-ARGs). However, arsenic significantly enhanced ARG accumulation in earthworm casts in a dose-dependent manner. Moreover, vermicomposting increased the percentage of Bacteroidota in the converted products. Furthermore, arsenic exposure at low concentrations promoted the proliferation of Proteobacteria, whereas high concentrations had little effect on Proteobacteria. Our study provides valuable insight into the changes in the antibiotic resistome and related microorganisms during vermicomposting of arsenic-amended cow manure, and it is crucial to explain the environmental impact of earthworms and improve our understanding of the reciprocal benefits of soil invertebrates.
Collapse
Affiliation(s)
- Zijun Li
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chen Chen
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Keqiang Zhang
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zulin Zhang
- The James Hutton Institute, Aberdeen AB15 8QH, UK
| | - Ran Zhao
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Bingjun Han
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fengxia Yang
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongzhen Ding
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
38
|
Xiang Q, Chen QL, Yang XR, Li G, Zhu D. Microbial Multitrophic Communities Drive the Variation of Antibiotic Resistome in the Gut of Soil Woodlice (Crustacea: Isopoda). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15034-15043. [PMID: 35876241 DOI: 10.1021/acs.est.2c02471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multitrophic communities inhabit in soil faunal gut, including bacteria, fungi, and protists, which have been considered a hidden reservoir for antibiotic resistance genes (ARGs). However, there is a dearth of research focusing on the relationships between ARGs and multitrophic communities in the gut of soil faunas. Here, we studied the contribution of multitrophic communities to variations of ARGs in the soil woodlouse gut. The results revealed diverse and abundant ARGs in the woodlouse gut. Network analysis further exhibited strong connections between key ecological module members and ARGs, suggesting that multitrophic communities in the keystone ecological cluster may play a pivotal role in the variation of ARGs in the woodlouse gut. Moreover, long-term application of sewage sludge significantly altered the woodlice gut resistome and interkingdom communities. The variation portioning analysis indicated that the fungal community has a greater contribution to variations of ARGs than bacterial and protistan communities in the woodlice gut after long-term application of sewage sludge. Together, our results showed that changes in gut microbiota associated with agricultural practices (e.g., sewage sludge application) can largely alter the gut interkingdom network in ecologically relevant soil animals, with implications for antibiotic resistance, which advances our understanding of the microecological drivers of ARGs in terrestrial ecosystem.
Collapse
Affiliation(s)
- Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
39
|
Li M, Chen Y, Feng Y, Li X, Ye L, Jiang J. Ecological Responses of Maize Rhizosphere to Antibiotics Entering the Agricultural System in an Area with High Arsenicals Geological Background. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13559. [PMID: 36294139 PMCID: PMC9603512 DOI: 10.3390/ijerph192013559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Metal(loid)s can promote the spread and enrichment of antibiotic resistance in the environmental ecosystem through a co-selection effect. Little is known about the ecological effects of entering antibiotics into the environment with long-term metal(loid)s' resistance profiles. Here, cow manure containing oxytetracycline (OTC) or sulfadiazine (SA) at four concentrations (0 (as control), 1, 10, and 100 mg/kg) was loaded to a maize cropping system in an area with high a arsenicals geological background. Results showed that exogenous antibiotics entering significantly changed the nutrient conditions, such as the concentration of nitrate nitrogen, ammonium nitrogen, and available phosphorus in the maize rhizosphere soil, while total arsenic and metals did not display any differences in antibiotic treatments compared with control. Antibiotics exposure significantly influenced nitrate and nitrite reductase activities to reflect the inhibition of denitrification rates but did not affect the soil urease and acid phosphatase activities. OTC treatment also did not change soil dehydrogenase activities, while SA treatment posed promotion effects, showing a tendency to increase with exposure concentration. Both the tested antibiotics (OTC and SA) decreased the concentration of arsenite and arsenate in rhizosphere soil, but the inhibition effects of the former were higher than that of the latter. Moreover, antibiotic treatment impacted arsenite and arsenate levels in maize root tissue, with positive effects on arsenite and negative effects on arsenate. As a result, both OTC and SA treatments significantly increased bioconcentration factors and showed a tendency to first increase and then decrease with increasing concentration. In addition, the treatments decreased translocation capacity of arsenic from roots to shoots and showed a tendency to increase translocation factors with increasing concentration. Microbial communities with arsenic-resistance profiles may also be resistant to antibiotics entering.
Collapse
Affiliation(s)
- Mengli Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yongshan Chen
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Ying Feng
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xiaofeng Li
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Lili Ye
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Jinping Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
40
|
Wu H, Zheng L, Tan M, Li Y, Xu J, Yan S, Jiang D. Cd exposure-triggered susceptibility to Bacillus thuringiensis in Lymantria dispar involves in gut microbiota dysbiosis and hemolymph metabolic disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113763. [PMID: 35696962 DOI: 10.1016/j.ecoenv.2022.113763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The immunotoxicity induced by heavy metals on herbivorous insects reflect the alterations of the susceptibility to entomopathogenic agents in herbivorous insects exposed to heavy metal. In the present study, the susceptibility of gypsy moth larvae to Bacillus thuringiensis under Cd treatment at low and high dosages was investigated, and the gut microbiome-hemolymph metabolome responses that affected larval disease susceptibility caused by Cd exposure were examined. Our results showed that mortality of gypsy moth larvae caused by B. thuringiensis was significantly higher in larvae pre-exposed to Cd stress, and there was a synergistic effect between Cd pre-exposure and bacterial infection. Exposure to Cd significantly decreased the abundance of several probiotics (e.g., Serratia for the low Cd dosage and Weissella, Aeroonas, and Serratia for the high Cd dosage) and increased the abundances of several pathogenic bacteria (e.g., Stenotrophomonas, Gardnerella, and Cutibacterium for the low Cd dosage and Pluralibacter and Tsukamurella for the high Cd dosage) compared to the controls. Moreover, metabolomics analysis indicated that amino acid biosynthesis and metabolism were significantly perturbed in larval hemolymph under Cd exposure at both the low and high dosages. Correlation analysis demonstrated that several altered metabolites in larval hemolymph were significantly correlated with changes in the gut microbial community. The results demonstrate that prior exposure to Cd increases the susceptibility of gypsy moth larvae to B. thuringiensis in a synergistic fashion due to gut microbiota dysbiosis and hemolymph metabolic disorder, and thus microbial-based biological control may be the best pest control strategy in heavy metal-polluted areas.
Collapse
Affiliation(s)
- Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lin Zheng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yaning Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jinsheng Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
41
|
Toxic Effects of Industrial Flocculants Addition on Bioconversion of Black Soldier Fly Larvae (Hermetia illucens L.). INSECTS 2022; 13:insects13080683. [PMID: 36005308 PMCID: PMC9409322 DOI: 10.3390/insects13080683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The black soldier fly (BSF) is a saprophagous insect that has been applied to organic waste management while providing high-quality insect protein. Flocculants are widely present in organic wastes that could be treated by black soldier fly larvae (BSFL), such as food wastes, municipal sludge, and cyanobacteria sludge. This study investigated the effect of flocculants on bioconversion of BSFL. The results showed that the addition of flocculant affected the bioconversion efficiency and nutritional composition of BSFL. The relative abundance of bacterial genera related to lipid metabolism decreased with increasing flocculant concentrations while disease-related taxa increased in relative abundance. This study could serve as a reference for related research and applications in the future. Abstract Black soldier fly is a saprophagous insect that has been widely reported in recent years due to its excellent performance in bioremediation. Due to the widespread presence of flocculants in the organic waste treated by black soldier fly larvae, this study aimed to evaluate the potential impacts and risks of flocculant addition (a combination of poly aluminum chloride and polyacrylamide with the ratio of 50:1). Results showed that the growth and weight of BSFL in the high-exposure groups (≥200 mg/L) were inhibited. The bioaccumulation of aluminum (Al) in larvae was estimated, and the proportions of different Al forms in the frass from high to low were the residual state (41.38% to 67.92%), water-soluble state (16.88% to 37.03%), acid-soluble state (8.45% to 18.72%), and alkali-soluble state (3.38% to 5.14%). The relative abundance of bacterial genera related to lipid metabolism decreased with increasing flocculant concentrations while disease-related taxa increased in relative abundance. The results serve as a reference for subsequent research and application of the treatment of flocculant-contaminated waste by BSFL.
Collapse
|
42
|
Hu T, Zhen L, Gu J, Wang X, Sun W, Song Z, Xie J, An L, Luo B, Qian X. Clarifying the beneficial effects of plant growth-promoting rhizobacteria for reducing abundances of antibiotic resistance genes during swine manure composting. BIORESOURCE TECHNOLOGY 2022; 353:127117. [PMID: 35395365 DOI: 10.1016/j.biortech.2022.127117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effects on antibiotic resistance genes (ARGs) and the related mechanisms of different plant growth-promoting rhizobacteria (PGPR) inoculation strategies during composting: no inoculation (CK), inoculation in initial phase (T1), inoculation in cooling phase (T2), and inoculation in both initial and cooling phases (T3). After composting, the total relative abundances (RAs) of ARGs decreased by 0.26 and 0.03 logs under T3 and T2, respectively, but increased by 0.05 and 0.22 logs under T1 and CK. The abundances of eight ARGs were lowest under T3, including some high risk ARGs with clinical importance. Bioavailable Cu significantly affected the readily removed ARGs, and PGPR inoculation decreased the bioavailability of Cu. T3 reduced the abundances of potential pathogen hosts, inhibited horizontal gene transfer by reducing the RAs of mobile gene elements (0.48 logs), and downregulated the expression of genes related to ARG propagation, thereby decreasing the ecological risk of ARGs.
Collapse
Affiliation(s)
- Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lisha Zhen
- Shaanxi Province Microbiology Institute, Xian, Shaanxi 710043, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
43
|
Song J, Li T, Zheng Z, Fu W, Long Z, Shi N, Han Y, Zhang L, Yu Y, Fang H. Carbendazim shapes microbiome and enhances resistome in the earthworm gut. MICROBIOME 2022; 10:63. [PMID: 35436900 PMCID: PMC9014604 DOI: 10.1186/s40168-022-01261-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/20/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND It is worrisome that several pollutants can enhance the abundance of antibiotic resistance genes (ARGs) in the environment, including agricultural fungicides. As an important bioindicator for environmental risk assessment, earthworm is still a neglected focus that the effects of the fungicide carbendazim (CBD) residues on the gut microbiome and resistome are largely unknown. In this study, Eisenia fetida was selected to investigate the effects of CBD in the soil-earthworm systems using shotgun metagenomics and qPCR methods. RESULTS CBD could significantly perturb bacterial community and enrich specific bacteria mainly belonging to the phylum Actinobacteria. More importantly, CBD could serve as a co-selective agent to elevate the abundance and diversity of ARGs, particularly for some specific types (e.g., multidrug, glycopeptide, tetracycline, and rifamycin resistance genes) in the earthworm gut. Additionally, host tracking analysis suggested that ARGs were mainly carried in some genera of the phyla Actinobacteria and Proteobacteria. Meanwhile, the level of ARGs was positively relevant to the abundance of mobile genetic elements (MGEs) and some representative co-occurrence patterns of ARGs and MGEs (e.g., cmx-transposase and sul1-integrase) were further found on the metagenome-assembled contigs in the CBD treatments. CONCLUSIONS It can be concluded that the enhancement effect of CBD on the resistome in the earthworm gut may be attributed to its stress on the gut microbiome and facilitation on the ARGs dissemination mediated by MGEs, which may provide a novel insight into the neglected ecotoxicological risk of the widely used agrochemicals on the gut resistome of earthworm dwelling in soil. Video abstract.
Collapse
Affiliation(s)
- Jiajin Song
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tongxin Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhiruo Zheng
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Wenjie Fu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhengnan Long
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Nan Shi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Yuling Han
- Institue of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Deng S, Li P, Wu Y, Tang H, Cheng S, Thunders M, Qiu J, Li Y. Eco-risk management of tylosin fermentation residues using vermicomposting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114126. [PMID: 34844053 DOI: 10.1016/j.jenvman.2021.114126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Tylosin fermentation residues (TFR) pose an ecotoxicological risk through antibiotic resistant bacteria (ARBs) and their corresponding genes (ARGs). This study evaluated the ecotoxicity of TFR to soil biological activity, and further explored the mechanisms of vermicomposting to reduce the toxicological risk. The results showed that tylosin (TYL) was moderately degradable with a half-life (t1/2) of 37.5 d, inducing 28-44% inhibition rate of nitrogen transformation in soil, and the EC50 of earthworm avoidance was 880 mg/kg. The 30-d vermicomposting reduced the pH and OM content, while increased the EC and TN content, accelerated compost maturation (C/N ratio up to 20), and enriched the microbial community. ARGs were reduced by earthworm through removal of TYL (>70% degradation, t1/2 of <20 d), inhibiting abundance of intI1 and ARBs. We conclude that vermicomposting is an efficient method for TFR treatment and its eco-risk management.
Collapse
Affiliation(s)
- Songge Deng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peiyi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yizhao Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Tang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Shujun Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Michelle Thunders
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, 6242, New Zealand
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
45
|
Zhang J, Liu Z, Song S, Fang J, Wang L, Zhao L, Li C, Li W, Byun HM, Guo L, Li P. The exposure levels and health risk assessment of antibiotics in urine and its association with platelet mitochondrial DNA methylation in adults from Tianjin, China: A preliminary study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113204. [PMID: 35065505 DOI: 10.1016/j.ecoenv.2022.113204] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
There has been extensive research on antibiotics exposure in adults by biomonitoring, but the biological mechanisms and potential risks to human health remain limited. In this study, 102 adults aged 26-44 years in Tianjin were studied and 23 common antibiotics in urine were analyzed by Liquid chromatography-mass spectrometry (LC-MS). All antibiotics were detected in urine, with an overall detection frequency of 40.4% (the detection frequencies of phenothiazines, quinolones, sulfonamides, tetracyclines, and chloramphenicol were 77%, 54%, 24%, 28%, and 49%, respectively.). Ofloxacin and enrofloxacin had the highest detection frequencies (85% and 81%), with median concentrations of 0.26 (IQR: 0.05-1.36) and 0.09 (IQR: 0.03-0.14) ng/mL, respectively. Based on health risk assessment, the predicted estimated daily exposures (EDEs) ranged from 0 μg/kg/day to 13.98 μg/kg/day. The hazard quotient (HQ) values of all the antibiotics except ofloxacin and ciprofloxacin were bellow one, which are considered safe. For all blood samples, the mitochondrial DNA (mtDNA) methylation levels in the MT-ATP6 (ranging between 3.86% and 34.18%) were slightly higher than MT-ATP8 and MT-ND5 (ranging between 0.57% and 9.32%, 1.08% and 19.62%, respectively). Furthermore, mtDNA methylation from MT-ATP6, MT-ATP8 and MT-ND5 were measured by bisulfite-PCR pyrosequencing. The association (P < 0.05) was found between mtDNA methylation level (MT-ATP8 and MT-ND5) and individual antibiotics including chlorpromazine, ciprofloxacin, enrofloxacin, norfloxacin, pefloxacin, sulfaquinoxaline, sulfachloropyridazine, chloramphenicol, and thiamphenicol, indicating that persistent exposure to low-dose multiple antibiotics may affect the mtDNA methylation level and in turn pose health risks.
Collapse
Affiliation(s)
- Jing Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China
| | - Shanjun Song
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; National Institute of Metrology, Beijing 100029, China
| | - Junkai Fang
- Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin 300070, China
| | - Lei Wang
- Hebei Research Center for Geoanalysis, Hebei 071000, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China
| | - Chenguang Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China
| | - Weixia Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China
| | - Hyang-Min Byun
- Population Health Science Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne NE4 5PL, UK
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China.
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China.
| |
Collapse
|
46
|
Deng S, Wu Y, Duan H, Cavanagh JAE, Wang X, Qiu J, Li Y. Toxicity assessment of earthworm exposed to arsenate using oxidative stress and burrowing behavior responses and an integrated biomarker index. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149479. [PMID: 34399332 DOI: 10.1016/j.scitotenv.2021.149479] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/07/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Arsenate (As-V) is a ubiquitous contaminant in soil as a result of excessive use of veterinary drugs and pesticides, causing enormous environmental risks. Multiple biomarkers have been used to assess the ecotoxicity of arsenic, however, the mechanisms of toxicity remain unclear. This paper describes the exposure of the earthworm (Eisenia fetida) to natural soil with different As-V concentrations for 28 days, then biomarkers from oxidative stress and burrowing behavior were quantified to evaluate As-V stress. Dynamic changes in reactive oxygen species (ROS), lipid peroxidation (MDA), adenosine triphosphate (ATP) content and antioxidant enzymes activity (Gpx, SOD, CAT) implied two stages of intensified stress responses and physiological adaptability. The transcriptional expression and regulation of antioxidant enzymes showed different responses. The mRNA expression of sod1 was up-regulated, while that of cat showed no significant change. The related regulators, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), showed dose-dependent activation, suggesting antioxidant defense induced by Nrf2 signaling. The burrowing behavior after 14-day exposure indicated that As-V inhibited burrowing activity, especially the burrow length and maximum burrow depth. These multiple biomarkers were integrated using a biomarker response index (BRI) model, which showed significant dose-effect relationship especially on day 28, and suggested that ATP was a sensitive and representative biomarker. This study provided evidence that burrowing activity, Nrf2 and HO-1 were useful biomarkers warranting inclusion into the BRI model. Arsenic toxicity was comprehensively understood through redox homeostasis regulation, biochemical and behavioral changes, and these results suggested new strategies for soil pollutants diagnosis.
Collapse
Affiliation(s)
- Songge Deng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yizhao Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanqi Duan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Xiuhong Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
47
|
Burkholderiaceae and Multidrug Resistance Genes Are Key Players in Resistome Development in a Germfree Soil Model. mSystems 2021; 6:e0098821. [PMID: 34726494 PMCID: PMC8562478 DOI: 10.1128/msystems.00988-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Assembly of a resistome in parallel with the establishment of a microbial community is not well understood. Germfree models can reveal microbiota interactions and shed light on bacterial colonization and resistance development under antibiotic pressure. In this study, we exposed germfree soil (GS), GS with diluted nontreated soil (DS), and nontreated soil (NS) to various concentrations of tetracycline (TET) in a nongermfree environment for 10 weeks, followed by 2 weeks of exposure to water. High-throughput sequencing was used to profile bacterial communities and antibiotic resistance genes (ARGs) in the soils. The initial bacterial loads were found to shape the profiles of bacterial communities and the resistomes. GS and DS treated with TET and the same soils left untreated had similar profiles, whereas NS showed different profiles. Soils with the same initial bacterial loads had their profiles shifted by TET treatment. Multidrug resistance (MDR) genes were the most abundant ARG types in all soils, with multidrug efflux pump genes being the discriminatory ARGs in GS regardless of different TET treatments and in GS, DS, and NS after TET. Furthermore, MDR genes were significantly enriched by TET treatment. In contrast, tetracycline resistance genes were either absent or low in relative abundance. The family Burkholderiaceae was predominant in all soils (except in NS treated with water) and was positively selected for by TET treatment. Most importantly, Burkholderiaceae were the primary carrier of ARGs, including MDR genes. IMPORTANCE This is the first study to examine how resistomes develop and evolve using GS. GS can be used to study the colonization and establishment of bacterial communities under antibiotic selection. Surprisingly, MDR genes were the main ARGs detected in GS, and TET treatments did not positively select for specific tetracycline resistance genes. Additionally, Burkholderiaceae were the key bacterial hosts for MDR genes in the current GS model under the conditions investigated. These results show that the family Burkholderiaceae underpins the development of resistome and serves as a source of ARGs. The ease of establishment of Burkholderiaceae and MDR genes in soils has serious implications for human health, since these bacteria are versatile and ubiquitous in the environment.
Collapse
|
48
|
Li L, Zhu D, Yi X, Su J, Duan G, Tang X, Zhu Y. Combined pollution of arsenic and Polymyxin B enhanced arsenic toxicity and enriched ARG abundance in soil and earthworm gut microbiotas. J Environ Sci (China) 2021; 109:171-180. [PMID: 34607666 DOI: 10.1016/j.jes.2021.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 05/21/2023]
Abstract
Polymyxin B (PMB) is considered as the last line of antibiotic defense available to humans. The environmental effects of the combined pollution with PMB and heavy metals and their interaction mechanisms are unclear. We explored the effects of the combined pollution with PMB and arsenic (As) on the microbial composition of the soil and in the earthworm gut, as well as the spread and transmission of antibiotic resistance genes (ARGs). The results showed that, compared with As alone, the combined addition of PMB and As could significantly increase the bioaccumulation factor and toxicity of As in earthworm tissues by 12.1% and 16.0%, respectively. PMB treatment could significantly increase the abundance of Actinobacteria in the earthworm gut (from 35.6% to 45.2%), and As stress could significantly increase the abundance of Proteobacteria (from 19.8% to 56.9%). PMB and As stress both could significantly increase the abundance of ARGs and mobile genetic elements (MGEs), which were positively correlated, indicating that ARGs might be horizontally transferred. The inactivation of antibiotics was the main resistance mechanism that microbes use to resist PMB and As stress. Network analysis showed that PMB and As might have antagonistic effects through competition with multi-drug resistant ARGs. The combined pollution by PMB and As significantly promoted the relative abundance of microbes carrying multi-drug resistant ARGs and MGEs, thereby increasing the risk of transmission of ARGs. This research advances the understanding of the interaction mechanism between antibiotics and heavy metals and provides new theoretical guidance for the environmental risk assessment and combined pollution management.
Collapse
Affiliation(s)
- Lyu Li
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyun Yi
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Su
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yongguan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
49
|
Han L, Fang K, Liu Y, Fang J, Wang F, Wang X. Earthworms accelerated the degradation of the highly toxic acetochlor S-enantiomer by stimulating soil microbiota in repeatedly treated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126669. [PMID: 34329120 DOI: 10.1016/j.jhazmat.2021.126669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effects of earthworms on the enantioselective degradation of chloroacetamide herbicide acetochlor with soil microorganisms in repeatedly treated soils. The S-enantiomer degraded more slowly and exerted stronger inhibition on soil microbial functions than the R-enantiomer in single soil system. A synergistic effect was observed between soil microorganisms and earthworms that accelerated the degradation of both the enantiomers, particularly the highly toxic S-enantiomer, which resulted in the preferential degradation of S-enantiomer in soil-earthworm system. Earthworms stimulated five potential indigenous degraders (i.e. Lysobacter, Kaistobacter, Flavobacterium, Arenimonas, and Aquicell), induced two new potential degraders (i.e. Aeromonas and Algoriphagus), and also significantly strengthened the correlations among these seven dominant potential degraders and other microorganisms. Notably, the relative abundances of Flavobacterium and Aeromonas in soil treated with earthworms for S-enantiomer were higher than those for R-enantiomer. Furthermore, earthworms significantly stimulated overall soil microbial activity and improved three microbial metabolic pathways, and xenobiotics biodegradation and metabolism, signal transduction, cell motility, particularly for the S-enantiomer treatment with earthworms, which alleviated the strong inhibition of S-enantiomer on microbial community functions. This study confirmed that earthworms accelerated the degradation of the highly toxic acetochlor S-enantiomer in soil, providing a potential approach in chloroacetamide herbicide-polluted soil remediation.
Collapse
Affiliation(s)
- Lingxi Han
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Yalei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Jianwei Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Fenglong Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
50
|
Abstract
Arsenic is a naturally occurring metalloid and one of the few metals that can be metabolized inside the human body. The pervasive presence of arsenic in nature and anthropogenic sources from agricultural and medical use have perpetuated human exposure to this toxic and carcinogenic element. Highly exposed individuals are susceptible to various illnesses, including skin disorders; cognitive impairment; and cancers of the lung, liver, and kidneys. In fact, across the globe, approximately 200 million people are exposed to potentially toxic levels of arsenic, which has prompted substantial research and mitigation efforts to combat this extensive public health issue. This review provides an up-to-date look at arsenic-related challenges facing the global community, including current sources of arsenic, global disease burden, arsenic resistance, and shortcomings of ongoing mitigation measures, and discusses potential next steps.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10010, USA;
| |
Collapse
|