1
|
Lan T, Zhao L, Xiong J, Wang R, Yang P, Sun W, Su S, Gan Z, Tian Z. Occurrence, ecology and health risk assessment of organophosphate triesters and diesters in surface and ground water from southwest of China. ENVIRONMENTAL RESEARCH 2025; 279:121868. [PMID: 40381713 DOI: 10.1016/j.envres.2025.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
The occurrence of organophosphate triesters (OPEs) and organophosphate diesters (m-OPEs) in ground water is still unclear. To fill the blank, ground water samples in dry and wet seasons, surface river water and paired sediment samples were collected in Sichuan province and analyzed for 14 kinds of OPEs and 7 m-OPEs. Except Trimethyl phosphate was scarcely detected, the other OPEs were extensively found in aquatic environment. The concentrations of Ʃ14OPEs and Ʃ7m-OPEs ranged from 45.0 to 231 ng/L and from 1.25 to 62.3 ng/L in ground water and ranged from 2.20 to 1709 and from 0.08 to 35.5 ng/L in surface water, respectively. Compared to other reports, the pollution in Minjiang and Tuojiang river was at medium level. The concentration ratios and correlation analysis between OPEs and m-OPEs indicated that OPEs in ground water had three main sources, and m-OPEs mainly came from direct usage. Low ecological risk was found for surface water. The carcinogenic and non-carcinogenic risks of OPEs in surface and ground water via ingestion and dermal contact in moderate and high exposure scenarios were assessed, and results suggested the risks to human which mainly caused by Tri(2-chloroisopropyl) phosphate could be negligible.
Collapse
Affiliation(s)
- Tianyang Lan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Li Zhao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jie Xiong
- Sichuan Province Ecological Environment Monitoring Station, Chengdu, 610074, China
| | - Ruonan Wang
- Sichuan Province Ecological Environment Monitoring Station, Chengdu, 610074, China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Zhiren Tian
- China National Environmental Monitoring Centre, Beijing, 100012, China.
| |
Collapse
|
2
|
Tagawa E, Wang Q, Amagai T, Miyake Y. Human exposure to PAHs: Accurate determination of PAHs and XPAHs using a silicone passive sampler. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138618. [PMID: 40378736 DOI: 10.1016/j.jhazmat.2025.138618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Over the past decade, the silicone passive sampling method has been employed for individual exposure assessments of polycyclic aromatic hydrocarbons (PAHs). However, the determination of PAHs from the samples collected using silicone passive samplers has not been discussed. To rapidly and accurately determine PAHs and halogenated PAHs (XPAHs), we simplified the pretreatment method for silicone passive samplers and evaluated the effects of wind during the sampling period. The pretreatment method was simplified using ultrahigh-purity silicone rubber as a passive sampler. The effects of wind on the sampling rates (SRs) were theoretically described. The experimental data followed the theoretical relationship between the wind speed and SRs on the silicone passive sampler below a wind speed of 5.5 m s-1. The concentrations of atmospheric PAHs and XPAHs within four or five orders of magnitude were accurately determined within an error of 1/3-3 times by a theoretical consideration of the wind speed effect. These findings reveal that the concentrations of atmospheric PAHs and XPAHs can be rapidly and accurately determined from amounts collected using ultrahigh-purity silicone rubber as a passive sampler and correcting for the wind speed effect.
Collapse
Affiliation(s)
- Eri Tagawa
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Qi Wang
- National Institute of Occupational Safety and Health, Japan, Nagao 6-21-1, Tama-Ku, Kawasaki, Kanagawa 214-8585, Japan
| | - Takashi Amagai
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuichi Miyake
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan.
| |
Collapse
|
3
|
Zhang J, Shi X, Bai G, Chen J, Fu Y, Chen A. Association between the exposure to brominated flame retardants and psoriasis risk among U.S. adults: A population-based study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117836. [PMID: 39919589 DOI: 10.1016/j.ecoenv.2025.117836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/12/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Psoriasis risk can be affected by exposure to mixtures of environmental chemicals; however, the effect of brominated flame retardants (BFRs) exposure on self-reported psoriasis has not been assessed. Herein, we evaluated the association between the exposure to BFRs compounds of 6 chemicals with risk of psoriasis. Based on data from the National Health and Nutrition Examination Survey (NHANES) 2003-2006 and 2009-2014, this analysis was conducted among 6340 adults. Multivariable logistic regression, restricted cubic splines (RCS), weighted quantile sum (WQS) regression, quantile-based g computation (Qgcomp) regression, and Bayesian kernel machine regression (BKMR) models were performed to estimate the associations. Our results indicated that co-exposure to BFRs was associated with increased risk of psoriasis. Notably, PBB153 emerged as a significant factor contributing to the risk of psoriasis, and showed a non-linear relationship between the concentration of serum PBB153 and the prevalence of psoriasis. Moreover, the association between PBB153 and psoriasis risk remained stable across all subgroup analyses, including those stratified by gender. Our study presents robust evidence connecting BFRs exposure to the prevalence of psoriasis, emphasizing the necessity for continued research and policy interventions to address this environmental health issue. Because BFRs are extensively used and detected in various environmental sources and living organisms, future investigations should further elucidate the mechanisms underlying the observed associations between BFRs exposure and psoriasis risk.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Xiangyun Shi
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China
| | - Genlong Bai
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yidian Fu
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China.
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
4
|
Liu W, He Q, Yue C, Xu T, Hang X. Effects of dechlorane plus on hepatic pathology, metabolic health and gut microbiota in male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177532. [PMID: 39551218 DOI: 10.1016/j.scitotenv.2024.177532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Dechlorane plus (DP), a widely used flame retardant, was added to Annex A of the Stockholm Convention on Persistent Organic Pollutants in 2023. This study aimed to investigate the effects of DP on glucose and lipid metabolism by orally exposing eight-week-old male mice to environmentally relevant concentrations of DP (0.5, 1, and 5 mg/kg/day) for six weeks. The in vivo effects of DP on liver histomorphology, glucose and lipid metabolism, intestinal microbiota, and the associated molecular mechanisms were assessed. Pathological examination revealed that exposure to 1 and 5 mg/kg/day DP induced hepatic damage, characterized by structural disarray of the hepatic cords and vacuolar degeneration of liver cells, while 0.5 and 1 mg/kg/day DP exposure led to significant triglycerides (TG) accumulation in the liver. Metabolite analysis showed a marked increase in hepatic pyruvate, glycogen, and TG in mice exposed to 0.5 and 1 mg/kg/day DP, while 5 mg/kg/day exposure resulted in elevated glycogen levels and reduced pyruvate and glucose concentrations. The underlying mechanisms involved the transcriptional regulation of key enzymes related to glucose and lipid metabolism, as well as the activation of the PI3K/AKT pathway. Exposure to 5 mg/kg/day DP upregulated genes associated with glycogenesis (GK), glycolysis (HK1 and PK), and fatty acid synthesis (SREBP1, FAS, and ACC1), while downregulating genes involved in gluconeogenesis (PCK1) and fatty acid β-oxidation (CPT1 and PPARA). The activated PI3K/AKT pathway regulated key proteins (GLUT4, GSK3β, and FoxO1), playing distinct roles in glucose and lipid metabolism. High-throughput 16S rDNA sequencing revealed that 5 mg/kg/day DP exposure altered the composition and diversity of intestinal microbiota, reducing the relative abundance of beneficial probiotics at both the phylum and genus levels. These findings offer new insights into the complex mechanisms through which DP affects glucose and lipid metabolism in mammals, contributing to a more comprehensive evaluation of its toxicity.
Collapse
Affiliation(s)
- Wen Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Qiyu He
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Caiyu Yue
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Tong Xu
- PET/CT Center, Key Laboratory of Functional Molecular Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xiaoming Hang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
5
|
Herkert NJ, Getzinger GJ, Hoffman K, Young AS, Allen JG, Levasseur JL, Ferguson PL, Stapleton HM. Wristband Personal Passive Samplers and Suspect Screening Methods Highlight Gender Disparities in Chemical Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15497-15510. [PMID: 39171898 PMCID: PMC12012859 DOI: 10.1021/acs.est.4c06008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Wristband personal samplers enable human exposure assessments for a diverse range of chemical contaminants and exposure settings with a previously unattainable scale and cost-effectiveness. Paired with nontargeted analyses, wristbands can provide important exposure monitoring data to expand our understanding of the environmental exposome. Here, a custom scripted suspect screening workflow was developed in the R programming language for feature selection and chemical annotations using gas chromatography-high-resolution mass spectrometry data acquired from the analysis of wristband samples collected from five different cohorts. The workflow includes blank subtraction, internal standard normalization, prediction of chemical uses in products, and feature annotation using multiple library search metrics and metadata from PubChem, among other functionalities. The workflow was developed and validated against 104 analytes identified by targeted analytical results in previously published reports of wristbands. A true positive rate of 62 and 48% in a quality control matrix and wristband samples, respectively, was observed for our optimum set of parameters. Feature analysis identified 458 features that were significantly higher on female-worn wristbands and only 21 features that were significantly higher on male-worn wristbands across all cohorts. Tentative identifications suggest that personal care products are a primary driver of the differences observed.
Collapse
Affiliation(s)
| | - Gordon J. Getzinger
- School of Environmental Sustainability, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, USA
| | - Anna S. Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Joseph G. Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - P. Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
6
|
Yeshoua B, Romero Castillo H, Monaghan M, van Gerwen M. A Review of the Association between Exposure to Flame Retardants and Thyroid Function. Biomedicines 2024; 12:1365. [PMID: 38927574 PMCID: PMC11201907 DOI: 10.3390/biomedicines12061365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Flame retardants have been shown to cause widespread physiological effects, in particular on endocrine organs such as the thyroid. This review aims to provide an overview of the literature on the association between flame retardants and thyroid function within humans. A search in the National Library of Medicine and National Institutes of Health PubMed database through January 2024 yielded 61 studies that met the inclusion criteria. The most frequently analyzed flame retardants across all thyroid hormones were polybrominated diphenyl ethers (PBDEs), in particular BDE-47 and BDE-99. Ten studies demonstrated exclusively positive associations between flame retardants and thyroid stimulating hormone (TSH). Six studies demonstrated exclusively negative associations between flame retardants and TSH. Twelve studies demonstrated exclusively positive associations for total triiodothyronine (tT3) and total thyroxine (tT4). Five and eight studies demonstrated exclusively negative associations between flame retardants and these same thyroid hormones, respectively. The effect of flame retardants on thyroid hormones is heterogeneous; however, the long-term impact warrants further investigation. Vulnerable populations, including indigenous people, individuals working at e-waste sites, firefighters, and individuals within certain age groups, such as children and elderly, are especially critical to be informed of risk of exposure.
Collapse
Affiliation(s)
- Brandon Yeshoua
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (B.Y.); (H.R.C.); (M.M.)
| | - Horacio Romero Castillo
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (B.Y.); (H.R.C.); (M.M.)
| | - Mathilda Monaghan
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (B.Y.); (H.R.C.); (M.M.)
| | - Maaike van Gerwen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (B.Y.); (H.R.C.); (M.M.)
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
7
|
Bao J, Ren H, Han J, Yang X, Li Y, Jin J. Levels, tissue distribution and isomer stereoselectivity of Dechlorane Plus in humans: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166156. [PMID: 37572901 DOI: 10.1016/j.scitotenv.2023.166156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Exposure of human tissues to Dechlorane Plus (DP) has raised public concern because of the multiple health threats it may pose to humans. Therefore, it is important to summarize the main findings of previous studies on DP in human tissues and to provide potential guidance for future studies. In this paper, DP levels in different populations and human tissues worldwide since 2009 were systematically reviewed. DP levels in human tissues of workers in e-waste dismantling sites in Guangdong Province, China (median 190 ng·g-1 lw in serum) and DP manufacturing plants in Jiangsu Province, China (mean 857 ng·g-1 lw in whole-blood) are the highest reported worldwide. DP levels in tissues of the general population in recent studies are close to those of residents near e-waste dismantling sites, which should be of concern. DP levels in different human tissues were found to be positively correlated with a pattern of blood > breast milk > adipose tissue. The distribution of DP in different human tissues is mainly lipid-driven and may also be influenced by the interaction of DP with proteins such as human serum albumin. Most of the past studies determined the isomer stereoselectivity of DP in human tissues only by comparing the composition of DP in commercial DP products and human tissues, which lacks evidence of mechanism. Recently, a significantly different affinity of DP isomers for proteins was found, which seems to confirm the isomer selectivity of DP in human tissues. We simulated the binding of DP to human serum albumin and DP to thyroid hormone receptor β by molecular docking and found differences in the binding behavior of syn-DP and anti-DP to the selected proteins. Molecular docking seems to be a feasible approach for future studies to predict and reveal the mechanisms of DP behavior and health effects in human tissues.
Collapse
Affiliation(s)
- Junsong Bao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Hongmin Ren
- Department of Chemical Engineering, Hebei Petroleum University of Technology, 2 Xueyuanlu Street, Shuangqiao District, Chengde 067000, China
| | - Jiali Han
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xinrui Yang
- Hainan Ecological Environmental Monitoring Center, 98 Baiju Avenue, Haikou 571126, China
| | - Yingxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
8
|
Hu L, Zhou B, Li Y, Song L, Wang J, Yu M, Li X, Liu L, Kou J, Wang Y, Hu X, Mei S. Independent and combined effects of exposure to organophosphate esters on thyroid hormones in children and adolescents. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3833-3846. [PMID: 36592286 DOI: 10.1007/s10653-022-01464-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Toxicological studies suggest that organophosphate esters (OPEs) may impair thyroid function. Epidemiological evidence, related to children and adolescents, has not been reported, and little is known about the combined effects of exposure to OPE mixtures. In this study, we collected information of 1156 children and adolescents (aged 6-18 years, 48.4% males) from a cross-sectional study in Liuzhou, China, and measured the levels of 15 urinary OPE metabolites and 5 serum thyroid hormones. Multivariate linear regression and quantile g-computation (QGC) approach were used to examine the associations which adjusted for demographic and lifestyle characteristics. Few participants had levels of triiodothyronine (T3) and free thyroxine (FT4) outside age-specific pediatric ranges. QGC analyses showed that individuals in the second, third, and fourth quartiles (Q2-Q4) of exposure had 3.93% (2.14%, 5.75%), 8.01% (4.32%, 11.8%), and 12.3% (6.54%, 18.3%) higher T3 than those in the first quartile (Q1), with similar pattern for free triiodothyronine (FT3). Individuals in Q2 and Q3 had higher thyroid-stimulating hormone (TSH) than those in Q1, but no differences were observed in TSH between Q1-Q4. In contrast, compared to the lowest quartile, FT4 was lower for those in Q2 (- 1.54%; 95% CI: - 3.02%, -0.04%), Q3 (-3.07%; 95% CI: -5.95%, -0.09%), and Q4 (-4.56%; 95% CI: - 8.80%, - 0.13%). These associations were consistent with the results from multivariate linear regression. When stratified by sex, OPE exposure (individual or mixtures) was associated with increased T3 and FT3 in males and decreased FT4 in females. This study provides the first evidence to characterize the thyroid-disrupting effects of OPE exposure in children and adolescents.
Collapse
Affiliation(s)
- Liqin Hu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Lulu Song
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Wang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Jing Kou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xijiang Hu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| |
Collapse
|
9
|
Steiniche T, Wang S, Chester E, Mutegeki R, Rothman JM, Wrangham RW, Chapman CA, Venier M, Wasserman MD. Associations between faecal chemical pollutants and hormones in primates inhabiting Kibale National Park, Uganda. Biol Lett 2023; 19:20230005. [PMID: 37221860 PMCID: PMC10206455 DOI: 10.1098/rsbl.2023.0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/05/2023] [Indexed: 05/25/2023] Open
Abstract
While anthropogenic pollutants are known to be a threat to primates, our understanding of exposure to pollutants in situ and their sub-lethal effects is still limited. We used non-invasive biomonitoring to examine associations between faecal concentrations of 97 chemical pollutants and faecal hormone metabolites of cortisol and oestradiol in four primate species inhabiting Kibale National Park, Uganda (chimpanzees-Pan troglodytes, olive baboons-Papio anubis, red colobus-Piliocolobus tephrosceles and red-tailed monkeys-Cercopithecus ascanius). Across all species (n = 71 samples), results demonstrated positive associations of organochlorine pesticides (OCPs) (β = 0.143, p = 0.020) and organophosphate esters (β = 0.112, p = 0.003) with cortisol in adult females. Additionally, we observed positive associations of OCPs (β = 0.192, p = 0.013) and brominated flame retardants (β = 0.176, p = 0.004) with cortisol in juveniles. Results suggest that cumulative pesticides and flame retardants are disruptive to endocrine function in these populations, which could have implications for development, metabolism and reproduction. Our study further demonstrates that faeces can be an important, non-invasive matrix for examining pollutant-hormone associations in wild primates and other critical wildlife populations.
Collapse
Affiliation(s)
- Tessa Steiniche
- Department of Anthropology, Indiana University, Bloomington, 47405, Indiana
| | - Shaorui Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Emily Chester
- Department of Anthropology, Indiana University, Bloomington, 47405, Indiana
| | - Richard Mutegeki
- Makerere University Biological Field Station, Kibale National Park, Uganda
| | - Jessica M. Rothman
- Department of Anthropology, City University of New York, Hunter College, New York City, 10065, NY, USA
- Conservation Department, Uganda Wildlife Authority, Kampala, Uganda
| | - Richard W. Wrangham
- Kibale Chimpanzee Project, and Department of Human Evolutionary Biology, Harvard University, Cambridge, 02138, MA, UK
| | - Colin A. Chapman
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada V9R 5S5
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, 4041, South Africa
- Shaanxi Key Laboratory for Animal Conservation, NorthwestUniversity, Xi'an, 710069, People's Republic of China
- Wilson Center, Washington, DC, 20004, USA
| | - Marta Venier
- O'Neill School of Environmental and Public Affairs, Indiana University, Bloomington, 47405, Indiana
| | | |
Collapse
|
10
|
Zhang G, Meng L, Guo J, Guan X, Liu M, Han X, Li Y, Zhang Q, Jiang G. Exposure to novel brominated and organophosphate flame retardants and associations with type 2 diabetes in East China: A case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162107. [PMID: 36764545 DOI: 10.1016/j.scitotenv.2023.162107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The alternative flame retardants, novel brominated flame retardants (NBFRs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment and biota and may induce endocrine disruption effects. Associations between traditional endocrine-disrupting chemicals and type 2 diabetes have been extensively reported in epidemiological studies. However, the effects of NBFRs and OPFRs in humans have not been reported to date. This paper reports a case-control study of 344 participants aged 25-80 years from Shandong Province, East China, where potential associations between serum NBFR and OPFR concentrations and type 2 diabetes are assessed for the first time. After adjusting for covariates (i.e., age, sex, body mass index, smoking status, alcohol consumption, triglycerides, and total cholesterol), serum concentrations of pentabromotoluene, 2,3-dibromopropyl 2,4,6-tribromophenyl ether, tri-n-propyl phosphate, triphenyl phosphate, and tris (2-ethylhexyl) phosphate were significantly positively associated with type 2 diabetes. In the control group, decabromodiphenyl ethane and triphenyl phosphate were significantly positively associated with fasting plasma glucose, triglycerides, and high-density lipoprotein cholesterol. In the quantile g-computation model, significant positive mixture effect was found between the flame retardants mixtures and high-density lipoprotein cholesterol levels, and decabromodiphenyl ethane contributed the largest positive weights to the mixture effect. Overall, these findings suggest that exposure to NBFRs and OPFRs may promote type 2 diabetes.
Collapse
Affiliation(s)
- Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Jiehong Guo
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, MI 49931, USA
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Han
- Sinopec Research Institute of Petroleum Processing CO., LTD., Beijing 100083, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
11
|
Liu Y, Wang D, Li L, Li D. Assessing disparities in Americans' exposure to PCBs and PBDEs based on NHANES pooled biomonitoring data. J Am Stat Assoc 2023; 118:1538-1550. [PMID: 38046816 PMCID: PMC10691854 DOI: 10.1080/01621459.2023.2195546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
The National Health and Nutrition Examination Survey (NHANES) has been continuously biomonitoring Americans' exposure to two families of harmful environmental chemicals: polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). However, biomonitoring these chemicals is expensive. To save cost, in 2005, NHANES resorted to pooled biomonitoring; i.e., amalgamating individual specimens to form a pool and measuring chemical levels from pools. Despite being publicly available, these pooled data gain limited applications in health studies. Among the few studies using these data, racial/age disparities were detected, but there is no control for confounding effects. These disadvantages are due to the complexity of pooled measurements and a dearth of statistical tools. Herein, we developed a regression-based method to unzip pooled measurements, which facilitated a comprehensive assessment of disparities in exposure to these chemicals. We found increasing dependence of PCBs on age and income, whereas PBDEs were the highest among adolescents and seniors and were elevated among the low-income population. In addition, Hispanics had the lowest PCBs and PBDEs among all demographic groups after controlling for potential confounders. These findings can guide the development of population-specific interventions to promote environmental justice. Moreover, both chemical levels declined throughout the period, indicating the effectiveness of existing regulatory policies.
Collapse
Affiliation(s)
- Yan Liu
- School of Public Health, University of Nevada, Reno, NV 89557, USA
| | - Dewei Wang
- Department of Statistics, University of South Carolina, Columbia, SC 29208, USA
| | - Li Li
- School of Public Health, University of Nevada, Reno, NV 89557, USA
| | - Dingsheng Li
- School of Public Health, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
12
|
Cui M, Wu X, Yuan L, Zhai Y, Liang X, Wang Z, Li J, Xu L, Song W. Exposure to tris(2,6-dimethylphenyl) phosphate interferes with sexual differentiation via estrogen receptors 2a and 2b in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130525. [PMID: 37055955 DOI: 10.1016/j.jhazmat.2022.130525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/19/2023]
Abstract
Tris(2,6-dimethylphenyl) phosphate (TDMPP), an emerging organophosphate flame retardant, is frequently detected in multiple environmental media. Although TDMPP has been proven as a compound with estrogenic activity, its feminizing effects on reproductive system remain unclear. This study investigated the adverse effects of TDMPP on gonadal development by exposing zebrafish for 105 days from 15 days post-fertilization. Exposure to TDMPP (0.5 and 5 μM, corresponding to about 200 and 2000 μg/L) induced ovarian formation in aromatase mutant (cyp19a1a-/-) line which normally presents all-male phenotype for deficiency of endogenous estrogen (E2), suggesting its feminizing effect on sexual differentiation. In addition, TDMPP also interfered with other aspects of reproduction by delaying puberty onset, retarding sexual maturation, impairing gametogenesis and subfertility. Molecular docking and reporter gene assay indicated that all three nuclear estrogen receptors (nERs) can be binded to and activated by TDMPP. Using a series of nERs mutant lines, we confirmed the indispensable role of esr2a and esr2b in mediating the feminizing effects of TDMPP. Further analysis revealed that the prominent effects of TDMPP on sexual differentiation correlated to upregulation of female-promoting genes and downregulation of male-promoting genes. Taken together, the present study provided unequivocal genetic evidence for estrogenic effects of TDMPP on reproductive system and its molecular mechanisms of action.
Collapse
Affiliation(s)
- Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiling Wu
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Lei Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yue Zhai
- School of Public Health, Jilin University, Changchun, China
| | - Xin Liang
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zihan Wang
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, China
| | - Lichun Xu
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
13
|
Okeme JO, Koelmel JP, Johnson E, Lin EZ, Gao D, Pollitt KJG. Wearable Passive Samplers for Assessing Environmental Exposure to Organic Chemicals: Current Approaches and Future Directions. Curr Environ Health Rep 2023:10.1007/s40572-023-00392-w. [PMID: 36821032 DOI: 10.1007/s40572-023-00392-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW We are continuously exposed to dynamic mixtures of airborne contaminants that vary by location. Understanding the compositional diversity of these complex mixtures and the levels to which we are each exposed requires comprehensive exposure assessment. This comprehensive analysis is often lacking in population-based studies due to logistic and analytical challenges associated with traditional measurement approaches involving active air sampling and chemical-by-chemical analysis. The objective of this review is to provide an overview of wearable passive samplers as alternative tools to active samplers in environmental health research. The review highlights the advances and challenges in using wearable passive samplers for assessing personal exposure to organic chemicals and further presents a framework to enable quantitative measurements of exposure and expanded use of this monitoring approach to the population scale. RECENT FINDINGS Overall, wearable passive samplers are promising tools for assessing personal exposure to environmental contaminants, evident by the increased adoption and use of silicone-based devices in recent years. When combined with high throughput chemical analysis, these exposure assessment tools present opportunities for advancing our ability to assess personal exposures to complex mixtures. Most designs of wearable passive samplers used for assessing exposure to semi-volatile organic chemicals are currently uncalibrated, thus, are mostly used for qualitative research. The challenge with using wearable samplers for quantitative exposure assessment mostly lies with the inherent complexity in calibrating these wearable devices. Questions remain regarding how they perform under various conditions and the uncertainty of exposure estimates. As popularity of these samplers grows, it is critical to understand the uptake kinetics of chemicals and the different environmental and meteorological conditions that can introduce variability. Wearable passive samplers enable evaluation of exposure to hundreds of chemicals. The review presents the state-of-the-art of technology for assessing personal exposure to environmental chemicals. As more studies calibrate wearable samplers, these tools present promise for quantitatively assessing exposure at both the individual and population levels.
Collapse
Affiliation(s)
- Joseph O Okeme
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Emily Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Dong Gao
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA.
| |
Collapse
|
14
|
Tang J, Ma S, Hu X, Lin M, Li G, Yu Y, An T. Handwipes as indicators to assess organophosphate flame retardants exposure and thyroid hormone effects in e-waste dismantlers. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130248. [PMID: 36327841 DOI: 10.1016/j.jhazmat.2022.130248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Dermal exposure is increasingly recognized as an important pathway for organic pollutant exposure. However, data on dermal exposure are limited, particularly with respect to the health effects. This study evaluated association between organophosphorus flame retardants (OPFRs) in handwipes and internal body burden on workers and adult residents in an electronic waste (e-waste) dismantling area. The impact of dermal exposure to OPFRs on thyroid hormones (THs) served as a biomarker for early effects. Triphenyl phosphate (TPhP) was the most detected compound in handwipes, with median levels of 1180, 200, and 24.0 ng in people identified as e-waste bakers, e-waste dismantlers, and adult residents. Among e-waste dismantlers, TPhP levels in handwipes were positively correlated with paired serum TPhP and urinary diphenyl phosphate (DPhP) levels. In multiple linear regression models controlling for sex, age and smoking, TPhP levels in handwipes of e-waste dismantlers were significantly negatively correlated with three THs used to evaluate thyroid function: serum reverse 3,3',5-triiodo-L-thyronine (rT3), 3,3'-diiodo-L-thyronine (3,3'-T2), and 3,5-diiodo-L-thyronine (3,5-T2). These findings suggest that handwipes can act as non-invasive exposure indicators to assess body burden of dermal exposure to TPhP and health effects on THs of e-waste dismantlers. This study highlights importance of OPFR effect on human THs through dermal exposure.
Collapse
Affiliation(s)
- Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
15
|
Tris(1,3-dichloro-2-propyl) phosphate is a metabolism-disrupting chemical in male mice. Toxicol Lett 2023; 374:31-39. [PMID: 36493961 PMCID: PMC9869283 DOI: 10.1016/j.toxlet.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is an organophosphate flame retardant. The primary TDCPP metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCPP), is detectable in the urine of over 90 % of Americans. Epidemiological studies show sex-specific associations between urinary BDCPP levels and metabolic syndrome, which is an established risk factor for type 2 diabetes, heart disease, and stroke. We used a mouse model to determine whether TDCPP exposure disrupts glucose homeostasis. Six-week old male and female C57BL/6J mice were given ad libitum access to diets containing vehicle (0.1 % DMSO) and TDCPP resulting in the following treatment groups: 0 mg/kg/day, 0.02 mg/kg/day, 1 mg/kg/day, or 100 mg/kg/day. After being on the experimental diet for five weeks without interruption, body composition was analyzed, glucose and insulin tolerance tests were performed, and fasting glucose and insulin levels were quantified. TDCPP at 100 mg/kg/day caused male sex-specific adiposity, fasting hyperglycemia, and insulin resistance. TDCPP-induced modulation of nuclear receptor activation was investigated using an in vitro screen to identify potential mechanisms of metabolic disruption. TDCPP activated farnesoid X receptor (FXR) and pregnane X receptor (PXR), and inhibited the androgen receptor (AR). PXR target genes, but not FXR target genes, were upregulated in livers from mice exposed to 100 mg TDCPP/kg/day. Interestingly, PXR target genes were differentially expressed in livers from both males and females. It remains to be determined whether TDCPP-induced metabolic disruption occurs via modulation of nuclear receptor activity. Taken together, these studies build upon the association of TDCPP exposure and metabolic syndrome in humans by identifying sex-specific effects of TDCPP on glucose homeostasis in mice.
Collapse
|
16
|
Young AS, Herkert N, Stapleton HM, Coull BA, Hauser R, Zoeller T, Behnisch PA, Felzel E, Brouwer A, Allen JG. Hormone receptor activities of complex mixtures of known and suspect chemicals in personal silicone wristband samplers worn in office buildings. CHEMOSPHERE 2023; 315:137705. [PMID: 36592838 PMCID: PMC9937064 DOI: 10.1016/j.chemosphere.2022.137705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Humans are exposed to increasingly complex mixtures of hormone-disrupting chemicals from a variety of sources, yet, traditional research methods only evaluate a small number of chemicals at a time. We aimed to advance novel methods to investigate exposures to complex chemical mixtures. Silicone wristbands were worn by 243 office workers in the USA, UK, China, and India during four work shifts. We analyzed extracts of the wristbands for: 1) 99 known (targeted) chemicals; 2) 1000+ unknown chemical features, tentatively identified through suspect screening; and 3) total hormonal activities towards estrogen (ER), androgen (AR), and thyroid hormone (TR) receptors in human cell assays. We evaluated associations of chemicals with hormonal activities using Bayesian kernel machine regression models, separately for targeted versus suspect chemicals (with detection ≥50%). Every wristband exhibited hormonal activity towards at least one receptor: 99% antagonized TR, 96% antagonized AR, and 58% agonized ER. Compared to men, women were exposed to mixtures that were more estrogenic (180% higher, adjusted for country, age, and skin oil abundance in wristband), anti-androgenic (110% higher), and complex (median 836 detected chemical features versus 780). Adjusted models showed strong associations of jointly increasing chemical concentrations with higher hormonal activities. Several targeted and suspect chemicals were important co-drivers of overall mixture effects, including chemicals used as plasticizers, fragrance, sunscreen, pesticides, and from other or unknown sources. This study highlights the role of personal care products and building microenvironments in hormone-disrupting exposures, and the substantial contribution of chemicals not often identifiable or well-understood to those exposures.
Collapse
Affiliation(s)
- Anna S Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA.
| | - Nicholas Herkert
- Nicholas School of the Environment, Duke University, 9 Circuit Dr, Durham, NC 27710, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, 9 Circuit Dr, Durham, NC 27710, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, Morrill Science Center, Amherst 01003, USA
| | - Peter A Behnisch
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, Netherlands
| | - Emiel Felzel
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, Netherlands
| | - Joseph G Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
17
|
Liu M, Li A, Meng L, Zhang G, Guan X, Zhu J, Li Y, Zhang Q, Jiang G. Exposure to Novel Brominated Flame Retardants and Organophosphate Esters and Associations with Thyroid Cancer Risk: A Case-Control Study in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17825-17835. [PMID: 36468700 DOI: 10.1021/acs.est.2c04759] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel brominated flame retardant (NBFR) and organophosphate ester (OPE) exposure may engender adverse effects on human health. However, present epidemiological information regarding the effects of such exposure is limited and controversial. In this case-control study, 481 serum samples were collected from patients with thyroid cancer (n = 242) and healthy controls (n = 239) in Shandong Province, eastern China. The levels of NBFRs and OPEs, thyroid hormones, and serum lipid parameters were measured in all the participants. Pentabromotoluene, 2,3-dibromopropyl 2,4,6 tribromophenyl ether, decabromodiphenylethane (DBDPE), tris (2-chloroethyl) phosphate (TCEP), and triphenyl phosphate (TPP) were widely detected (detection frequency > 60%) in all the participants. A significantly high risk association was found between exposure of NBFRs and OPEs (namely 1,2,3,4,5-pentabromobenzene, DBDPE, tri-n-propyl phosphate, tri[(2R)-1-chloro-2-propyl] phosphate, tris (1,3-dichloro-2-propyl) phosphate, and tris (2-butoxyethyl) phosphate) and thyroid cancer in both males and females. In the females of the control group, TCEP levels exhibited a significantly positive association with thyroid-stimulating hormone and a negative association with triiodothyronine (T3), free triiodothyronine (FT3), and free thyroxine (FT4) levels. Weighted quantile sum regression evaluated the mixed effects of the compounds on thyroid hormones levels and thyroid cancer. As a result, TPP accounted for the majority of the T3, thyroxine, and FT3 amounts. Our results suggest that NBFR and OPE exposure contributes to alterations in thyroid function, thereby increasing thyroid cancer risk.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Jiang Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310000, China
| |
Collapse
|
18
|
Kuiper JR, Vuong AM, Lanphear BP, Calafat AM, Ospina M, Cecil KM, Xu Y, Yolton K, Kalkwarf HJ, Braun JM, Chen A, Buckley JP. Early life organophosphate ester exposures and bone health at age 12 years: The Health Outcomes and Measures of the Environment (HOME) Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158246. [PMID: 36030851 PMCID: PMC9606835 DOI: 10.1016/j.scitotenv.2022.158246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND No human studies have evaluated early life organophosphate ester (OPE) exposures with bone health outcomes, despite evidence of osteotoxicity. OBJECTIVES We assessed associations of urinary OPE metabolites measured across early life with areal bone mineral density (aBMD) and bone mineral content (BMC) at age 12 years. METHODS Among 223 mother-child dyads enrolled in the Health Outcomes and Measures of the Environment (HOME) Study, we quantified concentrations of bis-2-chloroethyl phosphate (BCEP), bis-(1,3-dichloro-2-propyl) (BDCIPP), di-n-butyl phosphate (DnBP), and diphenyl phosphate (DPHP) in urine collected from mothers during pregnancy and children at ages 1, 2, 3, 5, and 8 years. At age 12 years, we performed dual energy x-ray absorptiometry and calculated aBMD and BMC z-scores at six skeletal sites. We estimated overall and sex-stratified BMD/BMC z-score differences per interquartile range (IQR) increase in OPE concentrations at multiple exposure timepoints: gestation (average) and 1-3 (average), 5, and 8 years. RESULTS In adjusted models, overall associations of BCEP and BDCIPP with total hip and 1/3rd distal radius aBMD and BMC varied significantly by exposure timepoint, as did BDCIPP with whole body aBMD. For example, differences (95 % CI) in total hip aBMD z-score per IQR increase in BDCIPP were 0.33 (0.01, 0.64), -0.10 (-0.34, 0.14), -0.18 (-0.40, 0.05), and 0.14 (-0.09, 0.38) for concentrations during gestation and at 1-3, 5, and 8 years, respectively. Overall DnBP and DPHP associations were generally null at all timepoints. We observed sex-specific associations for some timepoints and skeletal sites. For example, an IQR increase in 8-year DPHP was associated with a 0.21 (0.05, 0.38) greater total hip aBMD z-score among females but -0.19 (-0.43, 0.05) lower z-score among males. DISCUSSION Early life OPE exposures may be associated with sex- and exposure period-dependent alterations in early adolescent bone mineral accrual and strength.
Collapse
Affiliation(s)
- Jordan R Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Heidi J Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
19
|
Zhang Y, Wu M, Xu M, Hu P, Xu X, Liu X, Cai W, Xia J, Wu D, Xu X, Yu G, Cao Z. Distribution of flame retardants among indoor dust, airborne particles and vapour phase from Beijing: spatial-temporal variation and human exposure characteristics. ENVIRONMENT INTERNATIONAL 2022; 170:107557. [PMID: 36209599 DOI: 10.1016/j.envint.2022.107557] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The occurrence and distribution of 10 brominated flame retardants (BFRs) and 10 organophosphate flame retardants (OPFRs) were investigated in indoor dust, total suspended particles (TSP), and vapour phase from offices (n = 10), homes (n = 9), and day-care centres (n = 10) in Beijing, China. Three types of samples were collected biweekly from one office and one home over a year to examine temporal trends. BFRs in dust significantly correlated with those in TSP, while OPFRs significantly correlated among all three matrices. In addition, BFRs in dust (ng/g) and TSP (pg/m3) exhibited similar temporal trends with higher levels in the cold season, whereas OPFRs in TSP and vapour phase (pg/m3) showed similar temporal trends with higher levels in the warm season. The geometric mean concentrations of BFRs and OPFRs in the three matrices from the above mentioned three types of indoor microenvironments were used for exposure and health risk estimation, and ∑7OPFRs showed much higher hazard index (HI) values than ∑10BFRs for all subpopulations, and inhalation of OPFRs was a major risk source. With the volatility of flame retardants (FRs) decreasing, the contribution of dust ingestion and dermal absorption showed an increasing trend, and the contribution of inhalation exhibited a gradual decreasing trend, which implied the dominant exposure pathway to FRs is strongly related to the vapour pressure (25 °C, Pa) of these substances. Using a single type of microenvironment or the collection of samples at a single point in time can lead to overestimation or underestimation of overall exposure and risk for people to some extent. The correlations of FRs in dust, TSP, and vapour phase from indoor microenvironments, as well as their temporal trends were first reported in this study, which will provide a basis for more accurate FR exposure assessments in the future.
Collapse
Affiliation(s)
- Yacai Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Min Wu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China; State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing, 100011, China
| | - Menghan Xu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xin Xu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaotu Liu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China; School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Wenwen Cai
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jing Xia
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| | - Dongkui Wu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xiaopeng Xu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
20
|
DeLay K, Lin EZ, Koelmel JP, Bornman R, Obida M, Chevrier J, Godri Pollitt KJ. Personal air pollutant exposure monitoring in South African children in the VHEMBE birth cohort. ENVIRONMENT INTERNATIONAL 2022; 170:107524. [PMID: 36260950 PMCID: PMC9982749 DOI: 10.1016/j.envint.2022.107524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The burden of disease associated with environmental exposures disproportionately impacts residents of low- and middle-income countries. Children living in rural regions of these countries may experience higher exposure to insecticides from indoor residual spraying used for malaria control and household air pollution. This study evaluated environmental exposures of children living in a rural region of South Africa. Quantifying exposure levels and identifying characteristics that are associated with exposure in this geographic region has been challenging due to limitations with available monitoring techniques. Wearable passive samplers have recently been shown to be a convenient and reliable tool for assessing personal exposures. In this study, a passive sampler wristband, known as Fresh Air wristband, was worn by 49 children (five-years of age) residing in the Limpopo province of South Africa. The study leveraged ongoing research within the Venda Health Examination of Mothers, Babies, and their Environment (VHEMBE) birth cohort. A wide range of chemicals (35 in total) were detected using the wristbands, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, phthalates, and organophosphate esters (OPEs) flame retardants. Higher concentrations of PAHs were observed among children from households that fell below the food poverty threshold, did not have access to electric cookstoves/burners, or reported longer times of cooking or burning materials during the sampling period. Concentrations of p,p'-DDD and p,p'-DDT were also found to be elevated for children from households falling below the food poverty threshold as well as for children whose households were sprayed for malaria control within the previous 1.5 years. This study demonstrates the feasibility of using passive sampler wristbands as a non-invasive method for personal exposure assessment of children in rural regions of South Africa to complex mixtures environmental contaminants derived from a combination of sources. Future studies are needed to further identify and understand the effects of airborne environmental contaminants on childhood development and strategies to mitigate exposures.
Collapse
Affiliation(s)
- Kayley DeLay
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT 06520, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Riana Bornman
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Muvhulawa Obida
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada.
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT 06520, USA.
| |
Collapse
|
21
|
Lépine M, Verreault J. Biotransformation of Dec-604 and potential effect on thyroid deiodinase activity in highly flame retardant-exposed gulls. ENVIRONMENTAL RESEARCH 2022; 215:114268. [PMID: 36075477 DOI: 10.1016/j.envres.2022.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Several halogenated flame retardants (HFRs) have been identified as thyroid disruptors in birds including the polybrominated diphenyl ether (PBDE) mixtures, which have been replaced with other HFRs such as Dechlorane-604 (Dec-604). Dec-604 Component B (Dec-604 CB), a putative debrominated product of Dec-604, has been frequently reported in urban-adapted ring-billed gulls (Larus delawarensis) breeding in the Montreal area (QC, Canada). The metabolic pathways of Dec-604 are yet to be characterized, although the occurrence of Dec-604 CB in gulls may suggest that enzyme-mediated dehalogenation may occur, potentially involving the thyroid deiodinases. The objective of this study was to investigate the effect of Dec-604 on type 1 deiodinase (DIO1) in the presence of thyroxine (T4) in an in vitro DIO1 assay using liver microsomes of ring-billed gulls that are highly exposed to HFRs in the Montreal area, and to determine whether DIO1 is involved in the in vitro debromination of Dec-604. We tested the in vitro activity of DIO1 in gull liver microsomes in the presence of five concentrations of Dec-604 ranging from 0.86 to 86.21 nM. HFR concentrations (Σ40HFR) were also determined in liver samples of gulls. Results showed that total DIO1 activity in gull liver microsomes was increased by three of the five concentrations of Dec-604. No relationship between liver Σ40HFR concentrations and DIO1 activity was observed, except for T2 formation rates that significantly decreased with increasing liver HFR concentrations. Moreover, greater Dec-604 CB to Dec-604 concentration ratios in activated gull microsomes (with the DIO1 cofactor dithiothreitol) were found at the intermediate Dec-604 concentration compared to controls. These results suggested that liver microsome DIO1 activity may be perturbed in ring-billed gulls exposed to Dec-604, and be involved at least in part, in the debromination of Dec-604 leading to the formation of Dec-604 CB.
Collapse
Affiliation(s)
- Madeleine Lépine
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada.
| |
Collapse
|
22
|
Yoshida T, Mimura M, Sakon N. Exposure to organophosphorus compounds of Japanese children and the indoor air quality in their residences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158020. [PMID: 35973537 DOI: 10.1016/j.scitotenv.2022.158020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Several organophosphorus compounds such as organophosphate pesticides (OPPs) and trialkylphosphates (TAPs) are suspected to inhibit cholinesterase activities, to affect endocrine systems or to possibly be carcinogenic. To evaluate their adverse effects on health with chronic exposure in the general population, especially in children, we measured the household exposure to OPPs and TAPs by Japanese children via all exposure pathways and the contribution of indoor air quality. First-morning void urine was collected from subjects aged 6 to 15 years (n = 132), and airborne organophosphorus compounds were sampled in the subject's bedroom for 24 h. Airborne levels of nine OPPs and three TAPs and their urinary metabolites were determined. No significant correlations were detected for any compounds between their airborne concentrations and the urinary excretion amounts of their corresponding metabolites. The estimated daily intakes were as follows (median, μg/kg b.w./d): chlorpyrifos, 0.042; diazinon, 0.067; tri-n-butylphosphate, 0.094. The 95th percentiles of the intakes for fenthion, fenitrothion and the above three compounds did not exceed their reference limit values, although one subject had a daily intake of tri-n-butylphosphate that was about twice its reference limit value. The concentration levels of the urinary metabolite of tri-n-butylphosphate in our subjects tended to be higher than those for children in many other countries. The fractions of the amounts absorbed by inhalation to the amounts absorbed via all of the exposure pathways was only 2.3 % (median) for tri-n-butylphosphate. Inhalation did not seem to contribute very much as an absorption pathway of the organophosphorus compounds in these Japanese children while they were at home. The exposure amounts of OPPs were not suggested to be high enough to adversely affect the health of these children at present on the basis of their daily intakes compared to their reference limit values.
Collapse
Affiliation(s)
- Toshiaki Yoshida
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan.
| | - Mayumi Mimura
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Naomi Sakon
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| |
Collapse
|
23
|
Samon SM, Hammel SC, Stapleton HM, Anderson KA. Silicone wristbands as personal passive sampling devices: Current knowledge, recommendations for use, and future directions. ENVIRONMENT INTERNATIONAL 2022; 169:107339. [PMID: 36116363 PMCID: PMC9713950 DOI: 10.1016/j.envint.2022.107339] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 05/13/2023]
Abstract
Personal chemical exposure assessment is necessary to determine the frequency and magnitude of individual chemical exposures, especially since chemicals present in everyday environments may lead to adverse health outcomes. In the last decade, silicone wristbands have emerged as a new chemical exposure assessment tool and have since been utilized for assessing personal exposure to a wide range of chemicals in a variety of populations. Silicone wristbands can be powerful tools for quantifying personal exposure to chemical mixtures in a single sample, associating exposure with health outcomes, and potentially overcoming some of the challenges associated with quantifying the chemical exposome. However, as their popularity grows, it is crucial that they are used in the appropriate context and within the limits of the technology. This review serves as a guide for researchers interested in utilizing silicone wristbands as a personal exposure assessment tool. Along with briefly discussing the passive sampling theory behind silicone wristbands, this review performs an in-depth comparison of wristbands to other common exposure assessment tools, including biomarkers of exposure measured in biospecimens, and evaluates their utility in exposure assessments and epidemiological studies. Finally, this review includes recommendations for utilizing silicone wristbands to evaluate personal chemical exposure and provides suggestions on what research is needed to recognize silicone wristbands as a premier chemical exposure assessment tool.
Collapse
Affiliation(s)
- Samantha M Samon
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Stephanie C Hammel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Kim A Anderson
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
24
|
Zhang Z, Hu M, Xuan D, Wu L, Zhang Y, He G, Zhou Y. Physiologically based pharmacokinetic (PBPK) modeling of BDE-209 following oral exposure in Chinese population. Food Chem Toxicol 2022; 169:113416. [PMID: 36096292 DOI: 10.1016/j.fct.2022.113416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022]
Abstract
The wide usage of decabromodiphenyl ether (BDE-209) as additive brominated flame retardant has caused its widespread occurrence in the environment and high exposure risk in humans. Estimating its internal exposure dose and reconstruction of external exposure dose using physiologically based pharmacokinetic (PBPK) modelling approach is a key step in the risk assessment of BDE-209. However, the PBPK model for BDE-209 is currently unavailable. This study has established two oral permeability-limited PBPK models of BDE-209 without enterohepatic recirculation (EHR) (model 1) and with EHR (model 2) for Chinese population. Using the in vitro experiments, the average binding of BDE-209 to human plasma protein (99.64% ± 2.97%) was obtained. Moreover, blood sample analysis and systematic literature review were performed to obtain internal and external exposure data of BDE-209 used for model calibration and validation. The predictions of both models were within 2-fold of the observed, and a longer half-life of serum BDE-209 was observed in model 2 than model 1. Based on the models, a human biomonitoring guidance value (HBM-GV) of 93.61 μg/g lw was derived for BDE-209, and there is no health risk found for Chinese population currently. This study provides new quantitative assessment tools for health risk assessment of BDE-209.
Collapse
Affiliation(s)
- Zhichun Zhang
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China; Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Man Hu
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China; Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Dongliang Xuan
- Jiading District Center for Disease Control and Prevention, Shanghai, 201899, China
| | - Linying Wu
- Jiading District Center for Disease Control and Prevention, Shanghai, 201899, China
| | - Yanfei Zhang
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China; Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Gengsheng He
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ying Zhou
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China; Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China.
| |
Collapse
|
25
|
Hu MJ, Wang S, Zhang Q, He JL, Zhao HH, Hu WL, Huang F. Associations between environmental exposure to polybrominated diphenyl ethers and nodular goiter risk: A case-control study. ENVIRONMENTAL RESEARCH 2022; 212:113345. [PMID: 35469855 DOI: 10.1016/j.envres.2022.113345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread and persistent environmental contaminants, but their association with nodular goiter (NG) remains unknown. The present case-control study of 179 NG cases and 358 matched normal controls aimed to investigate the association between PBDEs and risk of NG. The plasma concentrations of 8 PBDEs congeners (BDE-28, -47, -99, -100, -153, -154, -183, and -209) were determined by gas chromatograph-mass spectrometer. Conditional logistic regression model was used to evaluate the odds ratio (OR) and 95% confidence interval (CI) for the association between each PBDEs congener and NG. Bayesian kernel machine regression (BKMR) was used to evaluate the association between overall levels of 8 PBDEs mixture and NG. The results of logistic model suggested that increased risk of NG was associated with elevated concentrations of all PBDEs congeners, except for BDE-209. In BKMR model, the risk of NG increased with the increase in overall exposure level of 8 PBDEs mixture. Compared to when all PBDEs mixture were at their median value, the risk of exposure-response function for NG increased by 0.34 units when all PBDEs were at their 75th percentile. In women, the results showed similar trends after additional adjustment for age at menarche and menopausal status. These findings provide novel epidemiological evidence for the prevention of NG. However, larger prospective studies are required to address the associations between PBDEs exposure and NG risk.
Collapse
Affiliation(s)
- Ming-Jun Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Qian Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Jia-Liu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Huan-Huan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wen-Lei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Key Laboratory for Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
26
|
Dixon HM, Bramer LM, Scott RP, Calero L, Holmes D, Gibson EA, Cavalier HM, Rohlman D, Miller RL, Calafat AM, Kincl L, Waters KM, Herbstman JB, Anderson KA. Evaluating predictive relationships between wristbands and urine for assessment of personal PAH exposure. ENVIRONMENT INTERNATIONAL 2022; 163:107226. [PMID: 35405507 PMCID: PMC8978533 DOI: 10.1016/j.envint.2022.107226] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
During events like the COVID-19 pandemic or a disaster, researchers may need to switch from collecting biological samples to personal exposure samplers that are easy and safe to transport and wear, such as silicone wristbands. Previous studies have demonstrated significant correlations between urine biomarker concentrations and chemical levels in wristbands. We build upon those studies and use a novel combination of descriptive statistics and supervised statistical learning to evaluate the relationship between polycyclic aromatic hydrocarbon (PAH) concentrations in silicone wristbands and hydroxy-PAH (OH-PAH) concentrations in urine. In New York City, 109 participants in a longitudinal birth cohort wore one wristband for 48 h and provided a spot urine sample at the end of the 48-hour period during their third trimester of pregnancy. We compared four PAHs with the corresponding seven OH-PAHs using descriptive statistics, a linear regression model, and a linear discriminant analysis model. Five of the seven PAH and OH-PAH pairs had significant correlations (Pearson's r = 0.35-0.64, p ≤ 0.003) and significant chi-square tests of independence for exposure categories (p ≤ 0.009). For these five comparisons, the observed PAH or OH-PAH concentration could predict the other concentration within a factor of 1.47 for 50-80% of the measurements (depending on the pair). Prediction accuracies for high exposure categories were at least 1.5 times higher compared to accuracies based on random chance. These results demonstrate that wristbands and urine provide similar PAH exposure assessment information, which is critical for environmental health researchers looking for the flexibility to switch between biological sample and wristband collection.
Collapse
Affiliation(s)
- Holly M Dixon
- Oregon State University, Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Corvallis, OR, USA
| | - Lisa M Bramer
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, USA
| | - Richard P Scott
- Oregon State University, Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Corvallis, OR, USA
| | - Lehyla Calero
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Darrell Holmes
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Elizabeth A Gibson
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Haleigh M Cavalier
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Diana Rohlman
- Oregon State University, College of Public Health and Human Sciences, Corvallis, OR, USA
| | - Rachel L Miller
- Icahn School of Medicine at Mount Sinai, Division of Clinical Immunology, New York City, NY, USA
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, GA, USA
| | - Laurel Kincl
- Oregon State University, College of Public Health and Human Sciences, Corvallis, OR, USA
| | - Katrina M Waters
- Oregon State University, Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Corvallis, OR, USA; Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, USA
| | - Julie B Herbstman
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Kim A Anderson
- Oregon State University, Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Corvallis, OR, USA.
| |
Collapse
|
27
|
Hamzai L, Lopez Galvez N, Hoh E, Dodder NG, Matt GE, Quintana PJ. A systematic review of the use of silicone wristbands for environmental exposure assessment, with a focus on polycyclic aromatic hydrocarbons (PAHs). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:244-258. [PMID: 34302044 DOI: 10.1038/s41370-021-00359-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure assessment is critical for connecting environmental pollutants to health outcomes and evaluating impacts of interventions or environmental policies. Silicone wristbands (SWBs) show promise for multi-pollutant exposure assessment, including polycyclic aromatic hydrocarbons (PAHs), a ubiquitous class of toxic environmental pollutants. OBJECTIVE To review published studies where SWBs were worn on the wrist for human environmental exposure assessments and evaluate the ability of SWBs to capture personal exposures, identify gaps which need to be addressed to implement this tool, and make recommendations for future studies to advance the field of exposure science through utilization of SWBs. METHODS We performed a systematic search and a cited reference search in Scopus and extracted key study descriptions. RESULTS Thirty-nine unique studies were identified, with analytes including PAHs, pesticides, flame retardants, and tobacco products. SWBs were shipped under ambient conditions without apparent analyte loss, indicating utility for global exposure and health studies. Nineteen articles detected a total of 60 PAHs in at least one SWB. Correlations with other concurrent biological and air measurements indicate the SWB captures exposure to flame retardants, tobacco products, and PAHs. SIGNIFICANCE SWBs show promise as a simple-to-deploy tool to estimate environmental and occupational exposures to chemical mixtures, including PAHs.
Collapse
Affiliation(s)
- Laila Hamzai
- School of Public Health, San Diego State University, San Diego, CA, USA
| | | | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Nathan G Dodder
- San Diego State University Research Foundation, San Diego, CA, USA
| | - Georg E Matt
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
28
|
Fan Y, Chen Q, Wang Z, Zhang X, Zhao J, Huang X, Wei P, Hu P, Cao Z. Identifying dermal exposure as the dominant pathway of children's exposure to flame retardants in kindergartens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152004. [PMID: 34856272 DOI: 10.1016/j.scitotenv.2021.152004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Exploration of multiple sources of brominated (BFRs) and organophosphate flame retardants (OPFRs) for children promotes the understanding of exposure pathways and health risk. 10 BFRs and 9 OPFRs were measured in skin wipes from hands, forehead, and arms of 30 children, and surface wipe samples from sills, toys, desks and floors, and indoor air samples of kindergartens from Xinxiang, China. Higher ∑9OPFRs concentrations were observed in the forehead (1840 ng/m2), followed by hand (1420 ng/m2) and arm wipes (1130 ng/m2), and the ∑8BFRs concentrations in forehead, hand and arm wipes were 116, 315 and 165 ng/m2, respectively. The total concentration of OPFRs and BFRs in floor wipes (66.1 and 24.5 ng/m2) were lower than those in toy (205 and 535 ng/m2), sill (227 and 30.1 ng/m2) and desk (84.4 and 139 ng/m2) wipes. Concentrations of FRs in forehead wipes were significantly correlated with those in gaseous air (p < 0.05), moderate correlations were found between the hand wipes and surface wipes (p = 0.054). We estimated the daily average dosages (DADs) of children exposure to FRs via multiple pathways. Compared to DADs via inhalation and hand-to-mouth transfer, dermal exposure was determined to be the predominant exposure pathway to ∑9OPFRs and ∑8BFRs.
Collapse
Affiliation(s)
- Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qiaoying Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhen Wang
- Kindergarden of Henan Normal University, Xinxiang 453007, China
| | - Xiaoxiao Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiaxin Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Huang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
29
|
Zhao T, Tang X, Li D, Zhao J, Zhou R, Shu F, Jia W, Fu W, Xia H, Liu G. Prenatal exposure to environmentally relevant levels of PBDE-99 leads to testicular dysgenesis with steroidogenesis disorders. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127547. [PMID: 34879533 DOI: 10.1016/j.jhazmat.2021.127547] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a widely used class of brominated flame retardants. Exposure to PBDEs could induce testicular damage in mammals, but the effects and potential mechanism of action of prenatal exposure to environmentally relevant PBDEs on testicular development remain unclear. For the in vivo study, pregnant ICR mice were exposed to environmentally relevant levels of 2,2',4,4',5-pentabromodiphenyl ether (PBDE-99), a major component of commercial PBDE mixtures. We found that the anogenital index and testicular organ coefficient were significantly decreased, the incidence of cryptorchidism was increased, and testicular histology was disturbed in male offspring. Transcriptomic profiling showed that steroidogenesis disorders were significant in all PBDE-99 exposure groups. The testosterone levels, expressions of testosterone regulators, and the number of CYP11A1-positive and 11β-HSD1-positive Leydig cells were significantly decreased after PBDE-99 exposure. For the in vitro study, TM3 Leydig cells were exposed to PBDE-99 at gradient concentrations. Transcriptomic profiling and validation experiments showed that PBDE-99 upregulated reactive oxygen species, activated the ERK1/2 pathway, inhibited the ubiquitination degradation pathway, and finally induced Leydig cell apoptosis. Cumulatively, these findings revealed that prenatal exposure to environmentally relevant levels of PBDE-99 leads to steroidogenesis disorders by inducing the apoptosis of Leydig cells, causing testicular dysgenesis.
Collapse
Affiliation(s)
- Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangliang Tang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dian Li
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinglu Zhao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Zhou
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fangpeng Shu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Wacławik M, Rodzaj W, Wielgomas B. Silicone Wristbands in Exposure Assessment: Analytical Considerations and Comparison with Other Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041935. [PMID: 35206121 PMCID: PMC8872583 DOI: 10.3390/ijerph19041935] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
Abstract
Humans are exposed to numerous potentially harmful chemicals throughout their lifetime. Although many studies have addressed this issue, the data on chronic exposure is still lacking. Hence, there is a growing interest in methods and tools allowing to longitudinally track personal exposure to multiple chemicals via different routes. Since the seminal work, silicone wristbands (WBs) have been increasingly used to facilitate human exposure assessment, as using WBs as a wearable sampler offers new insights into measuring chemical risks involved in many ambient and occupational scenarios. However, the literature lacks a detailed overview regarding methodologies being used; a comprehensive comparison with other approaches of personal exposure assessment is needed as well. Therefore, the aim of this review is fourfold. First, we summarize hitherto conducted research that employed silicone WBs as personal passive samplers. Second, all pre-analytical and analytical steps used to obtain exposure data are discussed. Third, we compare main characteristics of WBs with key features of selected matrices used in exposure assessment, namely urine, blood, hand wipes, active air sampling, and settled dust. Finally, we discuss future needs of research employing silicone WBs. Our work shows a variety of possibilities, advantages, and caveats associated with employment of silicone WBs as personal passive samplers. Although further research is necessary, silicone WBs have already been proven valuable as a tool for longitudinal assessment of personal exposure.
Collapse
|
31
|
Zhu J, Zhao L, Guo L. Dechloranes exhibit binding potency and activity to thyroid hormone receptors. J Environ Sci (China) 2022; 112:16-24. [PMID: 34955199 DOI: 10.1016/j.jes.2021.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 06/14/2023]
Abstract
Dechloranes are a group of halogenated flame retardants with a basic bicyclo[2.2.1]heptene, including Dechlorane Plus (DP), Dechlorane 602 (Dec 602), Dechlorane 603 (Dec 603) and Dechlorane 604 (Dec 604). A few epidemiological investigations and animal experiments have shown that DP exhibited thyroid-interfering effects. In the present study, we investigated whether DP and three other dechloranes could interfere the thyroid function through thyroid hormone receptors (TRs, TRα and TRβ) signaling pathways. The binding affinities of the four dechloranes to the two TRs were determined by fluorescence competitive binding assay. It was found that all the four dechloranes could bind with the two TRs. The relative potency (RP) values ranged from nd (not detectable) to 0.0667. Between the two TRs, dechloranes were more inclined to bind with TRβ, which implies that the thyroid interference effect of dechloranes may have selectivity in different tissues and organs. TRs-mediated luciferase reporter gene assay and T-screen assay showed that all the four dechloranes exhibited antagonistic activity to TRs in the cells. Taken together, our results demonstrated that dechloranes might interfere with thyroid function by binding with TRs and acting as TR antagonists. The health risk of highly exposed human populations should be of serious concern because of the high hazard quotient calculated from our cell assay results.
Collapse
Affiliation(s)
- Jianqiao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianghong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
32
|
Mortensen ÅK, Verreault J, François A, Houde M, Giraudo M, Dam M, Jenssen BM. Flame retardants and their associations with thyroid hormone-related variables in northern fulmars from the Faroe Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150506. [PMID: 34601176 DOI: 10.1016/j.scitotenv.2021.150506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Flame retardants (FRs) are widely reported in tissues of seabirds including birds sampled from remote areas. There is evidence that FRs can disrupt the hypothalamic-pituitary-thyroid (HPT) axis in seabirds, although information is limited on thyroid-related mechanisms and effects. This study investigated the associations between concentrations of polybrominated diphenyl ethers (PBDEs) and other FRs, and changes in the HPT axis in northern fulmars (Fulmarus glacialis) from the Faroe Islands (North Atlantic). Plasma concentrations of thyroid hormones (THs), hepatic deiodinase type 1 (D1) activity, and transcription of selected TH-related genes in liver were used as markers of HPT axis changes. Liver concentrations of a certain PBDE congeners and other FRs including pentabromoethylbenzene (PBEB), dechlorane 602 (Dec-602), and dechlorane plus (DP) were associated with changes in thyroid status. Specifically, liver PBDE, PBEB and Dec-602 concentrations were associated with plasma TH levels (free thyroxine [FT4] and total triiodothyronine [TT3]). Liver DP concentrations were positively correlated with the TT4:FT4 ratios and mRNA levels of UDP-glucuronyltransferase-1, while those of PBEB were negatively associated with TT4:TT3 ratios and D1 activity. D1 activity was also positively associated with the tri-, tetra- and hexa-BDE congeners. Moreover, transcription of ABCC2, a hepatic TH transporter, was associated with certain liver PBDE concentrations. Although PBDEs and other FRs may be potential inhibitors of D1 activity, only a few of the targeted FRs had modest associations with hepatic D1 activity. Regardless, the relationships reported herein indicated that exposure to moderate levels of FRs can be associated with thyroid axis perturbation at the molecular/biochemical levels in this North Atlantic seabird species.
Collapse
Affiliation(s)
- Åse-Karen Mortensen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Anthony François
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Maeva Giraudo
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Maria Dam
- IVF Evnaskyn, Fjosagoeta 2, FO-100 Torshavn, Faroe Islands
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
33
|
Fuentes ZC, Schwartz YL, Robuck AR, Walker DI. Operationalizing the Exposome Using Passive Silicone Samplers. CURRENT POLLUTION REPORTS 2022; 8:1-29. [PMID: 35004129 PMCID: PMC8724229 DOI: 10.1007/s40726-021-00211-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
The exposome, which is defined as the cumulative effect of environmental exposures and corresponding biological responses, aims to provide a comprehensive measure for evaluating non-genetic causes of disease. Operationalization of the exposome for environmental health and precision medicine has been limited by the lack of a universal approach for characterizing complex exposures, particularly as they vary temporally and geographically. To overcome these challenges, passive sampling devices (PSDs) provide a key measurement strategy for deep exposome phenotyping, which aims to provide comprehensive chemical assessment using untargeted high-resolution mass spectrometry for exposome-wide association studies. To highlight the advantages of silicone PSDs, we review their use in population studies and evaluate the broad range of applications and chemical classes characterized using these samplers. We assess key aspects of incorporating PSDs within observational studies, including the need to preclean samplers prior to use to remove impurities that interfere with compound detection, analytical considerations, and cost. We close with strategies on how to incorporate measures of the external exposome using PSDs, and their advantages for reducing variability in exposure measures and providing a more thorough accounting of the exposome. Continued development and application of silicone PSDs will facilitate greater understanding of how environmental exposures drive disease risk, while providing a feasible strategy for incorporating untargeted, high-resolution characterization of the external exposome in human studies.
Collapse
Affiliation(s)
- Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Yuri Levin Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Anna R. Robuck
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| |
Collapse
|
34
|
Hong Y, Chen CY, Wu CC, Bao LJ, Zeng EY. A Novel Personal Passive Sampler for Collecting Gaseous Phthalates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15961-15968. [PMID: 34793136 DOI: 10.1021/acs.est.1c06611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dermal absorption of gaseous chemicals is an important contributor to increased health risk and has yet to be adequately addressed due to the lack of available sampling techniques. In the present study, a novel personal passive sampler consisting of a housing (embracing a polydimethylsiloxane (PDMS) disk as the sorbent phase, a membrane filter, and a stainless-steel mesh) and a watchband (traditional wristband) was constructed and used to characterize gaseous phthalates (PAEs) near the air-skin interface. In a real-life setting, the utility of the passive sampler was validated by comparing the composition profiles of PAEs in the PDMS disks and in active samples and watchbands. The compositions of PAEs were consistent in disks and gaseous constituents from ambient air, with low-molecular-weight (<306 g mol-1) PAEs accounting for 87-100% and approximately 100%, respectively. Appreciable amounts of diisononyl phthalate, diisodecyl phthalate, dinonyl phthalate, and skin lipid (e.g., squalene) were detected in watchbands but not in disks. Apparently, the passive sampler can prevent particles and skin-related chemicals from adhering to the disk and collect gaseous PAEs only. The vast majority of PAEs in watchbands was associated with nongaseous constituents. The present study demonstrated that the sampling strategy is a key factor in exposure assessment.
Collapse
Affiliation(s)
- Yun Hong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chun-Yan Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
35
|
Young AS, Herkert N, Stapleton HM, Cedeño Laurent JG, Jones ER, MacNaughton P, Coull BA, James-Todd T, Hauser R, Luna ML, Chung YS, Allen JG. Chemical contaminant exposures assessed using silicone wristbands among occupants in office buildings in the USA, UK, China, and India. ENVIRONMENT INTERNATIONAL 2021; 156:106727. [PMID: 34425641 PMCID: PMC8409466 DOI: 10.1016/j.envint.2021.106727] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 05/11/2023]
Abstract
Little is known about chemical contaminant exposures of office workers in buildings globally. Complex mixtures of harmful chemicals accumulate indoors from building materials, building maintenance, personal products, and outdoor pollution. We evaluated exposures to 99 chemicals in urban office buildings in the USA, UK, China, and India using silicone wristbands worn by 251 participants while they were at work. Here, we report concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and other brominated flame retardants (BFRs), organophosphate esters (OPEs), phthalates and phthalate alternatives, pesticides, and polycyclic aromatic hydrocarbons (PAHs). First, we found major differences in office worker chemical exposures by country, some of which can be explained by regulations and use patterns. For example, exposures to several pesticides were substantially higher in India where there were fewer restrictions and unique malaria challenges, and exposures to flame retardants tended to be higher in the USA and UK where there were historic, stringent furniture flammability standards. Higher exposures to PAHs in China and India could be due to high levels of outdoor air pollution that penetrates indoors. Second, some office workers were still exposed to legacy PCBs, PBDEs, and pesticides, even decades after bans or phase-outs. Third, we identified exposure to a contemporary PCB that is not covered under legacy PCB bans due to its presence as an unintentional byproduct in materials. Fourth, exposures to novel BFRs, OPEs, and other chemicals commonly used as substitutes to previously phased-out chemicals were ubiquitous. Fifth, some exposures were influenced by individual factors, not just countries and buildings. Phthalate exposures, for example, were related to personal care product use, country restrictions, and building materials. Overall, we found substantial country differences in chemical exposures and continued exposures to legacy phased-out chemicals and their substitutes in buildings. These findings warrant further research on the role of chemicals in office buildings on worker health.
Collapse
Affiliation(s)
- Anna S Young
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA.
| | | | | | | | - Emily R Jones
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
| | | | - Brent A Coull
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Russ Hauser
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marianne Lahaie Luna
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; University of Toronto Dalla Lana School of Public Health, Toronto, Canada
| | - Yu Shan Chung
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph G Allen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
36
|
Choi G, Keil AP, Villanger GD, Richardson DB, Daniels JL, Hoffman K, Sakhi AK, Thomsen C, Herring AH, Drover SSM, Nethery R, Aase H, Engel SM. Pregnancy exposure to common-detect organophosphate esters and phthalates and maternal thyroid function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146709. [PMID: 33839654 PMCID: PMC8222630 DOI: 10.1016/j.scitotenv.2021.146709] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 03/19/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Contemporary human populations are exposed to elevated concentrations of organophosphate esters (OPEs) and phthalates. Some metabolites have been linked with altered thyroid function, however, inconsistencies exist across thyroid function biomarkers. Research on OPEs is sparse, particularly during pregnancy, when maintaining normal thyroid function is critical to maternal and fetal health. In this paper, we aimed to characterize relationships between OPEs and phthalates exposure and maternal thyroid function during pregnancy, using a cross-sectional investigation of pregnant women nested within the Norwegian Mother, Father, and Child Cohort (MoBa). METHODS We included 473 pregnant women, who were euthyroid and provided bio-samples at 17 weeks' gestation (2004-2008). Four OPE and six phthalate metabolites were measured from urine; six thyroid function biomarkers were estimated from blood. Relationships between thyroid function biomarkers and log-transformed concentrations of OPE and phthalate metabolites were characterized using two approaches that both accounted for confounding by co-exposures: co-pollutant adjusted general linear model (GLM) and Bayesian Kernal Machine Regression (BKMR). RESULTS We restricted our analysis to common-detect OPE and phthalate metabolites (>94%): diphenyl phosphate (DPHP), di-n-butyl phosphate (DNBP), and all phthalate metabolites. In GLM, pregnant women with summed di-isononyl phthalate metabolites (∑DiNP) concentrations in the 75th percentile had a 0.37 ng/μg lower total triiodothyronine (TT3): total thyroxine (TT4) ratio (95% credible interval: [-0.59, -0.15]) as compared to those in the 25th percentile, possibly due to small but diverging influences on TT3 (-1.99 ng/dL [-4.52, 0.53]) and TT4 (0.13 μg/dL [-0.01, 0.26]). Similar trends were observed for DNBP and inverse associations were observed for DPHP, monoethyl phthalate, mono-isobutyl phthalate, and mono-n-butyl phthalate. Most associations observed in co-pollutants adjusted GLMs were attenuated towards the null in BKMR, except for the case of ∑DiNP and TT3:TT4 ratio (-0.48 [-0.96, 0.003]). CONCLUSIONS Maternal thyroid function varied modestly with ∑DiNP, whereas results for DPHP varied by the type of statistical models.
Collapse
Affiliation(s)
- Giehae Choi
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Alexander P Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie L Daniels
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | | | - Amy H Herring
- Department of Statistical Science and Global Health Institute, Duke University, Durham, NC, USA
| | - Samantha S M Drover
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel Nethery
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Heidi Aase
- Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Young AS, Hauser R, James-Todd TM, Coull BA, Zhu H, Kannan K, Specht AJ, Bliss MS, Allen JG. Impact of "healthier" materials interventions on dust concentrations of per- and polyfluoroalkyl substances, polybrominated diphenyl ethers, and organophosphate esters. ENVIRONMENT INTERNATIONAL 2021; 150:106151. [PMID: 33092866 PMCID: PMC7940547 DOI: 10.1016/j.envint.2020.106151] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 05/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), polybrominated diphenyl ethers (PBDEs), and organophosphate esters (OPEs) are found in building materials and associated with thyroid disease, infertility, and impaired development. This study's objectives were to (1) compare levels of PFAS, PBDEs, and OPEs in dust from spaces with conventional versus "healthier" furniture and carpet, and (2) identify other product sources of flame retardants in situ. We measured 15 PFAS, 8 PBDEs, and 19 OPEs in dust from offices, common areas, and classrooms having undergone either no intervention (conventional rooms in older buildings meeting strict fire codes; n = 12), full "healthier" materials interventions (rooms with "healthier" materials in buildings constructed more recently or gut-renovated; n = 7), or partial interventions (other rooms with at least "healthier" foam furniture but more potential building contamination; n = 28). We also scanned all materials for bromine and phosphorus as surrogates of PBDEs and OPEs respectively, using x-ray fluorescence. In multilevel regression models, rooms with full "healthier" materials interventions had 78% lower dust levels of PFAS than rooms with no intervention (p < 0.01). Rooms with full "healthier" interventions also had 65% lower OPE levels in dust than rooms with no intervention (p < 0.01) and 45% lower PBDEs than rooms with only partial interventions (p < 0.10), adjusted for covariates related to insulation, electronics, and furniture. Bromine loadings from electronics in rooms were associated with PBDE concentrations in dust (p < 0.05), and the presence of exposed insulation was associated with OPE dust concentrations (p < 0.001). Full "healthier" materials renovations successfully reduced chemical classes in dust. Future interventions should address electronics, insulation, and building cross-contamination.
Collapse
Affiliation(s)
- Anna S Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Population Health Sciences, Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA.
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tamarra M James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Aaron J Specht
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maya S Bliss
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph G Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
38
|
Travis SC, Kordas K, Aga DS. Optimized workflow for unknown screening using gas chromatography high-resolution mass spectrometry expands identification of contaminants in silicone personal passive samplers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9048. [PMID: 33444483 DOI: 10.1002/rcm.9048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Silicone wristbands have emerged as valuable passive samplers for monitoring of personal exposure to environmental contaminants in the rapidly developing field of exposomics. Once deployed, silicone wristbands collect and hold a wealth of chemical information that can be interrogated using high-resolution mass spectrometry (HRMS) to provide a broad coverage of chemical mixtures. METHODS Gas chromatography coupled to Orbitrap™ mass spectrometry (GC/Orbitrap™ MS) was used to simultaneously perform suspect screening (using in-house database) and unknown screening (using vendor databases) of extracts from wristbands worn by volunteers. The goal of this study was to optimize a workflow that allows detection of low levels of priority pollutants, with high reliability. In this regard, a data processing workflow for GC/Orbitrap™ MS was developed using a mixture of 123 environmentally relevant standards consisting of pesticides, flame retardants, organophosphate esters, and polycyclic aromatic hydrocarbons as test compounds. RESULTS The optimized unknown screening workflow using a search index threshold of 750 resulted in positive identification of 70 analytes in validation samples, and a reduction in the number of false positives by over 50%. An average of 26 compounds with high confidence identification, 7 level 1 compounds and 19 level 2 compounds, were observed in worn wristbands. The data were further analyzed via suspect screening and retrospective suspect screening to identify an additional 36 compounds. CONCLUSIONS This study provides three important findings: (1) a clear evidence of the importance of sample cleanup in addressing complex sample matrices for unknown analysis, (2) a valuable workflow for the identification of unknown contaminants in silicone wristband samplers using electron ionization HRMS data, and (3) a novel application of GC/Orbitrap™ MS for the unknown analysis of organic contaminants that can be used in exposomics studies.
Collapse
Affiliation(s)
- Steven C Travis
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, 14260, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, 14214, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, 14260, USA
| |
Collapse
|
39
|
Young AS, Zoeller T, Hauser R, James-Todd T, Coull BA, Behnisch PA, Brouwer A, Zhu H, Kannan K, Allen JG. Assessing Indoor Dust Interference with Human Nuclear Hormone Receptors in Cell-Based Luciferase Reporter Assays. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47010. [PMID: 33851871 PMCID: PMC8045486 DOI: 10.1289/ehp8054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), organophosphate esters (OPEs), and polybrominated diphenyl ethers (PBDEs) are hormone-disrupting chemicals that migrate from building materials into air and dust. OBJECTIVES We aimed to quantify the hormonal activities of 46 dust samples and identify chemicals driving the observed activities. METHODS We evaluated associations between hormonal activities of extracted dust in five cell-based luciferase reporter assays and dust concentrations of 42 measured PFAS, OPEs, and PBDEs, transformed as either raw or potency-weighted concentrations based on Tox21 high-throughput screening data. RESULTS All dust samples were hormonally active, showing antagonistic activity toward peroxisome proliferator-activated receptor (PPARγ2) (100%; 46 of 46 samples), thyroid hormone receptor (TRβ) (89%; 41 samples), and androgen receptor (AR) (87%; 40 samples); agonist activity on estrogen receptor (ERα) (96%; 44 samples); and binding competition with thyroxine (T4) on serum transporter transthyretin (TTR) (98%; 45 samples). Effects were observed with as little as 4μg of extracted dust. In regression models for each chemical class, interquartile range increases in potency-weighted or unknown-potency chemical concentrations were associated with higher hormonal activities of dust extracts (potency-weighted: ΣPFAS-TRβ, ↑28%, p<0.05; ΣOPEs-TRβ, ↑27%, p=0.08; ΣPBDEs-TRβ, ↑20%, p<0.05; ΣPBDEs-ERα, ↑7.7%, p=0.08; unknown-potency: ΣOPEs-TTR, ↑34%, p<0.05; ΣOPEs-AR, ↑13%, p=0.06), adjusted for chemicals with active, inactive, and unknown Tox21 designations. DISCUSSION All indoor dust samples exhibited hormonal activities, which were associated with PFAS, PBDE, and OPE levels. Reporter gene cell-based assays are relatively inexpensive, health-relevant evaluations of toxic loads of chemical mixtures that building occupants are exposed to. https://doi.org/10.1289/EHP8054.
Collapse
Affiliation(s)
- Anna S. Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Population Health Sciences, Harvard Graduate School of Arts and Sciences, Cambridge, Massachusetts, USA
| | - Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Brent A. Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Joseph G. Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Li X, Wang M, Yang Y, Lei B, Ma S, Yu Y. Influence of nutrients on the bioaccessibility and transepithelial transport of polybrominated diphenyl ethers measured using an in vitro method and Caco-2 cell monolayers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111569. [PMID: 33396098 DOI: 10.1016/j.ecoenv.2020.111569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Previous research has shown the absorption of polybrominated diphenyl ethers (PBDEs) in the human gastrointestinal tract, but limited attention has been given to the influence of nutrients on PBDE absorption from food matrices. We investigated the effects of nutrients (oil, starch, protein, and dietary fiber) on the absorption and transport of PBDEs in a Caco-2 cell model and bioaccessibility of PBDEs by an in vitro gastrointestinal digestion method. The results showed that the accumulation ratios of PBDE congeners in Caco-2 cells were higher in the nutrient addition groups (oil: 26.7-50.6%, starch: 27.0-58.7%, protein: 12.1-44.1%, and dietary fiber: 28.2-55.1%) than the control group (7.17-36.1%), whereas the transport ratios were lower (oil: 2.30-7.20%, starch: 1.55-9.15%, protein: 1.04-8.78%, and dietary fiber: 0.85-7.04%) than control group (3.78-11.1%). Additionally, the PBDE bioaccessibility could be increased by adding the nutrients, particularly oil and starch. This study clarified the differences in PBDE absorption in the presence of nutrients using the in vitro digestion and Caco-2 cell model. The findings showed that nutrients were an important factor that promoted PBDE absorption in the gastrointestinal tract. Therefore, it is important to focus on a novel dietary strategy of food consumption with contaminant compounds to protect human health.
Collapse
Affiliation(s)
- Xiaojing Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mengmeng Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515100, PR China
| | - Bingli Lei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515100, PR China
| | - Yingxin Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
41
|
Yao Y, Li M, Pan L, Duan Y, Duan X, Li Y, Sun H. Exposure to organophosphate ester flame retardants and plasticizers during pregnancy: Thyroid endocrine disruption and mediation role of oxidative stress. ENVIRONMENT INTERNATIONAL 2021; 146:106215. [PMID: 33113466 DOI: 10.1016/j.envint.2020.106215] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in consumer and industrial products. Human exposure to OPEs raises concerns due to their endocrine disruptive potentials. Till now, the effects of OPEs on thyroid hormones (THs) and the mediating role of oxidative stress in pregnant women have not been studied. In this study, prenatal urinary concentrations of OPE metabolites (mOPEs), levels of free triiodothyronine (FT3), free thyroxine (FT4), thyroid-stimulating hormone (TSH), and oxidative stress levels of 8-hydroxy-2-deoxy guanosine (8-OHdG) and malondialdehyde (MDA) were measured in pregnant women (n = 360) from a coastal urbanized region and moderate socioeconomic status. Neonatal TSH in heel blood was also measured in newborns (n = 309). Dibutyl phosphate (DBP) and diphenyl phosphate (DPHP) were extensively detected with a median creatinine-adjusted level of 0.19 μg/g and 0.66 μg/g, respectively, and the median of ∑mOPEs was 1.82 μg/g. DBP and DPHP were included in the analysis. The concentrations of DBP and DPHP were positively associated with either maternal or neonatal TSH levels, while not for maternal FT3 and FT4 levels. Positive associations for maternal and neonatal TSH were particularly observed in girls as stratified by newborn sex suggesting a sex-selective difference. Furthermore, 8-OHdG, the biomarker of DNA damage, was found to be a major mediator (>60%) for the association between neonatal TSH and DPHP, suggesting that DNA damage is involved in fetal thyroid function disruption. On the other hand, MDA showed a partially suppressing effect (<40%) for the associations between mOPEs and neonatal TSH, which needs further clarification. For maternal TSH, both 8-OHdG and MDA showed moderate mediating effects while the direct effects of mOPEs on maternal TSH also contributed. These results suggest thyroid disrupting effects of OPE exposure on mothers and fetuses during pregnancy and the potential influence mediated by the oxidative stresses of DNA damage and lipid peroxidation.
Collapse
Affiliation(s)
- Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, China
| | - Mengqi Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, China
| | - Liyang Pan
- Dalian Center for Disease Control and Prevention, Dalian, Liaoning Province, China.
| | - Yishuang Duan
- Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Xiaoyu Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, China
| | - Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, China.
| |
Collapse
|
42
|
Wang S, Romanak KA, Tarallo S, Francavilla A, Viviani M, Vineis P, Rothwell JA, Mancini FR, Cordero F, Naccarati A, Severi G, Venier M. The use of silicone wristbands to evaluate personal exposure to semi-volatile organic chemicals (SVOCs) in France and Italy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115490. [PMID: 33254690 DOI: 10.1016/j.envpol.2020.115490] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 08/21/2020] [Indexed: 05/07/2023]
Abstract
In this exploratory study, we measured for the first-time human exposure to about 90 semi-volatile organic chemicals (SVOCs) in France and Italy using silicone wristbands. Participants in France (n = 40) and in Italy (n = 31) wore a silicone wristband for five days during 2018 and 2019. Samples were analyzed for 39 polybrominated diphenyl ethers (PBDEs), 10 novel brominated flame retardants (nBFRs), 25 organophosphate esters (OPEs), and 18 polycyclic aromatic hydrocarbons (PAHs). In both groups, the most commonly detected chemicals were BDE-209, BEHTBP, tris[(2R)-1-chloro-2-propyl] phosphate (TCIPP), and phenanthrene among PBDEs, nBFRs, OPEs, and PAHs, respectively. The concentrations of ∑39 PBDEs, ∑10 nBFRs, ∑25 OPEs, ∑18 PAHs, and of most individual chemicals were generally significantly higher in samples from France than in those from Italy, except for BDE-209 and TCIPP. On a broader scale, the chemical concentrations were generally significantly lower in this study than those measured in the United States in previous studies using the same type of wristbands. Efforts to standardize the protocols for the use of silicone wristbands are still needed but this study shows that wristbands are capable of capturing regional differences in human exposure to a large variety of SVOCs and, therefore, can be used as personal exposure monitor for studies with global coverage.
Collapse
Affiliation(s)
- Shaorui Wang
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, United States
| | - Kevin A Romanak
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, United States
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Antonio Francavilla
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Marco Viviani
- Department of Computer Science, University of Turin, Turin, Italy
| | - Paolo Vineis
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy; MRC Centre for Environment and Health, School of Public Health, Imperial College, London, United Kingdom
| | - Joseph A Rothwell
- CESP (U1018), Faculté de Médecine, Université Paris-Saclay, INSERM, 94805, Villejuif, France; Gustave Roussy, 94805, Villejuif, France
| | - Francesca Romana Mancini
- CESP (U1018), Faculté de Médecine, Université Paris-Saclay, INSERM, 94805, Villejuif, France; Gustave Roussy, 94805, Villejuif, France
| | - Francesca Cordero
- Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Gianluca Severi
- CESP (U1018), Faculté de Médecine, Université Paris-Saclay, INSERM, 94805, Villejuif, France; Gustave Roussy, 94805, Villejuif, France; Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Italy
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, United States.
| |
Collapse
|
43
|
Travis SC, Aga DS, Queirolo EI, Olson JR, Daleiro M, Kordas K. Catching flame retardants and pesticides in silicone wristbands: Evidence of exposure to current and legacy pollutants in Uruguayan children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140136. [PMID: 32927574 PMCID: PMC10989841 DOI: 10.1016/j.scitotenv.2020.140136] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/06/2023]
Abstract
Children are exposed to many potentially toxic compounds in their daily lives and are vulnerable to the harmful effects. To date, very few non-invasive methods are available to quantify children's exposure to environmental chemicals. Due to their ease of implementation, silicone wristbands have emerged as passive samplers to study personal environmental exposures and have the potential to greatly increase our knowledge of chemical exposures in vulnerable population groups. Nevertheless, there is a limited number of studies monitoring children's exposures via silicone wristbands. In this study, we implemented this sampling technique in ongoing research activities in Montevideo, Uruguay which aim to monitor chemical exposures in a cohort of elementary school children. The silicone wristbands were worn by 24 children for 7 days; they were quantitatively analyzed using gas chromatography with tandem mass spectrometry for 45 chemical pollutants, including polychlorinated biphenyls (PCBs), pesticides, polybrominated diphenyl ethers (PBDEs), organophosphorus flame retardants (OPFRs), and novel halogenated flame-retardant chemicals (NHFRs). All classes of chemicals, except NHFRs, were identified in the passive samplers. The average number of analytes detected in each wristband was 13 ±3. OPFRs were consistently the most abundant class of analytes detected. Median concentrations of ΣOPFRs, ΣPBDEs, ΣPCBs, and dichlorodiphenyltrichloroethane (DDT) and its metabolites (dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)) were 1020, 3.00, 0.52 and 3.79 ng/g wristband, respectively. Two major findings result from this research; differences in trends of two OPFRs (TCPP and TDCPP) are observed between studies in Uruguay and the United States, and the detection of DDT, a chemical banned in several countries, suggests that children's exposure profiles in these settings may differ from other parts of the world. This was the first study to examine children's exposome in South America using silicone wristbands and clearly points to a need for further studies.
Collapse
Affiliation(s)
- Steven C Travis
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, United States
| | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - James R Olson
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, United States
| | - Mónica Daleiro
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, United States.
| |
Collapse
|
44
|
Lu L, Wu H, Cui S, Zhan T, Zhang C, Lu S, Liu W, Zhuang S. Pentabromoethylbenzene Exposure Induces Transcriptome Aberration and Thyroid Dysfunction: In Vitro, in Silico, and in Vivo Investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12335-12344. [PMID: 32835475 DOI: 10.1021/acs.est.0c03308] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pentabromoethylbenzene (PBEB), as one of the novel brominated flame retardants (NFBRs), has caused increasing public concern for health risks. Till now, information regarding potential effects of PBEB on thyroid function remains unclear. Herein, we investigated thyroid disruption of PBEB in vitro and in silico and evaluated thyroid dysfunction induced by PBEB using Sprague-Dawley rats. PBEB showed thyroid receptor (TR) β antagonistic activity with IC50 of 9.82 × 10-7 M in the dual-luciferase reporter gene assay and induced relative reorientation of helix 11 (H11) and H12 of the TR ligand binding domain as revealed by molecular dynamics simulations. PBEB (0.2, 2, 20 mg/kg BW/d) markedly altered the transcriptome profile of thyroid with induction of 17, 42, and 119 differentially expressed genes (DEGs) involved in thyroid hormone signaling and synthesis pathway, of which transthyretin and albumin are common DEGs. The 28-d exposure to PBEB significantly decreased the triiodothyronine level (from 7.23 to 5.67 ng/mL) and increased the thyrotropin level (from 7.88 to 12.86 mU/L) for female rats. PBEB consequently reduced thyroid weight and altered its morphology with more depleted follicles. Overall, our study provides the first account of evidence on PBEB exerted thyroid disruption, transcriptome aberration, and morphological alteration, facilitating health risk assessment of PBEB and structurally related NBFRs.
Collapse
Affiliation(s)
- Liping Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shixuan Cui
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingjie Zhan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, Texas 77058, United States
| | - Shaoyong Lu
- Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|