1
|
Ma X, Ma Y, Lin J, Zhao Q, Yao S, Zhao X, Cui Y, Wang S. Stability and transformation behavior of hydrometallurgical hazardous arsenic-calcium residue in sulfidic anoxic environments. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137762. [PMID: 40022925 DOI: 10.1016/j.jhazmat.2025.137762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Arsenic-calcium residue (ACR) is a hazardous solid waste generated by the metallurgical industry, posing a significant environmental risk. However, the stability and transformation behavior of ACR in sulfidic conditions remains unclear. Herein, we have investigated the stability and speciation evolution of arsenic (As), sulfur (S), and trace metals during the exposure of ACR to diverse S(-II) concentrations under anoxic conditions at pH of 6 and 11. Our results indicate that environmentally relevant levels of S(-II) (i.e., 1, 10, and 50 mM) significantly enhance the mobilization of As(III) and Cd2+ from ACR, with greater release at pH 6. The main mechanism for the release of As(III) and trace metals from ACR is the reductive dissolution of Ca-arsenate/arsenite and As-trace metals-gypsum. The reductive dissolution of As-trace metals-gypsum leads to the formation of S2O32─ and SO32─. XRD, FE-SEM, FTIR, XPS, and HRTEM analyses reveal that gypsum serves as the host phase for As fixation at pH 6, while calcium-arsenate/arsenite phases predominate at pH 11. Secondary As2S3, CdS, CuS, and symplesite are generated at pH 6, whereas parasymplesite, CdS, and CuS are predominant at pH 11. These results enhance our understanding of the environmental behavior of As, S, and trace metals associated with ACR.
Collapse
Affiliation(s)
- Xu Ma
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Yuyin Ma
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Jinru Lin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Qi Zhao
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Shuhua Yao
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiaoming Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yubo Cui
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China.
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Zhu M, Li Y, Wei X, Yan Z, Yang L, Yang R. Different contributions of crystalline and non-crystalline iron (hydr)oxides on the mobilization and thionation of diphenylarsinic acid in a flooded paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136844. [PMID: 39672070 DOI: 10.1016/j.jhazmat.2024.136844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Iron reduction impacts the mobilization and thionation of diphenylarsinic acid (DPAA) in soil, but the contribution of crystalline and non-crystalline iron remains unknown. A paddy soil deficient in non-crystalline iron (P-Feo), crystalline and non-crystalline iron (P-Fed) were incubated with sulfate-plus-lactate, and the results were compared with paddy soil (P) in our previous study. For treatments without ferrous sulfide (FeS) precipitation, the solution-to-solid ratio (RL/S) of DPAA increased slightly and dramatically with iron reduction, respectively, for P-Feo and P, suggesting that the reduction of non-crystalline iron contributes more to DPAA mobilization than crystalline iron. The RL/S was > 0.667 and ≤ 0.667 for treatments without and with FeS, respectively, in P and P-Feo but not P-Fed, indicating that crystalline, rather than non-crystalline iron contributes more to DPAA sequestration through reduction and the subsequent FeS precipitation. The degree to which iron reduction facilitates DPAA mobilization or sequestration is likely determined by the composition and amount of iron in paddy soil, respectively. For treatments with FeS, the DPAA transformation rate was < 44 % and 74-86 %, respectively, in P-Feo and P-Fed after 90 days, with the maximum value comparable to those without FeS in P after 30 days. This suggests that the crystalline iron in P-Feo and the residual, small amount of non-crystalline iron in P-Fed could reduce DPAA thionation by forming FeS, and such effect seems to depend on both the composition and the amount of iron in paddy soil. The results would deepen our understanding of the "As-Fe-S" interactions in soil.
Collapse
Affiliation(s)
- Meng Zhu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Yuan Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaobao Wei
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Zhenqi Yan
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lu Yang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Ruyi Yang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
3
|
Zhang B, Yin M, Gao K, Dang Z, Liu C. Influence of calcium carbonate on ferrihydrite bio-transformation and associated arsenic mobilization/redistribution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125587. [PMID: 39725204 DOI: 10.1016/j.envpol.2024.125587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/29/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
The sulfate-reducing bacteria (SRB)-induced ferrihydrite transformation is an important cause for arsenic (As) contamination in the aquifer near mining area. Calcium carbonate (CaCO3) is widespread and has the potential of regulating As fate directly or indirectly. However, the influence of CaCO3 on ferrihydrite transformation and the associated As mobilization/redistribution in SRB-containing environments remains unclear. Therefore, in this research, batch experiments coupled with a series geochemical, spectroscopic, and microscopic technologies were conducted collectively to address the research gap above. The results suggested that under low CaCO3 loading conditions, the reductive transformation of ferrihydrite to Fe-S minerals resulted in a significant release of adsorbed As into the solution and As(V) reduction to more mobile and toxic As(III). Inside the cell of SRB, there existed S and As zone (no Fe), where As(V) might be reduced by S2- without interference of Fe(III). Although the high CaCO3 loadings exerted little effect on Fe(III) reduction, they promoted ferrihydrite transformation into dufrenite and vivianite, which sequestered As effectively via structural incorporation process, retarding As mobilization. Besides, the coprecipitation of As with dufrenite and vivianite enhanced the stability of solid phase As. Overall, the high CaCO3 loadings altered the mineralogical transformation of ferrihydrite and the associated As biogeochemistry significantly in SRB-containing environments. Regulating ferrihydrite transformation and the associated As fate via CaCO3 addition is an effective approach for mitigation of As mobilization in the aquifer near mining area.
Collapse
Affiliation(s)
- Bowei Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Meiling Yin
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Kun Gao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Husain MA, Besold J, Gustafsson JP, Scheinost AC, Planer-Friedrich B, Biswas A. Thioarsenate sorbs to natural organic matter through ferric iron-bridged ternary complexation to a lower extent than arsenite. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136531. [PMID: 39577280 DOI: 10.1016/j.jhazmat.2024.136531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Understanding processes regulating thioarsenate (HxAsSnO4-n3-x; n = 1 - 3; x = 1 - 3) mobility is essential to predicting the fate of arsenic (As) in aquatic environments under anoxic conditions. Under such conditions, natural organic matter (NOM) is known to effectively sorb arsenite and arsenate due to metal cation-bridged ternary complexation with the NOM. However, the extent and mechanism of thioarsenate sorption onto NOM via similar complexation has not been investigated. By equilibrating monothioarsenate (representative of thioarsenate) with a peat (model NOM) with different Fe(III) loadings, this study shows that NOM can sorb monothioarsenate considerably via Fe(III)-bridging. Iron and As K-edge XAS analysis of the monothioarsenate-treated Fe-loaded peats revealed that monothioarsenate forms bidentate mononuclear edge-shared (1E) (RAs···Fe: 2.89 ± 0.02 Å) and bidentate binuclear corner-shared (2C) (RAs···Fe: 3.32 Å) complexes with organically bound Fe(O,OH)6 octahedra, in addition to direct covalent bonds with oxygen-containing functional groups (e.g., -COOH and -OH) (RAs···C: 2.74 ± 0.02 Å), upon equilibration with the Fe(III)-loaded peat. However, the extent of monothioarsenate sorption was considerably less than that of its precursor As species, arsenite, due to higher electrostatic repulsion between the negatively charged monothioarsenate and peat. This study implies that thioarsenate formation under anoxic conditions would increase As mobility by decreasing its sorption onto the NOM.
Collapse
Affiliation(s)
- Mohd Amir Husain
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India
| | - Johannes Besold
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Jon Petter Gustafsson
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 750 07 Uppsala, Sweden
| | - Andreas C Scheinost
- The Rossendorf Beamline (ROBL) at ESRF, 38043 Grenoble, France; Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Ashis Biswas
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India; Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
5
|
Wu YF, Huang H, Zhang J, Hu G, Wang J, Peng C, Kappler A, Zhao FJ. Sulfate-mediated Fe(III) mineral reduction accelerates arsenic mobilization by a Desulfovibrio strain isolated from paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176529. [PMID: 39343409 DOI: 10.1016/j.scitotenv.2024.176529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The biogeochemical cycling of arsenic (As) is often intertwined with iron (Fe) and sulfur (S) cycles, wherein Fe(III)- and sulfate-reducing bacteria (SRB) play a crucial role. Here, we isolated strain DS-1, a strictly anaerobic Fe(III)- and sulfate-reducing bacterium, from As-contaminated paddy soil. Using 16S rRNA gene sequence analysis, strain DS-1 was identified as a member of the genus Desulfovibrio. Strain DS-1 utilized energy derived from ferrihydrite reduction to support its cellular growth. Under anoxic sulfate-reducing conditions, the presence of strain DS-1 significantly increased As mobilization compared to sulfate-free conditions. Mechanistically, SRB-produced sulfide reacts with Fe(III) to form FeS, which disrupts Fe(III) minerals, thereby enhancing As release. These findings highlight the critical role of redox disequilibrium in As mobilization and suggest that SRB-produced sulfide may permeate to the rice rhizosphere, increasing As mobilization through Fe(III) reduction.
Collapse
Affiliation(s)
- Yi-Fei Wu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Huang
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Gang Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajia Wang
- School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Andreas Kappler
- Geomicrobiology, Department of Geoscience, University of Tuebingen, Tuebingen 72076, Germany
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Kong S, Cai D, Shao Y, Wei X, Yi Z, Root RA, Chorover J. Identification of key factors and mechanism determining arsenic mobilization in paddy soil-porewater-rice system. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135684. [PMID: 39241359 PMCID: PMC11451535 DOI: 10.1016/j.jhazmat.2024.135684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Arsenic (As) mobilization in paddy fields poses significant health risks, necessitating a thorough understanding of the controlling factors and mechanisms to safeguard human health. We conducted a comprehensive investigation of the soil-porewater-rice system throughout the rice life cycle, focusing on monitoring arsenic distribution and porewater characteristics in typical paddy field plots. Soil pH ranged from 4.79 to 7.98, while porewater pH was weakly alkaline, varying from 7.2 to 7.47. Total arsenic content in paddy soils ranged from 6.8 to 17.2 mg/kg, with arsenic concentrations in porewater during rice growth ranging from 2.97 to 14.85 μg/L. Specifically, arsenite concentrations in porewater ranged from 0.48 to 7.91 μg/L, and arsenate concentrations ranged from 0.73 to 5.83 μg/L. Through principal component analysis (PCA) and analysis of redox factors, we identified that arsenic concentration in porewater is predominantly influenced by the interplay of reduction and desorption processes, contributing 43.5 % collectively. Specifically, the reductive dissolution of iron oxides associated with organic carbon accounted for 23.3 % of arsenic concentration dynamics in porewater. Additionally, arsenic release from the soil followed a sequence starting with nitrate reduction, followed by ferric ion reduction, and subsequently sulfate reduction. Our findings provide valuable insights into the mechanisms governing arsenic mobilization within the paddy soil-porewater-rice system. These insights could inform strategies for irrigation management aimed at mitigating arsenic toxicity and associated health risks.
Collapse
Affiliation(s)
- Shuqiong Kong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, Hubei 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China.
| | - Dawei Cai
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yixian Shao
- Zhejiang Institute of Geological Survey, Hangzhou, Zhejiang 311200, China
| | - Xiaguo Wei
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, Hubei 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China
| | - Zhihao Yi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, Hubei 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China
| | - Robert A Root
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, United States.
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
7
|
Zhang Y, Xie X, Sun S, Wang Y. Coupled redox cycling of arsenic and sulfur regulates thioarsenate enrichment in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173776. [PMID: 38862046 DOI: 10.1016/j.scitotenv.2024.173776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
High‑arsenic groundwater is influenced by a combination of processes: reductive dissolution of iron minerals and formation of secondary minerals, metal complexation and redox reactions of organic matter (OM), and formation of more migratory thioarsenate, which together can lead to significant increases in arsenic concentration in groundwater. This study was conducted in a typical sulfur- and arsenic-rich groundwater site within the Datong Basin to explore the conditions of thioarsenate formation and its influence on arsenic enrichment in groundwater using HPLC-ICPMS, hydrogeochemical modeling, and fluorescence spectroscopy. The shallow aquifer exhibited a highly reducing environment, marked by elevated sulfide levels, low concentrations of Fe(II), and the highest proportion of thioarsenate. In the middle aquifer, an optimal ∑S/∑As led to the presence of significant quantities of thioarsenate. In contrast, the deep aquifer exhibited low sulfide and high Fe(II) concentration, with arsenic primarily originating from dissolved iron minerals. Redox fluctuations in the sediment driven by sulfur‑iron minerals generated reduced sulfur, thereby facilitating thioarsenate formation. OM played a crucial role as an electron donor for microbial activities, promoting iron and sulfate reduction processes and creating conditions conducive to thioarsenate formation in reduced and high‑sulfur environments. Understanding the process of thioarsenate formation and the influencing factors is of paramount importance for comprehending the migration and redistribution of arsenic in groundwater systems.
Collapse
Affiliation(s)
- Yuyao Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China.
| | - Shutang Sun
- School of Resource and Environmental Sciences, Wuhan University, 430072, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
8
|
Wang H, Zhu Y, Lu Y, Bu X, Zhu Q, Yuan S. Reduction capacity in the transmissive zones fueled by the embedded low-permeability lenses: Implications for contaminant transformation in heterogeneous aquifers. WATER RESEARCH 2024; 260:121955. [PMID: 38909424 DOI: 10.1016/j.watres.2024.121955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Redox conditions play a decisive role in regulating contaminant and nutrient transformation in groundwater. Here we quantitatively described and interpreted the temporal and spatial variations of aquifer reduction capacity formation in lens-embedded heterogeneous aquifers in 1-D columns. Experimental results indicated that the aquifer reduction capacity exported from the low-permeability lens permeated into the downstream sandy zones, where it subsequently accumulated and extended. Reactive transport modeling suggested that reduction capacity within the lens preferentially diffused to the transmissive zones around the lens-sand interface, and was then transported via convection to downstream transmissive zones. A low-permeability lens of the same volume, but more elongated in the flow direction, led to less concentrated reduction capacity but extended further downgradient from the lens. The increased flow velocity attenuated the maintenance of aquifer reduction capacity by enhancing mixing and diluting processes in the transmissive zones. The reduction zones formed downstream from the low-permeability lens were hotpots for resisting the oxidative perturbation by O2. This study highlights the important role of low-permeability lenses as large and long-term electron pools for the transmissive zones, and thus providing aquifer reduction capacity for contaminant transformation and remediation in heterogeneous aquifers.
Collapse
Affiliation(s)
- Hong Wang
- School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, PR China
| | - Yonghui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Yuxi Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Xiaochuang Bu
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Qi Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, PR China.
| |
Collapse
|
9
|
Ali JD, Guatame-Garcia A, Jamieson HE, Parsons MB, Leybourne MI, Koch I, Weber KP, Patch DJ, Harrison AL, Vriens B. Occurrence and mobility of thiolated arsenic in legacy mine tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172596. [PMID: 38657821 DOI: 10.1016/j.scitotenv.2024.172596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
We studied the occurrence of dissolved thiolated Arsenic (As) in legacy tailings systems in Ontario and Nova Scotia, Canada, and used aqueous and mineralogical speciation analyses to assess its governing geochemical controls. Surface-accessible and inundated tailings in Cobalt, Ontario, contained ∼1 wt-% As mainly hosted in secondary arsenate minerals (erythrite, yukonite, and others) and traces of primary sulfide minerals (cobaltite, gersdorffite and others). Significant fractions of thiolated As (up to 5.9 % of total dissolved As) were detected in aqueous porewater and surface water samples from these sites, comprising mostly monothioarsenate, and smaller amounts of di- and tri-thioarsenates as well as methylated thioarsenates. Tailings at the Goldenville and Montague sites in Nova Scotia contained less (<0.5 wt-%) As, hosted mostly in arsenopyrite and As-bearing pyrite, than the Cobalt sites, but exhibited higher proportions of dissolved thiolated As (up to 17.3 % of total dissolved As, mostly mono- and di-thioarsenate and traces of tri-thioarsenate). Dissolved thiolated As was most abundant in sub-oxic porewaters and inundated tailings samples across the studied sites, and its concentrations were strongly related to the prevailing redox conditions and porewater hydrochemistry, and to a lesser extent, the As-bearing mineralogy. Our novel results demonstrate that thiolated As species play an important role in the cycling of As in mine waste systems and surrounding environments, and should be considered in mine waste management strategies for high-As sites.
Collapse
Affiliation(s)
- Jaabir D Ali
- Department of Geological Sciences & Engineering, Queen's University, Kingston, Ontario, Canada
| | - Adriana Guatame-Garcia
- Department of Geological Sciences & Engineering, Queen's University, Kingston, Ontario, Canada
| | - Heather E Jamieson
- Department of Geological Sciences & Engineering, Queen's University, Kingston, Ontario, Canada
| | - Michael B Parsons
- Department of Geological Sciences & Engineering, Queen's University, Kingston, Ontario, Canada; Geological Survey of Canada, Natural Resources Canada, Dartmouth, Nova Scotia, Canada
| | - Matthew I Leybourne
- Department of Geological Sciences & Engineering, Queen's University, Kingston, Ontario, Canada; Arthur B. McDonald Astroparticle Physics Research Institute, Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario, Canada
| | - Iris Koch
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Kela P Weber
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - David J Patch
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Anna L Harrison
- Institute of Geological Sciences, University of Bern, Bern 3012, Switzerland
| | - Bas Vriens
- Department of Geological Sciences & Engineering, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
10
|
Spielman-Sun E, Boye K, Dwivedi D, Engel M, Thompson A, Kumar N, Noël V. A Critical Look at Colloid Generation, Stability, and Transport in Redox-Dynamic Environments: Challenges and Perspectives. ACS EARTH & SPACE CHEMISTRY 2024; 8:630-653. [PMID: 38654896 PMCID: PMC11033945 DOI: 10.1021/acsearthspacechem.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 04/26/2024]
Abstract
Colloid generation, stability, and transport are important processes that can significantly influence the fate and transport of nutrients and contaminants in environmental systems. Here, we critically review the existing literature on colloids in redox-dynamic environments and summarize the current state of knowledge regarding the mechanisms of colloid generation and the chemical controls over colloidal behavior in such environments. We also identify critical gaps, such as the lack of universally accepted cross-discipline definition and modeling infrastructure that hamper an in-depth understanding of colloid generation, behavior, and transport potential. We propose to go beyond a size-based operational definition of colloids and consider the functional differences between colloids and dissolved species. We argue that to predict colloidal transport in redox-dynamic environments, more empirical data are needed to parametrize and validate models. We propose that colloids are critical components of element budgets in redox-dynamic systems and must urgently be considered in field as well as lab experiments and reactive transport models. We intend to bring further clarity and openness in reporting colloidal measurements and fate to improve consistency. Additionally, we suggest a methodological toolbox for examining impacts of redox dynamics on colloids in field and lab experiments.
Collapse
Affiliation(s)
- Eleanor Spielman-Sun
- Environmental
Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource
(SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kristin Boye
- Environmental
Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource
(SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dipankar Dwivedi
- Earth
and Environmental Sciences Area, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Maya Engel
- Department
of Soil and Water Sciences, Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Aaron Thompson
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
| | - Naresh Kumar
- Soil
Chemistry, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Vincent Noël
- Environmental
Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource
(SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
11
|
Luo T, Zheng Q, Yu J, Liang W, Sun Y, Quan G, Zhou F. Roles of nanoparticles in arsenic mobility and microbial community composition in arsenic-enriched soils. J Environ Sci (China) 2024; 138:301-311. [PMID: 38135397 DOI: 10.1016/j.jes.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2023]
Abstract
Environmental effects of nano remediation engineering of arsenic (As) pollution need to be considered. In this study, the roles of Fe2O3 and TiO2 nanoparticles (NPs) on the microbial mediated As mobilization from As contaminated soil were investigated. The addition of Fe2O3 and TiO2 NPs restrained As(V) release, and stimulated As(III) release. As(V) concentration decreased by 94% and 93% after Fe2O3 addition, and decreased by 89% and 45% after TiO2 addition compared to the Biotic and Biotic+Acetate (amended with sodium acetate) controls, respectively. The maximum values of As(III) were 20.5 and 27.1 µg/L at 48 d after Fe2O3 and TiO2 NPs addition, respectively, and were higher than that in Biotic+Acetate control (12.9 µg/L). The released As co-precipitated with Fe in soils in the presence of Fe2O3 NPs, but adsorbed on TiO2 NPs in the presence of TiO2 NPs. Moreover, the addition of NPs amended with sodium acetate as the electron donor clearly promoted As(V) reduction induced by microbes. The NPs addition changed the relative abundance of soil bacterial community, while Proteobacteria (42.8%-70.4%), Planctomycetes (2.6%-14.3%), and Firmicutes (3.5%-25.4%) were the dominant microorganisms in soils. Several potential As/Fe reducing bacteria were related to Pseudomonas, Geobacter, Desulfuromonas, and Thiobacillus. The addition of Fe2O3 and TiO2 NPs induced to the decrease of arrA gene. The results indicated that the addition of NPs had a negative impact on soil microbial population in a long term. The findings offer a relatively comprehensive assessment of Fe2O3 and TiO2 NPs effects on As mobilization and soil bacterial communities.
Collapse
Affiliation(s)
- Ting Luo
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China.
| | - Qining Zheng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China
| | - Jie Yu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Weihao Liang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China
| | - Yan Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China
| | - Feng Zhou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China
| |
Collapse
|
12
|
Feng C, Liu F, Bi E. Control mechanism of trichloroethylene back diffusion by microstructure in a low permeability zone. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133593. [PMID: 38280322 DOI: 10.1016/j.jhazmat.2024.133593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
The trailing effect caused by the back diffusion (BD) of contaminants in low-permeability zones (LPZs), which prolongs remediation time and increases remediation costs, has caused widespread concern. In this study, the BD of trichloroethylene (TCE) from the LPZ to the high-permeability zone (HPZ) was determined using flow cell experiments. The anomalous variance in the BD flux of the TCE-spanning 2-4 times the deviation under identical experimental conditions, attracted our attention. To determine the cause of this aberrant behavior, a micro computed tomography (micro-CT) characterization of the flow cell was conducted, which revealed significant microstructural disparities in the LPZ. The study found that the pore connectivity of LPZs determines the efficiency of BD and that LPZs with different porosities have different sensitivities to connectivity. The pore shape complexity indicates the possibility of BD retardation, and remediation is more difficult for these types of LPZs. Changing the structure of LPZs to improve their remediation efficiency may be a new research topic. Notably, correcting the model parameters through microstructural characterization significantly refined the prediction accuracy.
Collapse
Affiliation(s)
- Chen Feng
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Erping Bi
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
13
|
Zhang Y, Xie X, Sun S, Wang Y. Arsenic transformation and redistribution in groundwater induced by the complex geochemical cycling of iron and sulfur. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164941. [PMID: 37343891 DOI: 10.1016/j.scitotenv.2023.164941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Iron (hydr)oxides are effective sorbents of arsenic that undergo reductive dissolution when exposed to dissolved sulfide, which significantly impacts the movement and repartition of arsenic in groundwater. This study investigated the sulfidation of As-bearing ferrihydrite and its consequences on arsenic repartitioning as well as formation and transformation of secondary minerals induced by sulfide in batch experiments. The sulfidation of As(III) and As(V) adsorbed on ferrihydrite shows very different results. In the As(V) system, sulfidation resulted in the production of significant amounts of elemental sulfur (S0) and Fe2+, and Fe2+ and sulfide combine to form mackinawite. Subsequently, Fe2+ adsorbed and catalyzed the conversion of residual ferrihydrite to lepidocrocite. However, in the As(III) system, As(III) was protonated in the presence of sulfide to produce thioarsenate, which accounted for 87.9 % of the total aqueous arsenic concentration. The formation of thioarsenate also consumed the S0 produced by the sulfidation, resulting in no detectable S0 during solid phase characterization. The adsorption of thioarsenate on iron minerals notably affected the surface charge density of ferrihydrite, hindering the further formation of secondary minerals. Studies on the influence of thiolation on As-Fe-S system are of great significance for understanding the migration and redistribution of arsenic in groundwater systems under sulfur-rich conditions.
Collapse
Affiliation(s)
- Yuyao Zhang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China.
| | - Shutang Sun
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China
| |
Collapse
|
14
|
Meza I, Jemison N, Gonzalez-Estrella J, Burns PC, Rodriguez V, Sigmon GE, Szymanowski JE, Ali AMS, Gagnon K, Cerrato JM, Lichtner P. Kinetics of Na- and K- uranyl arsenate dissolution. CHEMICAL GEOLOGY 2023; 636:121642. [PMID: 37601980 PMCID: PMC10434837 DOI: 10.1016/j.chemgeo.2023.121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
We integrated aqueous chemistry analyses with geochemical modeling to determine the kinetics of the dissolution of Na and K uranyl arsenate solids (UAs(s)) at acidic pH. Improving our understanding of how UAs(s) dissolve is essential to predict transport of U and As, such as in acid mine drainage. At pH 2, Na0.48H0.52(UO2)(AsO4)(H2O)2.5(s) (NaUAs(s)) and K0.9H0.1(UO2)(AsO4)(H2O)2.5(s) (KUAs(s)) both dissolve with a rate constant of 3.2 × 10-7 mol m-2 s-1, which is faster than analogous uranyl phosphate solids. At pH 3, NaUAs(s) (6.3 × 10-8 mol m-2 s-1) and KUAs(s) (2.0 × 10-8 mol m-2 s-1) have smaller rate constants. Steady-state aqueous concentrations of U and As are similarly reached within the first several hours of reaction progress. This study provides dissolution rate constants for UAs(s), which may be integrated into reactive transport models for risk assessment and remediation of U and As contaminated waters.
Collapse
Affiliation(s)
- Isabel Meza
- Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Center for Water and the Environment, UNM, Albuquerque, NM, USA
| | - Noah Jemison
- Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Center for Water and the Environment, UNM, Albuquerque, NM, USA
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Virginia Rodriguez
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Ginger E. Sigmon
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jennifer E.S. Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Abdul-Mehdi S. Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Kaelin Gagnon
- Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Center for Water and the Environment, UNM, Albuquerque, NM, USA
| | - José M. Cerrato
- Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Center for Water and the Environment, UNM, Albuquerque, NM, USA
| | - Peter Lichtner
- Center for Water and the Environment, UNM, Albuquerque, NM, USA
| |
Collapse
|
15
|
Lacroix EM, Aeppli M, Boye K, Brodie E, Fendorf S, Keiluweit M, Naughton HR, Noël V, Sihi D. Consider the Anoxic Microsite: Acknowledging and Appreciating Spatiotemporal Redox Heterogeneity in Soils and Sediments. ACS EARTH & SPACE CHEMISTRY 2023; 7:1592-1609. [PMID: 37753209 PMCID: PMC10519444 DOI: 10.1021/acsearthspacechem.3c00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 07/21/2023] [Indexed: 09/28/2023]
Abstract
Reduction-oxidation (redox) reactions underlie essentially all biogeochemical cycles. Like most soil properties and processes, redox is spatiotemporally heterogeneous. However, unlike other soil features, redox heterogeneity has yet to be incorporated into mainstream conceptualizations of soil biogeochemistry. Anoxic microsites, the defining feature of redox heterogeneity in bulk oxic soils and sediments, are zones of oxygen depletion in otherwise oxic environments. In this review, we suggest that anoxic microsites represent a critical component of soil function and that appreciating anoxic microsites promises to advance our understanding of soil and sediment biogeochemistry. In sections 1 and 2, we define anoxic microsites and highlight their dynamic properties, specifically anoxic microsite distribution, redox gradient magnitude, and temporality. In section 3, we describe the influence of anoxic microsites on several key elemental cycles, organic carbon, nitrogen, iron, manganese, and sulfur. In section 4, we evaluate methods for identifying and characterizing anoxic microsites, and in section 5, we highlight past and current approaches to modeling anoxic microsites. Finally, in section 6, we suggest steps for incorporating anoxic microsites and redox heterogeneities more broadly into our understanding of soils and sediments.
Collapse
Affiliation(s)
- Emily M. Lacroix
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, 1015 Lausanne, Switzerland
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Meret Aeppli
- Institut
d’ingénierie de l’environnement (IIE), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Kristin Boye
- Environmental
Geochemistry Group, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Eoin Brodie
- Lawrence
Berkeley Laboratory, Earth and Environmental
Sciences Area, Berkeley, California 94720, United States
| | - Scott Fendorf
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Marco Keiluweit
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, 1015 Lausanne, Switzerland
| | - Hannah R. Naughton
- Lawrence
Berkeley Laboratory, Earth and Environmental
Sciences Area, Berkeley, California 94720, United States
| | - Vincent Noël
- Environmental
Geochemistry Group, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Debjani Sihi
- Department
of Environmental Sciences, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
16
|
Nghiem AA, Prommer H, Mozumder MRH, Siade A, Jamieson J, Ahmed KM, van Geen A, Bostick BC. Sulfate reduction accelerates groundwater arsenic contamination even in aquifers with abundant iron oxides. NATURE WATER 2023; 1:151-165. [PMID: 37034542 PMCID: PMC10074394 DOI: 10.1038/s44221-022-00022-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/19/2022] [Indexed: 02/18/2023]
Abstract
Groundwater contamination by geogenic arsenic is a global problem affecting nearly 200 million people. In South and Southeast Asia, a cost-effective mitigation strategy is to use oxidized low-arsenic aquifers rather than reduced high-arsenic aquifers. Aquifers with abundant oxidized iron minerals are presumably safeguarded against immediate arsenic contamination, due to strong sorption of arsenic onto iron minerals. However, preferential pumping of low-arsenic aquifers can destabilize the boundaries between these aquifers, pulling high-arsenic water into low-arsenic aquifers. We investigate this scenario in a hybrid field-column experiment in Bangladesh where naturally high-arsenic groundwater is pumped through sediment cores from a low-arsenic aquifer, and detailed aqueous and solid-phase measurements are used to constrain reactive transport modelling. Here we show that elevated groundwater arsenic concentrations are induced by sulfate reduction and the predicted formation of highly mobile, poorly sorbing thioarsenic species. This process suggests that contamination of currently pristine aquifers with arsenic can occur up to over 1.5 times faster than previously thought, leading to a deterioration of urgently needed water resources.
Collapse
Affiliation(s)
- Athena A. Nghiem
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
- Present address: Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Present address: Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Henning Prommer
- CSIRO Environment, Wembley, Western Australia, Australia
- School of Earth Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - M. Rajib H. Mozumder
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
- Ramboll Environment & Health, Westford, MA, USA
| | - Adam Siade
- CSIRO Environment, Wembley, Western Australia, Australia
- School of Earth Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - James Jamieson
- CSIRO Environment, Wembley, Western Australia, Australia
- School of Earth Sciences, University of Western Australia, Perth, Western Australia, Australia
| | | | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | | |
Collapse
|
17
|
Feng Y, Dong S, Ma M, Hou Q, Zhao Z, Zhang W. The influence mechanism of hydrogeochemical environment and sulfur and nitrogen cycle on arsenic enrichment in groundwater: A case study of Hasuhai basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160013. [PMID: 36368403 DOI: 10.1016/j.scitotenv.2022.160013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Hydro-biogeochemical processes control the formation and evolution of high arsenic (As) groundwater. However, the effects of nitrogen and sulfur cycles in groundwater on As migration and transformation are not well understood. Thus, twenty-one groundwater samples were collected from the Hasuhai basin. Hydrochemistry and geochemical modeling were used to analyze the geochemical processes associated with nitrogen and sulfur cycles. An arsenic speciation model (AM) and a sulfide-As model (SAM) were constructed to verify the existence of As species and the formation mechanism of thioarsenate. A hydrous ferric oxide (Hfo)-As adsorption model (HAM) and a competitive adsorption model (CAM) were used to reveal the adsorption and desorption mechanisms of As. The results showed that high arsenic groundwater (As > 10 μg/L) was mainly distributed under reductive conditions, and the highest concentration was 231.5 μg/L. The modeling results revealed that sulfides were widely involved in the geochemical cycle of As, with H3AsO3 and H2AsO3- accounting for >70 % of the total As, and thioarsenate accounting for 30 %. S/As < 2.5 and S/Fe < l control the formation of thioarsenate. With the high correlation of NH4+, TFe, sulfide, and TAs, the co-mobilization of N and S cycles may facilitate As enrichment in groundwater. A weak alkaline reduction environment triggered by the decomposition of organic matter was the main factor leading to the transfer of As from the aquifer to the groundwater. This research contributes to the development of high-As groundwater, and the findings are of general significance for drinking water in the Hasuhai Basin.
Collapse
Affiliation(s)
- Yanbo Feng
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China; Inner Mongolia Key Laboratory of River and Lake Ecology, Hohhot 010021, Inner Mongolia, China
| | - Shaogang Dong
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China; Inner Mongolia Key Laboratory of River and Lake Ecology, Hohhot 010021, Inner Mongolia, China.
| | - Mingyan Ma
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
| | - Qingqiu Hou
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zhen Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
| | - Wenqi Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
| |
Collapse
|
18
|
Qing C, Nicol A, Li P, Planer-Friedrich B, Yuan C, Kou Z. Different sulfide to arsenic ratios driving arsenic speciation and microbial community interactions in two alkaline hot springs. ENVIRONMENTAL RESEARCH 2023; 218:115033. [PMID: 36502897 DOI: 10.1016/j.envres.2022.115033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is ubiquitous in geothermal fluids, which threatens both water supply safety and local ecology. The co-occurrence of sulfur (S) and As increases the complexity of As migration and transformation in hot springs. Microorganisms play important roles in As-S transformation processes. In the present study, two Tibetan alkaline hot springs (designated Gulu [GL] and Daba [DB]) with different total As concentrations (0.88 mg/L and 12.42 mg/L, respectively) and different sulfide/As ratios (3.97 and 0.008, respectively) were selected for investigating interactions between As-S geochemistry and microbial communities along the outflow channels. The results showed that As-S transformation processes were similar, although concentrations and percentages of As and S species differed between the two hot springs. Thioarsenates were detected at the vents of the hot springs (18% and 0.32%, respectively), and were desulfurized to arsenite along the drainage channel. Arsenite was finally oxidized to arsenate (532 μg/L and 12,700 μg/L, respectively). Monothioarsenate, total As, and sulfate were the key factors shaping the changes in microbial communities with geochemical gradients. The relative abundances of sulfur reduction genes (dsrAB) and arsenate reduction genes (arsC) were higher in upstream portions of GL explaining high thiolation. Arsenite oxidation genes (aoxAB) were relatively abundant in downstream parts of GL and at the vent of DB explaining low thiolation. Sulfur oxidation genes (soxABXYZ) were abundant in GL and DB. Putative sulfate-reducing bacteria (SRB), such as Desulfuromusa and Clostridium, might be involved in forming thioarsenates by producing reduced S for chemical reactions with arsenite. Sulfur-oxidizing bacteria (SOB), such as Elioraea, Pseudoxanthomonas and Pseudomonas, and arsenite-oxidizing bacteria (AsOB) such as Thermus, Sulfurihydrogenibium and Hydrogenophaga, may be responsible for the oxidation of As-bound S, thereby desulfurizing thioarsenates, forming arsenite and, by further abiotic or microbial oxidation, arsenate. This study improves our understanding of As and S biogeochemistry in hot springs.
Collapse
Affiliation(s)
- Chun Qing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| | - Alan Nicol
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), Bayreuth University, 95440, Bayreuth, Germany.
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| | - Britta Planer-Friedrich
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), Bayreuth University, 95440, Bayreuth, Germany.
| | - Changguo Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| | - Zhu Kou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| |
Collapse
|
19
|
Yu X, LeMonte JJ, Li J, Stuckey JW, Sparks DL, Cargill JG, Russoniello CJ, Michael HA. Hydrologic Control on Arsenic Cycling at the Groundwater-Surface Water Interface of a Tidal Channel. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:222-230. [PMID: 36534790 DOI: 10.1021/acs.est.2c05930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Historical industrial activities have resulted in soil contamination at sites globally. Many of these sites are located along coastlines, making them vulnerable to hydrologic and biogeochemical alterations due to climate change and sea-level rise. However, the impact of hydrologic dynamics on contaminant mobility in tidal environments has not been well studied. Here, we collected data from pressure transducers in wells, multi-level redox sensors, and porewater samplers at an As-contaminated site adjacent to a freshwater tidal channel. Results indicate that sharp redox gradients exist and that redox conditions vary on tidal to seasonal timescales due to sub-daily water level fluctuations in the channel and seasonal groundwater-surface water interactions. The As and Fe2+ concentrations decreased during seasonal periods of net discharge to the channel. The seasonal changes were greater than tidal variations in both Eh and As concentrations, indicating that impacts of the seasonal mechanism are stronger than those of sub-daily water table fluctuations. A conceptual model describing tidal and seasonal hydro-biogeochemical coupling is presented. These findings have broad implications for understanding the impacts of sea-level rise on the mobility of natural and anthropogenic coastal solutes.
Collapse
Affiliation(s)
- Xuan Yu
- Center for Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai519082, China
| | - Joshua J LeMonte
- Department of Geological Sciences, Brigham Young University, Provo, Utah84602, United States
| | - Junxia Li
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology & Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan430074, China
| | - Jason W Stuckey
- Department of Natural Sciences and Environmental Science Program, Multnomah University, Portland, Oregon97220, United States
| | - Donald L Sparks
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware19716, United States
| | - John G Cargill
- Department of Natural Resources and Environmental Control, New Castle, Delaware19720, United States
| | | | - Holly A Michael
- Department of Earth Sciences and Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware19716, United States
| |
Collapse
|
20
|
Wang T, Xu KM, Yan KX, Wu LG, Chen KP, Wu JC, Chen HL. Comparative study of the performance of controlled release materials containing mesoporous MnOx in catalytic persulfate activation for the remediation of tetracycline contaminated groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157217. [PMID: 35810910 DOI: 10.1016/j.scitotenv.2022.157217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Controlled release materials (CRMs) are an emerging oxidant delivery technique for in-situ chemical oxidation (ISCO) that solve the problems of contaminant rebound, backflow and wake during groundwater remediation. CRMs were fabricated using ordered mesoporous manganese oxide (O-MnOx) and sodium persulfate (Na2S2O8) as active components, for the removal of antibiotic pollutants from groundwater. In both static and dynamic groundwater environments, persulfate can first be activated by O-MnOx within CRMs to form sulfate radicals and hydroxyl radicals, with these radicals subsequently dissolving out from the CRMs and degrading tetracycline (TC). Due to their excellent persulfate activation performance and good stability, the constructed CRMs could effectively degrade TC in both static and dynamic simulated groundwater systems over a long period (>21 days). The TC removal rate reached >80 %. Changing the added content of O-MnOx and persulfate could effectively regulate the performance of the CRMs during TC degradation in groundwater. The process and products of TC degradation in the dynamic groundwater system were the same as in the static groundwater system. Due to the strong oxidizing properties of sulfate radicals and hydroxyl radicals, TC molecules were completely mineralized within the groundwater systems, resulting in only trace levels of degradation products being detectable, with low- or non-toxicity. Therefore, the CRMs constructed in this study exhibited good potential for practical application in the remediation of organic pollutants from both static and dynamic groundwater environments.
Collapse
Affiliation(s)
- Ting Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kun-Miao Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kai-Xin Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Li-Guang Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kou-Ping Chen
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Ji-Chun Wu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Hua-Li Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
21
|
Engel M, Noël V, Kukkadapu RK, Boye K, Bargar JR, Fendorf S. Nitrate Controls on the Extent and Type of Metal Retention in Fine-Grained Sediments of a Simulated Aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14452-14461. [PMID: 36206030 DOI: 10.1021/acs.est.2c03403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aquifer groundwater quality is largely controlled by sediment composition and physical heterogeneity, which commonly sustains a unique redox gradient pattern. Attenuation of heavy metals within these heterogeneous aquifers is reliant on multiple factors, including redox conditions and redox-active species that can further influence biogeochemical cycling. Here, we simulated an alluvial aquifer system using columns filled with natural coarse-grained sediments and two domains of fine-grained sediment lenses. Our goal was to examine heavy metal (Ni and Zn) attenuation within a complex aquifer network and further explore nitrate-rich groundwater conditions. The fine-grained sediment lenses sustained reducing conditions and served as a sink for Ni sequestration─in the form of Ni-silicates, Ni-organic matter, and a dominant Ni-sulfide phase. The silicate clay and sulfide pools were also important retention mechanisms for Zn; however, Ni was associated more extensively with organic matter compared to Zn, which formed layered double hydroxides. Nitrate-rich conditions promoted denitrification within the lenses that was coupled to the oxidation of Fe(II) and the concomitant precipitation of an Fe(III) phase with higher structural distortion. A decreased metal sulfide pool also resulted, where nitrate-rich conditions generated an average 20% decrease in solid-phase Ni, Zn, and Fe. Ultimately, nitrate plays a significant role in the aquifer's biogeochemical cycling and the capacity to retain heavy metals.
Collapse
Affiliation(s)
- Maya Engel
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Vincent Noël
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ravi K Kukkadapu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Kristin Boye
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - John R Bargar
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
22
|
Kumar N, Noël V, Besold J, Planer-Friedrich B, Boye K, Fendorf S, Brown GE. Mechanism of Arsenic Partitioning During Sulfidation of As-Sorbed Ferrihydrite Nanoparticles. ACS EARTH & SPACE CHEMISTRY 2022; 6:1666-1673. [PMID: 35903782 PMCID: PMC9310089 DOI: 10.1021/acsearthspacechem.1c00373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Knowledge of how arsenic (As) partitions among various phases in Fe-rich sulfidic environments is critical for understanding the fate and mobility of As in such environments. We studied the reaction of arsenite and arsenate sorbed on ferrihydrite nanoparticle surfaces with dissolved sulfide at varying S/Fe ratios (0.1-2.0) to understand the fate and transformation mechanism of As during sulfidation of ferrihydrite. By using aqueous As speciation analysis by IC-ICP-MS and solid-phase As speciation analysis by synchrotron-based X-ray absorption spectroscopy (XAS), we were able to discern the mechanism and pathways of As partitioning and thio-arsenic species formation. Our results provide a mechanistic understanding of the fate and transformation of arsenic during the codiagenesis of As, Fe, and S in reducing environments. Our aqueous-phase As speciation data, combined with solid-phase speciation data, indicate that sulfidation of As-sorbed ferrihydrite nanoparticles results in their transformation to trithioarsenate and arsenite, independent of the initial arsenic species used. The nature and extent of transformation and the thioarsenate species formed were controlled by S/Fe ratios in our experiments. However, arsenate was reduced to arsenite before transformation to trithioarsenate.
Collapse
Affiliation(s)
- Naresh Kumar
- Department
of Geological Sciences, School of Earth, Energy & Environmental
Sciences, Stanford University, Stanford, California 94305-2115, United States
- Center
for Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
- Soil
Chemistry and Chemical Soil Quality Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Vincent Noël
- Stanford
Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo
Park, California 94025, United States
| | - Johannes Besold
- Environmental
Geochemistry, Bayreuth Center for Ecology and Environmental Research
(BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental
Geochemistry, Bayreuth Center for Ecology and Environmental Research
(BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Kristin Boye
- Stanford
Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo
Park, California 94025, United States
| | - Scott Fendorf
- Department
of Earth System Sciences, School of Earth, Energy & Environmental
Sciences, Stanford University, Stanford, California 94305, United States
| | - Gordon E. Brown
- Department
of Geological Sciences, School of Earth, Energy & Environmental
Sciences, Stanford University, Stanford, California 94305-2115, United States
- Center
for Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
- Stanford
Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo
Park, California 94025, United States
| |
Collapse
|
23
|
Peřestá M, Drahota P, Culka A, Matoušek T, Mihaljevič M. Impact of organic matter on As sulfidation in wetlands: An in situ experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152008. [PMID: 34852251 DOI: 10.1016/j.scitotenv.2021.152008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Arsenic incorporation into newly formed As sulfides has recently been identified as an important As sequestration pathway in both laboratory experiments and natural As-wetlands. Here, we used an in situ experimental technique with double nylon experimental bags (10-μm mesh) to study the effect of low-cost organic materials (sawdust, wood cubes and hemp shives) on As sulfidation in three naturally As-enriched wetland soils under water-saturated (~1 m depth) and neutral pH conditions. After 15 months of in situ incubation, all of the organic materials and their corresponding inner bags were covered by yellow-black mineral accumulations, dominantly composed of crystalline As4S4 polymorphs (realgar and bonazziite) and reactive Fe(II) sulfides (probably mackinawite); while the major fraction of As (~80%) was sequestered as AsS minerals. The amount of As accumulation in the experimental bags varied significantly (0.03-4.24 g As kg-1) and corresponded with different levels of As (0.23-9.4 mg As L-1) in the groundwater. Our findings suggest an authigenic formation of AsS minerals in strongly reducing conditions of experimental bags by a combination of reduced exchange of solutes through the pores of the bag and comparatively fast microbial production of dissolved sulfide. Arsenic sulfide formation, as an effective treatment mechanism for natural and human-constructed wetlands, appears to be favored for As(III)-rich waters with a low Fe(II)/As(III) molar ratio. These conditions prevent the consumption of dissolved As and sulfide by their preferential incorporation into natural organic matter, and newly-formed Fe(II) sulfides, respectively.
Collapse
Affiliation(s)
- Magdaléna Peřestá
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Petr Drahota
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic.
| | - Adam Culka
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Tomáš Matoušek
- Institute of Analytical Chemistry, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| |
Collapse
|
24
|
Aeppli M, Babey T, Engel M, Lacroix EM, Tolar BB, Fendorf S, Bargar JR, Boye K. Export of Organic Carbon from Reduced Fine-Grained Zones Governs Biogeochemical Reactivity in a Simulated Aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2738-2746. [PMID: 35072465 DOI: 10.1021/acs.est.1c04664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sediment interfaces in alluvial aquifers have a disproportionately large influence on biogeochemical activity and, therefore, on groundwater quality. Previous work showed that exports from fine-grained, organic-rich zones sustain reducing conditions in downstream coarse-grained aquifers beyond the influence of reduced aqueous products alone. Here, we show that sustained anaerobic activity can be attributed to the export of organic carbon, including live microorganisms, from fine-grained zones. We used a dual-domain column system with ferrihydrite-coated sand and embedded reduced, fine-grained lenses from Slate River (Crested Butte, CO) and Wind River (Riverton, WY) floodplains. After 50 d of groundwater flow, 8.8 ± 0.7% and 14.8 ± 3.1% of the total organic carbon exported from the Slate and Wind River lenses, respectively, had accumulated in the sand downstream. Furthermore, higher concentrations of dissolved Fe(II) and lower concentrations of dissolved organic carbon in the sand compared to total aqueous transport from the lenses suggest that Fe(II) was produced in situ by microbial oxidation of organic carbon coupled to iron reduction. This was further supported by an elevated abundance of 16S rRNA and iron-reducing (gltA) gene copies. These findings suggest that organic carbon transport across interfaces contributes to downstream biogeochemical reactions in natural alluvial aquifers.
Collapse
Affiliation(s)
- Meret Aeppli
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Tristan Babey
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Maya Engel
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Emily M Lacroix
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Bradley B Tolar
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - John R Bargar
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kristin Boye
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
25
|
Sorption of Monothioarsenate to the Natural Sediments and Its Competition with Arsenite and Arsenate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312839. [PMID: 34886565 PMCID: PMC8657673 DOI: 10.3390/ijerph182312839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Monothioarsenate (MTAsV) is one of the major arsenic species in sulfur- or iron-rich groundwater, and the sediment adsorption of MTAsV plays an important role in arsenic cycling in the subsurface environment. In this study, batch experiments and characterization are conducted to investigate the sorption characteristic and mechanism of MTAsV on natural sediments and the influences of arsenite and arsenate. Results show that MTAsV adsorption on natural sediments is similar to arsenate and arsenite, manifested by a rapid early increasing stage, a slowly increasing stage at an intermediate time until 8 h, before finally approaching an asymptote. The sediment sorption for MTAsV mainly occurs on localized sites with high contents of Fe and Al, where MTAsV forms a monolayer on the surface of natural sediments via a chemisorption mechanism and meanwhile the adsorbed MTAsV mainly transforms into other As species, such as AlAs, Al-As-O, and Fe-As-O compounds. At low concentration, MTAsV sorption isotherm by natural sediments becomes the Freundlich isotherm model, while at high concentration of MTAsV, its sorption isotherm becomes the Langmuir isotherm model. The best-fitted maximum adsorption capacity for MTAsV adsorption is about 362.22 μg/g. Furthermore, there is a competitive effect between MTAsV and arsenate adsorption, and MTAsV and arsenite adsorption on natural sediments. More specifically, the presence of arsenite greatly decreases MTAsV sorption, while the presence of MTAsV causes a certain degree of reduction of arsenite adsorption on the sediments before 4 h, and this effect becomes weaker when approaching the equilibrium state. The presence of arsenate greatly decreases MTAsV sorption and the presence of MTAsV also greatly decreases arsenate sorption. These competitive effects may greatly affect MTAsV transport in groundwater systems and need more attention in the future.
Collapse
|
26
|
Gao J, Zheng T, Deng Y, Jiang H. Microbially mediated mobilization of arsenic from aquifer sediments under bacterial sulfate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144709. [PMID: 33736355 DOI: 10.1016/j.scitotenv.2020.144709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/04/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Understanding the biogeochemical processes controlling arsenic (As) mobilization under bacterial sulfate reduction (BSR) in aquifer sediments is essential for the remediation of high As groundwater. Here, we conducted microcosm experiments with shallow aquifer sediments from the Jianghan Plain (central Yangtze River Basin) under the stimulation of exogenous sulfate. Initially, co-increases of As(III) (from 0.0 to 88.5 μg/L), Fe(II) (from 0.5 to 6.0 mg/L), and S(-II) (from 0.0 to 90.0 μg/L) indicated the concurrent occurrence of sulfate, Fe(III), and arsenate reduction. The corresponding increase of the relative abundance of OTUs classified as sulfate-reducing bacteria, Desulfomicrobium (from 0.5 to 30.6%), and dsrB gene abundance indicated the strong occurrence of BSR during the incubation. The underlying mechanisms of As mobilization could be attributed to the biotic and abiotic reduction of As-bearing iron (hydro)oxides either through the iron-reducing bacteria or the bacterially generated sulfide, which were supported by the variations in solid speciation of Fe, S, and As. As the incubation progressed, we observed a transient attenuation followed by a re-increase of aqueous As, due to the limited abundance of newly-formed Fe-sulfide minerals with a weak ability of As sequestration. Moreover, the formation of thioarsenate (H2AsS4-) during the mobilization of As from the sediments was observed, highlighting that BSR could facilitate As mobilization through multiple pathways. The present results provided new insights for the biogeochemical processes accounting for As mobilization from sediments under BSR conditions.
Collapse
Affiliation(s)
- Jie Gao
- Geological Survey, China University of Geosciences, Wuhan, China
| | - Tianliang Zheng
- Geological Survey, China University of Geosciences, Wuhan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Yamin Deng
- School of Environmental Studies, China University of Geosciences, Wuhan, China.
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
27
|
Wang HY, Göttlicher J, Byrne JM, Guo HM, Benning LG, Norra S. Vertical redox zones of Fe-S-As coupled mineralogy in the sediments of Hetao Basin - Constraints for groundwater As contamination. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124924. [PMID: 33385723 DOI: 10.1016/j.jhazmat.2020.124924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The formation of iron-sulfur-arsenic (Fe-S-As) minerals during biogeochemical processes in As contaminated aquifers remains poorly understood despite their importance to understanding As release and transport in such systems. In this study, X-ray absorption and Mössbauer spectroscopies complemented by electron microscopy, and chemical extractions were used to examine vertical changes of As, Fe and S speciation for the example of sediments in the Hetao Basin. Reduction of Fe(III), As(V) and SO42- species were shown to co-occur in the aquifers. Iron oxides were observed to be predominantly goethite and hematite (36 - 12%) and appeared to decrease in abundance with depth. Furthermore, reduced As (including arsenite and As sulfides) and sulfur species (including S(-II), S(-I) and S0) increased from 16% to 76% and from 13% to 44%, respectively. Iron oxides were the major As carrier in the sediments, and the lower groundwater As concentration consists with less desorbable and reducible As in the sediments. The formation of As-Fe sulfides (e.g., As containing pyrite and greigite) induced by redox heterogeneities likely contribute to localized lower groundwater As concentrations. These results help to further elucidate the complex relationship between biogeochemical processes and minerals formation in As contaminated aquifers.
Collapse
Affiliation(s)
- H Y Wang
- Institute of Applied Geoscience, Working Group of Environmental Mineralogy and Environmental System Analysis, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - J Göttlicher
- Institute of Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - J M Byrne
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany; Now: School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
| | - H M Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geoscience, 100083 Beijing, China
| | - L G Benning
- GFZ German Research Center for Geoscience, 14473 Potsdam, Germany; Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - S Norra
- Institute of Applied Geoscience, Working Group of Environmental Mineralogy and Environmental System Analysis, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
28
|
Glodowska M, Stopelli E, Straub D, Vu Thi D, Trang PTK, Viet PH, Berg M, Kappler A, Kleindienst S. Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124398. [PMID: 33213979 DOI: 10.1016/j.jhazmat.2020.124398] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/30/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The fate of arsenic (As) in groundwater is determined by multiple interrelated microbial and abiotic processes that contribute to As (im)mobilization. Most studies to date have investigated individual processes related to As (im)mobilization rather than the complex networks present in situ. In this study, we used RNA-based microbial community analysis in combination with groundwater hydrogeochemical measurements to elucidate the behavior of As along a 2 km transect near Hanoi, Vietnam. The transect stretches from the riverbank across a strongly reducing and As-contaminated Holocene aquifer, followed by a redox transition zone (RTZ) and a Pleistocene aquifer, at which As concentrations are low. Our analyses revealed fermentation and methanogenesis as important processes providing electron donors, fueling the microbially mediated reductive dissolution of As-bearing Fe(III) minerals and ultimately promoting As mobilization. As a consequence of high CH4 concentrations, methanotrophs thrive across the Holocene aquifer and the redox transition zone. Finally, our results underline the role of SO42--reducing and putative Fe(II)-/As(III)-oxidizing bacteria as a sink for As, particularly at the RTZ. Overall, our results suggest that a complex network of microbial and biogeochemical processes has to be considered to better understand the biogeochemical behavior of As in groundwater.
Collapse
Affiliation(s)
- Martyna Glodowska
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Germany; Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Germany
| | - Emiliano Stopelli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Daniel Straub
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Germany; Quantitative Biology Center (QBiC), University of Tübingen, Germany
| | - Duyen Vu Thi
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Pham T K Trang
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Pham H Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, School of Civil Engineering and Surveying, University of Southern Queensland, Australia
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Germany
| | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Germany; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
29
|
Sun Y, Sun J, Nghiem AA, Bostick BC, Ellis T, Han L, Li Z, Liu S, Han S, Zhang M, Xia Y, Zheng Y. Reduction of iron (hydr)oxide-bound arsenate: Evidence from high depth resolution sampling of a reducing aquifer in Yinchuan Plain, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124615. [PMID: 33310320 PMCID: PMC7937834 DOI: 10.1016/j.jhazmat.2020.124615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 05/10/2023]
Abstract
Sediment in fluvial-deltaic plains with high-As groundwater is heterogenous but its characterization of As and Fe oxidation states lacks resolution, and is rarely attempted for aqueous and solid phases simultaneously. Here, we pair high-resolution (> 1 sample/meter) Fe extended fine-structure spectroscopy (EXAFS, n = 40) and As X-ray absorption near-edge spectroscopy (XANES, n = 49) with groundwater composition and metagenomics measurements for two sediment cores and their associated wells (n = 8) from the Yinchuan Plain in northwest China. At shallower depths, nitrate and Mn/Fe reducing sediment zones are fine textured, contain 9.6 ± 5.6 mg kg-1 of As(V) and 2.3 ± 2.7 mg kg-1 of As(III) with 9.1 ± 8.1 g kg-1 of Fe(III) (hydr)oxides, with bacterial genera capable of As and Fe reduction identified. In four deeper 10-m sections, sulfate-reducing sediments are coarser and contain 2.6 ± 1.3 mg kg-1 of As(V) and 1.1 ± 1.0 mg kg-1 of As(III) with 3.2 ± 2.6 g kg-1 of Fe(III) (hydr)oxides, even though groundwater As concentrations can exceed 200 μg/L, mostly as As(III). Super-enrichment of sediment As (42-133 mg kg-1, n = 7) at shallower depth is due to redox trapping during past groundwater discharge. Active As and Fe reduction is supported by the contrast between the As(III)-dominated groundwater and the As(V)-dominated sediment, and by the decreasing sediment As(V) and Fe(III) (hydr)oxides concentrations with depth.
Collapse
Affiliation(s)
- Yuqin Sun
- College of Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Athena A Nghiem
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Benjamin C Bostick
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Tyler Ellis
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Long Han
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zengyi Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songlin Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuangbao Han
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
30
|
Engel M, Boye K, Noël V, Babey T, Bargar JR, Fendorf S. Simulated Aquifer Heterogeneity Leads to Enhanced Attenuation and Multiple Retention Processes of Zinc. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2939-2948. [PMID: 33570404 DOI: 10.1021/acs.est.0c06750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alluvial aquifers serve as one of the main water sources for domestic, agricultural, and industrial purposes globally. Groundwater quality, however, can be threatened by naturally occurring and anthropogenic metal contaminants. Differing hydrologic and biogeochemical conditions between predominantly coarse-grained aquifer sediments and embedded layers or lenses of fine-grained materials lead to variation in metal behavior. Here, we examine processes controlling Zn partitioning within a dual-pore domain-reconstructed alluvial aquifer. Natural coarse aquifer sediments from the Wind River-Little Wind River floodplain near Riverton, WY, were used in columns with or without fine-grained lenses to examine biogeochemical controls on Zn concentrations, retention mechanisms, and transport. Following the introduction of Zn to the groundwater source, Zn preferentially accumulated in the fine-grained lenses, despite their small volumetric contributions. While the clay fraction dominated Zn retention in the sandy aquifer, the lenses supported additional reaction pathways of retention-the reducing conditions within the lenses resulted in ZnS precipitation, overriding the contribution of organic matter. Zinc concentration in the groundwater controlled the formation of Zn-clays and Zn-layered double hydroxides, whereas the extent of sulfide production controlled precipitation of ZnS. Our findings illustrate how both spatial and compositional heterogeneities govern the extent and mechanisms of Zn retention in intricate groundwater systems, with implications for plume behavior and groundwater quality.
Collapse
Affiliation(s)
- Maya Engel
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kristin Boye
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Vincent Noël
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Tristan Babey
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - John R Bargar
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
31
|
You X, Liu S, Dai C, Guo Y, Zhong G, Duan Y. Contaminant occurrence and migration between high- and low-permeability zones in groundwater systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140703. [PMID: 32758831 DOI: 10.1016/j.scitotenv.2020.140703] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
In recent decades, water quality problems that impact human health, especially groundwater pollution, have been intensely studied, and this has contributed to new ideas and policies around the world such as Low Impact Development (LID) and Superfund legislation. The fundamental to many of these problems is pollutant occurrence and migration in saturated porous media, especially in groundwater. Such environments often contain contrasting zones of high and low permeability with significant differences in hydraulic conductivity (~10-4 and 10-8 m/s, respectively). High-permeability zones (HPZs) represent the primary pathways for pollutant transport in groundwater, while low-permeability zones (LPZs) are often diffusion dominated and serve as both sinks and sources (i.e., via back-diffusion) of pollutants over many decades. In this review, concepts and mechanisms of solute source depletion, contaminant accumulation, and back-diffusion in high- and low-permeability systems are presented, and new insights gained from both experimental and numerical studies are analyzed and summarized. We find that effluent monitoring and novel image analysis techniques have been adroitly used to investigate temporal and spatial evolutions of contaminant concentration; simultaneously, mathematical models are constantly upscaled to verify, optimize and extend the experimental data. However, the spatial concentration data during back-diffusion lacks diversity due to the limitations of pollutant species in studies, the microscopic mechanisms controlling pollutant transformation are poorly understood, and the impacts of these reactions on contaminant back-diffusion are rarely considered. Hence, most simulation models have not been adequately validated and are not capable of accurately predicting pollutant fate and cleanup in realistic heterogeneous aquifers. Based on these, some hypotheses and perspectives are mentioned to promote the investigation of contaminant migration in high- and low-permeability systems in groundwater.
Collapse
Affiliation(s)
- Xueji You
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, USA
| | - Shuguang Liu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; The Yangtze River Water Environment Key Laboratory of the Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chaomeng Dai
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yiping Guo
- Department of Civil Engineering, McMaster University, Hamilton, ON, Canada
| | - Guihui Zhong
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China.
| |
Collapse
|
32
|
Luo T, Huang Z, Li X, Zhang Y. Anaerobic microbe mediated arsenic reduction and redistribution in coastal wetland soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138630. [PMID: 32315908 DOI: 10.1016/j.scitotenv.2020.138630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) pollution in coastal wetland soil has attracted attention. However, how anaerobic microbes impact the fate of As in coastal wetland environments remains poorly understood. To elucidate underlying mechanisms of anaerobic microbes mediated As mobilization, incubation experiments were performed in this study. The results demonstrate that the concentrations of total dissolved As and As(III) were higher in biotic incubations compared with abiotic controls. The dissolved As(III) concentrations increased and reached maximum values of 11.0 ± 1.2 and 12.0 ± 1.1 μg/L for biotic incubations with and without additional sulfate, respectively. Sulfate and Fe reduction induced by anaerobic microbes were evidenced by the detection of sulfide and Fe(II) in biotic incubations. The sequential extraction results indicated that the content of crystalline Fe mineral fraction of As (Ascry) increased and that of amorphous Fe mineral fraction of As (Asamo) decreased in the solid phase. Therefore, the released As was attributed to microbially mediated reductive dissolution of amorphous Fe mineral matter and, after 40 days of incubation, the decreased As might be immobilized via re-adsorption onto, or co-precipitation with, the newly formed crystalline Fe minerals. The 16S rRNA results indicated that Proteobacteria, Chloroflexi, Actinobacteria, and Firmicutes constituted the majority of the bacterial community in biotic incubations. The sulfate-reducing bacterium Desulfocapsa induced sulfate reduction and further promoted the reduction and release of As in soils. This study provides insights into the mechanism for As mobilization and redistribution in coastal wetland soils.
Collapse
Affiliation(s)
- Ting Luo
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China.
| | - Zhongli Huang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China
| | - Xinyu Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China
| | - Yingying Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China
| |
Collapse
|