1
|
Steele JA, Zimmer-Faust AG, Clerkin TJ, González-Fernández A, Lowry SA, Blackwood AD, Raygoza K, Langlois K, Boehm AB, Noble RT, Griffith JF, Schiff KC. Survey of pathogens and human fecal markers in stormwater across a highly populated urban region. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 40223663 DOI: 10.1039/d4em00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Microbial contamination of urban stormwater, rivers, and creeks during rainstorms is a persistent and widespread problem. Remediation of these waters has proven to be challenging since there are many potential sources for the fecal indicator bacteria on which water quality is regulated. Microbial source tracking markers have allowed for improved identification and quantification of the sources of contamination, but the majority of the source-attributed microbial targets are not responsible for causing the illnesses associated with waterborne human fecal contamination. Thus there is a need to better understand the relationships of human pathogens and human fecal markers in stormwater. In this study, we used a spatially-intensive sampling approach (31 sites) across southern California for the analysis of stormwater. During three storms from 2021-2023, we used droplet digital PCR to quantify the human fecal markers HF183 and Lachno3 along with human adenovirus, human norovirus, Campylobacter spp., and Salmonella spp. This spatially intensive sampling design captures information from a 5900 km2 area with ∼22 million people. We detected human markers HF183 and Lachno3 genes at 90% and 97% of the sites; concentrations ranged from below detection to 104 and 105 gene copies per 100 mL, respectively. We found variable concentrations of human bacterial and viral pathogen genes. HF183 was significantly correlated to human adenovirus and Lachno3. Lachno3 was also significantly correlated with Salmonella. We reported PCR inhibition in 83-90% of the samples but found that separating sediment and adding proteinase K during lysis improved DNA/RNA extraction efficiency and reduced inhibition.
Collapse
Affiliation(s)
- Joshua A Steele
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA.
| | | | - Thomas J Clerkin
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | | | - Sarah A Lowry
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - A Denene Blackwood
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - Kayla Raygoza
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA.
| | - Kylie Langlois
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA.
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Rachel T Noble
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - John F Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA.
| | - Kenneth C Schiff
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA.
| |
Collapse
|
2
|
Dos Santos Natividade R, Danzer B, Somoza V, Koehler M. Atomic force microscopy at the forefront: unveiling foodborne viruses with biophysical tools. NPJ VIRUSES 2025; 3:25. [PMID: 40295860 PMCID: PMC11971264 DOI: 10.1038/s44298-025-00107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/13/2025] [Indexed: 04/30/2025]
Abstract
Foodborne viruses are significant public health threats, capable of causing life-threatening infections and posing major risks for future pandemics. However, the development of vaccines and treatments remains limited due to gaps in understanding their biophysical properties. Among these viruses, noroviruses are currently the leading cause of viral gastroenteritis globally and are responsible for numerous foodborne outbreaks. In this review, we explore the use of biophysical methods, with a focus on atomic force microscopy (AFM), to study foodborne viruses. We demonstrate how AFM can provide crucial insights into virus-host interactions, transmission dynamics, and environmental stability. We also show that the integration of various biophysical approaches offers new opportunities for advancing our understanding of foodborne viruses, ultimately guiding the development of effective prevention strategies and antiviral therapies.
Collapse
Affiliation(s)
| | - Barbara Danzer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- School of Life Science, Technical University of Munich, Freising, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Esseili MA, Narwankar R, Hooda R, Costantini V, Estes MK, Vinjé J, Kassem II. Human intestinal enteroids for evaluating the persistence of infectious human norovirus in raw surface freshwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178707. [PMID: 39914318 DOI: 10.1016/j.scitotenv.2025.178707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Globally, human norovirus (HuNoV) is the leading cause of foodborne illnesses. Norovirus transmission to fresh produce can occur via several sources, including contaminated irrigation water. HuNoV RNA has been detected in freshwater resources, but knowledge about virus infectivity is limited due to a historical lack of a HuNoV cell culture. Recently, HuNoV was shown to replicate in human intestinal enteroids (HIE). The objective of this study was to use HIE to evaluate the persistence of infectious HuNoV in raw (i.e. biologically active) surface freshwater. The virus was spiked into freshwater microcosms sampled from three freshwater ponds and then incubated inside an environmental chamber at 20-15 °C and 50-80 % relative humidity (day-night) and 12 h photoperiod. The water was tested for infectious HuNoV, intact HuNoV capsids, indigenous bacteria, and other water quality parameters over a period of 2 weeks. The persistence of infectious HuNoV in the three freshwater microcosms ranged from ≤1 day to ≥7 days. Decay rates for RNA from intact HuNoV capsids ranged from 0.04 to 0.54/day, predicting a 4.2 to 57.5 days, respectively for 1 log reduction. The intact virus showed a significant negative and positive linear relationship with indigenous bacteria and dissolved oxygen, respectively. Using multiple logistic regression, HuNoV RNA >4.4 log genomic equivalent/ml (Cycle threshold values <32) predicted higher probability of detecting infectious HuNoV in contaminated raw freshwater using HIE. Overall, our results provide valuable insights for enhancing quantitative microbial risk assessment models for pre-harvest agricultural water to understand the public health risks associated with the detection of HuNoV RNA in freshwater.
Collapse
Affiliation(s)
- Malak A Esseili
- Center for Food Safety, University of Georgia, Griffin, GA 30223, USA.
| | - Revati Narwankar
- Center for Food Safety, University of Georgia, Griffin, GA 30223, USA
| | - Riya Hooda
- Center for Food Safety, University of Georgia, Griffin, GA 30223, USA
| | - Veronica Costantini
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Issmat I Kassem
- Center for Food Safety, University of Georgia, Griffin, GA 30223, USA
| |
Collapse
|
4
|
Girón-Guzmán I, Falcó I, Cuevas-Ferrando E, Ballesteros S, Barranquero R, Sánchez G. Survival of viruses in water microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178416. [PMID: 39818153 DOI: 10.1016/j.scitotenv.2025.178416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions. The decay of infectious viruses was analyzed using a monophasic decay model, which largely showed that human enteric viruses exhibit remarkable persistence in water samples. MNV infectivity decreased significantly after 14 days in EW at room temperature compared to 84 days under refrigerated conditions, with decay rates of 0.230 log TCID50/day at room temperature and 0.040 log TCID50/day under refrigeration. A gradual decline in HAV infectivity was observed at room temperature, whereas at refrigerated temperature, infectious viruses were recovered even after 98 days. HCoV-229E, IAV H3N2 and VACV were completely inactivated in DW and EW at room temperature between 7 and 21 days, with longer stability observed under refrigeration. The decay of IAV H3N2, HCoV-229E and VACV in EW and DW was also assessed in parallel using RT-qPCR to determine genome persistence and viability PCR to determine intact viral capsid persistence. Overall, our results suggest that viability PCR is not suitable for tracking virus decay in water under real-world environmental conditions.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain; Department of Microbiology and Ecology, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain.
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Sandra Ballesteros
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Regino Barranquero
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
5
|
Alja'fari J, Sharvelle S, Branch A, Pecson B, Jahne M, Olivieri A, Arabi M, Garland JL, Gonzalez R. Assessing human-source microbial contamination of stormwater in the U.S. WATER RESEARCH 2025; 268:122640. [PMID: 39471764 PMCID: PMC11783576 DOI: 10.1016/j.watres.2024.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Stormwater capture and use (SCU) projects have the potential to provide a significant portion of municipal water demand. However, uncertainty about the degree of microbial contamination in stormwater and the required treatment is a barrier for implementation of SCU projects. Stormwater runoff could become contaminated with human fecal matter in areas with deteriorating infrastructure where raw wastewater exfiltrates from sewer networks to stormwater collection networks, homeless encampments exist, or sanitary sewer overflows (SSOs) occur. Estimation of human fecal contamination can inform selection of stormwater treatment targets. This study investigates stormwater microbial contamination originating from human fecal matter using observed detections and concentrations of human microbial source tracking (MST) markers and potentially human-infectious pathogens (PHIPs). First, a systematic review complied measurements of human MST markers in wet and dry weather stormwater flows and influent wastewater. In addition, measurements of viral pathogens (e.g., adenoviruses, norovirus GI+GII, and enteroviruses) and protozoan pathogens (e.g., Giardia lamblia and Cryptosporidium parvum) in wet weather flows and influent wastewater were assessed. Human MST marker and PHIP data were statistically analyzed and applied to estimate a human fecal contamination analog (HFCA) which is an estimate of the amount of human fecal matter based on relative concentrations of microbial contaminants in stormwater compared to municipal wastewater. Human MST-based HFCAs in wet and dry weather flows ranged from <10-7.0 to 10-1.5 (median = 10-4.5) and 10-12 to 10-2.6 (median = 10-7.0), respectively. PHIP-based HFCAs in wet weather flows ranged from ∼10-8 to 10-0.14. Estimates of human MST-based HFCAs are more reliable than PHIP-based HFCAs because the current PHIP datasets are generally limited by the number of data points, percent detection, variability observed within the statistical distributions, and the geographical span of sampling locations. The use of human MST-based HFCAs is recommended to guide the selection of stormwater treatment process trains that are protective of public health based on the intended end use. Application of HFCA 10-1 (i.e., sewage dilution 10-1) remains a reasonable conservative estimate of human fecal contamination in stormwater to inform selection of pathogen log reduction targets based on the data presently available.
Collapse
Affiliation(s)
- Jumana Alja'fari
- Department of Civil and Environmental Engineering, Colorado State University, 700 Meridian Avenue, Fort Collins, CO 80523, USA.
| | - Sybil Sharvelle
- Department of Civil and Environmental Engineering, Colorado State University, 700 Meridian Avenue, Fort Collins, CO 80523, USA
| | - Amos Branch
- Carollo Engineers, Inc., 2795 Mitchell Dr, Walnut Creek, CA 94598, USA
| | - Brian Pecson
- Trussell Technologies, 1939 Harrison Street, Oakland, CA 94612, USA
| | - Michael Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Adam Olivieri
- Environmental and Public Health Engineering, Inc., 1410 Jackson Street, Oakland, CA 94612, USA
| | - Mazdak Arabi
- Department of Civil and Environmental Engineering, Colorado State University, 400 Isotope Drive, Fort Collins, CO 80521, USA
| | - Jay L Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Raul Gonzalez
- H(2)O Molecular, 6746 Edinburgh Court, San Diego, CA 92120, USA
| |
Collapse
|
6
|
Chandran S, Gibson KE. Utilizing Zebrafish Embryos for Replication of Tulane Virus: A Human Norovirus Surrogate. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:470-478. [PMID: 39179704 PMCID: PMC11525437 DOI: 10.1007/s12560-024-09610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The zebrafish larvae/embryo model has been shown to support the replication of seven strains (G1.7[P7], GII.2[P16], GII.3[P16], GII.4[P4], GII.4[P16], GII.6[P7], and GII.17[P13]) of human norovirus (HuNoV). However, due to challenges in consistently obtaining HuNoV-positive stool samples from clinical sources, evaluating HuNoV surrogates in this model is highly valuable. This study assesses the potential of zebrafish embryos and larvae as a model for Tulane virus (TuV) replication. Three infection methods were examined: microinjection, immersion, and feeding. Droplet digital PCR was used to quantify viral RNA across all three infection methods. Microinjection of 3 nL of TuV into zebrafish embryos (< 6-h post-fertilization) resulted in significant replication, with viral RNA levels reaching 6.22 logs at 4-day post-infection. In contrast, the immersion method showed no replication after immersing 4-day post-fertilization (dpf) larvae in TuV suspension for 6 h. Similarly, no replication was observed with the feeding method, where Paramecium caudatum loaded with TuV were fed to 4 dpf larvae. The findings indicate that the zebrafish embryo model supports TuV replication through the microinjection method, suggesting that TuV may serve as a useful surrogate for studying HuNoV pathogenesis. Additionally, TuV can be utilized in place of HuNoV in method optimization studies using the zebrafish embryo model, circumventing the limited availability of HuNoV.
Collapse
Affiliation(s)
- Sahaana Chandran
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR, 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR, 72704, USA.
| |
Collapse
|
7
|
de Carvalho Costa LR, Li L, Haak L, Teel L, Feris LA, Marchand E, Pagilla KR. Optimizing ozone treatment for pathogen removal and disinfection by-product control for potable reuse at pilot-scale. CHEMOSPHERE 2024; 364:143128. [PMID: 39159769 DOI: 10.1016/j.chemosphere.2024.143128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/21/2024]
Abstract
Reclaimed water poses environmental and human health risks due to residual organic micropollutants and pathogens. Ozonation of reclaimed water to control pathogens and trace organics is an important step in advanced water treatment systems for potable reuse of reclaimed water. Ensuring efficient pathogen reduction while controlling disinfection byproducts remains a significant challenge to implementing ozonation in reclaimed water reuse applications. This study aimed to investigate ozonation conditions using a plug flow reactor (PFR) to achieve effective pathogen removal/inactivation while minimizing bromate and N-Nitrosodimethylamine (NDMA) formation. The pilot scale study was conducted using three doses of ozone (0.7, 1.0 and 1.4 ozone/total organic carbon (O3/TOC) ratio) to determine the disinfection performance using actual reclaimed water. The disinfection efficiency was assessed by measuring total coliforms, Escherichia coli (E. coli), Pepper Mild Mottle Virus (PMMoV), Tomato Brown Rugose Fruit Virus (ToBRFV) and Norovirus (HNoV). The ozone CT values ranged from 1.60 to 13.62 mg min L-1, resulting in significant reductions in pathogens and indicators. Specifically, ozone treatment led to concentration reductions of 2.46-2.89, 2.03-2.18, 0.46-1.63, 2.23-2.64 and > 4 log for total coliforms, E. coli, PMMoV, ToBRFV, and HNoV, respectively. After ozonation, concentrations of bromate and NDMA increased, reaching levels between 2.8 and 12.0 μg L-1, and 28-40.0 ng L-1, respectively, for average feed water bromide levels of 86.7 ± 1.8 μg L-1 and TOC levels of 7.2 ± 0.1 mg L-1. The increases in DBP formation were pronounced with higher ozone dosages, possibly requiring removal/control in subsequent treatment steps in some potable reuse applications.
Collapse
Affiliation(s)
- Leticia Reggiane de Carvalho Costa
- Department of Chemical Engineering, Federal University of Rio Grande Do Sul, Porto Alegre, 2777 Ramiro Barcelos St, RS, 90035-007, Brazil
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Lydia Teel
- Truckee Meadows Water Authority, Reno, NV, 89502, USA
| | - Liliana Amaral Feris
- Department of Chemical Engineering, Federal University of Rio Grande Do Sul, Porto Alegre, 2777 Ramiro Barcelos St, RS, 90035-007, Brazil
| | - Eric Marchand
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA.
| |
Collapse
|
8
|
Carmona-Vicente N, Pandiscia A, Santiso-Bellón C, Perez-Cataluña A, Rodríguez-Díaz J, Costantini VP, Buesa J, Vinjé J, Sánchez G, Randazzo W. Human intestinal enteroids platform to assess the infectivity of gastroenteritis viruses in wastewater. WATER RESEARCH 2024; 255:121481. [PMID: 38520776 DOI: 10.1016/j.watres.2024.121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Fecal-orally transmitted gastroenteritis viruses, particularly human noroviruses (HuNoVs), are a public health concern. Viral transmission risk through contaminated water results underexplored as they have remained largely unculturable until recently and the robust measuring of gastroenteritis viruses infectivity in a single cell line is challenging. This study primarily aimed to test the feasibility of the human intestinal enteroids (HIE) model to demonstrate the infectivity of multiple gastroenteritis viruses in wastewater. Initially, key factors affecting viral replication in HIE model were assessed, and results demonstrated that the reagent-assisted disruption of 3D HIE represents an efficient alternative to syringe pass-through, and the filtering of HuNoV stool suspensions could be avoided. Moreover, comparable replication yields of clinical strains of HuNoV genogroup I (GI), HuNoV GII, rotavirus (RV), astrovirus (HAstV), and adenoviruses (HAdV) were obtained in single and multiple co-infections. Then, the optimized HIE model was used to demonstrate the infectivity of multiple naturally occurring gastroenteritis viruses from wastewater. Thus, a total of 28 wastewater samples were subjected to (RT)-qPCR for each virus, with subsequent testing on HIE. Among these, 16 samples (57 %) showed replication of HuNoVs (n = 3), RV (n = 5), HAstV (n = 8), and/or HAdV (n = 5). Three samples showed HuNoV replication, and sequences assigned to HuNoV GI.3[P13] and HuNoV GII.4[P16] genotypes. Concurrent replication of multiple gastroenteritis viruses occurred in 4 wastewater samples. By comparing wastewater concentrate and HIE supernatant sequences, diverse HAstV and HAdV genotypes were identified in 4 samples. In summary, we successfully employed HIE to demonstrate the presence of multiple infectious human gastroenteritis viruses, including HuNoV, in naturally contaminated wastewater samples.
Collapse
Affiliation(s)
| | - Annamaria Pandiscia
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain; Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | - Alba Perez-Cataluña
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Veronica P Costantini
- National Calicivirus Laboratory, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Javier Buesa
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Jan Vinjé
- National Calicivirus Laboratory, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain.
| |
Collapse
|
9
|
Chandran S, Gibson KE. Improving the Detection and Understanding of Infectious Human Norovirus in Food and Water Matrices: A Review of Methods and Emerging Models. Viruses 2024; 16:776. [PMID: 38793656 PMCID: PMC11125872 DOI: 10.3390/v16050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Human norovirus (HuNoV) is a leading global cause of viral gastroenteritis, contributing to numerous outbreaks and illnesses annually. However, conventional cell culture systems cannot support the cultivation of infectious HuNoV, making its detection and study in food and water matrices particularly challenging. Recent advancements in HuNoV research, including the emergence of models such as human intestinal enteroids (HIEs) and zebrafish larvae/embryo, have significantly enhanced our understanding of HuNoV pathogenesis. This review provides an overview of current methods employed for HuNoV detection in food and water, along with their associated limitations. Furthermore, it explores the potential applications of the HIE and zebrafish larvae/embryo models in detecting infectious HuNoV within food and water matrices. Finally, this review also highlights the need for further optimization and exploration of these models and detection methods to improve our understanding of HuNoV and its presence in different matrices, ultimately contributing to improved intervention strategies and public health outcomes.
Collapse
Affiliation(s)
| | - Kristen E. Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA;
| |
Collapse
|
10
|
Hayashi T, Kobayashi S, Hirano J, Murakami K. Human norovirus cultivation systems and their use in antiviral research. J Virol 2024; 98:e0166323. [PMID: 38470106 PMCID: PMC11019851 DOI: 10.1128/jvi.01663-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Human norovirus (HuNoV) is a major cause of acute gastroenteritis and foodborne diseases, affecting all age groups. Despite its clinical needs, no approved antiviral therapies are available. Since the discovery of HuNoV in 1972, studies on anti-norovirals, mechanism of HuNoV infection, viral inactivation, etc., have been hampered by the lack of a robust laboratory-based cultivation system for HuNoV. A recent breakthrough in the development of HuNoV cultivation systems has opened opportunities for researchers to investigate HuNoV biology in the context of de novo HuNoV infections. A tissue stem cell-derived human intestinal organoid/enteroid (HIO) culture system is one of those that supports HuNoV replication reproducibly and, to our knowledge, is most widely distributed to laboratories worldwide to study HuNoV and develop therapeutic strategies. This review summarizes recently developed HuNoV cultivation systems, including HIO, and their use in antiviral studies.
Collapse
Affiliation(s)
- Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sakura Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Junki Hirano
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
11
|
Díaz SM, Barrios ME, Galli L, Cammarata RV, Torres C, Fortunato MS, García López G, Costa M, Sanguino Jorquera DG, Oderiz S, Rogé A, Gentiluomo J, Carbonari C, Rajal VB, Korol SE, Gallego A, Blanco Fernández MD, Mbayed VA. Microbiological hazard identification in river waters used for recreational activities. ENVIRONMENTAL RESEARCH 2024; 247:118161. [PMID: 38220078 DOI: 10.1016/j.envres.2024.118161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Pathogenic bacteria, viruses, and parasites can cause waterborne disease outbreaks. The study of coastal water quality contributes to identifying potential risks to human health and to improving water management practices. The Río de la Plata River, a wide estuary in South America, is used for recreational activities, as a water source for consumption and as a site for sewage discharges. In the present study, as the first step of a quantitative microbial risk assessment of the coastal water quality of this river, a descriptive study was performed to identify the microbial pathogens prevalent in its waters and in the sewage discharged into the river. Two sites, representing two different potential risk scenarios, were chosen: a heavily polluted beach and an apparently safe beach. Conductivity and fecal contamination indicators including enterococci, Escherichia coli, F + RNA bacteriophages, and human polyomaviruses showed high levels. Regarding enterococci, differences between sites were significant (p-values <0.001). 93.3% and 56.5% of the apparently safe beach exceeded the recreational water limits for E. coli and enterococci. Regarding pathogens, diarrheagenic E. coli, Salmonella, and noroviruses were detected with different frequencies between sites. The parasites Cryptosporidium spp. and Giardia duodenalis were frequently detected in both sites. The results regarding viral, bacterial, and parasitic pathogens, even without correlation with conventional indicators, showed the importance of monitoring a variety of microorganisms to determine water quality more reliably and accurately, and to facilitate further studies of health risk assessment. The taxonomic description of microbial pathogens in river waters allow identifying the microorganisms that infect the population living on its shores but also pathogens not previously reported by the clinical surveillance system.
Collapse
Affiliation(s)
- Sofía Micaela Díaz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Melina Elizabeth Barrios
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Galli
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina. Av. 60 y 118 (B1900), La Plata, Argentina
| | - Robertina Viviana Cammarata
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Torres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Susana Fortunato
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guadalupe García López
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Magdalena Costa
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina. Av. 60 y 118 (B1900), La Plata, Argentina
| | - Diego Gastón Sanguino Jorquera
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150 (A4408FVY), Salta, Argentina
| | - Sebastian Oderiz
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Ariel Rogé
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Jimena Gentiluomo
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Carolina Carbonari
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150 (A4408FVY), Salta, Argentina; Facultad de Ingeniería. UNSa, Av. Bolivia 5150 (A4408FVY), Salta, Argentina
| | - Sonia Edith Korol
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Gallego
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Dolores Blanco Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Viviana Andrea Mbayed
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
12
|
Pandiscia A, Lorusso P, Manfredi A, Sánchez G, Terio V, Randazzo W. Leveraging Plasma-Activated Seawater for the Control of Human Norovirus and Bacterial Pathogens in Shellfish Depuration. Foods 2024; 13:850. [PMID: 38540842 PMCID: PMC10969863 DOI: 10.3390/foods13060850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 01/31/2025] Open
Abstract
Cold plasma is a promising alternative for water treatment owing to pathogen control and a plethora of issues in the agriculture and food sectors. Shellfish pose a serious risk to public health and are linked to large viral and bacterial outbreaks. Hence, current European regulations mandate a depuration step for shellfish on the basis of their geographical growth area. This study investigated the inactivation of relevant viral and bacterial pathogens of three plasma-activated seawaters (PASWs), and their reactive oxygen and nitrogen species (RONS) composition, as being primarily responsible for microbial inactivation. Specifically, F-specific (MS2) and somatic (φ174) bacteriophage, cultivable surrogate (murine norovirus, MNV, and Tulane virus, TV), and human norovirus (HuNoV GII.4) inactivation was determined using plaque counts and infectivity assays, including the novel human intestinal enteroid (HIE) model for HuNoV. Moreover, the kinetic decay of Escherichia coli, Salmonella spp., and Vibrio parahaemolyticus was characterized. The results showed the complete inactivation of phages (6-8 log), surrogates (5-6 log), HuNoV (6 log), and bacterial (6-7 log) pathogens within 24 h while preventing cytotoxicity effects and preserving mussel viability. Nitrites (NO2-) were found to be mostly correlated with microbial decay. This research shows that PASWs are a suitable option to depurate bivalve mollusks and control the biohazard risk linked to their microbiological contamination, either viral or bacterial.
Collapse
Affiliation(s)
- Annamaria Pandiscia
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980 Valencia, Spain
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy
| | - Patrizio Lorusso
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy
| | - Alessio Manfredi
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| | - Valentina Terio
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| |
Collapse
|
13
|
Allende A, Férez-Rubio JA, Tudela JA, Aznar R, Gil MI, Sánchez G, Randazzo W. Human intestinal enteroids and predictive models validate the operational limits of sanitizers used for viral disinfection of vegetable process wash water. Int J Food Microbiol 2024; 413:110601. [PMID: 38301540 DOI: 10.1016/j.ijfoodmicro.2024.110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 11/20/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Vegetables are globally associated with a considerable number of foodborne outbreaks caused by viral infections, specifically human norovirus. In fresh produce industry, washing represents a critical step for food safety as process wash water (PWW) needs to be maintained at appropriate microbial quality to prevent water-mediated cross-contamination. This study aimed to explore the disinfection efficacy of chlorine (free chlorine, FC), chlorine dioxide (ClO2) and peracetic acid (PAA) in PWW against infectious human norovirus and Tulane virus (TV). First, we tested the extent of TV inactivation in baby leaf, bell pepper, and vegetables mix PWW and monitored the viral decay by cell culture. Then, inactivation kinetics were defined for infectious human norovirus exposed to FC, ClO2 and PAA in baby leaves PWW using the human intestinal enteroids (HIE) system. Finally, kinetic inactivation models were fitted to TV reduction and decay of sanitizers to aid the implementation of disinfection strategies. Results showed that >8 log10 human norovirus and 3.9 log10 TV were inactivated by 20 ppm FC within 1 min; and by 3 ppm ClO2 in 1 min (TV) or 5 min (norovirus). PAA treatment at 80 ppm reduced ca. 2 log10 TV but not completely inactivated the virus even after 20 min exposure, while 5 min treatment prevented norovirus replication in HIE. TV inactivation in PWWs was described using an exponential decay model. Taking these data together, we demonstrated the value of applying the HIE model to validate current operational limits for the most commonly used sanitizers. The inactivation kinetics for human norovirus and TV, along with the predictive model described in this study expand the current knowledge to implement post-harvest produce safety procedures in industry settings.
Collapse
Affiliation(s)
- Ana Allende
- Research Group on Microbiology and Quality of Fruits and Vegetables (MxQ), Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - José Antonio Férez-Rubio
- Research Group on Microbiology and Quality of Fruits and Vegetables (MxQ), Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Juan Antonio Tudela
- Research Group on Microbiology and Quality of Fruits and Vegetables (MxQ), Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Rosa Aznar
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Maria Isabel Gil
- Research Group on Microbiology and Quality of Fruits and Vegetables (MxQ), Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| |
Collapse
|
14
|
Rexin D, Rachmadi AT, Hewitt J. Persistence of Infectious Human Norovirus in Estuarine Water. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:58-64. [PMID: 38165609 DOI: 10.1007/s12560-023-09577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 01/04/2024]
Abstract
Norovirus is the predominant cause of viral acute gastroenteritis globally. While person-to-person is the most reported transmission route, norovirus is also associated with waterborne and foodborne illness, including from the consumption of contaminated bivalve molluscan shellfish. The main cause of shellfish contamination is via the bioaccumulation of norovirus from growing waters impacted by human wastewater. However, data on the persistence of infectious norovirus in the environment are limited due to a lack of a human norovirus culture method in the past. In this study, we applied the recently established method of norovirus replication in human intestinal enteroids to determine the persistence of norovirus in artificial estuarine water at 25 ppt for up to 21 days at 4 °C and 16 °C in the dark. Infectious norovirus was detected for up to 21 days. The relative infectivity declined from 100 to 3% at day 21, with decay rate constants of 0.07 day-1 at 4 °C and 0.17 day-1 at 16 °C. There was no decrease in norovirus titres as measured by reverse transcription-droplet digital PCR (RT-ddPCR), confirming the lack of the relationship between norovirus infectivity and direct detection by PCR. The results confirm that norovirus can remain infectious for at least 3 weeks in an estuarine water environment, presenting associated health risks.
Collapse
Affiliation(s)
- Daniel Rexin
- Institute of Environmental Science and Research Ltd. (ESR), Porirua, 5240, New Zealand.
| | - Andri T Rachmadi
- Institute of Environmental Science and Research Ltd. (ESR), Porirua, 5240, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd. (ESR), Porirua, 5240, New Zealand
| |
Collapse
|
15
|
Wang W, Wang B, Li Q, Tian R, Lu X, Peng Y, Sun J, Bai J, Gao Z, Sun X. Ultrasensitive Detection Strategy of Norovirus Based on a Dual Enhancement Strategy: CRISPR-Responsive Self-Assembled SNA and Isothermal Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4415-4425. [PMID: 38355417 DOI: 10.1021/acs.jafc.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Spherical nucleic acids (SNAs) have been used to construct various nanobiosensors with gold nanoparticles (AuNPs) as nuclei. The SNAs play a critical role in biosensing due to their various physical and chemical properties, programmability, and specificity recognition ability. In this study, CRISPR-responsive self-assembled spherical nucleic acid (CRISPR-rsSNA) detection probes were constructed by conjugating fluorescein-labeled probes to the surface of AuNPs to improve the sensing performance. Also, the mechanism of ssDNA and the role of different fluorescent groups in the self-assembly process of CRISPR-rsSNA were explored. Then, CRISPR-rsSNA and reverse transcription-recombinase polymerase amplification (RT-RPA) were combined to develop an ultrasensitive fluorescence-detection strategy for norovirus. In the presence of the virus, the target RNA sequence of the virus was transformed and amplified by RT-RPA. The resulting dsDNA activated the trans-cleavage activity of CRISPR cas12a, resulting in disintegrating the outer nucleic acid structure of the CRISPR-rsSNA at a diffusible rate, which released reporter molecules. Norovirus was quantitated by fluorescence detection. This strategy facilitated the detection of the norovirus at the attomolar level. An RT-RPA kit for norovirus detected would be developed based on this method. The proposed method would be used for the detection of different viruses just by changing the target RNA and crRNA of the CRISPR cas12a system which provided a foundation for high-throughput detection of various substances.
Collapse
Affiliation(s)
- Weiya Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Botao Wang
- School of Instrument Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
| | - Qiaofeng Li
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Run Tian
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Xin Lu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| |
Collapse
|
16
|
Shaffer M, Huynh K, Costantini V, Vinjé J, Bibby K. Heat inactivation of aqueous viable norovirus and MS2 bacteriophage. J Appl Microbiol 2024; 135:lxae033. [PMID: 38341278 PMCID: PMC11178036 DOI: 10.1093/jambio/lxae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
AIMS This study aimed to compare the heat inactivation kinetics of viable human norovirus with the surrogate, MS2 bacteriophage as well as assess the decay of the RNA signal. METHODS AND RESULTS Human intestinal enteroids were used to analyze the heat inactivation kinetics of viable human norovirus compared to the surrogate MS2 bacteriophage, which was cultured using a plaque assay. Norovirus decay rates were 0.22 min-1, 0.68 min-1, and 1.11 min-1 for 50°C, 60°C, and 70°C, respectively, and MS2 bacteriophage decay rates were 0.0065 min-1, 0.045 min-1, and 0.16 min-1 for 50°C, 60°C, and 70°C, respectively. Norovirus had significantly higher decay rates than MS2 bacteriophage at all tested temperatures (P = .002-.007). No decrease of RNA titers as measured by reverse transcription-PCR for both human norovirus and MS2 bacteriophage over time was observed, indicating molecular methods do not accurately depict viable human norovirus after heat inactivation and treatment efficiency is underestimated. CONCLUSIONS Overall, our data demonstrate that MS2 bacteriophage is a conservative surrogate to measure heat inactivation and potentially overestimates the infectious risk of norovirus. Furthermore, this study corroborates that measuring viral RNA titers, as evaluated by PCR methods, does not correlate with the persistence of viable norovirus under heat inactivation.
Collapse
Affiliation(s)
- Marlee Shaffer
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN 46556, United States
| | - Kimberly Huynh
- National Calicivirus Laboratory, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Verónica Costantini
- National Calicivirus Laboratory, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jan Vinjé
- National Calicivirus Laboratory, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN 46556, United States
| |
Collapse
|
17
|
Kennedy LC, Lowry SA, Boehm AB. Temperature and particles interact to affect human norovirus and MS2 persistence in surface water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:71-81. [PMID: 38078556 DOI: 10.1039/d3em00357d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Modeling the fate and transport of viruses and their genetic material in surface water is necessary to assess risks associated with contaminated surface waters and to inform environmental surveillance efforts. Temperature has been identified as a key variable affecting virus persistence in surface waters, but the effects of the presence of biological and inert particles and of their interaction with temperature have not been well characterized. We assessed these effects on the persistence of human norovirus (HuNoV) genotype II.4 purified from stool and MS2 in surface water. Raw or filter-sterilized creek water microcosms were inoculated and incubated in the dark at 10 °C, 15 °C, and 20 °C. HuNoV (i.e., genome segments and intact capsids) and MS2 (i.e., infectious MS2, genome segments, and intact capsids) concentrations were followed over 36 days. The range in positive, significant first-order decay rate constants for HuNoV in this study was 0.14 to 0.69 day-1 compared with 0.026 to 0.71 day-1 for that of MS2. Decay rate constants for HuNoV genome segments and infectious MS2 were largest in creek water that included biological and inert particles and incubated at higher temperatures. In addition, for HuNoV and MS2 incubated in raw or filter-sterilized creek water at 15 °C, capsid damage was not identified as a dominant inactivation mechanism. Environmental processes and events that affect surface water biological and inert particles, temperature, or both could lead to variable virus decay rate constants. Incorporating the effects of particles, temperature, and their interaction could enhance models of virus fate and transport in surface water.
Collapse
Affiliation(s)
- Lauren C Kennedy
- Department of Civil and Environmental Engineering, Stanford University, Y2E2 Room 189, Stanford, CA 94305, USA.
| | - Sarah A Lowry
- Department of Civil and Environmental Engineering, Stanford University, Y2E2 Room 189, Stanford, CA 94305, USA.
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Y2E2 Room 189, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
North D, Bibby K. Comparison of viral concentration techniques for native fecal indicators and pathogens from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167190. [PMID: 37741389 DOI: 10.1016/j.scitotenv.2023.167190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
Viral pathogens are typically dilute in environmental waters, necessitating a concentration step prior to subsequent quantification or analysis. Historically, studies on viral concentration efficiency have been done by spiking known viruses into the sample; however, spike-in controls may not have the same behavior as "native" viruses exposed to environmental conditions. In this study, four concentration methods, including polyethylene glycol precipitation (PEG), skimmed milk flocculation (SMF), pH drop followed by filtration through a 0.45 μm filter (pH), and centrifugation using an Amicon filter (Amicon), were evaluated to concentrate native viral targets in wastewater. Viral targets included both indicators (crAssphage and pepper mild mottle virus) and pathogens (adenovirus, norovirus GII, human polyomavirus, and SARS-CoV-2) in addition to a bacterial marker (HF183). A non-native spike-in control was also added to compare native and spike-in recoveries. Recovery varied widely across targets and methods, ranging from 0.1 to 39.3 %. The Amicon method was the most broadly effective concentration for recovery efficiency. For the lowest-titer target, the PEG method resulted in the lowest number of non-detections, with 96.7 % positive detections for SARS-CoV-2, compared to 66.7 %, 80 %, and 76.7 % positive detections for SMF, pH, and Amicon, respectively. The non-native spike-ins chosen were only representative of a few native recovery trends, varying by both target and concentration method, and consistently under or over-estimated recovery. Overall, this study suggests the utility of including native targets in viral concentration evaluation and determining the efficiency of concentration methods for a specific target of interest.
Collapse
Affiliation(s)
- Devin North
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, United States
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, United States.
| |
Collapse
|
19
|
Harrison K, Snead D, Kilts A, Ammerman ML, Wigginton KR. The Protective Effect of Virus Capsids on RNA and DNA Virus Genomes in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13757-13766. [PMID: 37656816 PMCID: PMC10516120 DOI: 10.1021/acs.est.3c03814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Virus concentrations measured in municipal wastewater help inform both the water treatment necessary to protect human health and wastewater-based epidemiology. Wastewater measurements are typically PCR-based, and interpreting gene copy concentrations requires an understanding of the form and stability of the nucleic acids. Here, we study the persistence of model virus genomes in wastewater, the protective effects provided by the virus capsids, and the relative decay rates of the genome and infectious viruses. In benchtop batch experiments in wastewater influent at 25 °C, extraviral (+)ssRNA and dsDNA amplicons degraded by 90% within 15-19 min and 1.6-1.9 h, respectively. When encapsidated, the T90 for MS2 (+)ssRNA increased by 424× and the T90 for T4 dsDNA increased by 52×. The (+)ssRNA decay rates were similar for a range of amplicon sizes. For our model phages MS2 and T4, the nucleic acid signal in untreated wastewater disappeared shortly after the viruses lost infectivity. Combined, these results suggest that most viral genome copies measured in wastewater are encapsidated, that measured concentrations are independent of assay amplicon sizes, and that the virus genome decay rates of nonenveloped (i.e., naked) viruses are similar to inactivation rates. These findings are valuable for the interpretation of wastewater virus measurements.
Collapse
Affiliation(s)
- Katherine
R. Harrison
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Delaney Snead
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna Kilts
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Michelle L. Ammerman
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Krista R. Wigginton
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Kennedy L, Costantini VP, Huynh KA, Loeb SK, Jennings WC, Lowry S, Mattioli MC, Vinjé J, Boehm AB. Persistence of Human Norovirus (GII) in Surface Water: Decay Rate Constants and Inactivation Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3671-3679. [PMID: 36812385 PMCID: PMC9996820 DOI: 10.1021/acs.est.2c09637] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Human norovirus (HuNoV) is an important cause of acute gastroenteritis and can be transmitted by water exposures, but its persistence in water is not well understood. Loss of HuNoV infectivity in surface water was compared with persistence of intact HuNoV capsids and genome segments. Surface water from a freshwater creek was filter-sterilized, inoculated with HuNoV (GII.4) purified from stool, and incubated at 15 or 20 °C. We measured HuNoV infectivity via the human intestinal enteroid system and HuNoV persistence via reverse transcription-quantitative polymerase chain reaction assays without (genome segment persistence) or with (intact viral capsid persistence) enzymatic pretreatment to digest naked RNA. For infectious HuNoV, results ranged from no significant decay to a decay rate constant ("k") of 2.2 day-1. In one creek water sample, genome damage was likely a dominant inactivation mechanism. In other samples from the same creek, loss of HuNoV infectivity could not be attributed to genome damage or capsid cleavage. The range in k and the difference in the inactivation mechanism observed in water from the same site could not be explained, but variable constituents in the environmental matrix could have contributed. Thus, a single k may be insufficient for modeling virus inactivation in surface waters.
Collapse
Affiliation(s)
- Lauren
C. Kennedy
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Veronica P. Costantini
- Division
of Viral Diseases, Centers for Disease Control
and Prevention, Atlanta, Georgia 30329, United States
| | - Kimberly A. Huynh
- Division
of Viral Diseases, Centers for Disease Control
and Prevention, Atlanta, Georgia 30329, United States
| | - Stephanie K. Loeb
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Civil Engineering, McGill University, 817 Rue Sherbrooke Ouest, Montreal, QB H3A
0C3, Canada
| | - Wiley C. Jennings
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Sarah Lowry
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Mia C. Mattioli
- Division
of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, United States
| | - Jan Vinjé
- Division
of Viral Diseases, Centers for Disease Control
and Prevention, Atlanta, Georgia 30329, United States
| | - Alexandria B. Boehm
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|