1
|
Chandra K, Dong CD, Chauhan AS, Chen CW, Patel AK, Singhania RR. Advancements in lipase immobilization: Enhancing enzyme efficiency with nanomaterials for industrial applications. Int J Biol Macromol 2025; 311:143754. [PMID: 40318715 DOI: 10.1016/j.ijbiomac.2025.143754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
One of the most widely utilized enzymes, lipase is crucial to many biotechnological and industrial processes, including those in the biodiesel, food, paper, and oleochemical sectors, as well as in applications related to medicine. However, its use is highly costly and challenging due to its instability and aqueous solubility. Immobilization is a commonly employed way to enhance lipase activity, and it has proven to be a successful approach. In comparison to free lipase, immobilized lipase on nanomaterials (NMs) as demonstrated superior properties, including greater pH and temperature stability, a longer stable duration, and the ability to be recycled. However, under specific circumstances, protein loading is comparatively decreased and lipase immobilization on NMs might also occasionally result in activity loss. The processes of immobilization, the kind of NM's being employed, and the physicochemical characteristics of the NMs (such as particle size, aggregation behaviour, NM dimension, and kind of coupling/modifying agents being used) all affect the overall performance of immobilized lipase on NM's. In recent years, innovative nanostructured forms such nanoflowers, carbon nanotubes, nanofibers, and metal-organic frameworks (MOFs) have been researched for numerous applications along with classic nanomaterials like nano silicon, magnetic nanoparticles, and nanometal particles. To use immobilized lipase on/in nanomaterials for large-scale industrial applications, a few issues still need to be resolved. This study addresses the current advancements and the impact of NMs on lipase immobilization and activity based on the unique characteristics of lipase and NM's.
Collapse
Affiliation(s)
- Kunal Chandra
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
2
|
Xu Z, Jiang J, Song C, Fan L, Xi J, Guo R. Flower-like Fe 3O 4@FPDA@Pt composite nanozyme for catalytic-photothermal tumor therapy. Colloids Surf B Biointerfaces 2025; 253:114739. [PMID: 40318396 DOI: 10.1016/j.colsurfb.2025.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/02/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Fe3O4 nanoparticles, known for their magnetic targeting capabilities, biocompatibility, and heat generation upon light exposure, have been extensively explored for various therapeutic applications. However, Fe3O4 nanoparticles may agglomerate in the body, which could affect their therapeutic efficacy. To address this issue, researchers are exploring various surface modifications and structural designs to reduce agglomeration and enhance activity. We designed a Fe3O4@FPDA@Pt nanozyme, composed of Fe3O4 core covered with flower-like polydopamine (FPDA), and attached with platinum, for photothermal catalytic synergistic cancer therapy. The enzyme-like activity, photothermal performance, and in vitro and in vivo anticancer effects of the nanozyme were investigated. Importantly, Fe3O4@FPDA@Pt exhibited robust enzyme-like activity and photothermal performance. In addition, the flower-like structure was easily swallowed by tumor cells, which was conducive to the rapid production of toxic reactive oxygen species (ROS) and elevated heat at the tumor site. The synergy of these two mechanisms can effectively induce tumor cell death. This study demonstrated a novel and facile synthesis method for the nanozyme and highlighted its unique and advantageous structural characteristics for effective cancer treatment.
Collapse
Affiliation(s)
- Zhilong Xu
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225000, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Jian Jiang
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Chao Song
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, China.
| | - Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, China
| |
Collapse
|
3
|
Patil PD, Kelkar RK, Patil NP, Pise PV, Patil SP, Patil AS, Kulkarni NS, Tiwari MS, Phirke AN, Nadar SS. Magnetic nanoflowers: a hybrid platform for enzyme immobilization. Crit Rev Biotechnol 2024; 44:795-816. [PMID: 37455411 DOI: 10.1080/07388551.2023.2230518] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/04/2023] [Indexed: 07/18/2023]
Abstract
The use of organic-inorganic hybrid nanoflowers as a support material for enzyme immobilization has gained significant attention in recent years due to their high stability, ease of preparation, and enhanced catalytic activity. However, a major challenge in utilizing these hybrid nanoflowers for enzyme immobilization is the difficulty in handling and separating them due to their low density and high dispersion. To address this issue, magnetic nanoflowers have emerged as a promising alternative enzyme immobilization platform due to their easy separation, structural stability, and ability to enhance catalytic efficiency. This review focuses on different methods for designing magnetic nanoflowers, as well as future research directions. Additionally, it provides examples of enzymes immobilized in the form of magnetic nanoflowers and their applications in environmental remediation, biosensors, and food industries. Finally, the review discusses possible ways to improve the material for enhanced catalytic activity, structural stability, and scalability.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Radhika K Kelkar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Neha P Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Pradnya V Pise
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gandhinagar, India
| | - Sadhana P Patil
- Department of Biotechnology, National Institute of Technology, Tadepalligudam, India
| | - Arundhatti S Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Nishant S Kulkarni
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Manishkumar S Tiwari
- Department of Chemical Engineering, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Ajay N Phirke
- Department of Chemical Engineering, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
4
|
Xu L, Luo Y, Du Q, Zhang W, Hu L, Fang N, Wang J, Liu J, Zhou J, Zhong Y, Liu Y, Ran H, Guo D, Xu J. Magnetic Response Combined with Bioactive Ion Therapy: A RONS-Scavenging Theranostic Nanoplatform for Thrombolysis and Renal Ischemia-Reperfusion Injury. ACS NANO 2023; 17:5695-5712. [PMID: 36930590 DOI: 10.1021/acsnano.2c12091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Currently, the limited efficacy of antithrombotic treatments is attributed to the inadequacy of pure drugs and the low ability of drugs to target the thrombus site. More importantly, timely thrombolysis is essential to reduce the sequelae of cardiovascular disease, but ischemia-reperfusion injury (IRI) remains a major challenge that must be solved after blood flow recovery. Herein, a multifunctional therapeutic nanoparticle (NP) based on Fe3O4 and strontium ions encapsulated in mesoporous polydopamine was successfully constructed and then loaded with TNK-tPA (FeM@Sr-TNK NPs). The NPs (59.9 min) significantly prolonged the half-life of thrombolytic drugs, which was 3.04 times that of TNK (19.7 min), and they had good biological safety. The NPs were shown to pass through vascular models with different inner diameters, curvatures, and stenosis under magnetic targeting and to enable accurate diagnosis of thrombi by photoacoustic imaging. NPs combined with the magnetic hyperthermia technique were used to accelerate thrombolysis and quickly open blocked blood vessels. Then, renal IRI-induced functional metabolic disorder and tissue damage were evidently attenuated by scavenging toxic reactive oxygen and nitrogen species and through the protective effects of bioactive ion therapy, including reduced apoptosis, increased angiogenesis, and inhibited fibrosis. In brief, we constructed a multifunctional nanoplatform for integrating a "diagnosis-therapy-protection" approach to achieve comprehensive management from thrombus to renal IRI, promoting the advancement of related technologies.
Collapse
Affiliation(s)
- Lian Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Ying Luo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Qianying Du
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Wenli Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Liu Hu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Ni Fang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Junrui Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jia Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jun Zhou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Yixin Zhong
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| |
Collapse
|
5
|
Xu K, Appiah B, Zhang BW, Yang ZH, Quan C. Recent advances in enzyme immobilization based on nanoflowers. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Yin Y, Fei X, Tian J, Xu L, Li Y, Wang Y. Synthesis of lipase-hydrogel microspheres and their application in deacidification of high-acid rice bran oil. NEW J CHEM 2022. [DOI: 10.1039/d2nj03761k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The main challenge of rice bran oil (RBO) as a highly nutritional edible oil is the high content of free fatty acids.
Collapse
Affiliation(s)
- Yawen Yin
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| |
Collapse
|
7
|
Highly efficient porous magnetic polydopamine/copper phosphate with three-dimensional hierarchical nanoflower morphology as a selective platform for recombinant proteins separation. Colloids Surf B Biointerfaces 2021; 209:112149. [PMID: 34653906 DOI: 10.1016/j.colsurfb.2021.112149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023]
Abstract
The separation and purification of recombinant pharmaceutical proteins is a fundamental and challenging step in the biotechnology industry. Hierarchical nanostructures with unique features and high stability can be used as efficient adsorbents. In this study, hierarchical magnetic polydopamine-copper phosphate nanoflowers (Cu-PDA MNFs) were synthesized as high-performance magnetic adsorbents in a simple and low-cost method based on green chemistry. The prepared hybrid Cu-PDA MNFs revealed great performance for separating pure recombinant human growth hormone (rhGH) and the rhGH acquired from recombinant Pichia pastoris yeast fermentation. The analysis confirmed that Cu-PDA MNFs exhibited a high adsorption capacity of 257.4 mg rhGH g-1 Cu-PDA MNFs and a fast adsorption rate for approaching the adsorption equilibrium within less than 30 min with a recovery efficiency of 74% of rhGH from the real sample. In addition, recycling tests demonstrated the stability and recyclability of Cu-PDA MNFs for at least six cycles with almost constant adsorption capacity and no toxicity. Based on these results, Cu-PDA MNFs could be considered as a promising candidate for separation and purification of rhGH. This work presents a new approach to using organic-inorganic nanoflowers as the hierarchical nanostructure for purification of pharmaceutical proteins with high performance.
Collapse
|
8
|
Yan C, Shao X, Shu Q, Teng Y, Qiao Y, Guan P, Hu X, Wang C. Chitosan modified ultra-thin hollow nanoparticles for photosensitizer loading and enhancing photodynamic antibacterial activities. Int J Biol Macromol 2021; 186:839-848. [PMID: 34280447 DOI: 10.1016/j.ijbiomac.2021.07.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023]
Abstract
Antibacterial photodynamic therapy (PDT) has attracted extremely attention due to not inducing bacteria to generate resistance. However, the poor utilization and low reactive oxygen species (ROS) field of photosensitizers hinder their further application for antibacterial. Here, we designed ultra-thin hollow silica nanoparticles (UHSN), followed by pore-engineering including covalent anchoring of chitosan (UHSN@CS) for enhanced loading and photodynamic property of photosensitizer. The UHSN@CS exhibit high loading efficiency (80.6%, pH = 6.0) and controllable pH-responsive release for Ce6. Additionally, UHSN@CS can enhance the ROS yield of photosensitizers and effectively adhere to S. aureus, thus enormously enhancing antibacterial performance toward bacteria. Moreover, UHSN@CS-Ce6 can obliterate mature S. aureus biofilm and cause an 81% decrease in the biomass, showing a better therapeutic effect than Ce6 (59.2%) under laser irradiation. In vivo results confirm that UHSN@CS-Ce6 is effective to promote infectious wound regeneration. As photodynamic-based nanoplatforms, UHSN@CS-Ce6 are potential antibacterial agents for skin infection therapy.
Collapse
Affiliation(s)
- Chaoren Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Qi Shu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yonggang Teng
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China; Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Changlexilu 169, Xi'an, PR China
| | - Youbei Qiao
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Chaoli Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China.
| |
Collapse
|
9
|
Siwicka ZE, Son FA, Battistella C, Moore MH, Korpanty J, McCallum NC, Wang Z, Johnson BJ, Farha OK, Gianneschi NC. Synthetic Porous Melanin. J Am Chem Soc 2021; 143:3094-3103. [PMID: 33600146 DOI: 10.1021/jacs.0c10465] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Commonly known as a skin pigment, melanin has a vital role in UV radiation protection, primarily acting as a radical scavenger. However, a lesser known natural property of melanin, observed in some melanized organisms, is its capacity to adsorb toxins, including metals and organic molecules. Inspired by this, we set out to generate a synthetic porous melanin that would pave the way to enhancing the natural adsorbent properties of melanin and melanin-like materials. Here, we developed a method for the synthesis of porous polydopamine-based melanin utilizing a mesoporous silica (MS) nanoparticle template and characterized its physical properties. Through the oxidative polymerization of dopamine, followed by the etching of silica, we generated synthetic porous melanin (SPM) with the highest measured surface area of any known polydopamine-based material. The prepared SPM was effective for the uptake of various gases and organophosphate toxins, with the material exhibiting high selectivity for CO2 over CH4 and high potential for ammonia capture. Given the demonstrated advantages provided by synthetic porous melanin and melanin's role as an adsorbent in nature, we anticipate the discovery of porous analogues in biological systems.
Collapse
Affiliation(s)
| | | | | | - Martin H Moore
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | | | | | - Zheng Wang
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Brandy J Johnson
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | | | | |
Collapse
|
10
|
Bilal M, Iqbal HMN. Armoring bio-catalysis via structural and functional coordination between nanostructured materials and lipases for tailored applications. Int J Biol Macromol 2021; 166:818-838. [PMID: 33144258 DOI: 10.1016/j.ijbiomac.2020.10.239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
Nanostructured materials represent an interesting and novel class of support matrices for the immobilization of different enzymes. Owing to the high surface area, robust mechanical stability, outstanding optical, thermal, and electrical properties, nanomaterials have been rightly perceived as desired immobilization matrices for lipases immobilization with a wide array of biotechnological applications such as dairy, food technology, fine chemical, pharmaceutical, detergent, and oleochemical industries. Lipases immobilized on nanomaterials have demonstrated superior attributes than free counterparts, such as aggrandized pH and thermal stability, robustness, long-term stability, and the possibility of reuse and recycling in several times. Here we review current and state-of-the-art literature on the use of nanomaterials as novel platforms for the immobilization of lipase enzymes. The physicochemical properties and exploitation of a large number of new nanostructured materials such as carbon nanotubes, nano-silica, graphene/graphene oxide, metal nanoparticles, magnetic nanostructures, metal-organic frameworks, and hybrid nanoflowers as a host matrix to constitute robust lipases-based nanobiocatalytic systems are discussed. Conclusive remarks, trends, and future recommendations for nanomaterial immobilized enzymes are also given.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
11
|
Lin Y, Qiu Y, Cai L, Zhang G. Investigation of the ELP-Mediated Silicification-Based Protein Self-Immobilization Using an Acidic Target Enzyme. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuanqing Lin
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| | - Yue Qiu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| | - Lixi Cai
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| |
Collapse
|
12
|
Mei S, Xu X, Priestley RD, Lu Y. Polydopamine-based nanoreactors: synthesis and applications in bioscience and energy materials. Chem Sci 2020; 11:12269-12281. [PMID: 34094435 PMCID: PMC8162453 DOI: 10.1039/d0sc04486e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Polydopamine (PDA)-based nanoreactors have shown exceptional promise as multifunctional materials due to their nanoscale dimensions and sub-microliter volumes for reactions of different systems. Biocompatibility, abundance of active sites, and excellent photothermal conversion have facilitated their extensive use in bioscience and energy storage/conversion. This minireview summarizes recent advances in PDA-based nanoreactors, as applied to the abovementioned fields. We first highlight the design and synthesis of functional PDA-based nanoreactors with structural and compositional diversity. Special emphasis in bioscience has been given to drug/protein delivery, photothermal therapy, and antibacterial properties, while for energy-related applications, the focus is on electrochemical energy storage, catalysis, and solar energy harvesting. In addition, perspectives on pressing challenges and future research opportunities regarding PDA-based nanoreactors are discussed.
Collapse
Affiliation(s)
- Shilin Mei
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
| | - Xiaohui Xu
- Department of Chemical and Biological Engineering, Princeton University New Jersey 08544 USA
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University New Jersey 08544 USA
- Princeton Institute of the Science and Technology of Materials, Princeton University New Jersey 08544 USA
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
- Institute of Chemistry, University of Potsdam 14476 Potsdam Germany
| |
Collapse
|
13
|
Qian L, Liu W, Yang M, Nica V, Yang J, Liu H, Ning L, Zhang S, Zhang Q. Zwitterionic polymer chain-assisted lysozyme imprinted core-shell carbon microspheres with enhanced recognition and selectivity. Talanta 2020; 217:121085. [DOI: 10.1016/j.talanta.2020.121085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
|
14
|
Mohammad M, Ahmadpoor F, Shojaosadati SA. Mussel-Inspired Magnetic Nanoflowers as an Effective Nanozyme and Antimicrobial Agent for Biosensing and Catalytic Reduction of Organic Dyes. ACS OMEGA 2020; 5:18766-18777. [PMID: 32775878 PMCID: PMC7408242 DOI: 10.1021/acsomega.0c01864] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/03/2020] [Indexed: 05/08/2023]
Abstract
Mussel-inspired chemistry has been embodied as a method for acquiring multifunctional nanostructures. In this research, a novel mussel-inspired magnetic nanoflower was prepared through a mussel-inspired approach. Herein, magnetic PDA-Cu nanoflowers (NFs) were assembled via incorporating magnetic Fe3O4@SiO2-NH2 core/shell nanoparticles (NPs) into mussel-inspired polydopamine (PDA) and copper phosphate as the organic and inorganic portions, respectively. Accordingly, the flower-like morphology of MNPs PDA-Cu NFs was characterized by scanning electron microscopy (SEM) images. X-ray diffraction (XRD) analysis confirmed the crystalline structure of magnetic nanoparticles (MNPs) and copper phosphate. Vibrating sample magnetometer (VSM) data revealed the superparamagnetic behavior of MNPs (40.5 emu/g) and MNPs PDA-Cu NFs (35.4 emu/g). Catalytic reduction of MNPs PDA-Cu NFs was evaluated through degradation of methylene blue (MB). The reduction of MB pursued the Langmuir-Hinshelwood mechanism and first-order kinetics, in which the apparent reduction rate K app of MB was higher than 1.44 min-1 and the dye degradation ability was 100%. MNPs PDA-Cu NFs also showed outstanding recyclability and reduction efficiency, for at least six cycles. Furthermore, the prepared MNPs PDA-Cu NFs demonstrated a peroxidase-like catalytic activity for catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) to a blue oxidized TMB (oxTMB) solution in the presence of H2O2. Antimicrobial assays for MNPs PDA-Cu and PDA-Cu NFs were conducted on both Gram-negative and Gram-positive bacteria. Moreover, we demonstrated how the existence of magnetic nanoparticles in PDA-Cu NFs influences the inhibition of an increasing zone. Based on the results, mussel-inspired magnetic nanoflowers appear to have great potential applications, including those relevant to biological, catalysis, and environmental research.
Collapse
Affiliation(s)
- Mahsa Mohammad
- Biotechnology
Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14155-114, Iran
| | - Fatemeh Ahmadpoor
- Department
of Materials Engineering, Tarbiat Modares University, Tehran 14115-143, Iran
| | - Seyed Abbas Shojaosadati
- Biotechnology
Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14155-114, Iran
| |
Collapse
|
15
|
Development of Magnetic Multi-Shelled Hollow Catalyst for Biodiesel Production. ENERGIES 2020. [DOI: 10.3390/en13112754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The magnetic CaO-based catalyst has endorsed great enhancements in biodiesel synthesis. In the present work, novel multi-shelled hollow γ-Fe2O3 stabilized CaO microspheres were synthesized using a facile one-step hydrothermal method. The strategy revealed that the well-defined multi-shelled hollow structures were formed with magnetism; the presence of γ-Fe2O3 was the key for the effective structural stabilization, and the multi-shelled hollow structures provided the sites for the active material. The synthesized catalyst was employed for the preparation of biodiesel by transesterification of palm oil and methanol. A four factors response surface methodology was adopted for optimizing the reaction conditions. Ca80Fe20 with a yield of 96.12% performed the highest catalytic activity under reaction conditions of 2 h, a methanol to oil ratio of 12:1, 65 °C and 11 wt. % of catalyst dosage. The catalyst under the optimum transesterification conditions also performed a better recyclability (>85%). In addition, the response surface methodology (RSM) based on the Box–Behnken design was used to optimize the four reaction parameters.
Collapse
|
16
|
Zhong L, Feng Y, Wang G, Wang Z, Bilal M, Lv H, Jia S, Cui J. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int J Biol Macromol 2020; 152:207-222. [PMID: 32109471 DOI: 10.1016/j.ijbiomac.2020.02.258] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 01/19/2023]
Abstract
As a highly efficient and environmentally friendly biocatalyst, immobilized lipase has received incredible interest among the biotechnology community for the production of biodiesel. Nanomaterials possess high enzyme loading, low mass transfer limitation, and good dispersibility, making them suitable biocatalytic supports for biodiesel production. In addition to traditional nanomaterials such as nano‑silicon, magnetic nanoparticles and nano metal particles, novel nanostructured forms such as nanoflowers, carbon nanotubes, nanofibers and metal-organic frameworks (MOFs) have also been studied for biodiesel production in the recent years. However, some problems still exist that need to be overcome in achieving large-scale biodiesel production using immobilized lipase on/in nanomaterials. This article mainly presents an overview of the current and state-of-the-art research on biodiesel production by immobilized lipases in/on nanomaterials. Various immobilization strategies of lipase on various advanced nanomaterial supports and its applications in biodiesel production are highlighted. Influential factors such as source of lipase, immobilization methods, feedstocks, and production process are also critically discussed. Finally, the current challenges and future directions in developing immobilized lipase-based biocatalytic systems for high-level production of biodiesel from waste resources are also recommended.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Yuxiao Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Gaoyang Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Ziyuan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hexin Lv
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| |
Collapse
|
17
|
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| |
Collapse
|
18
|
Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: A review. Biosens Bioelectron 2019; 149:111830. [PMID: 31710919 DOI: 10.1016/j.bios.2019.111830] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
Abstract
As promising alternatives to natural receptors, artificial molecularly imprinted polymers (MIPs) have received great attention in biotechnology. Nevertheless, some bottlenecks limit their further development, including low adsorption capacity, poor recognition efficiency, slow response, and insipid aqueous compatibility. Ionic liquids (ILs) show the features of tailored structures and properties, high conductivity, good solubility, and excellent stability. Because of these advantages, they have found intensive use in MIPs by remedying the latter's shortcomings. In this review, we summarize the integration of ILs and MIPs for biorecognition and biosensing. The versatile roles of ILs in improving the performance of MIPs are firstly summarized, including serving as solvents, porogens, functional monomers, organic surface modifiers, dummy templates, and cross-linkers. Then, specific applications of IL-based MIPs in peptide recognition, protein sensing, and food safety analysis are discussed. Finally, future trends and challenges for the design and development of IL-based MIPs and their applications in the biorecognition and biosensing are proposed.
Collapse
|