1
|
Marlin A, Tran PN, Dierolf M, DeLuca M, Joaqui Joaqui MA, Glaser OM, Koller AJ, Alucio-Sarduy E, Gork M, Śmiłowicz D, Pierre V, Engle JW, Boros E. Evaluation of PSMA-Targeted TREN-CAM Conjugates for Targeted Imaging of Cancer with 68Ga(III) and 45Ti(IV). Bioconjug Chem 2025; 36:859-866. [PMID: 40103324 DOI: 10.1021/acs.bioconjchem.5c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chelation approaches that are compatible with a multitude of isotopes are an important area of development. Here, we introduce the design, synthesis, and evaluation of 2,3-dihydroxyterephthalate/catechol chelator conjugates compatible with the positron emission tomography (PET) isotopes 68Ga3+ and 45Ti4+, targeting the prostate-specific membrane antigen (PSMA). The conjugates are made in a multistep organic synthesis incorporating 2,3-dihydroxyterephthalate, linked to the amino hexanoic acid-extended, urea-dipeptides EuE or KuE (substrates of the PSMA active site). The radiochemical complexes, [45Ti][Ti(TREN-CAM-hex-EuE)]2-, [45Ti][Ti(TREN-CAM-hex-KuE)]2-, and [68Ga][Ga(TREN-CAM-hex-KuE)]3- form readily at room temperature within 15 min with a molar activity of 24-29 mCi/μmol. The corresponding chelates are stable in phosphate-buffered saline (PBS) solution prior to injection. Subsequent in vivo studies in a bilateral tumor xenograft mouse model were conducted, including 90- and 270-min PET, followed by biodistribution and metabolite analysis at 2 or 5 h postinjection. These studies demonstrated selective uptake of the radiochemical complexes in the PSMA-expressing tumor (17.25 ± 4.15, 13.84 ± 3.85, 15.64 ± 6.37% ID/g for [45Ti][Ti(TREN-CAM-hex-EuE)]2-, [45Ti][Ti(TREN-CAM-hex-KuE)]2- and [68Ga][Ga(TREN-CAM-hex-KuE)]3- respectively), with pharmacokinetics dominated by renal clearance. Delayed clearance of the [45Ti][Ti(TREN-CAM-hex-KuE)]2- complex is observed when compared with that of [68Ga][Ga(TREN-CAM-hex-KuE)]3- as indicated by elevated activity retention in the blood, which we attribute to the charge difference and partial complex dissociation. Urine metabolite analysis shows that [68Ga][Ga(TREN-CAM-hex-KuE)]3- is excreted >98% intact, while [45Ti][Ti(TREN-CAM-hex-KuE)]2- exhibited signs of dechelation. Conclusively, our data support further investigation of bifunctional TREN-CAM derivatives as a synthetically accessible bifunctional chelator class for 68Ga3+ and 45Ti4+ isotopes.
Collapse
Affiliation(s)
- Axia Marlin
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Phuong Nguyen Tran
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Morgan Dierolf
- Department of Medical Physics, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Molly DeLuca
- Department of Medical Physics, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - M Andrey Joaqui Joaqui
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Owen M Glaser
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Angus J Koller
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Eduardo Alucio-Sarduy
- Department of Medical Physics, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Mallory Gork
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Valérie Pierre
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Radiology, University of Wisconsin Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
2
|
Olson AP, Schrage BR, Islam MF, Fletcher LS, Verich F, Dierolf MA, Aluicio-Sarduy E, Becker KV, Driscoll DM, Girish N, Simms ME, Kertesz V, White FD, Boros E, Ivanov AS, Engle JW, Thiele NA. Towards the Stable Chelation of Radioantimony(V) for Targeted Auger Theranostics. Angew Chem Int Ed Engl 2025; 64:e202423878. [PMID: 39878457 DOI: 10.1002/anie.202423878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
Antimony-119 (119Sb) is one of the most attractive Auger-electron emitters identified to date, but it remains practically unexplored for targeted radiotherapy because no chelators have been identified to stably bind this metalloid in vivo. In a departure from current studies focused on chelator development for Sb(III), we explore the chelation chemistry of Sb(V) using the tris-catecholate ligand TREN-CAM. Through a combination of radiolabeling, spectroscopic, solid-state, and computational studies, the radiochemistry and structural chemistry of TREN-CAM with 1XX/natSb(V) were established. The resulting [1XXSb]Sb-TREN-CAM complex remained intact for several days in human serum, signifying high stability under biological conditions. Finally, the first in vivo single photon emission computed tomography and positron emission tomography imaging studies were carried out using 117Sb, the diagnostic analogue of 119Sb. These studies revealed marked differences in the uptake and distribution of activity in mice administered unchelated [117Sb]Sb(OH)6 - versus [117Sb]Sb-TREN-CAM, suggesting that 117Sb is largely retained by TREN-CAM over the time course of the study. Collectively, these findings demonstrate the most physiologically stable complex of no-carrier-added 1XXSb yet reported, offering new promise for the clinical implementation of radioantimony in nuclear medicine. Our results also establish the feasibility of 117Sb as an elementally matched partner to 119Sb for theranostic applications.
Collapse
Affiliation(s)
- Aeli P Olson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Briana R Schrage
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Md Faizul Islam
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Lesta S Fletcher
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Francesca Verich
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Morgan A Dierolf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Kaelyn V Becker
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Darren M Driscoll
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Nidhi Girish
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| |
Collapse
|
3
|
Zhang X, Ma L, Cai K, Guo X, Zhang G, Dong J, Zheng Y, Su X, Tao T, Li X, Yuan Y. PSMA-Targeted Intracellular Self-Assembled Probe for Enhanced PET Imaging. Bioconjug Chem 2025; 36:20-24. [PMID: 39810600 DOI: 10.1021/acs.bioconjchem.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Positron-emission tomography (PET) offers high sensitivity for cancer diagnosis. However, small-molecule-based probes often exhibit insufficient accumulation in tumor sites, while nanoparticle-based agents typically have limited delivery efficiency. To address this challenge, this study proposes a novel PET imaging probe, 68Ga-CBT-PSMA, designed for prostate cancer. This probe integrates an intracellular self-assembly strategy to enhance PET imaging signals and significantly improve the signal-to-noise ratio. The glutamate-urea-based prostate-specific membrane antigen (PSMA)-targeting motif enables specific recognition of prostate cancer cells and enhances cellular uptake; then the self-assembly process induced by glutathione reduction effectively accumulates the probe within tumor cells, thereby amplifying PET imaging signals. This approach not only enhances signal intensity and resolution but also facilitates precise cancer localization and diagnosis, offering new avenues for advancing cancer diagnostic techniques.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Li Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Ke Cai
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiangyuan Guo
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Guangtao Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jiajing Dong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yifan Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaoyu Su
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Tao Tao
- Department of Urology, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Xiaohu Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yue Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Olson AP, Verich FA, Ellison PA, Aluicio-Sarduy E, Nickles RJ, Mixdorf JC, Barnhart TE, Engle JW. Sustainable production of radionuclidically pure antimony-119. EJNMMI Radiopharm Chem 2024; 9:72. [PMID: 39438347 PMCID: PMC11496484 DOI: 10.1186/s41181-024-00303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Radiopharmaceutical therapy (RPT) uses radionuclides that decay via one of three therapeutically relevant decay modes (alpha, beta, and internal conversion (IC) / Auger electron (AE) emission) to deliver short range, highly damaging radiation inside of diseased cells, maintaining localized dose distribution and sparing healthy cells. Antimony-119 (119Sb, t1/2 = 38.19 h, EC = 100%) is one such IC/AE emitting radionuclide, previously limited to in silico computational investigation due to barriers in production, chemical separation, and chelation. A theranostic (therapeutic/diagnostic) pair can be formed with 119Sb's radioisotopic imaging analogue 117Sb (t1/2 = 2.80 h, Eγ = 158.6 keV, Iγ = 85.9%, β+ = 262.4 keV, Iβ+ = 1.81%). RESULTS Within, we report techniques for sustainable and cost-effective production of pre-clinical quality and quantity, radionuclidically pure 119Sb and 117Sb, novel low energy photon measurement techniques for 119Sb activity determination, and physical yields for various tin target isotopic enrichments and thicknesses using (p, n) and (d, n) nuclear reactions. Additionally, we present a two-column separation providing a radioantimony yield of 73.1% ± 6.9% (N = 3) and tin separation factor of (6.8 ± 5.5) x 105 (N = 3). Apparent molar activity measurements for deuteron produced 117Sb using the chelator TREN-CAM were measured at 42.4 ± 25 MBq 117Sb/µmol (1.14 ± 0.68 mCi/µmol), and we recovered enriched 119Sn target material at a recycling efficiency of 80.2% ± 5.5% (N = 6) with losses of 11.6 mg ± 0.8 mg (N = 6) per production. CONCLUSION We report significant steps in overcoming barriers in 119Sb production, chemical isolation and purification, enriched target material recycling, and chelation, helping promote accessibility and application of this promising therapeutic radionuclide. We describe a method for 119Sb activity measurement using its low energy gamma (23.87 keV), negating the need for attenuation correction. Finally, we report the largest yet-measured 119Sb production yields using proton and deuteron irradiation of natural and enriched targets and radioisotopic purity > 99.8% at end of purification.
Collapse
Affiliation(s)
- Aeli P Olson
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Francesca A Verich
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Paul A Ellison
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | | | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Jason C Mixdorf
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA.
- Department of Radiology, University of Wisconsin, Madison, WI, 53705, USA.
| |
Collapse
|
5
|
Koller AJ, Glaser O, DeLuca MC, Motz RN, Amason EK, Carbo-Bague I, Mixdorf JC, Guzei IA, Aluicio-Sarduy E, Śmiłowicz D, Barnhart TE, Ramogida CF, Nolan EM, Engle JW, Boros E. "Off-Label Use" of the Siderophore Enterobactin Enables Targeted Imaging of Cancer with Radioactive Ti (IV). Angew Chem Int Ed Engl 2024; 63:e202319578. [PMID: 38442302 PMCID: PMC11258920 DOI: 10.1002/anie.202319578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
The development of inert, biocompatible chelation methods is required to harness the emerging positron emitting radionuclide 45Ti for radiopharmaceutical applications. Herein, we evaluate the Ti(IV)-coordination chemistry of four catechol-based, hexacoordinate chelators using synthetic, structural, computational, and radiochemical approaches. The siderophore enterobactin (Ent) and its synthetic mimic TREN-CAM readily form mononuclear Ti(IV) species in aqueous solution at neutral pH. Radiolabeling studies reveal that Ent and TREN-CAM form mononuclear complexes with the short-lived, positron-emitting radionuclide 45Ti(IV), and do not transchelate to plasma proteins in vitro and exhibit rapid renal clearance in naïve mice. These features guide efforts to target the 45Ti isotope to prostate cancer tissue through the design, synthesis, and evaluation of Ent-DUPA, a small molecule conjugate composed of a prostate specific membrane antigen (PSMA) targeting peptide and a monofunctionalized Ent scaffold. The [45Ti][Ti(Ent-DUPA)]2- complex forms readily at room temperature. In a tumor xenograft model in mice, selective tumor tissue accumulation (8±5 %, n=5), and low off-target uptake in other organs is observed. Overall, this work demonstrates targeted imaging with 45Ti(IV), provides a foundation for advancing the application of 45Ti in nuclear medicine, and reveals that Ent can be repurposed as a 45Ti-complexing cargo for targeted nuclear imaging applications.
Collapse
Affiliation(s)
- Angus J Koller
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Owen Glaser
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Molly C DeLuca
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Rachel N Motz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Edith K Amason
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Imma Carbo-Bague
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jason C Mixdorf
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| |
Collapse
|
6
|
Margeta R, Schelhaas S, Hermann S, Schäfers M, Niemann S, Faust A. A novel radiolabelled salmochelin derivative for bacteria-specific PET imaging: synthesis, radiolabelling and evaluation. Chem Commun (Camb) 2024; 60:3507-3510. [PMID: 38385843 DOI: 10.1039/d4cc00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
For specific imaging of bacterial infections we aimed at targeting the exclusive bacterial iron transport system via siderophore-based radiotracers. De novo synthesis and radiolabeling yielded the salmochelin-based PET radiotracer [68Ga]Ga-RMA693, which showed a favourable biodistribution and a bacteria-specific uptake in an animal model of Escherichia coli infection.
Collapse
Affiliation(s)
- Renato Margeta
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| |
Collapse
|
7
|
Carbo-Bague I, Saini S, Cingoranelli SJ, Davey PRWJ, Tosato M, Lapi SE, Ramogida CF. Evaluation of a novel hexadentate 1,2-hydroxypyridinone-based acyclic chelate, HOPO-O 6-C4, for 43Sc/ 47Sc, 68Ga, and 45Ti radiopharmaceuticals. Nucl Med Biol 2024; 128-129:108872. [PMID: 38262310 DOI: 10.1016/j.nucmedbio.2023.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Chelators play a crucial role in the development of metal-based radiopharmaceuticals, and with the continued interest in 68Ga and increasing availability of new radiometals such as 43Sc/47Sc and 45Ti, there is a growing demand for tailored chelators that can form stable complexes with these metals. This work reports the synthesis and characterization of a hexadentate tris-1,2-hydroxypyridonone chelator HOPO-O6-C4 and its in vitro and in vivo evaluation with the above mentioned radiometals. METHODS To investigate the affinity of HOPO-O6-C4, macroscopic studies were performed with Sc3+, and Ga3+ followed by DFT structural optimization of the Sc3+, Ga3+ and Ti4+ complexes. Further tracer studies with 43Sc (and 47Sc), 45Ti, and 68Ga were performed to determine the potential for positron emission tomography (PET) imaging with these complexes. In vitro stability studies followed by in vivo imaging and biodistribution studies were performed to understand the kinetic stability of the resultant radiometal-complexes of HOPO-O6-C4. RESULTS Promising radiolabeling results with HOPO-O6-C4 were obtained with 43Sc, 47Sc, 45Ti, and 68Ga radionuclides; rapid radiolabeling was observed at 37 °C and pH 7 in under 30-min. Apparent molar activity measurements were performed for radiolabeling of HOPO-O6-C4 with 43Sc (4.9 ± 0.26 GBq/μmol), 47Sc (1.58 ± 0.01 GBq/μmol), 45Ti (11.5 ± 1.6 GBq/μmol) and 68Ga (5.74 ± 0.7 GBq/μmol), respectively. Preclinical in vivo imaging studies resulted in promising results with [68Ga]Ga-HOPO-O6-C4 indicating a rapid clearance through hepatic excretion route and no decomplexation whereas [43Sc]Sc-HOPO-O6-C4, [47Sc]Sc-HOPO-O6-C4 and [45Ti]Ti-HOPO-O6-C4 showed modest and significant evidence of decomplexation, respectively. CONCLUSIONS The tris-1,2-HOPO chelator HOPO-O6-C4 is a promising scaffold for elaboration into a 68Ga- based radiopharmaceutical.
Collapse
Affiliation(s)
- Imma Carbo-Bague
- Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada; Life Sciences, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Shefali Saini
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, USA
| | - Shelbie J Cingoranelli
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, USA
| | - Patrick R W J Davey
- Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada; Life Sciences, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Marianna Tosato
- Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada; Life Sciences, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, USA.
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada; Life Sciences, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
| |
Collapse
|
8
|
Modern Developments in Bifunctional Chelator Design for Gallium Radiopharmaceuticals. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010203. [PMID: 36615397 PMCID: PMC9822085 DOI: 10.3390/molecules28010203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The positron-emitting radionuclide gallium-68 has become increasingly utilised in both preclinical and clinical settings with positron emission tomography (PET). The synthesis of radiochemically pure gallium-68 radiopharmaceuticals relies on careful consideration of the coordination chemistry. The short half-life of 68 min necessitates rapid quantitative radiolabelling (≤10 min). Desirable radiolabelling conditions include near-neutral pH, ambient temperatures, and low chelator concentrations to achieve the desired apparent molar activity. This review presents a broad overview of the requirements of an efficient bifunctional chelator in relation to the aqueous coordination chemistry of gallium. Developments in bifunctional chelator design and application are then presented and grouped according to eight categories of bifunctional chelator: the macrocyclic chelators DOTA and TACN; the acyclic HBED, pyridinecarboxylates, siderophores, tris(hydroxypyridinones), and DTPA; and the mesocyclic diazepines.
Collapse
|
9
|
Chiba Y, Jin Z, Nakamura T, Nabeshima T. An Iron(II) Complex of a Tripodal 2,2´-Bipyridine with Perfluoroalkyl Linkers Showing Anion-Dependent fac/ mer Isomer Ratio. CHEM LETT 2022. [DOI: 10.1246/cl.220314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Chiba
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Zhehui Jin
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takashi Nakamura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
10
|
Koller AJ, Saini S, Chaple IF, Joaqui-Joaqui MA, Paterson BM, Ma MT, Blower PJ, Pierre VC, Robinson JR, Lapi SE, Boros E. A General Design Strategy Enabling the Synthesis of Hydrolysis-Resistant, Water-Stable Titanium(IV) Complexes. Angew Chem Int Ed Engl 2022; 61:e202201211. [PMID: 35263017 DOI: 10.1002/anie.202201211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/06/2022]
Abstract
Despite its prevalence in the environment, the chemistry of the Ti4+ ion has long been relegated to organic solutions or hydrolyzed TiO2 polymorphs. A knowledge gap in stabilizing molecular Ti4+ species in aqueous environments has prevented the use of this ion for various applications such as radioimaging, design of water-compatible metal-organic frameworks (MOFs), and aqueous-phase catalysis applications. Herein, we show a thorough thermodynamic screening of bidentate chelators with Ti4+ in aqueous solution, as well as computational and structural analyses of key compounds. In addition, the hexadentate analogues of catechol (benzene-1,2-diol) and deferiprone (3-hydroxy-1,2-dimethyl-4(1H)-pyridone), TREN-CAM and THPMe respectively, were assessed for chelation of the 45 Ti isotope (t1/2 =3.08 h, β+ =85 %, Eβ+ =439 keV) towards positron emission tomography (PET) imaging applications. Both were found to have excellent capacity for kit-formulation, and [45 Ti]Ti-TREN-CAM was found to have remarkable stability in vivo.
Collapse
Affiliation(s)
- Angus J Koller
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Shefali Saini
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 25294, USA
| | - Ivis F Chaple
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 25294, USA
| | | | - Brett M Paterson
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, SE1 7EH, UK
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, SE1 7EH, UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, SE1 7EH, UK
| | - Valérie C Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 25294, USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
11
|
Koller AJ, Saini S, Chaple IF, Joaqui‐Joaqui MA, Paterson BM, Ma MT, Blower PJ, Pierre VC, Robinson JR, Lapi SE, Boros E. A General Design Strategy Enabling the Synthesis of Hydrolysis‐Resistant, Water‐Stable Titanium(IV) Complexes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Angus J. Koller
- Department of Chemistry Stony Brook University Stony Brook NY 11794 USA
| | - Shefali Saini
- Department of Radiology University of Alabama at Birmingham Birmingham AL 25294 USA
| | - Ivis F. Chaple
- Department of Radiology University of Alabama at Birmingham Birmingham AL 25294 USA
| | | | - Brett M. Paterson
- School of Biomedical Engineering and Imaging Sciences King's College London St. Thomas Hospital London SE1 7EH UK
| | - Michelle T. Ma
- School of Biomedical Engineering and Imaging Sciences King's College London St. Thomas Hospital London SE1 7EH UK
| | - Philip J. Blower
- School of Biomedical Engineering and Imaging Sciences King's College London St. Thomas Hospital London SE1 7EH UK
| | - Valérie C. Pierre
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | | | - Suzanne E. Lapi
- Department of Radiology University of Alabama at Birmingham Birmingham AL 25294 USA
| | - Eszter Boros
- Department of Chemistry Stony Brook University Stony Brook NY 11794 USA
| |
Collapse
|
12
|
Peukert C, Langer LNB, Wegener SM, Tutov A, Bankstahl JP, Karge B, Bengel FM, Ross TL, Brönstrup M. Optimization of Artificial Siderophores as 68Ga-Complexed PET Tracers for In Vivo Imaging of Bacterial Infections. J Med Chem 2021; 64:12359-12378. [PMID: 34370949 DOI: 10.1021/acs.jmedchem.1c01054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diagnosis of bacterial infections at deep body sites benefits from noninvasive imaging of molecular probes that can be traced by positron emission tomography (PET). We specifically labeled bacteria by targeting their iron transport system with artificial siderophores. The cyclen-based probes contain different binding sites for iron and the PET nuclide gallium-68. A panel of 11 siderophores with different iron coordination numbers and geometries was synthesized in up to 8 steps, and candidates with the best siderophore potential were selected by a growth recovery assay. The probes [68Ga]7 and [68Ga]15 were found to be suitable for PET imaging based on their radiochemical yield, radiochemical purity, and complex stability in vitro and in vivo. Both showed significant uptake in mice infected with Escherichia coli and were able to discern infection from lipopolysaccharide-triggered, sterile inflammation. The study qualifies cyclen-based artificial siderophores as readily accessible scaffolds for the in vivo imaging of bacteria.
Collapse
Affiliation(s)
- Carsten Peukert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Laura N B Langer
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sophie M Wegener
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna Tutov
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Bianka Karge
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Center for Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
13
|
Chen P, Wang H, Wu H, Zou P, Wang C, Liu X, Pan Y, Liu Y, Liang G. Intracellular Synthesis of Hybrid Gallium-68 Nanoparticle Enhances MicroPET Tumor Imaging. Anal Chem 2021; 93:6329-6334. [PMID: 33848118 DOI: 10.1021/acs.analchem.1c00747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Positron-emission tomography (PET) imaging enables cancer diagnosis at an early stage and to determine its pathological degree. However, tumor uptake efficiency of traditional PET radiotracers is usually low. Herein, we rationally designed a precursor CBT-NODA, the cold analogue CBT-NODA-Ga, and its corresponding radiotracer CBT-NODA-68Ga. Using these three compounds, we verified that coinjection of CBT-NODA-68Ga with CBT-NODA or CBT-NODA-Ga could lead to the synthesis of hybrid gallium-68 nanoparticles in furin-overexpressing cancer cells and enhance microPET tumor imaging in mice. In vivo experiments showed that coinjection of CBT-NODA-68Ga with CBT-NODA-Ga had the most prolonged retention of the radiotracer in blood, the highest radioactivity in tumor regions, and the most enhanced microPET tumor imaging in mice. We anticipate that, by combining the coinjection strategy with our CBT-Cys click condensation reaction, more radiotracers are developed for microPET imaging of more tumors in clinical settings in the future.
Collapse
Affiliation(s)
- Peiyao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.,Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyong Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Hao Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Pei Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Chenchen Wang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yaling Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.,State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
14
|
Morita H, Akine S, Nakamura T, Nabeshima T. Exclusive formation of a meridional complex of a tripodand and perfect suppression of guest recognition. Chem Commun (Camb) 2021; 57:2124-2127. [PMID: 33538748 DOI: 10.1039/d1cc00146a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tripodal ligands have been utilized for complexation-induced structural change, but all the tripodal complexes reported so far are facial isomers, which do not completely reduce the recognition ability by closing the binding pocket. We now report the first example of the selective synthesis of a meridional tripodal complex. The tripodal ligand with a 1,3,5-triethyl-2,4,6-tris(methylene)benzene pivot possessing 2,2'-bipyridine on each arm exclusively formed a mononuclear complex with the mer-[Fe(bpy)]2+ unit. The meridional tripodal complex has a unique structure in which one bipyridine unit is self-penetrated. As a result of cavity blockage, the ion recognition property of the tripodand has been successfully suppressed.
Collapse
Affiliation(s)
- Hiroki Morita
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takashi Nakamura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|