1
|
Shi JY, Wang YJ, Bao QW, Qin YM, Li PP, Wu QQ, Xia CK, Wu DL, Xie SZ. Polygonatum cyrtonema Hua polysaccharide alleviates ulcerative colitis via gut microbiota-independent modulation of inflammatory immune response. Carbohydr Polym 2025; 356:123387. [PMID: 40049966 DOI: 10.1016/j.carbpol.2025.123387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 05/13/2025]
Abstract
Polygonatum cyrtonema polysaccharides (PCP) exhibit ameliorative effects on colitis. However, whether the protective effects of PCP depend on the gut microbiota and how PCP regulates intestinal immune responses to alleviate colitis remain unclear. Therefore, this study investigated the effect of PCP against colitis focusing on the regulation of intestinal immune response. The PCP structure was reclassified as fructan. PCP treatment significantly reduced the symptoms of colitis. PCP restored IgA, ZO-1, Occludin, and MUC2 expression to enhance intestinal barrier function. Oral PCP administration markedly inhibited excessive inflammation-mediated immune response by modulating inflammatory cytokines secretion and Th17/Tregs cell balance and restored gut microbial composition. Interestingly, PCP still had a significant ameliorating effect on intestinal inflammation in colitis mice with gut microbial depletion by antibiotics. In the Caco-2/RAW264.7 co-culture inflammation model, PCP treatment improved the intestinal epithelial barrier function by regulating the inflammatory immune response through signal transduction pathways. Overall, these findings suggested that the alleviating effects of PCP on colitis are independent of gut microbiota, and that PCP can directly modulate the inflammatory immune response and intestinal barrier function, which in turn regulates gut microbiota. These findings will provide new insights into the action mechanism of natural polysaccharides in relieving colitis.
Collapse
Affiliation(s)
- Jin-Yang Shi
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yong-Jian Wang
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Qian-Wen Bao
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Ya-Min Qin
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Pei-Pei Li
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Qiao-Qiao Wu
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Cheng-Kai Xia
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - De-Ling Wu
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Bozhou University, Bozhou, Anhui 236800, China.
| | - Song-Zi Xie
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| |
Collapse
|
2
|
Li QM, Xu H, Zha XQ, Zhang FY, Luo JP. Polygonatum cyrtonema polysaccharide alleviates dopaminergic neuron apoptosis in Parkinson's disease mouse model via inhibiting oxidative stress and endoplasmic reticulum stress. Int J Biol Macromol 2025; 311:143986. [PMID: 40339848 DOI: 10.1016/j.ijbiomac.2025.143986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Parkinson's disease (PD) has become a global health threat as a progressive neurodegenerative disorder. Polygonatum cyrtonema polysaccharide (PCP), the main bioactive constituent in P. cyrtonema rhizome, displays various biological activities. However, its antiparkinsonian effect is elusive. Here, the effect of PCP on PD-like pathology was evaluated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and its molecular mechanism was further investigated. The results showed that PCP at different dosages significantly improved MPTP-induced weight loss and dyskinesia in PD mice. Moreover, PCP treatment mitigated the dopaminergic neuron loss in the substantia nigra pars compacta (SNc). Analysis of apoptosis-related proteins revealed that PCP markedly decreased the expression levels of Bax and cleaved-caspase 3, and increased the expression level of Bcl-2 in PD mice. Meanwhile, PCP markedly enhanced the activities of antioxidant enzymes superoxidase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), reduced malondialdehyde (MDA) content, and reversed the expression of oxidant stress-related proteins Nrf2 and Keap1, in the SNc of PD mice. Furthermore, PCP treatment significantly reduced the MPTP-mediated increase of endoplasmic reticulum (ER) stress-related proteins. These findings suggest that PCP protects against PD-like pathology by mitigating oxidant stress and ER stress-mediated apoptosis of dopaminergic neurons, highlighting its potential as a therapeutic agent for PD.
Collapse
Affiliation(s)
- Qiang-Ming Li
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Huan Xu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Feng-Yun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
3
|
Pu W, Pan Y, Yang K, Gao J, Tian F, Song J, Huang Y, Li Y. Therapeutic effects and mechanisms of Xinmaitong formula for type 2 diabetes mellitus via GLP-1R signaling. Front Pharmacol 2025; 16:1575450. [PMID: 40271065 PMCID: PMC12014693 DOI: 10.3389/fphar.2025.1575450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Traditional Chinese Medicine (TCM) theory posits that type 2 diabetes mellitus (T2DM) characterized by Qi and Yin deficiency, is associated with elevated blood lipid levels. The Xinmaitong formula (XMT) is a folk remedy believed to lower blood lipid levels. However, the functional components and molecular mechanisms through which XMT exerts its anti-diabetic effects remain to be elucidated. This study aimed to investigate the therapeutic effects and potential mechanisms of XMT in the treatment of T2DM, focusing on the glucagon-like peptide-1 receptor (GLP-1R) signaling pathway. Methods A TCM formula that promotes GLP-1R expression was screened using a GLP-1R promoter-dependent luciferase reporter gene vector (PGL3-GLP-1R-luc). The T2DM mouse model was established using a high-fat diet and streptozotocin (STZ). Blood glucose levels were measured using a glucometer and oral glucose tolerance test (OGTT). Serum biochemical parameters and insulin levels were also assessed. Organ pathology in mice was evaluated using hematoxylin and eosin (H&E) staining. Immunofluorescence (IF) was employed to observe changes in insulin and GLP-1R expression in the pancreas of mice. The effects of medicated serum on Min6 cell growth were examined using a methyl thiazolyl tetrazolium (MTT) assay. A Min6 cell injury model was established to detect cAMP and Ca2+ concentrations. Ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to identify blood-absorbed components of XMT. Results Luciferase reporter constructs driven by GLP-1R promoter response elements analysis identified that TCM formula XMT promoted GLP-1R expression. In vivo experiments demonstrated that XMT significantly reduced fasting blood glucose levels in T2DM mice and improved OGTT results. It also exhibited protective effects on islet tissues, notably increasing GLP-1R expression and insulin secretion in the pancreas. Biochemical markers indicated no significant adverse effects on liver or kidney function following XMT administration. After treatment with palmitic acid (PA), GLP-1R expression in Min6 cells was significantly decreased. However, treatment with XMT upregulated GLP-1R expression. Additionally, cyclic adenosine monophosphate (cAMP) and Ca2+ exhibited substantial improvements, and the key pancreatic growth protein PDX1 was activated. Conclusion XMT exerts hypoglycemic effects by upregulating GLP-1R gene expression, enhancing GLP-1R protein synthesis, and subsequently promoting cAMP release. This process activates Ca2+ influx in pancreatic β-cells, triggering insulin exocytosis from islet cells.
Collapse
Affiliation(s)
- Weidong Pu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China
| | - Yang Pan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China
| | - Kang Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China
| | - Jian Gao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China
| | - Fen Tian
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China
| | - Jingrui Song
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yubing Huang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yanmei Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Yang Y, Luo J, Wang S, Yang D, Chen S, Wang Q, Zhou A. A water-soluble polysaccharide from finger citron ameliorates diabetes mellitus via gut microbiota-GLP-1 pathway in high-fat diet and streptozotocin-induced diabetic mice. Int J Biol Macromol 2025; 300:140126. [PMID: 39842590 DOI: 10.1016/j.ijbiomac.2025.140126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
FCP-2-1, a water-soluble polysaccharide isolated and purified from Finger Citron, demonstrated hypoglycemic effect in vitro in our previous study. However, its antidiabetic effect and underlying mechanism in vivo remain to be elucidated. In this study, the antidiabetic effect of FCP-2-1 and its effects on the gut microbiota, short-chain fatty acids (SCFAs), and glucagon-like peptide-1 (GLP-1) in high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic mice were investigated. The results showed that FCP-2-1 could significantly alleviate diabetic symptoms in diabetic mice, restore the balance of the gut microbiota, and increase the content of acetic acid and propionic acid. In particular, FCP-2-1 was found to be able to promote the secretion of GLP-1, a new therapeutic target for diabetes. Moreover, propionic acid and FCP-2-1 were able to promote GLP-1 secretion in NCI-H716 cells, suggesting that FCP-2-1 could stimulate the secretion of GLP-1 through itself and propionic acid produced by the gut microbiota. These findings indicated that the antidiabetic mechanism of FCP-2-1 might be related to the gut microbiota-GLP-1 pathway.
Collapse
Affiliation(s)
- Yujie Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyun Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuhui Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Dan Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuxi Chen
- Guangdong Zhancui Food Co. Ltd., Chaozhou 515634, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Shen B, Zhou R, Lao J, Jin J, He W, Zhou X, Liu H, Xie J, Zhang S, Zhong C. HS-GC-IMS Coupled With Chemometrics Analyzes Volatile Aroma Compounds in Steamed Polygonatum cyrtonema Hua at Different Production Stages. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2025; 2025:5592877. [PMID: 40224492 PMCID: PMC11986191 DOI: 10.1155/jamc/5592877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/14/2025] [Indexed: 04/15/2025]
Abstract
Headspace-gas chromatography-ion migration spectrometry (HS-GC-IMS) combined with chemometrics was used to analyze the changes in volatile aroma compounds (VOCs) at different production stages of steaming Polygonatum cyrtonema Hua. Fifty-seven representative compounds in the process of steaming were identified, including 17 aldehydes, 15 alcohols, 15 ketones, 5 esters, 3 furans, and 2 acids. After steaming, the content of 21 compounds decreased. Among them, 3 compounds gradually decreased along with an increase in steaming times; they were 1-hexanol dimer, 1-hexanol monomer, and 3-methylbutan-1-ol dimer. The content of 14 compounds increased than before, and that of three, 1-(2-furanyl)ethanone monomer, 2-furaldehyde, and 3-methyl butanal, increased significantly in the steaming times. The VOCs of the different samples can be classified by GC-IMS data combined with principal component analysis (PCA) and heatmap cluster analysis. A reliable prediction set was established by orthogonal partial least squares discriminant analysis (OPLS-DA), and 18 different VOCs with projected variable importance (VIP) greater than 1.0 were screened out, which could be used as differentiating markers. Therefore, HS-GC-IMS and PCA were used to rapidly identify and classify the VOCs in different production stages of steaming P. cyrtonema Hua.
Collapse
Affiliation(s)
- Bingbing Shen
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Rongrong Zhou
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Jia Lao
- Department of Research and Development, Resgreen Group International Inc., Changsha 410329, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Wei He
- Department of Research and Development, Resgreen Group International Inc., Changsha 410329, China
| | - Xin Zhou
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
- Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Jing Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Shuihan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| |
Collapse
|
6
|
Jin Q, Lin B, Lu L. Potential therapeutic value of dietary polysaccharides in cardiovascular disease: Extraction, mechanisms, applications, and challenges. Int J Biol Macromol 2025; 296:139573. [PMID: 39793800 DOI: 10.1016/j.ijbiomac.2025.139573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Dietary polysaccharides, recognised as significant natural bioactive compounds, have demonstrated promising potential for the prevention and treatment of cardiovascular disease (CVD). This review provides an overview of the biological properties and classification of polysaccharides, with particular emphasis on their extraction and purification methods. The paper then explores the diverse mechanisms by which polysaccharides exert their effects in CVD, including their antioxidant activity, protection against ischemia-reperfusion injury, anti-apoptotic properties, protection against diabetic cardiomyopathy, anticoagulant and antithrombotic effects, prevention of ventricular remodeling, and protection against vascular injury. Furthermore, this paper summarises the current status of clinical trials involving polysaccharides in CVD and analyzes the support and challenges posed by these studies for the practical application of polysaccharides. Finally, the major challenges facing the therapeutic use of polysaccharides in CVD are discussed, particularly the issues of low bioavailability and lack of standardized quality control. Through this review, we aimed to provide a reference and guidance for further research on and application of dietary polysaccharides in CVD.
Collapse
Affiliation(s)
- Qiqi Jin
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Bin Lin
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China.
| | - Lingfen Lu
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China.
| |
Collapse
|
7
|
Zhang T, Li XY, Kuang DD, Pan LH, Li QM, Luo JP, Zha XQ. Bone-brain communication mediates the amelioration of Polgonatum cyrtonema Hua polysaccharide on fatigue in chronic sleep-deprived mice. Int J Biol Macromol 2025; 296:139706. [PMID: 39793823 DOI: 10.1016/j.ijbiomac.2025.139706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
This study aimed to investigate the anti-fatigue efficacy and underlying mechanisms of Polygonatum cyrtonema Hua polysaccharide (PCP) in chronic sleep-deprived mice. Following three weeks of oral administration, PCP demonstrated significant efficacy in alleviating fatigue symptoms. This was evidenced by the prolonged swimming and rotarod time in the high-dose group of PCP, which increased by 73 % and 64 %, respectively. Additionally, serum activities of CAT, GSH-Px, and SOD enzymes rose by 53.56 %, 37.69 % and 53.67 %, respectively, while MDA, lactic acid and BUN levels decreased by 22.90 %, 17.48 % and 24.61 %. The crosstalk between bone and brain is crucial for maintaining energy homeostasis. Molecular docking studies indicated a spontaneous and strong mutual binding between PCP and the bone-promoting target protein BMPR1A. Furthermore, it was observed that PCP enhanced osteogenic differentiation via the BMP-2/Smad1 pathway, leading to an upregulation of osteocalcin expression, which in turn regulated neurotransmitter balance and improved central arousal capacity. Moreover, PCP treatment stimulated neurogenesis by activating the CREB/BDNF/Akt signaling cascade, exhibiting neurotrophic effects. Additionally, PCP increased AMPK phosphorylation and destabilized TXNIP, facilitating astrocyte glucose uptake, glycolysis, and lactate conversion to support neuronal activity. These findings suggested that PCP could effectively respond to energy demands through bone-brain crosstalk, ultimately exerting anti-fatigue properties.
Collapse
Affiliation(s)
- Ting Zhang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Dan-Dan Kuang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
8
|
Xue H, Tang Y, Zha M, Xie K, Tan J. The structure-function relationships and interaction between polysaccharides and intestinal microbiota: A review. Int J Biol Macromol 2025; 291:139063. [PMID: 39710020 DOI: 10.1016/j.ijbiomac.2024.139063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The gut microbiota, as a complex ecosystem, can affect many physiological aspects of the host's diet, disease development, drug metabolism, and immune system regulation. Polysaccharides have various biological activities including antioxidant, anti-tumor, and regulating gut microbiota, etc. Polysaccharides cannot be degraded by human digestive enzymes. However, the interaction between gut microbiota and polysaccharides can lead to the degradation and utilization of polysaccharides. Disordered intestinal flora leads to diseases such as diabetes, hyperlipidemia, tumors, and diarrhea. Notably, polysaccharides can regulate the gut microbiota, promote the proliferation of probiotics and the SCFAs production, and thus improve the related-diseases and maintain body health. The relationship between polysaccharides and gut microbiota is gradually becoming clear. Nevertheless, the structure-function relationships between polysaccharides and gut microbiota still need further exploration. Hence, this paper systematically reviews the structure-function relationships between polysaccharides and gut microbiota from four aspects including molecular weight, glycosidic bonds, monosaccharide composition, and advanced structure. Moreover, this review outlines the effect of polysaccharides on gut microbiota metabolism and improves diseases by regulating gut microbiota. Furthermore, this article introduces the impact of gut microbiota on polysaccharide metabolism. The findings can provide the scientific basis for in-depth research on body health and reasonable diet.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yingqi Tang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Min Zha
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
9
|
Guo T, Yang Y, Liang L, Huang Q, Hu Q, Xie Q, Yuan H, Chen G, Wang W, Jian Y. Qingqianliutianosides A-E: five new sweet dammarane triterpenoid glycosides derived from the leaves of Cyclocarya paliurus - identification, characterization and interactions with T1R2/T1R3 sweet taste receptors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1216-1227. [PMID: 39299925 DOI: 10.1002/jsfa.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Cyclocarya paliurus, as a new food resource, is utilized extensively in human and animal diets due to its bioactive compounds, health benefits, and its highly prized sweet flavor. This study aimed to investigate the sweet-taste ingredient of C. paliurus leaves. RESULTS Five new dammarane triterpenoid glycosides were isolated and identified as qingqianliutianosides A-E (1-5) by comprehensive spectroscopic data analysis and a single crystal X-ray diffraction experiment. Qingqianliutianoside A (1) and qingqianliutianoside C (3), present in relatively high quantities in the plant, were shown to exhibit sweetness by sensory evaluation and electronic tongue analysis. Further monitoring was conducted on the content changes in 3 in leaves at different growth stages, indicating that 3 reached its peak content in April and then showed a decreasing trend. Molecular docking studies revealed that T1R2/T1R3 receptors Ser212, Ser105, Thr239, Asn380, Thr305, and Val381 may play critical roles, demonstrating that hydrogen bonding and hydrophobic interactions were the dominant interaction forces between all of the identified compounds and the active sites in the Venus flytrap module of the T1R2/T1R3 receptors. CONCLUSION Qingqianliutianosides A-E are promising natural source sugar substitutes for use in functional foods and beverages. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tingsi Guo
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yong Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Ling Liang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Qin Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Qiqi Hu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Qingling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Guangyu Chen
- Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, People's Republic of China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine Changsha, Changsha, People's Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| |
Collapse
|
10
|
Feng S, Wang J, Peng Q, Zhang P, Jiang Y, Zhang H, Song X, Li Y, Huang W, Zhang D, Deng C. Schisandra sphenanthera extract modulates sweet taste receptor pathway, IRS/PI3K, AMPK/mTOR pathway and endogenous metabolites against T2DM. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156348. [PMID: 39740377 DOI: 10.1016/j.phymed.2024.156348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Southern Schisandra is the dried and matured fruit of Schisandra sphenanthera Rehd. et Wils. in the family of Magnoliaceae; Traditional medicine reports that Schisandra sphenanthera has astringent and astringent properties, benefiting qi and promoting the production of body fluid, tranquilising the heart and calming the mind; it is clinically utilized for prolonged cough, thirst due to injury of the body fluid, internal heat and thirst, palpitation and insomnia, etc., and thirst belongs to the category of diabetes mellitus; the literature reports and the preliminary study of our team showed that Schisandra sphenanthera can be used to prevent and control diabetes mellitus. PURPOSE In the research, we investigated the mechanism of action of SDP against T2DM by integrating pharmacodynamics, endogenous metabolite assays and signalling pathways. MATERIALS AND METHODS UPLC-MS/MS was used to identify the chemical constituents. HPLC was utilized to determine the content of eight lignan-like components in SDP. A T2DM rat model was established by the combined induction of high-fat and high-sugar feed and STZ, and the mechanism of action of SDP on T2DM was investigated by using biochemical indices, Western blot analysis of protein expression, mRNA expression, immunohistochemistry and endogenous metabolites. RESULTS The chemical components in SDP were determined by UPLC-MS/MS and HPLC, and biochemical indicators determined that SDP has the effects of lowering blood glucose, anti-glycolipid metabolism, and anti-oxidative stress, and is able to restore pathological damage in the liver and pancreas, activate the PI3K/AKT, AMPK/mTOR, and sweetness receptor signalling pathways, restore the sweetness receptor mRNAs, and modulate the urinary compounds such as malic acid, γ-aminobutyric acid, leucine, N-acetylaspartic acid and other compounds thereby achieving the therapeutic effect of T2DM. CONCLUSION SDP can ameliorate diabetes-induced symptoms related to elevated blood glucose, dyslipidaemia, elevated fasting insulin levels and impaired glucose tolerance in rats; the anti-T2DM of SDP may be through the regulation of the sweet taste receptor pathway, the PI3K/AKT/mTOR and the AMPK/mTOR signalling pathway, which leads to the development of a normal level and exerts an antidiabetic effect.
Collapse
Affiliation(s)
- Shibo Feng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Jiaojiao Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Qin Peng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Panpan Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Yi Jiang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Huawei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Yuze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Wenli Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China.
| |
Collapse
|
11
|
Wang K, Chi C, Huang S, Yu M, Li X. Effect of starch molecular weight on the colon-targeting delivery and promoting GLP-1 secretion of starch-lecithin complex nanoparticles. Food Hydrocoll 2025; 158:110589. [DOI: 10.1016/j.foodhyd.2024.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Lv W, Yang Y, Lv Y, Pan Y, Wang Y, Zhu Z, Tao Y. Plasma metabolic profiling reveals that crude and processed Polygonatum cyrtonema hua extract ameliorates myocardial ischemia-induced damage by regulating branched-chain amino acid and energy metabolism. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124301. [PMID: 39265488 DOI: 10.1016/j.jchromb.2024.124301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Polygonatum cyrtonema Hua and its processed products have demonstrated cardio-protective effects, though the underlying mechanisms remain unclear. In this study, plasma metabolic profiling and pattern recognition were employed to explore the cardio-protective mechanisms of both crude and processed P. cyrtonema in a myocardial ischemia model induced by ligation, using gas chromatography-mass spectrometry. Post-modeling, plasma levels of creatine kinase-MB, lactate dehydrogenase, troponin T, and malondialdehyde were significantly elevated but were notably reduced after treatment. Conversely, plasma levels of glutathione peroxidase and superoxide dismutase, which were significantly decreased post-modeling, were restored following treatment. Hematoxylin-eosin (HE) and Masson staining revealed that both crude and processed P. cyrtonema effectively reduced inflammatory infiltration and fibrosis in cardiac tissue. Metabolic profiling identified 34 differential endogenous metabolites in the treatment groups, with 19 confirmed using standard compounds. The linear correlation coefficients (R2) for these standards ranged from 0.9960 to 0.9996, indicating high accuracy. The method exhibited excellent precision and repeatability, with relative standard deviation (RSD) values below 8.57%. Recovery rates were between 95.02% and 105.15%, and the stability of the standard compounds was confirmed after three freeze-thaw cycles, with RSD values under 4.42%. Both crude and processed P. cyrtonema were found to alleviate myocardial ischemia symptoms by regulating branched-chain amino acid metabolism and energy metabolism. These findings provide a solid foundation for the potential clinical use of this herb and its processed products in treating heart disease.
Collapse
Affiliation(s)
- Weijun Lv
- Vasculocardiology Department, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, China
| | - Ying Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yanxia Lv
- Vasculocardiology Department, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, China
| | - Yifan Pan
- Vasculocardiology Department, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, China
| | - Yunxiang Wang
- Vasculocardiology Department, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, China
| | - Zhengzhong Zhu
- Vasculocardiology Department, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, China.
| | - Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
13
|
Zhang M, Zhu L, Zhang H, Wang X, Wu G. Pea protein hydrolysate stimulates GLP-1 secretion in NCI-H716 cells via simultaneously activating the sensing receptors CaSR and PepT1. Food Funct 2024; 15:10316-10322. [PMID: 39302035 DOI: 10.1039/d4fo01290a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) plays a crucial role in regulating glucose homeostasis by stimulating insulin secretion and suppressing glucagon release. Our previous study observed that pea protein hydrolysate (PPH) exhibited the function of triggering GLP-1 secretion. However, the underlying mechanisms have not been revealed. Herein, the mechanisms of PPH-stimulated GLP-1 secretion were investigated in NCI-H716 cells. The PPH-induced GLP-1 secretion was reduced (p < 0.05) after adding the sensing receptor antagonists NPS-2143 and 4-AMBA, indicating that activation of both calcium-sensing receptor (CaSR) and peptide-transporter 1 (PepT1) was involved in PPH-triggered GLP-1 release. Moreover, the intracellular Ca2+ level increased by 2.01 times during the PPH-induced GLP-1 secretion. Similarly, the cAMP content also increased by 1.43 times after stimulation by PPH. The RT-qPCR results showed that PPH increased the gene expression of prohormone convertase 1/3 (PCSK-1) by 2.79-fold, which effectively promoted the conversion of proglucagon (GCG) to GLP-1. The specific pathway of PPH-induced GLP-1 secretion may involve both CaSR and PepT1 activation-induced Ca2+ influx and cAMP generation, which effectively enhanced the enzyme activity of prohormone convertase 1/3 (PCSK-1) and ultimately promoted GLP-1 secretion.
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
14
|
Hao JW, Fan XX, Li YN, Chen ND, Ma YF. Differentiation of Polygonatum Cyrtonema Hua from Different Geographical Origins by Near-Infrared Spectroscopy with Chemometrics. J AOAC Int 2024; 107:801-810. [PMID: 38733574 DOI: 10.1093/jaoacint/qsae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND The identification of the geographical origin of Polygonatum cyrtonema Hua is of particular importance because the quality and market value of Polygonatum cyrtonema Hua from different production areas are highly variable due to differences in the growing environment and climatic conditions. OBJECTIVE This study utilized near-infrared spectra (NIR) of Polygonatum cyrtonema Hua (n = 400) to develop qualitative models for effective differentiation of Polygonatum cyrtonema Hua from various regions. METHODS The models were produced under different conditions to distinguish the origins distinctly. Ten preprocessing methods have been used to preprocess the original spectra (OS) and to select the most optimal spectral preprocessing method. Principal component analysis (PCA), partial least-squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to determine appropriate models. For simplicity, the pretreated full spectrum was calculated by different wavelength selection methods, and the four most significant variables were selected as discriminant indicator variables. RESULTS The results show that Polygonatum cyrtonema Hua from different regions can be effectively distinguished using spectra from a series of samples analyzed by OPLS-DA. The accuracy of the OPLS-DA model is also satisfactory, with a good differentiation rate. CONCLUSION The study findings indicate the feasibility of using spectroscopy in combination with multivariate analysis to identify the geographical origins of Polygonatum cyrtonema Hua. HIGHLIGHTS The utilization of NIR spectroscopy combined with chemometrics exhibits high efficacy in discerning the provenance of herbal medicines and foods, thereby facilitating QA measures.
Collapse
Affiliation(s)
- Jing-Wen Hao
- West Anhui University, College of Biotechnology and Pharmaceutical Engineering, Lu'an City 237012, China
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China
- Anhui Engineering Laboratory for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, China
- Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China
| | - Xuan-Xuan Fan
- West Anhui University, College of Biotechnology and Pharmaceutical Engineering, Lu'an City 237012, China
- Anhui University of Chinese, College of Pharmacy, No 1. Qianjiang Rd, Hefei City, 230012 Anhui Province, P. R. China
| | - Yi-Na Li
- West Anhui University, College of Biotechnology and Pharmaceutical Engineering, Lu'an City 237012, China
| | - Nai-Dong Chen
- West Anhui University, College of Biotechnology and Pharmaceutical Engineering, Lu'an City 237012, China
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China
- Anhui Engineering Laboratory for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, China
- Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China
- Anhui University of Chinese, College of Pharmacy, No 1. Qianjiang Rd, Hefei City, 230012 Anhui Province, P. R. China
| | - Yun-Feng Ma
- Anhui Anlito Biological Technology Co., Ltd, Anhui Huoshan Economic and Technological Development Zone P.R.C, 237200 China
| |
Collapse
|
15
|
Yao X, Zhang Y, Zhang B, Deng Z, Li H. The structure change of polygonatum polysaccharide and the protect effect of Polygonatum crtonema Hua extracts and polysaccharide on cisplatin-induced AKI mice during nine-steam-nine-bask processing. Int J Biol Macromol 2024; 277:132290. [PMID: 38795899 DOI: 10.1016/j.ijbiomac.2024.132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024]
Abstract
Polygonatum cyrtonema Hua (PC) with different processing degrees during the nine-steam-nine-bask processing was selected as the research object to investigate the changes of polysaccharide structure and their protective effect on cisplatin-induced acute kidney injury (AKI) in mice. The polysaccharides (PCP0, PCP4 and PCP9) were extracted, whose polysaccharide contents were 62.45 %, 60.34 % and 58.23 %, respectively. After processing, the apparent structure of PCPs became looser, and the apparent viscosity and the particle size were decreased. The PCPs were acidic polysaccharides containing pyran rings, and furan rings were present in PCP4 and PCP9. Besides, processing destroyed the original β-glucoside bond in PCP0. PCPs were all composed of Rha, Man, Glu, Gal, Xyl and Ara with different ratio. In addition, AKI mice model was successfully constructed by single intraperitoneal injection of 15 mg/kg cisplatin. PC extracts (3.0750 g/kg) and PCP (0.1599 g/kg) significantly decreased the kidney function, liver function, and percentage of renal cell apoptosis, and improved the kidney structure of AKI mice (p < 0.05). PC and PCP have protective effect on cisplatin-induced AKI mice, and the protective effect was improved with the increase of processing degree. Under the same processing degree, the protective effect of PC mixed extract was better than that of PCP.
Collapse
Affiliation(s)
- Xiangjie Yao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yuxin Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; The Institute for Advanced Study, Nanchang University, Nanchang 330006, China.
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
16
|
Shang ZZ, Ye HY, Gao X, Wang HY, Li QM, Hu JM, Zhang FY, Luo JP. An acidic polysaccharide promoting GLP-1 secretion from Dendrobium huoshanense protocorm-like bodies: Structure validation and activity exploration. Int J Biol Macromol 2024; 278:134783. [PMID: 39153673 DOI: 10.1016/j.ijbiomac.2024.134783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) as a multifunctional hormone is secreted mainly from enteroendocrine L-cells, and enhancing its endogenous secretion has potential benefits of regulating glucose homeostasis and controlling body weight gain. In the present study, a novel polysaccharide (h-DHP) with high ability to enhance plasma GLP-1 level in mice was isolated from Dendrobium huoshanense protocorm-like bodies under the guidance of activity evaluation. Structural identification showed that h-DHP was an acidic polysaccharide with the molecular weight of 1.38 × 105 Da, and was composed of galactose, glucose, arabinose and glucuronic acid at a molar ratio of 15.7: 11.2: 4.5: 1.0 with a backbone consisting of →5)-α-L-Araf-(1→, →3)-α-D-Galp-(1→, →6)-α-D-Galp-(1→, →3,6)-α-D-Galp-(1→, →6)-β-D-Glcp-(1→ and →4,6)-β-D-Glcp-(1→ along with branches consisting of α-L-Araf-(1→, α-D-Galp-(1→, α-D-GlcAp-(1→, β-D-Glcp-(1→ and →4)-β-D-Glcp-(1→. Animal experiments with different administration routes demonstrated that h-DHP-enhanced plasma GLP-1 level was attributed to h-DHP-promoted GLP-1 secretion in the enteroendocrine L-cells, which was supported by h-DHP-enhanced extracellular GLP-1 level in STC-1 cells. Inhibition of adenylate cyclase and phospholipase C indicated that cAMP and cAMP-triggered intracellular Ca2+ increase participated in h-DHP-promoted GLP-1 secretion. These results suggested that h-DHP has the potential of enhancing endogenous GLP-1 level through h-DHP-promoted and cAMP-mediated GLP-1 secretion from enteroendocrine cells.
Collapse
Affiliation(s)
- Zhen-Zi Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Hui-Yu Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Xin Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Hong-Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China.
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Feng-Yun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, People's Republic of China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China.
| |
Collapse
|
17
|
Song Q, Zou J, Li D, Cheng SW, Li KLS, Yang X, Shaw PC, Zuo Z. Gastrointestinal metabolism of Astragalus membranaceus polysaccharides and its related hypoglycemic mechanism based on gut microbial transformation. Int J Biol Macromol 2024; 280:135847. [PMID: 39307509 DOI: 10.1016/j.ijbiomac.2024.135847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Astragalus membranaceus polysaccharides (AMP) was reported to exhibit hypoglycemic potential in diabetic host. However, the metabolic fate of AMP in gastrointestinal tract and its underlying hypoglycemic mechanisms remained unclear. Our current study aimed to reveal the structure alteration of AMP in gastrointestinal tract and its hypoglycemic mechanism from the perspective of microbial transformation. Caco-2 monolayer cell model revealed that AMP exhibited poor intestinal absorption. The in-vitro digestion and fermentation study revealed that AMP remained intact after gastrointestinal digestion while it could be degraded and utilized by gut microbiota with increased SCFA formation and decreased levels of all the monosaccharides in AMP except for mannose. Additionally, diversity of gut microbiota was improved with the increased abundance of Dubosiella and Monoglobus and decreased abundance of Escherichia-Shigella and Acinetobacter after fermentation of AMP. Further hypoglycemic mechanism study for the first time revealed that both AMP and its potential microbial metabolites, SCFA salt mixture, could enhance intestinal integrity significantly on LPS induced Caco-2 cell model, while only SCFA salt mixture rather than AMP could significantly stimulate GLP-1 secretion in NCI-H716 cell model possibly via promoting GPCR43 expression. Such findings provided insights into the hypoglycemic mechanism of AMP from the perspective of microbial transformation.
Collapse
Affiliation(s)
- Qianbo Song
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong
| | - Junju Zou
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong; School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, PR China
| | - Dan Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong
| | - Sau Wan Cheng
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong; School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kendra Lam Sek Li
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong
| | - Pang Chui Shaw
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong; School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Zhong Zuo
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
18
|
Wu W, Wang Y, Yi P, Su X, Mi Y, Wu L, Tan Q. Various steaming durations alter digestion, absorption, and fermentation by human gut microbiota outcomes of Polygonatum cyrtonema Hua polysaccharides. Front Nutr 2024; 11:1466781. [PMID: 39364149 PMCID: PMC11446882 DOI: 10.3389/fnut.2024.1466781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction Different steaming durations dramatically alter the structure of Polygonatum cyrtonema polysaccharides (PCPs). This study aimed to compare characteristics of digestion, absorption, and fermentation by gut microbiota across four representative PCPs from different steaming durations (0, 4, 8, and 12 h), each with unique molecular weights and monosaccharide profiles. Methods Chemical composition of the four PCPs was analyzed. Digestibility was evaluated using an in vitro saliva-gastrointestinal digestion model. Absorption characteristics were assessed with a Caco-2 monolayer model, and impacts on gut microbiota composition and short chain fatty acid (SCFA) levels were analyzed using in vitro fermentation with human gut microbiota. Results Longer steaming durations altered the chemical profiles of PCPs, reducing carbohydrate content (84.87-49.58%) and increasing levels of uronic acid (13.99-19.61%), protein (1.07-5.43%), and polyphenols (0.05-2.75%). Four PCPs were unaffected by saliva digestion but showed enhanced gastrointestinal digestibility, with reducing sugar content rising from 4.06% (P0) to 38.5% (P12). The four PCPs showed varying absorption characteristics, with P0 having the highest permeability coefficient value of 9.59 × 10-8 cm/s. However, all PCPs exhibited poor permeability, favoring gut microbiota fermentation. The four PCPs altered gut microbiota composition and elevated SCFA production, but levels declined progressively with longer steaming durations. All PCPs significantly increased the abundance of Bacteroidota, Firmicutes, and Actinobacteriota, making them the dominant bacterial phyla. Additionally, all PCPs significantly increased the abundance of Bifidobacterium, Prevotella, and Faecalibacterium compared to the control group, which, along with Bacteroides, became the dominant microbiota. Increasing the steaming duration led to a reduction in Prevotella levels, with PCPs from raw rhizomes showing the highest relative abundance at 24.90%. PCPs from moderately steamed rhizomes (4 h) led to a significant rise in Faecalibacterium (7.73%) among four PCPs. P8 and P12, derived from extensively steamed rhizomes (≥8 h), exhibited similar gut microbiota compositions, with significantly higher relative abundances of Bacteroides (20.23-20.30%) and Bifidobacterium (21.05-21.51%) compared to P0 and P4. Discussion This research highlights the importance of adjusting steaming durations to maximize the probiotic potential of P. cyrtonema polysaccharides, enhancing their effectiveness in modulating gut microbiota and SCFA levels.
Collapse
Affiliation(s)
- Weijing Wu
- Xiamen Medical College, Xiamen, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China
| | | | - Ping Yi
- Xiamen Medical College, Xiamen, China
| | - Xufeng Su
- Xiamen Medical College, Xiamen, China
| | - Yan Mi
- Xiamen Medical College, Xiamen, China
| | - Lanlan Wu
- Xiamen Medical College, Xiamen, China
| | | |
Collapse
|
19
|
Liu W, Qin YM, Shi JY, Wu DL, Liu CY, Liang J, Xie SZ. Effect of ultrasonic degradation on the physicochemical characteristics, GLP-1 secretion, and antioxidant capacity of Polygonatum cyrtonema polysaccharide. Int J Biol Macromol 2024; 274:133434. [PMID: 38936570 DOI: 10.1016/j.ijbiomac.2024.133434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
This study aimed to evaluate the influence of ultrasonic degradation on the physicochemical and biological characteristics of Polygonatum cyrtonema polysaccharide (PCP, 8.59 kDa). PCP was subjected to ultrasonic treatment for 8, 16, and 24 h and yielded the degraded fractions PCP-8, PCP-16, and PCP-24 (5.06, 4.13, and 3.69 kDa), respectively. Compared with the intact PCP, PCP-8, PCP-16 and PCP-24 had a reduced particle size (decrements of 28.03 %, 46.15 % and 62.54 %, respectively). Although ultrasonic degradation did not alter the primary structure of PCP, its triple helical and superficial structures were disrupted, with degraded fractions demonstrating reduced thermal stability and apparent viscosities compared with those of the intact PCP. Furthermore, the functional properties of the degraded fractions were different. PCP-16 most favourably affected GLP-1 secretion, while PCP-8 and PCP-24 exhibited the strongest antioxidant and enzyme inhibitory activities, respectively. Hence, controlled ultrasound irradiation is an appealing approach for partially degrading PCP and enhancing its bioactivity as a functional agent.
Collapse
Affiliation(s)
- Wang Liu
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Ya-Min Qin
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jin-Yang Shi
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - De-Ling Wu
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China.
| | - Chun-Yang Liu
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Juan Liang
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Song-Zi Xie
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China.
| |
Collapse
|
20
|
Li C, Li Y, Sun Q, Abdurehim A, Xu J, Xie J, Zhang Y. Taste and its receptors in human physiology: A comprehensive look. FOOD FRONTIERS 2024; 5:1512-1533. [DOI: 10.1002/fft2.407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractIncreasing evidence shows that food has significance beyond traditional perception (providing nutrition and energy) in maintaining normal life activities. It is indicated that the sense of taste plays a crucial part in regulating human life activities. Taste is one of the basic physiological sensations in mammals, and it is the fundamental guarantee for them to perceive, select, and ingest nutrients in order to survive. With the advances in electrophysiology, molecular biology, and structural biology, studies on the intracellular and extracellular transduction mechanisms of taste have made great progress and gradually revealed the indispensable role of taste receptors in the regulation and maintenance of normal physiological activities. Up to now, how food regulates life activities through the taste pathway remains unclear. Thus, this review comprehensively and systematically summarizes the current study about the sense of taste, the function of taste receptors, the taste–structure relationship of gustatory molecules, the cross‐talking between distinctive tastes, and the role of the gut–organ axis in the realization of taste. Moreover, we also provide forward‐looking perspectives on taste research to afford a scientific basis for revealing the scientific connotation of taste receptors regulating body health.
Collapse
Affiliation(s)
- Chao Li
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Yaxin Li
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York City New York USA
| | - Qing Sun
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Aliya Abdurehim
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Jiawen Xu
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Junbo Xie
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Yanqing Zhang
- Biotechnology & Food Science College Tianjin University of Commerce Tianjin China
| |
Collapse
|
21
|
Pan M, Wu Y, Sun C, Ma H, Ye X, Li X. Polygonati Rhizoma: A review on the extraction, purification, structural characterization, biosynthesis of the main secondary metabolites and anti-aging effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118002. [PMID: 38437890 DOI: 10.1016/j.jep.2024.118002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonati Rhizome (PR) is a plant that is extensively widespread in the temperate zones of the Northern Hemisphere. It is a member of the Polygonatum family of Asparagaceae. PR exhibits diverse pharmacological effects and finds applications in ethnopharmacology, serving as a potent tonic for more than two millennia. PR's compounds endow it with various pharmacological properties, including anti-aging, antioxidant, anti-fatigue, anti-inflammatory, and sleep-enhancing effects, as well as therapeutic potential for osteoporosis and age-related diseases. AIM OF THE STUDY This review seeks to offer a thorough overview of the processing, purification, extraction, structural characterization, and biosynthesis pathways of PR. Furthermore, it delves into the anti-aging mechanism of PR, using organ protection as an entry point. MATERIALS AND METHODS Information on PR was obtained from scientific databases (Google Scholar, Web of Science, ScienceDirect, SciFinder, PubMed, CNKI) and books, doctoral theses, and master's dissertations. RESULTS In this investigation, 49 polysaccharides were extracted from PR, and the impact of various processing, extraction, and purification techniques on the structure and activity of these polysaccharides was evaluated. Additionally, 163 saponins and 46 flavonoids were identified, and three key biosynthesis pathways of secondary metabolites were outlined. Notably, PR and Polygonat Rhizomai polysaccharides (PRP) exhibit remarkable protective effects against age-induced injuries to the brain, liver, kidney, intestine, heart, and vessels, thereby promoting longevity and ameliorating the aging process. CONCLUSIONS PR, a culinary and therapeutic herb, is rich in active components and pharmacological activities. Based on this review, PR plays a meaningful role in lifespan extension and anti-aging, which can be attributed to PRP. Future research should delve deeper into the structural aspects of PRP that underlie its anti-aging effects and explore potential synergistic interactions with other compounds. Moreover, exploring the potential applications of PR in functional foods and pharmaceutical formulations is recommended to advance the development of industries and resources focused on healthy aging.
Collapse
Affiliation(s)
- Miao Pan
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Yajing Wu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Chunyong Sun
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Hang Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
22
|
Lin C, Song D, Wang S, Chu Y, Chi C, Jia S, Lin M, He C, Jiang C, Gong F, Chen Q. Polygonatum cyrtonema polysaccharides reshape the gut microbiota to ameliorate dextran sodium sulfate-induced ulcerative colitis in mice. Front Pharmacol 2024; 15:1424328. [PMID: 38898924 PMCID: PMC11185953 DOI: 10.3389/fphar.2024.1424328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized inflammatory imbalance, intestinal epithelial mucosal damage, and dysbiosis of the gut microbiota. Polygonatum cyrtonema polysaccharides (PCPs) can regulate gut microbiota and inflammation. Here, the different doses of PCPs were administered to dextran sodium sulfate-induced UC mice, and the effects of the whole PCPs were compared with those of the fractionated fractions PCP-1 (19.9 kDa) and PCP-2 (71.6 and 4.2 kDa). Additionally, an antibiotic cocktail was administered to UC mice to deplete the gut microbiota, and PCPs were subsequently administered to elucidate the potential role of the gut microbiota in these mice. The results revealed that PCP treatment significantly optimized the lost weight and shortened colon, restored the balance of inflammation, mitigated oxidative stress, and restored intestinal epithelial mucosal damage. And, the PCPs exhibited superior efficacy in ameliorating these symptoms compared with PCP-1 and PCP-2. However, depletion of the gut microbiota diminished the therapeutic effects of PCPs in UC mice. Furthermore, fecal transplantation from PCP-treated UC mice to new UC-afflicted mice produced therapeutic effects similar to PCP treatment. So, PCPs significantly ameliorated the symptoms, inflammation, oxidative stress, and intestinal mucosal damage in UC mice, and gut microbiota partially mediated these effects.
Collapse
Affiliation(s)
- Chaoyou Lin
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Dawei Song
- Mount Jiuhuashan Sealwort Research Institute, Chizhou, China
| | - Shangwen Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yunfei Chu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Changxing Chi
- China Department of Endocrinology, Yanbian University Hospital, Yanji, China
| | - Sining Jia
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Mengyi Lin
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chenbei He
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chengxi Jiang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Qiongzhen Chen
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
23
|
Wang M, Hu J, Hai X, Cao T, Zhou A, Han R, Xing L, Yu N. Quality Evaluation of Polygonatum cyrtonema Hua Based on UPLC-Q-Exactive Orbitrap MS and Electronic Sensory Techniques with Different Numbers of Steaming Cycles. Foods 2024; 13:1586. [PMID: 38790887 PMCID: PMC11120622 DOI: 10.3390/foods13101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, electronic sensory techniques were employed to comprehensively evaluate the organoleptic quality, chemical composition and content change rules for Polygonatum cyrtonema Hua (PCH) during the steaming process. The results were subjected to hierarchical cluster analysis (HCA), principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). These analyses revealed, from a sensory product perspective, overall differences in colour, odour and taste among the samples of PCH with different numbers of steaming cycles. Using the UPLC-Q-Exactive Orbitrap MS technique, 64 chemical components, including polysaccharides, organic acids, saponins and amino acids were detected in PCH before and after steaming. The sensory traits were then correlated with the chemical composition. From the perspectives of sensory traits, chemical composition, and multi-component index content, it was preliminarily deduced that carrying out five cycles of steaming and sun-drying was optimal, providing evidence for the quality evaluation of PCH during the steaming process.
Collapse
Affiliation(s)
- Mengjin Wang
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.W.)
| | - Jiayi Hu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.W.)
| | - Xiaoya Hai
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.W.)
| | - Tianzhuo Cao
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.W.)
| | - An Zhou
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Rongchun Han
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.W.)
| | - Lihua Xing
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
| | - Nianjun Yu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.W.)
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
24
|
Chang L, Goff HD, Ding C, Liu Q, Zhao S, Tao T, Lu R, Gao Y, Wu H, Guo L. Enhanced hypoglycemic effects of konjac glucomannan combined with Polygonatum cyrtonema Hua polysaccharide in complete nutritional liquid diet fed type 2 diabetes mice. Int J Biol Macromol 2024; 266:131121. [PMID: 38522692 DOI: 10.1016/j.ijbiomac.2024.131121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
In our aging society, dysphagia and malnutrition are growing concerns, necessitating intervention. Liquid nutrition support offers a practical solution for traditional dietary issues, but it raises a key issue: the potential for post-meal glucose spikes impacting efficacy. This study examined the effects of supplementation of Polygonatum cyrtonema Hua polysaccharide (PCP), konjac glucomannan (KGM) and their combination on acute phase postprandial glycemic response and long-term glucose metabolism in T2DM mice on a complete nutritional liquid diet. KGM was more effective in reducing postprandial glucose response, while PCP was more prominent in ameliorating long-term glucose metabolism. The KGM-PCP combination demonstrated superior outcomes in fasting blood glucose, insulin, and glucose homeostasis. PCP and KGM also influenced the composition and abundance of the gut microbiome, with the H-PCP group showing optimal performance. Moreover, the KGM-PCP combination improved body weight, lipid homeostasis, and liver health the most. PCP potentially regulates glycemia through metabolic pathways, while KGM improves glycemic metabolism by reducing postprandial glucose levels in response to viscous intestinal contents. This research identifies the structure, viscosity properties, and hypoglycemic effects of KGM and PCP in complete nutritional liquid diet fed T2DM mice, enabling their strategic utilization as hypoglycemic components in nutritional administration and glycemic regulation.
Collapse
Affiliation(s)
- Le Chang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph N1H 6J2, ON, Canada
| | - Chao Ding
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Qiang Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Siqi Zhao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Tingting Tao
- School of Tea and Food Science Technology, Jiangsu Vocational College of Agriculture and Forestry, No. 19 Wenchang East Road, Jurong, Jiangsu 212499, China
| | - Rongxin Lu
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, China
| | - Ying Gao
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Haijing Wu
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 210038, China
| | - Liping Guo
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
25
|
Teng H, He Z, Hong C, Xie S, Zha X. Extraction, purification, structural characterization and pharmacological activities of polysaccharides from sea buckthorn (Hippophae rhamnoides L.): A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117809. [PMID: 38266946 DOI: 10.1016/j.jep.2024.117809] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea buckthorn (Hippophae rhamnoides L.) is an edible fruit with a long history in China as a medicinal plant. The fruits of H. rhamnoides are rich in a variety of nutrients and pharmacological active compounds. As one of the most important active ingredients in sea buckthorn, polysaccharides have attracted the attention of researchers due to their antioxidant, anti-fatigue, and liver protective qualities. AIM OF THE REVIEW This review summarizes recent studies on extraction, purification, structural characterization and pharmacological activities of polysaccharides from sea buckthorn. In addition, the relationship between the structure and the activities of sea buckthorn polysaccharides (SBPS) were discussed. This review would provide important research bases and up-to-date information for the future in-depth development and application of sea buckthorn polysaccharides in the field of pharmaceuticals and functional foods. MATERIALS AND METHODS By inputting the search term "Sea buckthorn polysaccharides", relevant research information was obtained from databases such as Web of Science, Google Scholar, PubMed, China Knowledge Network (CNKI), China Master Theses Full-text Database, and China Doctoral Dissertations Full-text Database. RESULTS The main extraction methods of SBPS include hot water extraction (HWE), ultrasonic assisted extraction (UAE), microwave-assisted extraction (MAE), flash extraction (FE), and ethanol extraction. More than 20 polysaccharides have been isolated from sea buckthorn fruits. The chemical structures of sea buckthorn polysaccharides obtained by different extraction, isolation, and purification methods are diverse. Polysaccharides from sea buckthorn display a variety of pharmacological properties, including antioxidant, anti-fatigue, liver protection, anti-obesity, regulation of intestinal flora, immunoregulation, anti-tumor, anti-inflammatory, and hypoglycemic activities. CONCLUSIONS Sea buckthorn has a long medicinal history and characteristics of an ethnic medicine and food. Polysaccharides are one of the main active components of sea buckthorn, and they have received increasing attention from researchers. Sea buckthorn polysaccharides have remarkable pharmacological activities, health benefits, and broad application prospects. In addition, further exploration of the chemical structure of SBPS, in-depth study of their pharmacological activities, identification of their material basis, characterization of disease resistance mechanisms, and potential health functions are still directions of future research. With the accumulation of research on the extraction and purification processes, chemical structure, pharmacological effects, molecular mechanisms, and structure-activity relationships, sea buckthorn polysaccharides derived from natural resources will ultimately make significant contributions to human health.
Collapse
Affiliation(s)
- Hao Teng
- School of Leisure and Health, Guilin Tourism University, Guilin, 541006, China.
| | - Zhigui He
- School of Leisure and Health, Guilin Tourism University, Guilin, 541006, China
| | - Chengzhi Hong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Songzi Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xueqiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
26
|
Zhang Q, Yang Z, Su W. Review of studies on polysaccharides, lignins and small molecular compounds from three Polygonatum Mill. (Asparagaceae) spp. in crude and processed states. Int J Biol Macromol 2024; 260:129511. [PMID: 38242391 DOI: 10.1016/j.ijbiomac.2024.129511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Since ancient times, Polygonatum Mill. (Asparagaceae) has been utilized as a medicinal and culinary resource in China. Its efficacy in treating various illnesses has been well documented. Traditional processing involves the Nine-Steam-Nine-Bask method, which results in a reduction of toxicity and enhanced effectiveness of Polygonatum. Many substances, such as polysaccharides, lignins, saponins, homoisoflavones, alkaloids, and others, have been successfully isolated from Polygonatum. This review presents the research progress on the chemical composition of three crude and processed Polygonatum, including Polygonatum sibiricum Redouté (P. sibiricum), Polygonatum kingianum Collett & Hemsl (P. kingianum), and Polygonatum cyrtonema Hua (P. cyrtonema). The review also includes the pharmacology of Polygonatum, specifically on the pharmacology of polysaccharides both before and after processing. Its objective is to provide a foundation for uncovering the significance of the processing procedure, and to facilitate the development and utilization of Polygonatum in clinical practice.
Collapse
Affiliation(s)
- Qihong Zhang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zouyue Yang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
27
|
Chen S, Long M, Li XY, Li QM, Pan LH, Luo JP, Zha XQ. Codonopsis lanceolata polysaccharide ameliorates high-fat diet induced-postpartum hypogalactia via stimulating prolactin receptor-mediated Jak2/Stat5 signaling. Int J Biol Macromol 2024; 259:129114. [PMID: 38181915 DOI: 10.1016/j.ijbiomac.2023.129114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
This study aims to investigate the ameliorative effect of Codonopsis lanceolata polysaccharide (PCL) on mice with hypogalatia induced by a high-fat diet (HFD) and the potential underlying mechanism. We found that oral administration of PCL demonstrated significant benefits in countering the negative effects of HFD, including weight gain, hepatic steatosis, mesenteric adipocyte hypertrophy, and abnormal glucose/lipid metabolism. In addition, PCL improved mammary gland development and enhanced lactogenesis performance. Histologically, PCL ameliorated the retardation of ductal growth, reduced mammary fat pad thickness, improved the incomplete linear encapsulation of luminal epithelium and myoepithelium, and increased the proliferation of mammary epithelial cells. Flow cytometry analysis showed that PCL mitigated the detrimental effects of HFD on mammary gland development by promoting the proliferation and differentiation of mammary epithelial cells. Mechanistic studies revealed that PCL upregulated the levels of prolactin (PRL) and its receptor (PRLR) in the mammary gland, activated JAK2/STAT5 signaling pathway, and increased the expression of p63, ERBB4, and NRG1. Overall, PCL can ameliorate HFD-induced hypogalactia by activating PRLR-mediated JAK2/STAT5 signaling. Our findings offer a methodological and theoretical foundation for investigating the functional constituents of traditional Chinese medicine in the treatment of hypogalactia.
Collapse
Affiliation(s)
- Shun Chen
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Miao Long
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
28
|
Gong T, Mu Q, Xu Y, Wang W, Meng L, Feng X, Liu W, Ao Z, Zhang Y, Chen X, Xu H. Expression of the umami taste receptor T1R1/T1R3 in porcine testis of: Function in regulating testosterone synthesis and autophagy in Leydig cells. J Steroid Biochem Mol Biol 2024; 236:106429. [PMID: 38035949 DOI: 10.1016/j.jsbmb.2023.106429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Testosterone is a vital male hormone responsible for male sexual characteristics. The taste receptor family 1 subunit 3 (T1R3) regulates testosterone synthesis and autophagy in non-taste cells, and the links with the taste receptor family 1 subunit 1 (T1R1) for umami perception. However, little is known about these mechanisms. Thus, we aimed to determine the relationship between the umami taste receptor (T1R1/T1R3) and testosterone synthesis or autophagy in testicular Leydig cells of the Xiang pig. There was a certain proportion of spermatogenic tubular dysplasia in the Xiang pig at puberty, in which autophagy was enhanced, and the testosterone level was increased with a weak expression of T1R3. Silenced T1R3 decreased testosterone level and intracellular cyclic adenosine monophosphate (cAMP) content and inhibited the messenger RNA (mRNA) expression levels of testosterone synthesis enzyme genes [steroidogenic acute regulatory protein (StAR), hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (3β-HSD1), cytochrome P450 family 17 subfamily A member 1 (CYP17A1) and hydroxysteroid 17-beta dehydrogenase 3 (17β-HSD3)]. In addition, T1R3 increased the number of acidic autophagy bubbles and upregulated the expression levels of autophagy markers [Microtubule-associated protein 1 A/1B-light chain 3 (LC3) and Beclin-1] in testicular Leydig cells of the Xiang pig. Using an umami tasting agonist (10 mM L-glutamate for 6 h), the activation of T1R1/T1R3 enhanced the testosterone synthesis ability by increasing the intracellular cAMP level and upregulated the expression levels of StAR, 3β-HSD1, CYP17A1 and 17β-HSD3 in Leydig cells. Furthermore, the number of acidic autophagy bubbles decreased in the T1R1/T1R3-activated group with the downregulation of the expression levels of the autophagy markers, including LC3 and Beclin-1. These data suggest that the function of T1R1/T1R3 expressed in testicular Leydig cells of the Xiang pig is related to testosterone synthesis and autophagy.
Collapse
Affiliation(s)
- Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China.
| | - Qi Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Yongjian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Qiannan Buyi and Miao Autonomous Prefecture Bureau of Agriculture and Rural Affairs, PR China
| | - Weiyong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Lijie Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Xianzhou Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| |
Collapse
|
29
|
Zhi N, Chang X, Wang X, Guo J, Chen J, Gui S. Recent advances in the extraction, purification, structural-property correlations, and antiobesity mechanism of traditional Chinese medicine-derived polysaccharides: a review. Front Nutr 2024; 10:1341583. [PMID: 38299183 PMCID: PMC10828026 DOI: 10.3389/fnut.2023.1341583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Traditional Chinese medicine (TCM) has displayed preventive and therapeutic effects on many complex diseases. As natural biological macromolecules, TCM-derived antiobesogenic polysaccharides (TCMPOs) exhibit notable weight-loss effects and are seen to be a viable tactic in the fight against obesity. Current studies demonstrate that the antiobesity activity of TCMPOs is closely related to their structural characteristics, which could be affected by the extraction and purification methods. Therefore, the extraction, purification and structural-property correlations of TCMPOs were discussed. Investigation of the antiobesity mechanism of TCMPOs is also essential for their improved application. Herein, the possible antiobesity mechanisms of TCMPOs are systematically summarized: (1) modulation of appetite and satiety effects, (2) suppression of fat absorption and synthesis, (3) alteration of the gut microbiota and their metabolites, and (4) protection of intestinal barriers. This collated information could provide some insights and offer a new therapeutic approach for the management and prevention of obesity.
Collapse
Affiliation(s)
- Nannan Zhi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Xinrui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jian Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
| | - Juan Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
30
|
Zheng C, Chen S, Deng YY, Qian XP, Chen YY, Hong CZ, Zeng YF, Li QM, Pan LH, Luo JP, Li XY, Zha XQ. Purification, structural characteristics and anti-atherosclerosis activity of a novel green tea polysaccharide. Int J Biol Macromol 2024; 254:127705. [PMID: 37913884 DOI: 10.1016/j.ijbiomac.2023.127705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
A new homogeneous polysaccharide (TPS3A) was isolated and purified from Tianzhu Xianyue fried green tea by DEAE-52 cellulose and Sephacryl S-500 column chromatography. Structural characterization indicated that TPS3A mainly consisted of arabinose, galactose, galacturonic acid and rhamnose in a molar ratio of 5.84: 4.15: 2.06: 1, with an average molecular weight of 1.596 × 104 kDa. The structure of TPS3A was characterized as a repeating unit consisting of 1,3-Galp, 1,4-Galp, 1,3,6-Galp, 1,3-Araf, 1,5-Araf, 1,2,4-Rhap and 1-GalpA, with two branches on the C6 of 1,3,6-Galp and C2 of 1,2,4-Rhap, respectively. To investigate the preventive effects of TPS3A on atherosclerosis, TPS3A was administered orally to ApoE-deficient (ApoE-/-) mice. Results revealed that TPS3A intervention could effectively delay the atherosclerotic plaque progression, modulate dyslipidemia, and reduce the transformation of vascular smooth muscle cells (VSMCs) from contractile phenotype to synthetic phenotype by activating the expression of contractile marker alpha-smooth muscle actin (α-SMA) and inhibiting the expression of synthetic marker osteopontin (OPN) in high-fat diet-induced ApoE-/- mice. Our findings suggested that TPS3A markedly alleviated atherosclerosis by regulating dyslipidemia and phenotypic transition of VSMCs, and might be used as a novel functional ingredient to promote cardiovascular health.
Collapse
Affiliation(s)
- Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Shun Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yuan-Yuan Deng
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
| | - Xin-Ping Qian
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ya-Fan Zeng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
31
|
Zhang M, Zhu L, Zhang H, Wang X, Wu G, Qi X. Evaluating the In Situ Insulinotropic Effects of Pea Protein Hydrolysates Mediated by Active GLP-1 via a 2D and Dual-Layered Coculture Cell Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14038-14045. [PMID: 37718486 DOI: 10.1021/acs.jafc.3c05583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The aim of this study was to evaluate the in situ insulinotropic effects of pea protein hydrolysates (PPHs) mediated by active glucagon-like peptide-17-36 (active GLP-1) using a 2D and dual-layered coculture cell model. Following this model, a mixed Caco-2 and NCI-H716 cell monolayer was differentiated on the apical side to study the effects of PPHs on active GLP-1 levels; meanwhile, the beta-TC-6 cells were seeded on the basolateral side to investigate the insulin responses induced by active GLP-1. The in situ DPP-4 half-maximal inhibitory concentration (IC50) of PPHs, PPHs-120G, and PPHs-120I was 2.94, 3.43, and 2.26 mg/mL, respectively. They directly stimulated active GLP-1 secretion in NCI-H716 cells by 3.03 ± 0.21, 1.99 ± 0.03, and 2.24 ± 0.02 times, respectively. Insulin release in beta-TC-6 cells was directly stimulated by PPHs but not by PPHs-120G and PPHs-120I. Interestingly, PPHs-120G and PPHs-120I indirectly stimulated insulin release in this coculture cell model by enhancing active GLP-1 concentrations. More importantly, PPHs, PPHs-120G, and PPHs-120I increase active GLP-1 levels by their dual function of stimulating active GLP-1 secretion and DPP-4 inhibition. This study suggests that the 2D and dual-layered coculture cell model supports a more comprehensive assessment of in situ insulinotropic effects of protein hydrolysates mediated by active GLP-1.
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
32
|
Zhang M, Zhu L, Zhang H, Wang X, Wu G, Qi X. Transepithelial Transport of the Bifunctional Peptide IPYWTY Indirectly Induced Insulin Release Mediated by Active GLP-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12749-12756. [PMID: 37587911 DOI: 10.1021/acs.jafc.3c04940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
There is currently no appropriate cell model suitable for evaluating the insulinotropic effects of DPP-4 inhibitory peptides (DPP-4IPs) mediated by active glucagon-like peptide-17-36 (active GLP-1). The study aims to evaluate the transepithelial transport of IPYWTY on its in situ insulinotropic effects by using a 2D and dual-layered coculture cell model that consists of Caco-2 and NCI-H716 cells on the apical (AP) side and β-TC-6 cells on the basolateral (BL) side. During transportation, IPYWTY was absorbed in its intact form through PepT1 and paracellular transport. Meanwhile, it was degraded to several peptide fragments, including PYWTY, YWTY, WTY, and IPY, which decreased its in situ DPP-4 inhibitory activity. IPYWTY does not directly stimulate insulin release in β-TC-6 cells, while it increased the active GLP-1 level from 76.57 ± 15.16 to 95.63 ± 1.99 pM (1.25 times) in NCI-H716 cells. Interestingly, IPYWTY indirectly increased insulin levels from 426.91 ± 6.07 to 573.94 ± 2.97 μIU/mL (1.34 times) in the 2D and dual-layered coculture cell model for its dual function of stimulating active GLP-1 secretion and DPP-4 inhibition. These results suggested that the 2D and dual-layered coculture cell model is an alternative strategy for effectively evaluating the insulinotropic effects of DPP-4IPs mediated by active GLP-1.
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
33
|
Xiong J, Fang J, Chen D, Xu H. Physicochemical property changes of Dendrobium officinale leaf polysaccharide LDOP-A and it promotes GLP-1 secretion in NCI-H716 cells by simulated saliva-gastrointestinal digestion. Food Sci Nutr 2023; 11:2686-2696. [PMID: 37324850 PMCID: PMC10261737 DOI: 10.1002/fsn3.3341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 09/20/2024] Open
Abstract
A polysaccharide LDOP-A with a molecular weight of 9.9 kDa was isolated and purified from Dendrobium officinale leaves by membrane separation, cellulose column, and dextran gel column. The Smith degradable products, methylation products, and nuclear magnetic resonance analysis showed that LDOP-A may be composed of →4)-Glc-(1→, →3,6)-Man-(1→, and →6)-Glc-(1→sugar residues. In vitro, simulated digestion assays showed that LDOP-A could be partially digested in the stomach and small intestine, and produced a large amount of acetic acid and butyric acid during colonic fermentation. Further cell experiment results illustrated that LDOP-A-I (LDOP-A digested by gastrointestinal tract) could induce glucagon-like peptide-1 (GLP-1) secretion in NCI-H716 cells without showing any cytotoxicity.
Collapse
Affiliation(s)
- Jingfang Xiong
- Department of GeriatricsZhejiang Hospital of Integrated Traditional Chinese and Western MedicineHangzhouZhejiang310000China
| | - Jingyu Fang
- Department of Food Science and TechnologyZhejiang University of TechnologyHangzhouZhejiang310000China
| | - Dongya Chen
- Department of Gastroenterology and HepatologyZhejiang Hospital of Integrated Traditional Chinese and Western MedicineHangzhouZhejiang310000China
| | - Hong Xu
- Department of Gastroenterology and HepatologyZhejiang Hospital of Integrated Traditional Chinese and Western MedicineHangzhouZhejiang310000China
| |
Collapse
|
34
|
Li XY, Jiang CL, Zheng C, Hong CZ, Pan LH, Li QM, Luo JP, Zha XQ. Polygonatum cyrtonema Hua Polysaccharide Alleviates Fatigue by Modulating Osteocalcin-Mediated Crosstalk between Bones and Muscles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6468-6479. [PMID: 37043685 DOI: 10.1021/acs.jafc.2c08192] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Osteocalcin was reported to regulate muscle energy metabolism, thus fighting fatigue during exercise. The current work aimed to investigate the anti-fatigue effect and the underlying mechanism of a homogeneous polysaccharide (PCPY-1) from Polgonatum cyrtonema after structure characterization. In the exhaustive swimming mouse model and the co-culture system of BMSCs/C2C12 cells, PCPY-1 significantly stimulated BMSC differentiation into osteoblasts as determined by ALP activity, matrix mineralization, and the protein expressions of osteogenic markers BMP-2, phosphor-Smad1, RUNX2, and osteocalcin. Meanwhile, PCPY-1 remarkably enhanced myoblast energy metabolism by upregulating osteocalcin release and GPRC6A protein expression; the phosphorylation levels of CREB and HSL; the mRNA levels of GLUT4, CD36, FATP1, and CPT1B; and ATP production in vitro and in vivo. Accordingly, PCPY-1 exhibited good anti-fatigue capacity in mice as confirmed by fatigue-related indicators. Our findings indicated PCPY-1 could enhance osteocalcin-mediated communication between bones and muscles, which was conducive to muscle energy metabolism and ATP generation, thus alleviating fatigue in exhausted swimming mice.
Collapse
Affiliation(s)
- Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Chao-Li Jiang
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| |
Collapse
|
35
|
Two New Phenolic Compounds from Polygonatum cyrtonema Flowers and Their Aldose Reductase Inhibitory Activities. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
36
|
Wang Y, Geng R, Zhao Y, Fang J, Li M, Kang SG, Huang K, Tong T. The gut odorant receptor and taste receptor make sense of dietary components: A focus on gut hormone secretion. Crit Rev Food Sci Nutr 2023; 64:6975-6989. [PMID: 36785901 DOI: 10.1080/10408398.2023.2177610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Odorant receptors (ORs) and taste receptors (TRs) are expressed primarily in the nose and tongue in which they transduce electrical signals to the brain. Advances in deciphering the dietary component-sensing mechanisms in the nose and tongue prompted research on the role of gut chemosensory cells. Acting as the pivotal interface between the body and dietary cues, gut cells "smell" and "taste" dietary components and metabolites by taking advantage of chemoreceptors-ORs and TRs, to maintain physiological homeostasis. Here, we reviewed this novel field, highlighting the latest discoveries pertinent to gut ORs and TRs responding to dietary components, their impacts on gut hormone secretion, and the mechanisms involved. Recent studies indicate that gut cells sense dietary components including fatty acid, carbohydrate, and phytochemical by activating relevant ORs, thereby modulating GLP-1, PYY, CCK, and 5-HT secretion. Similarly, gut sweet, umami, and bitter receptors can regulate the gut hormone secretion and maintain homeostasis in response to dietary components. A deeper understanding of the favorable influence of dietary components on gut hormone secretion via gut ORs and TRs, coupled with the facts that gut hormones are involved in diverse physiological or pathophysiological phenomena, may ultimately lead to a promising treatment for various human diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing, PR China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing, PR China
| |
Collapse
|
37
|
Teng H, Zhang Y, Jin C, Wang T, Huang S, Li L, Xie S, Wu D, Xu F. Polysaccharides from steam-processed Polygonatum cyrtonema Hua protect against d-galactose-induced oxidative damage in mice by activation of Nrf2/HO-1 signaling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:779-791. [PMID: 36054707 DOI: 10.1002/jsfa.12189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/13/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polygonatum cyrtonema Hua is cultivated for its edible and medical value. The steam-processed rhizome of P. cyrtonema is the main form for daily consumption and it has been used traditionally in tonics for treating various age-related disorders. The aim of our study was to compare the physicochemical properties and antioxidant activity of polysaccharides respectively extracted from crude P. Cyrtonema (PCPC), and steam-processed P. cyrtonema (PCPS), and to explore a possible underlying antioxidant mechanism. RESULTS The PCPC with a molecular weight of 4.35 × 103 Da mainly consisted of fructose and trace amounts of glucose, whereas PCPS with 4.24 × 104 Da was composed of fructose, arabinose, glucose, xylose, mannose, galacturonic acid and glucuronic acid. The PCPC had a triple-helical conformation whereas PCPS was a random coil. Both exhibited free radicals- scavenging activity in vitro. In a mouse model of oxidative damage, PCPC or PCPS treatment significantly reversed histopathological alterations, reactive oxygen species (ROS) accumulation and the reduction of antioxidant enzyme activity. They both also promoted Nrf2 nuclear transport by decreasing Keap-1 expression and increasing HO-1 expression. Both in vitro and in vivo, PCPS exhibited more potent antioxidant activity than PCPC. CONCLUSION Overall, the results suggest that PCPS has a stronger effect on the prevention of oxidative damage by activating Nrf2/HO-1 antioxidant signaling. This study demonstrates the role of steam-processed P. cyrtonema rhizome and provides valuable perspective for PCPS as a functional agent. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huanhuan Teng
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yi Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chuanshan Jin
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tongsheng Wang
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shengzhuo Huang
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, China
| | - Lei Li
- Research and development department, Jinzhai Senfeng Biological Technology Co. LTD., Lu'an, China
| | - Songzi Xie
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Deling Wu
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Fengqing Xu
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Research and development department, Jinzhai Senfeng Biological Technology Co. LTD., Lu'an, China
| |
Collapse
|
38
|
Impact of Lycium barbarum polysaccharide on the expression of glucagon-like peptide 1 in vitro and in vivo. Int J Biol Macromol 2022; 224:908-918. [DOI: 10.1016/j.ijbiomac.2022.10.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
39
|
Chen L, Xu S, Liu Y, Zu Y, Zhang F, Du L, Chen J, Li L, Wang K, Wang Y, Chen S, Chen Z, Du X. Identification of key gene networks controlling polysaccharide accumulation in different tissues of Polygonatum cyrtonema Hua by integrating metabolic phenotypes and gene expression profiles. FRONTIERS IN PLANT SCIENCE 2022; 13:1012231. [PMID: 36247596 PMCID: PMC9558278 DOI: 10.3389/fpls.2022.1012231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Plant polysaccharides, a type of important bioactive compound, are involved in multiple plant defense mechanisms, and in particular polysaccharide-alleviated abiotic stress has been well studied. Polygonatum cyrtonema Hua (P. cyrtonema Hua) is a medicinal and edible perennial plant that is used in traditional Chinese medicine and is rich in polysaccharides. Previous studies suggested that sucrose might act as a precursor for polysaccharide biosynthesis. However, the role of sucrose metabolism and transport in mediating polysaccharide biosynthesis remains largely unknown in P. cyrtonema Hua. In this study, we investigated the contents of polysaccharides, sucrose, glucose, and fructose in the rhizome, stem, leaf, and flower tissues of P. cyrtonema Hua, and systemically identified the genes associated with the sucrose metabolism and transport and polysaccharide biosynthesis pathways. Our results showed that polysaccharides were mainly accumulated in rhizomes, leaves, and flowers. Besides, there was a positive correlation between sucrose and polysaccharide content, and a negative correlation between glucose and polysaccharide content in rhizome, stem, leaf, and flower tissues. Then, the transcriptomic analyses of different tissues were performed, and differentially expressed genes related to sucrose metabolism and transport, polysaccharide biosynthesis, and transcription factors were identified. The analyses of the gene expression patterns provided novel regulatory networks for the molecular basis of high accumulation of polysaccharides, especially in the rhizome tissue. Furthermore, our findings explored that polysaccharide accumulation was highly correlated with the expression levels of SUS, INV, SWEET, and PLST, which are mediated by bHLH, bZIP, ERF, ARF, C2H2, and other genes in different tissues of P. cyrtonema Hua. Herein, this study contributes to a comprehensive understanding of the transcriptional regulation of polysaccharide accumulation and provides information regarding valuable genes involved in the tolerance to abiotic stresses in P. cyrtonema Hua.
Collapse
Affiliation(s)
- Longsheng Chen
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
| | - Shuwen Xu
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
| | - Yujun Liu
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
| | - Yanhong Zu
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
| | - Fuyuan Zhang
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
| | - Liji Du
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
| | - Jun Chen
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
| | - Lei Li
- Jinzhai Senfeng Agricultural Technology Development Co., Ltd., Lu’an, China
| | - Kai Wang
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
| | - Yating Wang
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
| | - Shijin Chen
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
| | - Ziping Chen
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
| | - Xianfeng Du
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
40
|
Zhou W, Yang T, Xu W, Huang Y, Ran L, Yan Y, Mi J, Lu L, Sun Y, Zeng X, Cao Y. The polysaccharides from the fruits of Lycium barbarum L. confer anti-diabetic effect by regulating gut microbiota and intestinal barrier. Carbohydr Polym 2022; 291:119626. [DOI: 10.1016/j.carbpol.2022.119626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 12/20/2022]
|
41
|
Jiang CL, Li XY, Shen WD, Pan LH, Li QM, Luo JP, Zha XQ. Bioactive polysaccharides and their potential health benefits in reducing the risks of atherosclerosis: A review. J Food Biochem 2022; 46:e14337. [PMID: 35945814 DOI: 10.1111/jfbc.14337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis is a kind of lipid-driven chronic inflammatory disease of arteries and is the principal pathological basis of life-threatening cardiovascular disease events, such as strokes and heart attacks. Clinically, statins are the most commonly prescribed drugs for the treatment of atherosclerosis, but prolonged use of these drugs exhibit many adverse reactions and have limited efficacy. Polysaccharides are important natural biomacromolecules widely existing in plants, animals, microorganisms and algae. They have drawn considerable attention worldwide due to their multiple healthy functions, along with their non-toxic property. Importantly, a growing number of studies have demonstrated that bioactive polysaccharides exhibit prominent efficiency in controlling atherosclerotic risk factors like hyperlipemia, hypertension, oxidative stress, and inflammation. In recent decades, various bioactive polysaccharides with different structural features and anti-atherosclerotic potential from natural sources have been isolated, purified, and characterized. The aim of this review is to focus on the research progress of natural polysaccharides in reducing the risks of atherosclerosis based on evidence of in vitro and in vivo studies from 1966 to 2022. PRACTICAL APPLICATIONS: In the future, it is still necessary to strengthen the research on the development and mechanism of polysaccharides with anti-atherosclerotic potential. These anti-atherosclerotic polysaccharides with different structural characteristics and physiochemical properties from different sources will constitute a huge source of materials for future applications, especially in functional foods and drugs. The information summarized here may serve as useful reference materials for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Chao-Li Jiang
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Wen-Di Shen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, People's Republic of China
| |
Collapse
|
42
|
Gan Q, Wang X, Cao M, Zheng S, Ma Y, Huang Q. NF-κB and AMPK-Nrf2 pathways support the protective effect of polysaccharides from Polygonatum cyrtonema Hua in lipopolysaccharide-induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115153. [PMID: 35240239 DOI: 10.1016/j.jep.2022.115153] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/05/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The raw and honey-processed P. cyrtonema recorded in ancient classics of Chinese medicine as having the effect of moisturizing the lungs and relieving coughs, and it has also been proved to have therapeutic effects on lung diseases in modern research. Polysaccharides are the main components with biological activities in raw and honey-processed P. cyrtonema, but there is no research for their lung-protective effect. AIM OF STUDY This study aimed to investigate the protective effect and the possible mechanism of polysaccharides from raw and honey-processed P. cyrtonema in LPS-induced acute lung injury in mice. MATERIALS AND METHODS Polysaccharides, PCP and HPCP, were respectively separated and extracted from raw and honey-processed P. cyrtonema, and the molecular weight, monosaccharide composition and other basic chemical characteristics were analyzed by HPGCP, HPLC, FI-IR, and NMR. The model of ALI mice was established by intratracheal instillation of LPS. Moreover, the protective effects of PCP and HPCP for ALI mice were evaluated by detecting the wet-to-dry ratio and histopathology in the lungs, the content of inflammatory factors TNF-α, IL-6, IL-1β in BLAF, and the content of MPO and SOD in lung tissue. In addition, the lung-protective mechanism of PCP and HPCP was explored by detecting the levels of some proteins and mRNA related to inflammation and oxidative stress pathways. RESULTS PCP and HPCP with molecular weights of 8.842 × 103 and 5.521 × 103Da were mainly composed of three monosaccharides. Moreover, it is found that fructose and galactose were mainly β-D, and glucose was α-D. Both PCP and HPCP could significantly improve lung injury, reduce the level of inflammatory factors in BALF and the level of MPO in lung tissue, and increase the level of SOD. In addition, PCR and WB indicated that PCP and HPCP at least inhibited pulmonary inflammation through the NF-κB pathway, and reduced the occurrence of pulmonary oxidative stress through the AMPK-Nrf2 pathway. CONCLUSIONS Polysaccharides from raw and honey-processed P. cyrtonema had a protective effect in LPS-induced lung injury in mice. This effect may be related to the antioxidant and anti-inflammatory activities of PCP and HPCP in the lungs through the NF-κB pathway and AMPK-Nrf2 pathway. And HPCP seems to perform more than PCP.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Xi Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Mayijie Cao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Song Zheng
- Sichuan Kaimei Chinese Medicine Co., Ltd, No.155, Section 1, Fuxing Road, Longmatan District, Luzhou, 646000, China.
| | - Yuntong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
43
|
Lok KH, Wareham NJ, Nair RS, How CW, Chuah LH. Revisiting the concept of incretin and enteroendocrine L-cells as type 2 diabetes mellitus treatment. Pharmacol Res 2022; 180:106237. [PMID: 35487405 PMCID: PMC7614293 DOI: 10.1016/j.phrs.2022.106237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022]
Abstract
The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
Collapse
Affiliation(s)
- Kok-Hou Lok
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Nicholas J Wareham
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge, UK.
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
44
|
Xie SZ, Zhang WJ, Liu W, Bai JB, Xie SL, Wang T, Xu GB, Wu DL. Physicochemical characterization and hypoglycemic potential of a novel polysaccharide from Polygonatum sibiricum Red through PI3K/Akt mediated signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
45
|
Fang J, Lin Y, Xie H, Farag MA, Feng S, Li J, Shao P. Dendrobium officinale leaf polysaccharides ameliorated hyperglycemia and promoted gut bacterial associated SCFAs to alleviate type 2 diabetes in adult mice. Food Chem X 2022; 13:100207. [PMID: 35498995 PMCID: PMC9039915 DOI: 10.1016/j.fochx.2022.100207] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/17/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Fractions of LDOP show the hypoglycemic effect and can restore histological function of T2D mice. There is a difference in the anti-T2D effect between LDOP-A and LDOP-B. LDOP-A modulated the gut microbiota composition of T2D mice. LDOP-A promotes the formation of SCFAs in T2D mice, especially butyric acid. Compared with LDOP-B, LDOP-A shows greater potential to ameliorate T2D.
The present study aimed to explore the possible mechanisms underlying Dendrobium officinale leaf polysaccharides of different molecular weight to alleviate glycolipid metabolic abnormalities, organ dysfunction and gut microbiota dysbiosis of T2D mice. An ultrafiltration membrane was employed to separate two fractions from Dendrobium officinale leaf polysaccharide named LDOP-A and LDOP-B. Here, we present data supporting that oral administration of LDOP-A and LDOP-B ameliorated hyperglycemia, inhibited insulin resistance, reduced lipid concentration, improved β-cell function. LDOP-A with lower molecular weight exhibited improved effect on diabetes than LDOP-B, concurrent with increased levels of colonic short-chain fatty acids (SCFAs) i.e., butyrate, decreased ratio of Firmicutes to Bacteroidetes phyla, and increased abundance of the gut beneficial bacteria i.e., Lactobacillus, Bifidobacterium and Akkermansia. These results suggest that LDOP-A possesses a stronger effect in ameliorating T2D than LDOP-B which may be related to the distinct improved SCFAs levels produced by the change of intestinal flora microstructure.
Collapse
Key Words
- AUC, The area under the concentration–time curve
- Dendrobium officinale
- FBG, fasting blood glucose
- FT-IR, Fourier-transform infrared
- GLP-1, glucagon-like peptide-1
- GLUT4, glucose transporter type 4
- H&E, hematoxylin and eosin
- HDL-c, high-density lipoprotein cholesterol
- HFD, high-fat diet
- HOMA-IR, homeostasis model assessment-insulin resistance
- HOMA-β, β-cell sensitivity
- IC, ion Chromatography
- IL-6, interleukin-6
- Intestinal microflora
- LDL-c, low-density lipoprotein cholesterol
- LDOP, Dendrobium officinale leaf polysaccharide
- Mw, molecular weight
- OGTT, oral glucose tolerance test
- OTUs, operational taxonomic units
- PAS, periodic acid-Schiff
- PYY, peptide YY
- Polysaccharide
- SCFAs, short chain fatty acids
- STZ, streptozotocin
- Short-chain fatty acids
- T2D, Type 2 Diabetic
- TG, triglycerides
- TNF-α, tumor necrosis factor-alpha
- Type 2 Diabetes
Collapse
Affiliation(s)
- Jingyu Fang
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China
| | - Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China
| | - Hualing Xie
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.,Department of Chemistry, School of Science & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Simin Feng
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China
| | - Jinjun Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310021, China
| |
Collapse
|
46
|
Pan L, Xu M, Wang Q, Zou X, Han Y, Zhou Z. Long-term drench of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 protects against type 1 diabetes of NOD mice via stimulating GLP-1 secretion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2023-2031. [PMID: 34558071 DOI: 10.1002/jsfa.11541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Type 1 diabetes is an autoimmune disease that results in the specific destruction of insulin-producing beta cells in the pancreas. The aim of this study was to investigate the mechanism of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 (XG5 EPS) against type 1 diabetes. RESULTS Long-term drench of XG5 EPS delayed the onset of autoimmune diabetes and had fewer islets with high-grade infiltration (an insulitis score of 3 or 4) than untreated NOD mice. Oral administration of 50 mg kg-1 d-1 XG5 EPS increased the insulin and glucagon-like peptide-1 (GLP-1) levels of serum, stimulated GLP-1 secretion and upregulated gcg mRNA expression of colon in NOD mice. Moreover, oral administration of 50 mg kg-1 d-1 XG5 EPS significantly increased total short-chain fatty acids levels in the colon contents, especially those of acetic acid and butyric acid. In NCI-H716 cells, 500 and 1000 μmol L-1 sodium butyrate promoted the secretion of GLP-1 and upregulated the mRNA expression of gcg and PC3, while XG5 EPS and sodium acetate did not stimulate the GLP-1 secretion. Therefore, long-term drench of XG5 EPS delayed the onset of autoimmune diabetes, which may be directly correlated with the increase of butyrate in the colon of NOD mice. CONCLUSION Long-term drench of 50 mg kg-1 d-1 XG5 EPS promoted the expression and secretion of GLP-1 by increasing the production of butyric acid, thereby delaying T1D onset in NOD mice. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Min Xu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Qi Wang
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Xuan Zou
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| |
Collapse
|
47
|
He Y, Chen Z, Nie X, Wang D, Zhang Q, Peng T, Zhang C, Wu D, Zhang J. Recent advances in polysaccharides from edible and medicinal Polygonati rhizoma: From bench to market. Int J Biol Macromol 2022; 195:102-116. [PMID: 34896461 DOI: 10.1016/j.ijbiomac.2021.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023]
Abstract
Although the increasing studies have corroborated the biological activities and great market utilization value of polysaccharide fractions derived from Polygonati rhizome, a well-known edible and medicinal plant, Polygonati rhizome polysaccharides (PRPs) still lack sufficient attention. Herein, we make attempt to systematically summarize recent advances in the extraction, purification, structural characteristics, biological activities, and commercial products of PRPs. Based on the detailed extraction and structural characteristics, the biological activities of PRPs including immune-regulation, anti-osteoporosis, anti-Alzheimer's disease, anti-diabetes and anti-atherosclerotic, are emphatically summarized, as well as the possible related mechanisms. Most importantly, about 365 kinds of commercial functional foods and over 500 patents related to PRPs as the main raw material were analyzed to explore the status quo and bottleneck for the development and utilization of PRPs. In conclusion, this review will benefit to bridge the gap between basic knowledge and market innovations, and facilitate the in-depth utilization of PRPs.
Collapse
Affiliation(s)
- Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xin Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Zhang
- Pengzhou Hospital of traditional Chinese Medicine, Pengzhou 611930, China
| | - Teng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
48
|
Effects of the steaming process on the structural properties and immunological activities of polysaccharides from Polygonatum cyrtonema. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
49
|
Ikeda Y, Nagase N, Tsuji A, Kitagishi Y, Matsuda S. Neuroprotection by dipeptidyl-peptidase-4 inhibitors and glucagon-like peptide-1 analogs via the modulation of AKT-signaling pathway in Alzheimer’s disease. World J Biol Chem 2021; 12:104-113. [PMID: 34904048 PMCID: PMC8637616 DOI: 10.4331/wjbc.v12.i6.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common reason for progressive dementia in the elderly. It has been shown that disorders of the mammalian/mechanistic target of rapamycin (mTOR) signaling pathways are related to the AD. On the other hand, diabetes mellitus (DM) is a risk factor for the cognitive dysfunction. The pathogenesis of the neuronal impairment caused by diabetic hyperglycemia is intricate, which contains neuro-inflammation and/or neurodegeneration and dementia. Glucagon-like peptide-1 (GLP1) is interesting as a possible link between metabolism and brain impairment. Modulation of GLP1 activity can influence amyloid-beta peptide aggregation via the phosphoinositide-3 kinase/AKT/mTOR signaling pathway in AD. The GLP1 receptor agonists have been shown to have favorable actions on the brain such as the improvement of neurological deficit. They might also exert a beneficial effect with refining learning and memory on the cognitive impairment induced by diabetes. Recent experimental and clinical evidence indicates that dipeptidyl-peptidase-4 (DPP4) inhibitors, being currently used for DM therapy, may also be effective for AD treatment. The DPP-4 inhibitors have demonstrated neuroprotection and cognitive improvements in animal models. Although further studies for mTOR, GLP1, and DPP4 signaling pathways in humans would be intensively required, they seem to be a promising approach for innovative AD-treatments. We would like to review the characteristics of AD pathogenesis, the key roles of mTOR in AD and the preventive and/ or therapeutic suggestions of directing the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuka Ikeda
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Nozomi Nagase
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Ai Tsuji
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
50
|
Bai JB, Ge JC, Zhang WJ, Liu W, Luo JP, Xu FQ, Wu DL, Xie SZ. Physicochemical, morpho-structural, and biological characterization of polysaccharides from three Polygonatum spp. RSC Adv 2021; 11:37952-37965. [PMID: 35498116 PMCID: PMC9044025 DOI: 10.1039/d1ra07214e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
Polygonatum species, including P. cyrtonema, P. kingianum, and P. sibiricum, are edible plants with medicinal purposes, which have long been consumed as food due to their high nutritional value. In this study, polysaccharides from P. cyrtonema (PCP), P. kingianum (PKP) and P. sibiricum (PSP) were obtained, and their physicochemical properties and in vitro biological activities were investigated. Our results demonstrated that PCP, PKP, and PSP consist of major fructose and minor glucose, galacturonic acid, and galactose in different molar ratios with the molecular weights of 8.5 × 103 Da, 8.7 × 103 Da, and 1.0 × 104 Da, respectively. The three polysaccharides had triple-helical structures with β-d-Fruf, α-d-Glcp, α-d-Galp sugar residues, and an O-acetyl group, and displayed peak-shaped structures in different sizes. They also exhibited thermal, shear-thinning behavior and viscoelastic properties, and PCP presented the highest viscoelasticity. Moreover, they exerted strong free radical-scavenging abilities, and significant reducing capacity. PCP was the strongest, followed by PSP and then PKP. They significantly promoted the polarization of the M1 macrophage, with the effect of PCP ranking first. All three had similar effects on GLP-1 secretion. It is, therefore, necessary to identify the various roles of these three Polygonatum polysaccharides as functional agents based on their bioactivities and physicochemical properties. Three Polygonatum polysaccharides with different physicochemical properties exert distinct effects on free radical-scavenging abilities and the promotion of M1 macrophage polarization, while they have similar effects on GLP-1 secretion.![]()
Collapse
Affiliation(s)
- Jin-Bo Bai
- School of Pharmacy, Anhui University of Chinese Medicine Hefei Anhui 230012 China
| | - Ji-Chun Ge
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Wang-Juan Zhang
- School of Pharmacy, Anhui University of Chinese Medicine Hefei Anhui 230012 China
| | - Wang Liu
- School of Pharmacy, Anhui University of Chinese Medicine Hefei Anhui 230012 China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Feng-Qing Xu
- School of Pharmacy, Anhui University of Chinese Medicine Hefei Anhui 230012 China .,Anhui Province Key Laboratory of Research & Development of Chinese Medicine Hefei 230012 PR China.,Anhui Provincial Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces Hefei 230012 PR China
| | - De-Ling Wu
- School of Pharmacy, Anhui University of Chinese Medicine Hefei Anhui 230012 China .,Anhui Province Key Laboratory of Research & Development of Chinese Medicine Hefei 230012 PR China.,Anhui Provincial Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces Hefei 230012 PR China
| | - Song-Zi Xie
- School of Pharmacy, Anhui University of Chinese Medicine Hefei Anhui 230012 China .,Anhui Province Key Laboratory of Research & Development of Chinese Medicine Hefei 230012 PR China.,Anhui Provincial Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces Hefei 230012 PR China
| |
Collapse
|