1
|
Ma S, Peng W, Ali S, Chen L, Zhang T, Zhang R, Yang T, Wu Y, Yang C. Effects of rhamnolipids on growth performance, gut barriers, antioxidant capacity, immune function, and gut microbiota in broiler chickens. Poult Sci 2025; 104:104919. [PMID: 40101518 PMCID: PMC11960640 DOI: 10.1016/j.psj.2025.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 03/20/2025] Open
Abstract
This study aimed to investigate the effects of dietary supplementation of rhamnolipids (RLS) on growth performance, gut morphology, antioxidant function, lipid metabolism, immune responses, and gut microbiota in Linnan yellow-feathered broilers. A total of 390 one-day-old broilers were randomly assigned to three groups: Control (CON), 250 mg/kg RLS (RLS250), or 500 mg/kg RLS (RLS500). The broilers were fed with basal diet, or basal diet supplemented with 250 or 500 mg/kg RLS for 56 days. Each treatment contained 10 replicates with 13 chickens per replicate. Results showed that diet supplemented with RLS250 and RLS500 markedly improved final BW and ADG on day 56. RLS reduced the CD and increased the VH/CD of jejunum and ileum. RLS significantly increased the levels of total T-AOC and GSH-Px on day 28, while the levels of T-AOC and SOD were higher than CON groups on day 56. RLS treatment also regulated the lipid metabolism in the broilers by increasing the concentration of serum HDL-C and decreased LDL-C. The levels of serum immunoglobulins including IgA, IgM and IgY in RLS250 and RLS500 groups were notably higher than those of CON groups on day 56. Meanwhile, ileum IgA and IgM in RLS500 groups were evidently higher than other two groups. RLS significantly increased the level of IL-10. RLS showed no significant effects on VFA in cecum of broilers. Results of 16S rRNA sequencing showed that RLS optimized the microbiota by lowering the relative abundance of Anaerofilum and DUT089, and regulating g__norank_f__ Ruminococcaceae. This study found that supplemented with RLS in diet improved the growth performance, antioxidant function, and immune function, and regulated intestinal microbiota of broilers, revealing that RLS is potential feed additive for use in animal husbandry.
Collapse
Affiliation(s)
- Shiyue Ma
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Lin'an District, Hangzhou 311300, China
| | - Wenwen Peng
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Lin'an District, Hangzhou 311300, China
| | - Sikandar Ali
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Liuyi Chen
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Lin'an District, Hangzhou 311300, China
| | - Tianfeng Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Lin'an District, Hangzhou 311300, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Lin'an District, Hangzhou 311300, China
| | - Ting Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Lin'an District, Hangzhou 311300, China
| | - Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Lin'an District, Hangzhou 311300, China.
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Lin'an District, Hangzhou 311300, China; Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China.
| |
Collapse
|
2
|
Brigagão Pacheco da Silva C, Nascimento-Silva EA, Zaramela LS, da Costa BRB, Rodrigues VF, De Martinis BS, Carlos D, Tostes RC. Drinking pattern and sex modulate the impact of ethanol consumption on the mouse gut microbiome. Physiol Genomics 2025; 57:179-194. [PMID: 39918827 DOI: 10.1152/physiolgenomics.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
Gut microbiota impacts host homeostasis and diseases. Chronic plus binge ethanol consumption has been linked to increased injuries than chronic or binge ethanol intake alone. We hypothesized that distinct shapes in gut microbiota composition are induced by chronic, binge, and the association of these treatments, thereby affecting host functions and contributing to sex-based differences in alcohol use disorders. Male and female C57BL/6J mice were submitted to chronic, binge, or chronic plus binge ethanol feeding. DNA was extracted from fecal microbiota, followed by analysis of the V3-V4 region of the 16S rRNA gene and sequencing on an Illumina platform. Gut microbiome analysis was performed using QIIME v2022.2.0. Functional profiling of the gut microbiome was performed using PICRUSt2. Ethanol differentially affected the gut microbiota of female and male mice. Decreased α diversity was observed in male and female mice from the chronic plus binge and chronic groups, respectively. The genera Faecalibaculum, Lachnospiraceae, and Alistipes were identified as major potential biomarkers for gut dysbiosis induced by ethanol consumption. In addition, ethanol-induced gut dysbiosis altered several metabolic pathways. Ethanol consumption modifies the mouse gut microbiome in a drinking pattern- and sex-dependent manner, potentially leading to different susceptibility to ethanol-related diseases. Chronic plus binge ethanol intake induces a more pronounced gut dysbiosis in male mice. Conversely, chronic ethanol is linked to a greater degree of gut dysbiosis in female mice. The changed gut microbiome may be potentially targeted to prevent, mitigate, or treat alcohol use disorders.NEW & NOTEWORTHY Ethanol alters the mouse gut microbiome in a drinking pattern- and sex-dependent manner. Chronic plus binge ethanol intake induces a more severe gut dysbiosis in male mice, whereas chronic ethanol consumption appears to be a more potent inductor of gut dysbiosis in female mice. Ethanol-induced gut dysbiosis alters several pathways linked to metabolism, genetic and environmental information processing, cellular processes, organism systems, and neurological human diseases.
Collapse
Affiliation(s)
| | | | - Lívia Soares Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Ruiz Brandão da Costa
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Fernandes Rodrigues
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Spinosa De Martinis
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Park JE, Park HY, Kim YS, Park M. The Role of Diet, Additives, and Antibiotics in Metabolic Endotoxemia and Chronic Diseases. Metabolites 2024; 14:704. [PMID: 39728485 DOI: 10.3390/metabo14120704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Dietary patterns, including high-fat and high-carbohydrate diets (HFDs and HCDs), as well as non-dietary factors such as food additives and antibiotics, are strongly linked to metabolic endotoxemia, a critical driver of low-grade chronic inflammation. This review explores the mechanisms through which these factors impair intestinal permeability, disrupt gut microbial balance, and facilitate lipopolysaccharide (LPS) translocation into the bloodstream, contributing to metabolic disorders such as obesity, type 2 diabetes mellitus, and inflammatory bowel disease. Methods: The analysis integrates findings from recent studies on the effects of dietary components and gut microbiota interactions on intestinal barrier function and systemic inflammation. Focus is given to experimental designs assessing gut permeability using biochemical and histological methods, alongside microbiota profiling in both human and animal models. Results: HFDs and HCDs were shown to increase intestinal permeability and systemic LPS levels, inducing gut dysbiosis and compromising barrier integrity. The resulting endotoxemia promoted a state of chronic inflammation, disrupting metabolic regulation and contributing to the pathogenesis of various metabolic diseases. Food additives and antibiotics further exacerbated these effects by altering microbial composition and increasing gut permeability. Conclusions: Diet-induced alterations in gut microbiota and barrier dysfunction emerge as key mediators of metabolic endotoxemia and related disorders. Addressing dietary patterns and their impact on gut health is crucial for developing targeted interventions. Further research is warranted to standardize methodologies and elucidate mechanisms for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Ji-Eun Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Miri Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
| |
Collapse
|
4
|
Qi L, Li Y, Chen Z, Wei C, Wen X, Hu S, Wu H, Lv Z, Xu Z, Xia L. Microbiome-metabolome analysis insight into the effects of high-salt diet on hemorheological functions in SD rats. Front Nutr 2024; 11:1408778. [PMID: 39381352 PMCID: PMC11460366 DOI: 10.3389/fnut.2024.1408778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
The present study examined the effect of two dietary regimens with elevated salt concentrations (4% and 8% salt) on hemorheological functions of SD rats, and explored the underlying mechanisms mainly through microbiome-metabolome analysis. An 8% HSD substantially altered the hemorheological parameters, and compromised intestinal barrier integrity and reduced the short-chain fatty acid levels. The microbiome-metabolome analysis revealed that 49 genus-specific microorganisms and 156 metabolites showed a consistent trend after exposure to both 4% and 8% HSDs. Pathway analysis identified significant alterations in key metabolites within bile acid and arachidonic acid metabolism pathways. A two-sample Mendelian randomization (MR) analysis verified the link between high dietary salt intake and hemorheology. It also suggested that some key microbes and metabolites (such as Ruminococcaceae_UCG-005, Lachnospiraceae_NK4A136, Ruminiclostridium_6, and Ruminococcaceae_UCG-010, TXB-2, 11,12-diHETrE, glycochenodeoxycholate) may involve in abnormalities in blood rheology caused by high salt intake. Collectively, our findings underscored the adverse effects of high dietary salt on hemorheological functions and provide new insight into the underlying mechanism based on microbiome-metabolome analysis.
Collapse
Affiliation(s)
- Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yao Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| | - Zhixuan Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Changhong Wei
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xue Wen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuangyan Hu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hang Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhuoheng Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhangmeng Xu
- Department of Neck, Shoulder, Waist, and Leg Pain, Sichuan Province Orthopedic Hospital, Chengdu, Sichuan, China
| | - Lina Xia
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Wang Y, Nie J, Yan K, Wang J, Wang X, Zhao Y. Inflammatory diet, gut microbiota and sensorineural hearing loss: a cross-sectional and Mendelian randomization study. Front Nutr 2024; 11:1458484. [PMID: 39221159 PMCID: PMC11363541 DOI: 10.3389/fnut.2024.1458484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Aims Inflammatory diets can trigger chronic inflammation and affect gut microbiota. However, the relationship between dietary preferences and sensorineural hearing loss (SNHL) remains unclear. This study aims to elucidate the relationship between different dietary preferences and sensorineural deafness. Methods The Dietary Inflammation Index (DII) and SNHL were defined by data from the National Health and Nutrition Examination Survey (NHANES), and exploring their relationship. Using Mendelian randomization (MR) to analyze the relationship between 34 dietary preferences, 211 gut microbiota, and SNHL. Results Smooth curve fitting indicated that the risk of SNHL increased with increasing DII score when the DII score was greater than 5.15. MR results suggest that a diet including both oily and non-oily fish can substantially reduce the risk of SNHL. Additionally, six specific gut microbiota were found to have significant causal relationship with SNHL. Conclusion An inflammatory diet may increase the risk of developing SNHL. The observed relationship between fish consumption, gut microbiota, and SNHL suggests the existence of a gut-inner ear axis.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jiayi Nie
- Xi’an University of Technology, Xi’an, China
| | - Kaige Yan
- Northwest A&F University, Yangling, China
| | - Jing Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xin Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yuxiang Zhao
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
6
|
Wyss J, Raselli T, Wyss A, Telzerow A, Rogler G, Krupka N, Yilmaz B, Schmidt TSB, Misselwitz B. Development of non-alcoholic steatohepatitis is associated with gut microbiota but not with oxysterol enzymes CH25H, EBI2, or CYP7B1 in mice. BMC Microbiol 2024; 24:69. [PMID: 38418983 PMCID: PMC10900623 DOI: 10.1186/s12866-024-03195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Liver steatosis is the most frequent liver disorder and its advanced stage, non-alcoholic steatohepatitis (NASH), will soon become the main reason for liver fibrosis and cirrhosis. The "multiple hits hypothesis" suggests that progression from simple steatosis to NASH is triggered by multiple factors including the gut microbiota composition. The Epstein Barr virus induced gene 2 (EBI2) is a receptor for the oxysterol 7a, 25-dihydroxycholesterol synthesized by the enzymes CH25H and CYP7B1. EBI2 and its ligand control activation of immune cells in secondary lymphoid organs and the gut. Here we show a concurrent study of the microbial dysregulation and perturbation of the EBI2 axis in a mice model of NASH.We used mice with wildtype, or littermates with CH25H-/-, EBI2-/-, or CYP7B1-/- genotypes fed with a high-fat diet (HFD) containing high amounts of fat, cholesterol, and fructose for 20 weeks to induce liver steatosis and NASH. Fecal and small intestinal microbiota samples were collected, and microbiota signatures were compared according to genotype and NASH disease state.We found pronounced differences in microbiota composition of mice with HFD developing NASH compared to mice did not developing NASH. In mice with NASH, we identified significantly increased 33 taxa mainly belonging to the Clostridiales order and/ or the family, and significantly decreased 17 taxa. Using an Elastic Net algorithm, we suggest a microbiota signature that predicts NASH in animals with a HFD from the microbiota composition with moderate accuracy (area under the receiver operator characteristics curve = 0.64). In contrast, no microbiota differences regarding the studied genotypes (wildtype vs knock-out CH25H-/-, EBI2-/-, or CYP7B1-/-) were observed.In conclusion, our data confirm previous studies identifying the intestinal microbiota composition as a relevant marker for NASH pathogenesis. Further, no link of the EBI2 - oxysterol axis to the intestinal microbiota was detectable in the current study.
Collapse
Affiliation(s)
- Jacqueline Wyss
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Anja Telzerow
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Niklas Krupka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Petito-da-Silva TI, Villardi FM, Penna-de-Carvalho A, Mandarim-de-Lacerda CA, Souza-Mello V, Barbosa-da-Silva S. An Intestinal FXR Agonist Mitigates Dysbiosis, Intestinal Tight Junctions, and Inflammation in High-Fat Diet-Fed Mice. Mol Nutr Food Res 2024; 68:e2300148. [PMID: 38085111 DOI: 10.1002/mnfr.202300148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/23/2023] [Indexed: 03/01/2024]
Abstract
SCOPE To analyze the effects of fexaramine (FEX), as an intestinal FXR agonist, on the modulation of the intestinal microbiota and ileum of mice fed a high-fat (HF) diet. METHODS AND RESULTS Three-month-old C57Bl/6 male mice are divided into two groups and received a control (C, 10% of energy from lipids) or HF (50% of energy from lipids) diet for 12 weeks. They are subdivided into the C, C + FEX, HF, and HF + FEX groups. FEX is administered (FEX-5 mg kg-1 ) via orogastric gavage for three weeks. Body mass (BM), glucose metabolism, qPCR 16S rRNA gene expression, and ileum gene expression, bile acids (BAs), tight junctions (TJs), and incretin are analyzed. FEX reduces BM and glucose intolerance, reduces plasma lipid concentrations and the Firmicutes/Bacteroidetes ratio, increases the Lactobacillus sp. and Prevotella sp. abundance, and reduces the Escherichia coli abundance. Consequently, the ileal gene expression of Fxr-Fgf15, Tgr5-Glp1, and Cldn-Ocldn-Zo1 is increased, and Tlr4-Il6-Il1beta is decreased. CONCLUSION FEX stimulates intestinal FXR and improves dysbiosis, intestinal TJs, and the release of incretins, mitigating glucose intolerance and BM increases induced by an HF diet. However, FEX results in glucose intolerance, insulin resistance, and reduces intestinal TJs in a control group, thus demonstrating limitations to this dietary model.
Collapse
Affiliation(s)
- Tamiris Ingrid Petito-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Missiba Villardi
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Penna-de-Carvalho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Zhong J, Zhou D, Hu P, Cheng Y, Huang Y. Identification of the chemical composition of distiller's grain polyphenols and their effects on the fecal microbial community structure. Food Chem X 2023; 20:101001. [PMID: 38144726 PMCID: PMC10740074 DOI: 10.1016/j.fochx.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
Distiller grains are the main by-products of Baijiu production and are usually discarded, ignoring their abundant functional phytochemicals. The free and bound polyphenols from distiller grains were extracted and their potential effect on modulating fecal microbiota was investigated using in vitro fecal fermentation. The results showed that 34 polyphenols were quantified from distiller grains. The antioxidant activity was positively correlated with quercetin, myricetin, epicatechin, and naringenin. The abundance of Bifidobacterium, Ruminobacterium, Lactobacillus, Akkermansia, and butyrate-producing bacteria was enhanced by distiller's grain polyphenols by approximately 10.66-, 6.39-, 7.83-, 2.59-, and 7.74-fold, respectively. Moreover, the production of short-chain fatty acids (SCFAs), especially acetic, butyric, and propionic acid, was promoted (increased 1.99-, 1.71-, and 1.34-fold, respectively). Correlated analysis revealed quercetin, daidzein, and kaempferol as the key polyphenols by analyzing the effects on gut microbiota and SCFAs. This study could provide a reference for converting distiller grains into high-nutrient functional food ingredients and feeds.
Collapse
Affiliation(s)
- Jiang Zhong
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Die Zhou
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Penggang Hu
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuxin Cheng
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Yongguang Huang
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| |
Collapse
|
9
|
Qu D, Chen M, Zhu H, Liu X, Cui Y, Zhou W, Zhang M. Akkermansia muciniphila and its outer membrane protein Amuc_1100 prevent high-fat diet-induced nonalcoholic fatty liver disease in mice. Biochem Biophys Res Commun 2023; 684:149131. [PMID: 37866242 DOI: 10.1016/j.bbrc.2023.149131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. A. muciniphila and its outer membrane protein Amuc_1100 ameliorate metabolic disorders, enteritis, depression, and other diseases in mice. The NAFLD mouse model was established by feeding a high-fat diet (HFD) for 10 weeks. To assess the effect of A. muciniphila and Amuc_1100 on NAFLD, we used atorvastatin, a common lipid-lowering drug, as a positive control. A. muciniphila and Amuc_1100 significantly reduced body weight and serum ALT and AST levels, and improved serum lipid levels in NAFLD mice, which had similar effects to Ator. In addition, A. muciniphila and Amuc_1100 decreased the concentration of LPS in the serum and upregulated the mRNA expression of the colonic tight junction proteins. In the liver, A. muciniphila and Amuc_1100 significantly reduced the mRNA expression levels of nodular receptor protein 3 (NLRP3) and Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB), and the protein and mRNA expression levels inflammatory cytokines. At the genus level, Amuc_1100 treatment significantly reduced the abundance of Coriobacteriaceae_UCG-002 produced by the HFD. The abundances of Blautia, norank_f__Ruminococcaceae, Lachnoclostridium, GCA-900066575 and Lachnospiraceae_UCG-006 increased dramatically. Together, A. muciniphila and Amuc_1100 alleviate HFD-induced NAFLD by acting on the gut-liver axis and regulating gut microbes.
Collapse
Affiliation(s)
- Danni Qu
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, 230601, China
| | - Mengyun Chen
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, 230601, China
| | - Haiyan Zhu
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, 230601, China
| | - Xingyu Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Yanan Cui
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, 230601, China
| | - Wei Zhou
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, 230601, China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
10
|
Yin Q, Shi G, Zhu L. Association between gut microbiota and sensorineural hearing loss: a Mendelian randomization study. Front Microbiol 2023; 14:1230125. [PMID: 37915857 PMCID: PMC10616596 DOI: 10.3389/fmicb.2023.1230125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Background Several recent studies speculated that the gut microbiota is associated with sensorineural hearing loss (SNHL) and proposed the concept of the gut-inner ear axis. However, the causal effect of gut microbiota on SNHL is still unknown. In this study, we performed a two-sample Mendelian randomization (MR) analysis to estimate the causal effect of gut microbiota on SNHL. Methods Gut microbiota data were obtained from the largest available genome-wide association study (n = 18,340) conducted by the MiBioGen consortium. The summary statistics of SNHL were obtained from the FinnGen consortium R8 release data (28,310 cases and 302,750 controls). The causal effects were estimated with inverse-variance weighted, MR-Egger, and weighted median. Reverse Mendelian randomization analysis was performed on the bacteria that were found to be associated with SNHL in forward Mendelian randomization analysis. We then performed sensitivity analyses, including Cochran's Q-test, MR-Egger intercept test, MR-PRESSO, cML-MA-BIC, and leave-one-out analysis, to detect heterogeneity and pleiotropy. Results The inverse-variance weighted results suggested that Lachnospiraceae (UCG001) had a significant protective effect against SNHL (odds ratio = 0.85, 95% confidence interval: 0.78-0.93, P = 6.99 × 10-4). In addition, Intestinimonas (odds ratio = 0.89, 95% confidence interval: 0.82-0.97, P = 8.53 × 10-3) presented a suggestively protective effect on SNHL. Rikenellaceae (RC9gutgroup) (odds ratio = 1.08, 95% confidence interval: 1.02-1.15, P = 0.01) and Eubacterium (hallii group) (odds ratio = 1.12, 95% confidence interval: 1.00-1.24, P = 0.048) suggestively increase the risk of SNHL. The results of the reverse MR analysis showed that there is no significant causal effect of SNHL on the gut microbiota. No significant heterogeneity of instrumental variables or pleiotropy was detected. Conclusion The evidence that the four genera mentioned above are associated with SNHL supports the hypothesis of a gut-inner ear axis. Our study provides microbial markers for the prevention and treatment of SNHL, and further studies are needed to explore the mechanisms of the gut microbiome-inner ear axis in health and diseases.
Collapse
Affiliation(s)
- Qiuyuan Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Guolin Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lei Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
11
|
Shi L, Jin L, Huang W. Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells 2023; 12:1888. [PMID: 37508557 PMCID: PMC10377837 DOI: 10.3390/cells12141888] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal barrier is a precisely regulated semi-permeable physiological structure that absorbs nutrients and protects the internal environment from infiltration of pathological molecules and microorganisms. Bile acids are small molecules synthesized from cholesterol in the liver, secreted into the duodenum, and transformed to secondary or tertiary bile acids by the gut microbiota. Bile acids interact with bile acid receptors (BARs) or gut microbiota, which plays a key role in maintaining the homeostasis of the intestinal barrier. In this review, we summarize and discuss the recent studies on bile acid disorder associated with intestinal barrier dysfunction and related diseases. We focus on the roles of bile acids, BARs, and gut microbiota in triggering intestinal barrier dysfunction. Insights for the future prevention and treatment of intestinal barrier dysfunction and related diseases are provided.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
12
|
Liu M, Wang Z, Sun L, Wang Y, Li J, Ge G, Jia Y, Du S. Effects of different forage proportions in fermented total mixed ration on muscle fatty acid profile and rumen microbiota in lambs. Front Microbiol 2023; 14:1197059. [PMID: 37520349 PMCID: PMC10374311 DOI: 10.3389/fmicb.2023.1197059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Objective The objectives of this study were to evaluate the effects of different forage proportions in the fermented total mixed ration (FTMR) on growth performance, muscle fatty acid profile, and rumen microbiota of lambs. Methods Thirty 6-month-old small tail Han sheep × Ujumqin lambs with initial body weight (BW) of 27.8 ± 0.90 kg were selected for the test and divided into two groups of 15 sheep in each treatment (three pens per treatment and five lambs per pen) according to the principle of homogeneity. Two isoenergetic and isonitrogenous diets were formulated according to the NRC. The diet treatments were designed as (1) OH treatment containing 25% alfalfa hay and 35% oat hay, and (2) AH treatment containing 35% alfalfa hay with 25% oat hay. The forage-to-concentrate ratio for both diets was 65: 35 (DM basis). Three replicates were randomly selected from each treatment to determine growth performance, fatty acid profile and rumen bacterial communities in lambs. Results Results revealed no statistically significant (p > 0.05) differences in dry matter intake and average daily gain between the two diet groups. Cholesterol and intramuscular fat were significantly (p > 0.05) higher in the AH group, while no statistically significant difference (p > 0.05) was found in pH24 value. The muscle fatty acid compositions of lambs were obviously (p < 0.05) influenced by the diet treatments. Compared with the OH group, the C16:1, C17:0, and C20:3n6 contents were higher (p < 0.05) in the AH group, whereas the content of C18:1n9c, C20:1, C18:3n3, and C22:6n3 was obviously (p < 0.05) increased in the OH group. The monounsaturated fatty acid (MUFA) contents were significantly higher in the OH group, whereas no significant differences (p > 0.05) were detected in saturated fatty acid (SFA) and polyunsaturated fatty acid (PUFA) contents among the two diet treatments. Bacterial composition was generally separated into two clusters based on principal coordinate analysis, and the OH group had a higher Shannon index. The relative abundance at the genes level of the Rikenellaceae_RC9_gut_group was obviously (p < 0.05) increased in the AH group and the relative abundances of Prevotella_1, Fibrobacter, and Bacteroidales_UCG_001_unclassified were obviously (p < 0.05) enriched in the OH group. Integrated correlation analysis also underscored a possible link between the muscle fatty acid compositions and significantly altered rumen microbiota. Conclusion Overall, oat-based roughage in FTMR could promote a beneficial lipid pattern in the Longissimus lumborum muscles of lambs. These findings provide a potential insight into diet effects on fatty acid profile and the rumen microbiome of lambs, which may help make decisions regarding feeding.
Collapse
Affiliation(s)
- Mingjian Liu
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yu Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Junfeng Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuai Du
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
13
|
Huang Z, Ma Y, Xie Y, Zhao D, Li C. Carrageenan in meat: improvement in lipid metabolism due to Sirtuin1-mediated fatty acid oxidation and inhibited lipid bioavailability. Food Funct 2023. [PMID: 37219362 DOI: 10.1039/d3fo00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Kappa-carrageenan (κ-CGN) is widely used in the meat industry. However, its impact on the host metabolism is less revealed. The current study investigated the effect of κ-CGN in pork-based diets on the lipid metabolism of male C57BL/6J mice. The κ-CGN supplement significantly suppressed the increase in body weight by 6.79 g on an average. Supplement of κ-CGN in high-fat diets significantly upregulated the genes and protein expression of Sirtuin1, which was accompanied by the increased gene expression of downstream fatty acids oxidation (Cpt1a and Acadl). The sirtuin1-mediated improvement of lipid metabolism was negatively associated with the levels of bile acids, especially for deoxycholic acid, 3β-cholic acid, glycodeoxycholic acid and glycolithocholic acid. Moreover, κ-CGN in high-fat diets inhibited lipid digestion and absorption, being associated with the decrease in lipid accumulation and improved serum lipid profile. These results highlighted the role of κ-CGN in alleviating diet-induced adiposity by promoting energy expenditure and suppressing the bioavailability of ingested lipids.
Collapse
Affiliation(s)
- Zhiji Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| | - Yafang Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| | - Yunting Xie
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| | - Di Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| |
Collapse
|
14
|
Li C, Bassey AP, Zhou G. Molecular Changes of Meat Proteins During Processing and Their Impact on Quality and Nutritional Values. Annu Rev Food Sci Technol 2023; 14:85-111. [PMID: 36972162 DOI: 10.1146/annurev-food-052720-124932] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Meats are rich in lipids and proteins, exposing them to rapid oxidative changes. Proteins are essential to the human diet, and changes in the structure and functional attributes can greatly influence the quality and nutritional value of meats. In this article, we review the molecular changes of proteins during processing, their impact on the nutritional value of fresh and processed meat, the digestibility and bioavailability of meat proteins, the risks associated with high meat intake, and the preventive strategies employed to mitigate these risks. This information provides new research directions to reduce or prevent oxidative processes that influence the quality and nutritional values of meat.
Collapse
Affiliation(s)
- Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| |
Collapse
|
15
|
Li F, Wu X, Liang Y, Wu W. Potential implications of oxidative modification on dietary protein nutritional value: A review. Compr Rev Food Sci Food Saf 2023; 22:714-751. [PMID: 36527316 DOI: 10.1111/1541-4337.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
During food processing and storage, proteins are sensitive to oxidative modification, changing the structural characteristics and functional properties. Recently, the impact of dietary protein oxidation on body health has drawn increasing attention. However, few reviews summarized and highlighted the impact of oxidative modification on the nutritional value of dietary proteins and related mechanisms. Therefore, this review seeks to give an updated discussion of the effects of oxidative modification on the structural characteristics and nutritional value of dietary proteins, and elucidate the interaction with gut microbiota, intestinal tissues, and organs. Additionally, the specific mechanisms related to pathological conditions are also characterized. Dietary protein oxidation during food processing and storage change protein structure, which further influences the in vitro digestion properties of proteins. In vivo research demonstrates that oxidized dietary proteins threaten body health via complicated pathways and affect the intestinal microenvironment via gut microbiota, metabolites, and intestinal morphology. This review highlights the influence of oxidative modification on the nutritional value of dietary proteins based on organs and the intestinal tract, and illustrates the necessity of appropriate experimental design for comprehensively exploring the health consequences of oxidized dietary proteins.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| |
Collapse
|
16
|
Zhao H, Gao X, Liu Z, Zhang L, Fang X, Sun J, Zhang Z, Sun Y. Sodium Alginate Prevents Non-Alcoholic Fatty Liver Disease by Modulating the Gut-Liver Axis in High-Fat Diet-Fed Rats. Nutrients 2022; 14:nu14224846. [PMID: 36432531 PMCID: PMC9697635 DOI: 10.3390/nu14224846] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Previous studies have suggested that the sodium alginate (SA) is beneficial for the treatment of non-alcoholic fatty liver disease (NAFLD), while the potential mechanisms are largely unknown. The present study aimed to clarify the effects and potential mechanisms of SA in preventing NAFLD via the gut−liver axis. Thirty-two male Sprague−Dawley rats were randomly divided into four groups: normal control group (NC); high-fat diet group (HFD); HFD with 50 mg/kg/d sodium alginate group (LSA); HFD with 150 mg/kg/d sodium alginate group (HSA). After 16 weeks, the rats were scarified to collect blood and tissues. The results indicated that SA significantly reduced their body weight, hepatic steatosis, serum triglyceride (TG), alanine transaminase (ALT) and tumor necrosis factor α (TNF-α) levels and increased serum high-density lipoprotein-cholesterol (HDL-C) levels in comparison with HFD group (p < 0.05). The elevated mRNA and protein expression of genes related to the toll-like receptor 4 (TLR-4)/nuclear factor-kappa B (NF-κB)/nod-like receptor protein 3 (NLRP3) inflammatory signaling pathway in the liver of HFD-fed rats was notably suppressed by SA. In terms of the gut microbiota, the LSA group showed a significantly higher fecal abundance of Oscillospiraceae_UCG_005, Butyricicoccaceae_UCG_009 and Colidextribacter compared with the HFD group (p < 0.05). The rats in the HSA group had a higher abundance of unclassified_Lachnospiraceae, Colidextribacter and Oscillibacter compared with the HFD-associated gut community (p < 0.05). In addition, rats treated with SA showed a significant increase in fecal short chain fatty acids (SCFAs) levels and a decline in serum lipopolysaccharide (LPS) levels compared with the HFD group (p < 0.05). Moreover, the modulated bacteria and microbial metabolites were notably correlated with the amelioration of NAFLD-related indices and activation of the hepatic TLR4/NF-κB/NLRP3 pathway. In conclusion, SA prevented NAFLD and the potential mechanism was related to the modulation of the gut−liver axis.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhizuo Liu
- Women and Children’s Hospital Affiliated to Qingdao University, Qingdao 266071, China
| | - Lei Zhang
- Qingdao Institute for Food and Drug Control, Qingdao 266071, China
| | - Xuan Fang
- Qingdao Institute for Food and Drug Control, Qingdao 266071, China
| | - Jianping Sun
- Qingdao Centers for Disease Control and Prevention, Qingdao 266033, China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Food Safety Toxicology Research and Evaluation, Beijing 100191, China
- Correspondence: (Z.Z.); (Y.S.); Tel.: +86-10-82801575 (Z.Z.); +86-138-63980712 (Y.S.)
| | - Yongye Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
- Correspondence: (Z.Z.); (Y.S.); Tel.: +86-10-82801575 (Z.Z.); +86-138-63980712 (Y.S.)
| |
Collapse
|
17
|
Pezzino S, Sofia M, Faletra G, Mazzone C, Litrico G, La Greca G, Latteri S. Gut-Liver Axis and Non-Alcoholic Fatty Liver Disease: A Vicious Circle of Dysfunctions Orchestrated by the Gut Microbiome. BIOLOGY 2022; 11:1622. [PMID: 36358323 PMCID: PMC9687983 DOI: 10.3390/biology11111622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 09/24/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent, multifactorial, and poorly understood liver disease with an increasing incidence worldwide. NAFLD is typically asymptomatic and coupled with other symptoms of metabolic syndrome. The prevalence of NAFLD is rising in tandem with the prevalence of obesity. In the Western hemisphere, NAFLD is one of the most prevalent causes of liver disease and liver transplantation. Recent research suggests that gut microbiome dysbiosis may play a significant role in the pathogenesis of NAFLD by dysregulating the gut-liver axis. The so-called "gut-liver axis" refers to the communication and feedback loop between the digestive system and the liver. Several pathological mechanisms characterized the alteration of the gut-liver axis, such as the impairment of the gut barrier and the increase of the intestinal permeability which result in endotoxemia and inflammation, and changes in bile acid profiles and metabolite levels produced by the gut microbiome. This review will explore the role of gut-liver axis disruption, mediated by gut microbiome dysbiosis, on NAFLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| |
Collapse
|
18
|
Litchi thaumatin-like protein induced the liver inflammation and altered the gut microbiota community structure in mice. Food Res Int 2022; 161:111868. [DOI: 10.1016/j.foodres.2022.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
|
19
|
Ximenes TVN, Carvalho R, Bonfá IS, Santos VS, Candeloro L, Alves FM, Silva DB, Carollo CA, Gielow KDCF, Silva-Filho SE, Toffoli-Kadri MC. Baccharis trimera Infusion Reduces Macrophages Activation and High-Fat Diet-Induced Metabolic Disorders in Mice. Pharmaceuticals (Basel) 2022; 15:ph15101258. [PMID: 36297370 PMCID: PMC9611608 DOI: 10.3390/ph15101258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of this study is to evaluate the efficacy of Baccharis trimera infusion on high-fat diet-induced metabolic disorders in mice and macrophages activation. This study evaluated obesity, insulin resistance, dyslipidemia and hepatic steatosis induced by a high-fat diet in Swiss mice. Cellular parameters in macrophages, such as cell viability (MTT), the production and release of nitric oxide (NO) and hydrogen peroxide (H2O2), cell spreading, cell adhesion and phagocytosis were determined. Our results showed that treatment with B. trimera prevented the mentioned conditions, except for the production of hydrogen peroxide. B. trimera prevented the development of obesity and associated comorbidities, as well as activation of macrophages. In conclusion, B. trimera is able to prevent obesity and metabolic disorders and macrophages activation, minimizing inflammation and validating the popular use of this plant tea.
Collapse
Affiliation(s)
| | - Raquel Carvalho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Iluska Senna Bonfá
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Vanessa Samúdio Santos
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Luciane Candeloro
- Biosciences Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Flávio Macedo Alves
- Biosciences Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Denise Brentan Silva
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Carlos Alexandre Carollo
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Karine de Cássia Freitas Gielow
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Saulo Euclides Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Mônica Cristina Toffoli-Kadri
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
- Correspondence:
| |
Collapse
|
20
|
Javaid A, Wang F, Horst EA, Diaz-Rubio ME, Wang LF, Baumgard LH, McFadden JW. Effects of acute intravenous lipopolysaccharide administration on the plasma lipidome and metabolome in lactating Holstein cows experiencing hyperlipidemia. Metabolomics 2022; 18:75. [PMID: 36125563 DOI: 10.1007/s11306-022-01928-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
Abstract
INTRODUCTION The effects of lipopolysaccharides (i.e., endotoxin; LPS) on metabolism are poorly defined in lactating dairy cattle experiencing hyperlipidemia. OBJECTIVES Our objective was to explore the effects of acute intravenous LPS administration on metabolism in late-lactation Holstein cows experiencing hyperlipidemia induced by intravenous triglyceride infusion and feed restriction. METHODS Ten non-pregnant lactating Holstein cows (273 ± 35 d in milk) were administered a single bolus of saline (3 mL of saline; n [Formula: see text] 5) or LPS (0.375 [Formula: see text]g of LPS/kg of body weight; n [Formula: see text] 5). Simultaneously, cows were intravenously infused a triglyceride emulsion and feed restricted for 16 h to induce hyperlipidemia in an attempt to model the periparturient period. Blood was sampled at routine intervals. Changes in circulating total fatty acid concentrations and inflammatory parameters were measured. Plasma samples were analyzed using untargeted lipidomics and metabolomics. RESULTS Endotoxin increased circulating serum amyloid A, LPS-binding protein, and cortisol concentrations. Endotoxin administration decreased plasma lysophosphatidylcholine (LPC) concentrations and increased select plasma ceramide concentrations. These outcomes suggest modulation of the immune response and insulin action. Lipopolysaccharide decreased the ratio of phosphatidylcholine to phosphatidylethanomanine, which potentially indicate a decrease in the hepatic activation of phosphatidylethanolamine N-methyltransferase and triglyceride export. Endotoxin administration also increased plasma concentrations of pyruvic and lactic acids, and decreased plasma citric acid concentrations, which implicate the upregulation of glycolysis and downregulation of the citric acid cycle (i.e., the Warburg effect), potentially in leukocytes. CONCLUSION Acute intravenous LPS administration decreased circulating LPC concentrations, modified ceramide and glycerophospholipid concentrations, and influenced intermediary metabolism in dairy cows experiencing hyperlipidemia.
Collapse
Affiliation(s)
- Awais Javaid
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Feiran Wang
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
- China Agricultural University, Beijing, 100193, China
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - M Elena Diaz-Rubio
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Lin F Wang
- Henan Agricultural University, Zhengzhou, 450002, China
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Joseph W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Guo W, Luo L, Meng Y, Chen W, Yu L, Zhang C, Qiu Z, Cao P. Luteolin alleviates methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by modulating host serum metabolome and gut microbiome. Front Nutr 2022; 9:936237. [PMID: 35990349 PMCID: PMC9389599 DOI: 10.3389/fnut.2022.936237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purpose Previous studies have indicated the protective effects of luteolin against non-alcoholic steatohepatitis (NASH), but the definite underlying mechanism still remains unclear. This study aimed to explore the metabolomic and metagenomic signatures of NASH with luteolin supplementation. Experimental approach Mice were fed with a methionine–choline-deficient (MCD) diet containing 0.05% luteolin for 6 weeks. NASH severity was determined based on the liver histological observations, serum and hepatic biochemical measurements. Targeted metabolomics was conducted to identify differential metabolites in mice serum. 16S rRNA sequencing was conducted to assess the gut microbiota composition and function in mice colon. Results In detail, luteolin treatment significantly alleviated MCD diet-induced hepatic lipid deposition, liver function damage, and oxidative stress. Targeted plasma metabolomics revealed that 5-hydroxyindole, LPE (0:0/22:5), indole 3-phosphate, and N-phenylacetylphenylalanine were remarkably elevated, and homogentisic acid, thiamine, KN-93, PC (16:1e/8, 9-EpETE), carnitine C9:1-OH, FFA (18:4) and carnitine C8:1 were significantly decreased in NASH group as compared to normal group, which could be profoundly reversed after luteolin treatment. 16S rRNA sequencing indicated that luteolin supplementation significantly increased Erysipelatoclostridium and Pseudomonas as well as decreased Faecalibaculum at genus level. Most importantly, a negative association between thiamine and Faecalibaculum was observed based on Spearman's correlation analysis, which may play an important role in the preventive effects of luteolin against NASH. Conclusion Collectively, luteolin may alleviate the NASH by modulating serum metabolome and gut microbiome, which supports its use as a dietary supplement for NASH prevention.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Lixiu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Cong Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
22
|
Li F, Kang Z, Wu X, Wu W. Rice bran protein oxidation induced by rancidity alters the gut microbiota and intestinal permeability in mice. Food Funct 2022; 13:5430-5441. [PMID: 35475442 DOI: 10.1039/d1fo03308e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary protein is crucial for maintaining body growth and plays a significant role in shaping the gut microbiota. Rice bran (RB) rancidity can induce rice bran protein (RBP) oxidation and change the structural characteristics, which further impacts the functional properties and nutritional value of RBP. Therefore, the impact of rancidity-induced RBP oxidation on the gut microbiota and intestinal permeability was evaluated. Oxidized RBP significantly altered the α-diversity of the gut microbiota and impacted the microbial profile at phylum and genus levels, and moderately oxidized RBP caused increasing abundance of Akkermansia and reducing abundance of Desulfovibrio. Different oxidation extents of RBP induced different biomarkers, indicating that the composition of the gut microbiota presented an oxidation extent-dependent pattern. Oxidized RBP also significantly promoted the level of formic acid and reduced the level of isovaleric acid. Moreover, oxidized RBP significantly upregulated the expression of genes related to tight junction proteins. The phenomena indicated that oxidized RBP significantly changed the composition of the gut microbiota and improved the barrier function of the intestine, while showing fewer effects on the production of short-chain fatty acids (SCFAs). The research provides a theoretical reference for understanding the effects of plant protein oxidation on intestinal health during food storage and processing.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China. .,National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, P. R. China
| | - Zhuoran Kang
- College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China. .,National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, P. R. China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China. .,National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, P. R. China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China. .,National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, P. R. China
| |
Collapse
|
23
|
Xie Y, Ma Y, Cai L, Jiang S, Li C. Reconsidering Meat Intake and Human Health: A Review of Current Research. Mol Nutr Food Res 2022; 66:e2101066. [PMID: 35199948 DOI: 10.1002/mnfr.202101066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Meat consumption is gradually increasing and its impact on health has attracted widespread attention, resulting in epidemiological studies proposing a reduction in meat and processed meat intake. This review briefly summarizes recent advances in understanding the effects of meat or processed meat on human health, as well as the underlying mechanisms. Meat consumption varies widely among individuals, populations, and regions, with higher consumption in developed countries than in developing countries. However, increasing meat consumption may not be the main cause of increasing incidence of chronic disease, since the development of chronic disease is a complex physiological process that involves many factors, including excessive total energy intake and changes in food digestion processes, gut microbiota composition, and liver metabolism. In comparison, unhealthy dietary habits and a sedentary lifestyle with decreasing energy expenditure are factors more worthy of reflection. Meat and meat products provide high-value protein and many key essential micronutrients. In short, as long as excessive intake and overprocessing of meats are avoided, meat remains an indispensable source of nutrition for human health.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yafang Ma
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linlin Cai
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
24
|
A review on mycoprotein: History, nutritional composition, production methods, and health benefits. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Dietary Alaska Pollock Protein Attenuates the Experimental Colitis Induced by Dextran Sulfate Sodium via Regulation of Gut Microbiota and Its Metabolites in Mice. Metabolites 2022; 12:metabo12010044. [PMID: 35050166 PMCID: PMC8779829 DOI: 10.3390/metabo12010044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Protein derived from fish has not only nutritional properties but also health-promoting properties. Few studies have examined the effect of dietary Alaska pollock protein (APP) on the anticolitis effect reported to be associated with metabolic syndrome (MetS). This study investigated the effect of APP intake on colitis symptoms, gut microbiota, and its metabolites in the experimental colitis mouse model induced by dextran sulfate sodium (DSS). Male C57BL/6J mice were divided into three groups: (1) DSS-untreated mice fed an American Institute of Nutrition (AIN) 93G diet (protein source is casein), (2) DSS-treated mice fed an AIN93G diet, and (3) DSS-treated mice fed an APP diet. After the mice were fed the diets for 21 days, experimental colitis was induced by three cycles of 2% DSS administration for 5 days followed by washouts over the course of 5 days. APP-reduced body weight loss increased the disease activity index, and elevated spleen weight and alleviated colon length shortening and colonic tissue damage. Furthermore, APP altered the structure and composition of the microbiota and short-chain fatty acids in feces. Since APP intake alleviates experimental colitis induced by DSS administration through alterations in the gut microbiota and its metabolites, we deduced that APP would inhibit MetS progression via colitis suppression.
Collapse
|
26
|
Liu Y, Huang H, Xu Z, Xue Y, Zhang D, Zhang Y, Li W, Li X. Fucoidan protects pancreas and improves glucose metabolism through inhibiting inflammation and endoplasmic reticulum stress in T2DM rats. Food Funct 2022; 13:2693-2709. [DOI: 10.1039/d1fo04164a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is important to maintain the normal function of pancreas in the prevention and intervention of type 2 diabetes mellitus (T2DM). This study was undertaken to explore the protective effects...
Collapse
|
27
|
Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives. Biomolecules 2021; 12:biom12010056. [PMID: 35053205 PMCID: PMC8774162 DOI: 10.3390/biom12010056] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.
Collapse
|
28
|
Zhu W, Xu Y, Liu J, Chen D, Zhang H, Yang Z, Zhou X. Effects of Dietary Pork Fat Cooked Using Different Methods on Glucose and Lipid Metabolism, Liver Inflammation and Gut Microbiota in Rats. Foods 2021; 10:foods10123030. [PMID: 34945581 PMCID: PMC8701267 DOI: 10.3390/foods10123030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
Cooking may affect the nutritional value of pork fat, and, nowadays, people have been paying an increasing amount of attention to the method of cooking. In this study, the effects of dietary pork fat cooked using different methods on body metabolism and intestinal microbes were studied in rats. Fat was extracted from pork belly meat cooked using three methods: braising (braising cooking method, BCM), stewing (SCM) and deep fat frying (DCM). The three types of pork fat were added to animal feed, and the effects of each on body weight, glucose and lipid metabolism, liver inflammation and intestinal microbes in rats were compared with the effects of soybean oil-treated feed (SO) and a blank control (BC). Rats in all three groups fed with cooked pork fat exhibited significant increases in body weight compared with the controls across the experimental feeding period. Furthermore, all three types of pork fat led to significant changes in the serum concentrations of triglycerides (TG) and total cholesterol (TC) relative to the controls, with the greatest increases in TG and TC in the BCM and DCM groups, respectively. All three types of pork fat led to significant decreases in serum high-density lipoprotein cholesterol concentrations relative to the controls, with the lowest concentration in the SCM group. All three types of pork fat also led to significant increases in low-density lipoprotein cholesterol concentrations relative to the controls, with the smallest increase in the DCM group. Rats in the SCM group had the highest level of liver fat deposition, followed by those in the BCM, DCM, SO and BC groups. Compared with the controls, the three groups fed with different types of cooked pork fat had significantly lower hepatic expression of nuclear transcription factor kappa B (NF-κB). The expression levels of NF-κB in the DCM and SO groups were significantly lower than those in the other groups. The abundance of Proteobacteria species in the intestines of rats was significantly lower in the BC group than in the other groups fed with cooked pork fat, and the abundance of Bacteroidetes species was significantly lower in the BCM, SCM and DCM groups than in the BC and SO groups. From the changes in the abundance of Firmicutes and Bacteroides, pork fat in the three cooking methods has a certain potential to promote the production of body obesity.
Collapse
Affiliation(s)
- Wenzheng Zhu
- Engineering Research Center for Huaiyang Cuisin of Jiangsu Province, College of Tourism and Culinary, Yangzhou University, Yangzhou 225127, China; (W.Z.); (Y.X.); (X.Z.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225127, China
| | - Yan Xu
- Engineering Research Center for Huaiyang Cuisin of Jiangsu Province, College of Tourism and Culinary, Yangzhou University, Yangzhou 225127, China; (W.Z.); (Y.X.); (X.Z.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (J.L.); (D.C.)
| | - Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (J.L.); (D.C.)
| | - Huimin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- Correspondence: ; Tel.: +86-514-8797-9307
| | - Xiaoyan Zhou
- Engineering Research Center for Huaiyang Cuisin of Jiangsu Province, College of Tourism and Culinary, Yangzhou University, Yangzhou 225127, China; (W.Z.); (Y.X.); (X.Z.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
29
|
Nakanishi T, Fukui H, Wang X, Nishiumi S, Yokota H, Makizaki Y, Tanaka Y, Ohno H, Tomita T, Oshima T, Miwa H. Effect of a High-Fat Diet on the Small-Intestinal Environment and Mucosal Integrity in the Gut-Liver Axis. Cells 2021; 10:3168. [PMID: 34831391 PMCID: PMC8622719 DOI: 10.3390/cells10113168] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Although high-fat diet (HFD)-related dysbiosis is involved in the development of steatohepatitis, its pathophysiology especially in the small intestine remains unclear. We comprehensively investigated not only the liver pathology but also the microbiome profile, mucosal integrity and luminal environment in the small intestine of mice with HFD-induced obesity. C57BL/6J mice were fed either a normal diet or an HFD, and their small-intestinal contents were subjected to microbial 16S rDNA analysis. Intestinal mucosal permeability was evaluated by FITC-dextran assay. The levels of bile acids in the small-intestinal contents were measured by liquid chromatography/mass spectrometry. The expression of tight junction molecules, antimicrobial peptides, lipopolysaccharide and macrophage marker F4/80 in the small intestine and/or liver was examined by real-time RT-PCR and immunohistochemistry. The abundance of Lactobacillus was markedly increased and that of Clostridium was drastically decreased in the small intestine of mice fed the HFD. The level of conjugated taurocholic acid was significantly increased and those of deconjugated cholic acid/secondary bile acids were conversely decreased in the small-intestinal contents. The expression of occludin, antimicrobial Reg IIIβ/γ and IL-22 was significantly decreased in the small intestine of HFD-fed mice, and the intestinal permeability was significantly accelerated. Infiltration of lipopolysaccharide was significantly increased in not only the small-intestinal mucosa but also the liver of HFD-fed mice, and fat drops were apparently accumulated in the liver. Pathophysiological alteration of the luminal environment in the small intestine resulting from a HFD is closely associated with minimal inflammation involving the gut-liver axis through disturbance of small-intestinal mucosal integrity.
Collapse
Affiliation(s)
- Takashi Nakanishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.N.); (X.W.); (T.T.); (T.O.); (H.M.)
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.N.); (X.W.); (T.T.); (T.O.); (H.M.)
| | - Xuan Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.N.); (X.W.); (T.T.); (T.O.); (H.M.)
| | - Shin Nishiumi
- Department of Omics Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
| | - Haruka Yokota
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 651-2242, Japan; (H.Y.); (Y.M.); (Y.T.); (H.O.)
| | - Yutaka Makizaki
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 651-2242, Japan; (H.Y.); (Y.M.); (Y.T.); (H.O.)
| | - Yoshiki Tanaka
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 651-2242, Japan; (H.Y.); (Y.M.); (Y.T.); (H.O.)
| | - Hiroshi Ohno
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 651-2242, Japan; (H.Y.); (Y.M.); (Y.T.); (H.O.)
| | - Toshihiko Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.N.); (X.W.); (T.T.); (T.O.); (H.M.)
| | - Tadayuki Oshima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.N.); (X.W.); (T.T.); (T.O.); (H.M.)
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.N.); (X.W.); (T.T.); (T.O.); (H.M.)
| |
Collapse
|
30
|
Plaza-Díaz J, Solis-Urra P, Aragón-Vela J, Rodríguez-Rodríguez F, Olivares-Arancibia J, Álvarez-Mercado AI. Insights into the Impact of Microbiota in the Treatment of NAFLD/NASH and Its Potential as a Biomarker for Prognosis and Diagnosis. Biomedicines 2021; 9:145. [PMID: 33546191 PMCID: PMC7913217 DOI: 10.3390/biomedicines9020145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver illness associated with obesity and metabolic disorders, such as hypertension, dyslipidemia, or type 2 diabetes mellitus. A more severe type of NAFLD, non-alcoholic steatohepatitis (NASH), is considered an ongoing global health threat and dramatically increases the risks of cirrhosis, liver failure, and hepatocellular carcinoma. Several reports have demonstrated that liver steatosis is associated with the elevation of certain clinical and biochemical markers but with low predictive potential. In addition, current imaging methods are inaccurate and inadequate for quantification of liver steatosis and do not distinguish clearly between the microvesicular and the macrovesicular types. On the other hand, an unhealthy status usually presents an altered gut microbiota, associated with the loss of its functions. Indeed, NAFLD pathophysiology has been linked to lower microbial diversity and a weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defense and inflammation via toll-like receptor signaling. Moreover, this activation of inflammation in hepatocytes induces progression from simple steatosis to NASH. In the present review, we aim to: (a) summarize studies on both human and animals addressed to determine the impact of alterations in gut microbiota in NASH; (b) evaluate the potential role of such alterations as biomarkers for prognosis and diagnosis of this disorder; and (c) discuss the involvement of microbiota in the current treatment for NAFLD/NASH (i.e., bariatric surgery, physical exercise and lifestyle, diet, probiotics and prebiotics, and fecal microbiota transplantation).
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Patricio Solis-Urra
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile;
| | - Jerónimo Aragón-Vela
- Department of Nutrition, Exercise, and Sport (NEXS), University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Fernando Rodríguez-Rodríguez
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
| | - Jorge Olivares-Arancibia
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
- Grupo AFySE, Investigación en Actividad Física y Salud Escolar, Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8370035, Chile
| | - Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain
| |
Collapse
|