1
|
Chen S, Pan L, He A, Wang Y, Xiao N, Luo H, Yao Y, Sun H. Detection of novel organophosphorus flame retardants and plasticizers in children urines: Associations with oxidative stress damage and thyroid nodule risk. ENVIRONMENT INTERNATIONAL 2025; 199:109445. [PMID: 40250240 DOI: 10.1016/j.envint.2025.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/25/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
Organophosphorus flame retardants and plasticizers (OPFRs) are prevalent and raise health concerns due to their endocrine-disrupting properties. Clinically detectable thyroid nodules are less common in children than in adults but pose a higher malignancy risk. The effects of OPFRs on children's thyroid nodules and their relation to oxidative stress remain unknown. This cross-sectional study analyzed concentrations of seven OPFRs and three oxidative stress biomarkers (OSBs), namely 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG), malondialdehyde, and o, o'-dityrosine (diY) in 521 urine samples from children in a coastal urbanized region. Median creatinine-adjusted levels of the seven OPFRs ranged from 0.02 to 0.64 μg/g. Triphenyl phosphine oxide (TPPO) was detected for the first time in children urine. Diphenyl phosphate (DPHP) and isopropyl phenyl phosphate (ip-PPP) were frequently detected, with median levels of 0.46 μg/g and 0.64 μg/g, respectively. Multiple linear regression analyses and mixture models demonstrated that seven OPFRs were positively associated with three OSBs. Furthermore, logistic regression analysis revealed that urinary TPPO and tris(1-chloro-2-propyl) phosphate (TCIPP) were associated with thyroid nodule risk in children, and TPPO and TCIPP further demonstrated sex-dependent association with thyroid nodule risk particularly in girls, although OSBs did not show significant mediating effects. Overall, further studies are warranted to explore the potential mechanisms linking thyroid health with OPFRs exposure and oxidative stress, particularly in children.
Collapse
Affiliation(s)
- Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Liyang Pan
- Dalian Center for Disease Control and Prevention, Dalian, Liaoning Province 116000, China.
| | - Ana He
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yulong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Nan Xiao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Ding YY, Lan J, Fang Y, Pan Y, Gu Z, Xue J, Yang Y, Jiang M, Ge Y, Shen Q. Dityrosine Aggravates Hepatic Insulin Resistance in Obese Mice by Altering Gut Microbiota and the LPS/TLR4/NF-κB Inflammatory Pathway. Mol Nutr Food Res 2023; 67:e2300373. [PMID: 37726250 DOI: 10.1002/mnfr.202300373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Indexed: 09/21/2023]
Abstract
SCOPE Dityrosine is the main product of protein oxidation, which has been proved to be a threat to human health. This study aims to investigate whether dityrosine exacerbates insulin resistance by inducing gut flora disturbance and associated inflammatory responses. METHODS AND RESULTS Mice fed with normal diet or high-fat diet (HFD) received daily gavage of dityrosine (320 µg kg-1 BW) or saline for consecutive 13 weeks. The effects of dityrosine on gut microbiota are verified by in vitro fermentation using fecal microbiota from db/m mice and db/db mice. As a result, dityrosine causes the insulin resistance in mice fed normal diet, and aggravates the effects of HFD on insulin sensitivity. Dityrosine increases the levels of lipopolysaccharide (LPS), lipopolysaccharide-binding protein (LBP), toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8) but decreases levels of interleukin-10 (IL-10) in the plasma of CON and HFD-fed mice. The changes of gut flora composition caused by dityrosine are significantly correlated with the changes of inflammatory biomarkers. CONCLUSION The effects of dityrosine on insulin resistance may be attributed to the reshaping of the gut microbiota composition and promoting the activity of the LPS/TLR4/NF-κB inflammatory pathway in HFD-induced obese individuals.
Collapse
Affiliation(s)
- Yin-Yi Ding
- Food Safety Key Laboratory of Zhejiang Province, Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Jinchi Lan
- Food Safety Key Laboratory of Zhejiang Province, Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yumeng Fang
- Food Safety Key Laboratory of Zhejiang Province, Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuxiang Pan
- Food Safety Key Laboratory of Zhejiang Province, Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhenyu Gu
- Food Safety Key Laboratory of Zhejiang Province, Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jing Xue
- Food Safety Key Laboratory of Zhejiang Province, Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mengqi Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yujun Ge
- Central blood station of Jiaxing, Jiaxing, 314000, China
| | - Qing Shen
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310018, China
| |
Collapse
|
3
|
Wang Z, Wu Z, Tu J, Xu B. Muscle food and human health: A systematic review from the perspective of external and internal oxidation. Trends Food Sci Technol 2023; 138:85-99. [DOI: 10.1016/j.tifs.2023.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Li F, Wu X, Liang Y, Wu W. Potential implications of oxidative modification on dietary protein nutritional value: A review. Compr Rev Food Sci Food Saf 2023; 22:714-751. [PMID: 36527316 DOI: 10.1111/1541-4337.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
During food processing and storage, proteins are sensitive to oxidative modification, changing the structural characteristics and functional properties. Recently, the impact of dietary protein oxidation on body health has drawn increasing attention. However, few reviews summarized and highlighted the impact of oxidative modification on the nutritional value of dietary proteins and related mechanisms. Therefore, this review seeks to give an updated discussion of the effects of oxidative modification on the structural characteristics and nutritional value of dietary proteins, and elucidate the interaction with gut microbiota, intestinal tissues, and organs. Additionally, the specific mechanisms related to pathological conditions are also characterized. Dietary protein oxidation during food processing and storage change protein structure, which further influences the in vitro digestion properties of proteins. In vivo research demonstrates that oxidized dietary proteins threaten body health via complicated pathways and affect the intestinal microenvironment via gut microbiota, metabolites, and intestinal morphology. This review highlights the influence of oxidative modification on the nutritional value of dietary proteins based on organs and the intestinal tract, and illustrates the necessity of appropriate experimental design for comprehensively exploring the health consequences of oxidized dietary proteins.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| |
Collapse
|
5
|
Li B, Yang Y, Ding Y, Ge Y, Xu Y, Xie Y, Shi Y, Le G. Dityrosine in food: A review of its occurrence, health effects, detection methods, and mitigation strategies. Compr Rev Food Sci Food Saf 2023; 22:355-379. [PMID: 36382862 DOI: 10.1111/1541-4337.13071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022]
Abstract
Protein and amino acid oxidation in food products produce many new compounds, of which the reactive and toxic compound dityrosine, derived from oxidized tyrosine, is the most widely studied. The high reactivity of dityrosine enables this compound to induce oxidative stress and disrupt thyroid hormone function, contributing to the pathological processes of several diseases, such as obesity, diabetes, cognitive dysfunction, aging, and age-related diseases. From the perspective of food safety and human health, protein-oxidation products in food are the main concern of consumers, health management departments, and the food industry. This review highlights the latest research on the formation pathways, toxicity, detection methods, occurrence in food, and mitigation strategies for dityrosine. Furthermore, the control of dityrosine in family cooking and food-processing industry has been discussed. Food-derived dityrosine primarily originates from high-protein foods, such as meat and dairy products. Considering its toxicity, combining rapid high sensitivity dityrosine detection techniques with feasible control methods could be an effective strategy to ensure food safety and maintain human health. However, the current dityrosine detection and mitigation strategies exhibit some inherent characteristics and limitations. Therefore, developing technologies for rapid and effective dityrosine detection and control at the industrial level is necessary.
Collapse
Affiliation(s)
- Bowen Li
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, 450001, China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Yuhui Yang
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, 450001, China
| | - Yinyi Ding
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, China
| | - Yueting Ge
- College of Life Science, Xinyang Normal University, Xinyang, Henan Province, 464000, China
| | - Yuncong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yanli Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, 450001, China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| |
Collapse
|
6
|
Hu L, Chen H, Ju M, Hou A, Xie K, Gao A. Self-Assembled Nanodot Actuator with Changeable Fluorescence by π-π Stacking Force Based on a Four-Armed Foldable Phthalocyanine Molecule and Its Supersensitive Molecular Recognition. NANO LETTERS 2022; 22:6383-6390. [PMID: 35866680 DOI: 10.1021/acs.nanolett.2c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Designing intelligent molecules and smart nanomaterials as molecular machines is becoming increasingly important in the nanoscience fields. Herein, we report a nanodot actuator with changeable fluorescence by π-π stacking force based on a four-armed foldable phthalocyanine molecule. The assembled nanodot possessed a three-dimensional molecular space structure and multiple supramolecular interactions. The arms of the nanodot could fold and open intelligently in response to environmental molecular stimuli such as natural plant mimosa, which could lead to multiple variable fluorescence emissions. The nanodot was highly sensitive to the biomolecule thyroxine at the molecular level. The accurate molecular recognition and the changeable fluorescence conversion of the nanodot were attributed to multiple supramolecular interactions, including photoinduced electron transfer (PET), intramolecular fluorescence resonance energy transfer (FRET), and π-π stacking of the nanodots, resulting in an intelligent "nanodot machine with folding arms". The self-assembled nanodot actuators with changeable fluorescence have potential applications in advanced intelligent material fields.
Collapse
Affiliation(s)
- Liu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P R China
| | - Huanghuang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, P R China
| | - Meng Ju
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, P R China
| | - Aiqin Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, P R China
| | - Kongliang Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Aiqin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
7
|
Tang X, Sun Y, Li Y, Ma S, Zhang K, Chen A, Lyu Y, Yu R. Sodium butyrate protects against oxidative stress in high-fat-diet-induced obese rats by promoting GSK-3β/Nrf2 signaling pathway and mitochondrial function. J Food Biochem 2022; 46:e14334. [PMID: 35848364 DOI: 10.1111/jfbc.14334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Sodium butyrate (NaB), obtained by fermenting dietary fiber via intestinal microflora, was recently shown to improve the activity of some antioxidant enzymes in vivo. This study aims to investigate the term changes of mitochondrial energy metabolism and redox homeostasis in skeletal muscles and clarify the regulatory mechanism and dose effect of NaB on skeletal muscle. Male Sprague-Dawley rats were divided into the control group, obesity-prone (OP) group and obesity-resistant (OR) group based on the gain of body weight after 8 weeks' of feeding high-fat diet (HFD), followed by sacrificing rats at the end of 20th week. NaB intervention (12 weeks) could effectively reduce the body weight of rats in the OP and OR groups. NaB also mediated upregulation of antioxidant enzyme activity and GSH/GSSG ratio, while reducing reactive oxygen species (ROS) levels and malondialdehyde (MDA) content. At the molecular level, NaB upregulated Pi3k, Nrf2, Nqo-1, and Ho-1, but downregulated Gsk-3β mRNA expression by regulating the Nrf2 antioxidant pathway to enhance tissue antioxidant capacity. At the same time, NaB intervention significantly upregulated Glut4, Irs-1, Pdx1, and MafA, expression in gastrocnemius muscles of OP and OR rats, and elevated insulin secretion and muscle insulin sensitivity. Thus, NaB activates antioxidant pathway, improves the antioxidant capacity of obese rat tissues and promotes glucose metabolism. PRACTICAL APPLICATIONS: This study found that obesity-prone and obesity-resistant rats have differences in mitochondrial redox homeostasis and energy metabolism in tissues. Meanwhile, sodium butyrate can effectively promote muscle protein synthesis, increase insulin sensitivity, and promote glucose metabolism in obesity rats. Thus, sodium butyrate supplementation or increasing intestinal butyrate production (e.g., by consuming foods rich in dietary fiber) is a potential means of improving the body's glucose metabolism and obesity profile.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongjuan Sun
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yingrui Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuhua Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kai Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Ailing Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yipin Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Renqiang Yu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
8
|
Li F, Wu X, Wu W. Effects of oxidized rice bran protein induced by rancidity on the hepatic function in mice. Food Funct 2022; 13:6089-6102. [PMID: 35575529 DOI: 10.1039/d2fo00976e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rice bran protein (RBP) is a great resource of premium protein. However, rice bran (RB) rancidity, which inevitably occurs during rice milling, can induce RBP oxidation, further affecting the nutritional value of RBP. This study focused on the impact of RBP rancidity on the nutritional value of oxidized RBP. RBP with varying oxidation degrees and doses was given to mice via a 12-week intragastric administration. Oxidized RBP interfered with hepatic function and inflammation, and decreased the antioxidant capacities of the liver. Oxidized RBP also disturbed the hepatic lipid metabolism, and excessively oxidized RBP caused intrahepatic lipid accumulation and hepatic damage. Furthermore, oxidized RBP triggered the MyD88/NF-κB pathway but inhibited the Keap1-Nrf2/ARE pathway in the liver. Correlation analysis revealed that the protein expression of the Nrf2 pathway was negatively correlated with the NF-κB pathway. Results implied that oxidized RBP induced hepatic damage and hepatic dysfunction, indicating the deteriorating nutrition of oxidized RBP. The results exhibited the nutritional value of RBP after oxidative modification, and implied the importance of optimizing food-processing strategies to reduce the degree of protein oxidation, thereby avoiding the nutritional loss of dietary protein.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China. .,National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, P. R. China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China. .,National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, P. R. China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China. .,National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, P. R. China
| |
Collapse
|
9
|
Li F, Wu X, Wu W. Rancidity-induced rice bran protein oxidation causes kidney injury in mice via oxidative stress and inflammatory response. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Ge Y, Yang Y, Jiang Y, Feng C, Li B, Sun J, Tang X, Shi Y, Le G. Oxidized Pork Induces Hepatic Steatosis by Impairing Thyroid Hormone Function in Mice. Mol Nutr Food Res 2021; 66:e2100602. [PMID: 34786857 DOI: 10.1002/mnfr.202100602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/28/2021] [Indexed: 01/08/2023]
Abstract
SCOPE Recent studies have linked high consumption of red and processed meats to an increased risk of non-alcoholic fatty liver disease, and cooking-induced oxidation of proteins and amino acids might be contributing factors. Herein, this study investigates the influence of oxidized pork and the protein oxidation biomarker dityrosine (Dityr) on hepatic steatosis in mice. METHODS AND RESULTS Low- and high-oxidative injury pork (LOP and HOP) are freeze-dried to prepare mouse diets. Mice are fed a diet of either the control, LOP, HOP, LOP+Dityr, or Dityr for 12 weeks. HOP and Dityr intake induced oxidative stress and inflammation that impaired thyroid function and peripheral metabolism (reduced type 1 deiodinase activity) of thyroid hormones (THs). These lead to a decrease in the circulating as well as liver THs and induced hepatic steatosis. This process might be regulated through reduced TH levels and altered TH target genes and proteins related to hepatic lipid metabolism that ultimately inhibited hepatic energy metabolism, as indicated by increased hepatic lipid synthesis, decreased hepatic lipid catabolism, and fatty acid oxidation. CONCLUSION HOP intake could induce hepatic steatosis by impairing TH function. Dityr plays an important role in the HOP-induced harmful effects.
Collapse
Affiliation(s)
- Yueting Ge
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Yuhui Yang
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, 450001, China
| | - Yuge Jiang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Chuanxing Feng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Bowen Li
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
11
|
Wang J, Tang X, Lu Y, Zheng Y, Zeng F, Shi W, Zhou P. Lycopene Regulates Dietary Dityrosine-Induced Mitochondrial-Lipid Homeostasis by Increasing Mitochondrial Complex Activity. Mol Nutr Food Res 2021; 66:e2100724. [PMID: 34780105 DOI: 10.1002/mnfr.202100724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/13/2021] [Indexed: 12/22/2022]
Abstract
SCOPE Dityrosine (DT), a marker of protein oxidation, is widely found in many high-protein foods. Dietary intake of DT induces myocardial oxidative stress injury and impairs energy metabolism. Lycopene is a common dietary supplement with antioxidant and mitochondrial-lipid homeostasis modulating abilities. This study aimed to examine the effects of lycopene on DT-induced disturbances in myocardial function and energy metabolism. METHODS AND RESULTS Four-week-old C57BL/6J mice received intragastric administration of either tyrosine (420 µg kg-1 BW), DT (420 µg kg-1 BW), or lycopene at high (10 mg kg-1 BW) and low (5 mg kg-1 BW) doses for 35 days. Lycopene administration effectively reduced oxidative stress, cardiac fatty acid accumulation, and cardiac hypertrophy and improved mitochondrial performance in DT-induced mice. In vitro experiments in H9c2 cells showed that DT directly inhibited the activity of the respiratory chain complex, whereas oxidative phosphorylation and β-oxidation gene expression is upregulated. Lycopene enhanced the activity of the complexes and inhibited ROS production caused by compensatory regulation. CONCLUSION Lycopene improves DT-mediated myocardial energy homeostasis disorder by promoting the activity of respiratory chain complexes I and IV and alleviates the accumulation of cardiac fatty acids and myocardial hypertrophy.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yipin Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yingying Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,National Enineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fanhang Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wentao Shi
- School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
12
|
Hayakawa Y. N-acetyltyrosine-induced redox signaling in hormesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118990. [PMID: 33617888 DOI: 10.1016/j.bbamcr.2021.118990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
A suite of adaptations allows insects to survive in hostile terrestrial environments for long periods of time. Temperature represents a key environmental factor for most ectothermic insects, and they rapidly acclimate to high and low temperatures. Vast amounts of data in this research field support the idea that an insect's ability to tolerate fluctuating temperatures can be regarded as a biphasic hormetic dose response. Observation indicates that their thermal hormetic response represents a conservative estimate of their intrinsic capacity for rapid adaptation to environmental changes in nature because they naturally experience diel or seasonal temperature fluctuations. It is therefore reasonable to suppose that the hormetic response in insects reflects a surplus physiological capacity to deal with temperature changes that they would experience naturally. Although it has been unknown how thermal acclimation is induced, a stress-dependent increase in N-acetyltyrosine (NAT) was recently found to occur in insect larvae who had endured high temperatures. NAT treatment was demonstrated to induce thermotolerance in several tested insect species. NAT was also identified in the serum of humans as well as mice, and its concentration in mice was shown to be increased by heat and restraint stress, with NAT pretreatment lowering the concentrations of corticosterone and peroxidized lipids in stressed mice. These recent findings may give us some hints about how long a hormetic response lasts. Here, I will discuss recent findings underlying hormetic responses induced by an intrinsic factor, NAT, and how the hormetic response may begin and end.
Collapse
Affiliation(s)
- Yoichi Hayakawa
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan.
| |
Collapse
|