1
|
Wang C, Hong Z, Song M, Zheng H, Zhou Q, Yang H, Li H, Huang D. Production of astaxanthin with high purity and activity based on engineering improvement strategies. J Biotechnol 2025; 405:139-149. [PMID: 40379138 DOI: 10.1016/j.jbiotec.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Here, astaxanthin production in Escherichia coli was systematically improved step by step. By introducing the additional copy of CrtZ and fusion complex of CrtZ and CrtW, astaxanthin content in cells increased from 0.10 mg/g to 0.16 mg/g and 0.63 mg/g DCW, respectively. Remolding the astaxanthin gene cluster by replacing the PanCrtE by HpGGPPS3-1 and the fusion of CrtZ and CrtW increased astaxanthin content to 1.98 mg/g DCW. Further selecting the productive host and optimizing culture conditions dramatically increased astaxanthin content to 3.61 mg/g DCW. Subsequently, the fed-batch fermentation achieved the maximum yield of astaxanthin at 509.58 mg/L with the productivity of 7.72 mg/L/h and 5.91 mg/g DCW, covering 98.17 % of detected carotenoids. The chirality analysis assigned the same isomer of astaxanthin extracted from our fermentation system and Haematococcus pluvialis. Moreover, the radical and superoxide anion scavenging activity analysis revealed that astaxanthin achieved in this study performed better than natural astaxanthin extracted from H. pluvialis and chemical synthetic astaxanthin. This study provides a step-by-step example for bioengineering improvement of natural products in E. coli with high purity and activity.
Collapse
Affiliation(s)
- Chaogang Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, Shenzhen University, Shenzhen 518060, PR China
| | - Zeyu Hong
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Mingjian Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hao Zheng
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Qiaomian Zhou
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Haihong Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, Shenzhen University, Shenzhen 518060, PR China
| | - Danqiong Huang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
2
|
Harshini P, Varghese R, Pachamuthu K, Ramamoorthy S. Enhanced pigment production from plants and microbes: a genome editing approach. 3 Biotech 2025; 15:129. [PMID: 40255449 PMCID: PMC12003259 DOI: 10.1007/s13205-025-04290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/22/2025] [Indexed: 04/22/2025] Open
Abstract
Pigments are known for their vital roles in the growth and development of plants and microbes. In addition, they are also an imperative component of several industries, including textiles, foods, and pharmaceuticals, owing to their immense colours and therapeutic potential. Conventionally, pigments are obtained from plant resources, and the advent of in-vitro propagation techniques boosted the massive production. However, it could not meet the booming demand, leading to the incorporation of new genetic engineering tools. This review focuses on the role of various genetic engineering techniques in enhancing pigment production in plants and microorganisms. It also critically analyzes the efficacy and bottlenecks of these techniques in augmenting pigment biosynthesis. Furthermore, the use of microbes as pigment biofactories and the prospects in the field of genome editing to augment pigment synthesis are discussed. The limitations in the existing techniques underline the need for advanced genome editing strategies to broaden the mass production of pigments to meet the surging needs.
Collapse
Affiliation(s)
- P. Harshini
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Ressin Varghese
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Kannan Pachamuthu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
3
|
Meyer F, Schmitt I, Wendisch VF, Henke NA. Response surface-based media optimization for astaxanthin production in Corynebacterium glutamicum. Front Bioeng Biotechnol 2025; 13:1516522. [PMID: 40134774 PMCID: PMC11933003 DOI: 10.3389/fbioe.2025.1516522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Introduction Astaxanthin is a C40 carotenoid that is used in animal feeds or cosmetics. Due to its high antioxidant property it is used for, e.g., anti-aging formulations and due to its intense red color it is used, e.g., in animal feed. While about 95% of commercial astaxanthin is currently chemically synthesized from fossil sources, the interest in natural and sustainable astaxanthin is growing. Corynebacterium glutamicum, an attractive host used in large-scale processes, e.g., industrial amino acid production, has been engineered for astaxanthin production. Methods Here, a design of experiment (DoE) approach was applied to optimize the standard minimal medium for astaxanthin production. The concentrations of carbon, nitrogen and phosphorus sources, magnesium, calcium, the iron chelator protocatechuic acid, the vitamin biotin, and the trace metals were varied and astaxanthin production was evaluated. Results and discussion By increasing the concentration of iron and decreasing that of manganese especially, it was possible to increase astaxanthin titers from 7.9 mg L-1-39.6 mg L-1 in a micro cultivation system and from 62 mg L-1-176 mg L-1 in a fed-batch fermentation.
Collapse
|
4
|
Liu M, Xiao R, Li X, Zhao Y, Huang J. A comprehensive review of recombinant technology in the food industry: Exploring expression systems, application, and future challenges. Compr Rev Food Sci Food Saf 2025; 24:e70078. [PMID: 39970011 DOI: 10.1111/1541-4337.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 02/21/2025]
Abstract
Biotechnology has significantly advanced the production of recombinant proteins (RPs). This review examines the latest advancements in protein production technologies, including CRISPR, genetic engineering, vector integration, and fermentation, and their implications for the food industry. This review delineates the merits and shortcomings of prevailing host systems for RP production, underscoring molecular and process strategies pivotal for amplifying yields and purity. It traverses the spectrum of RP applications, challenges, and burgeoning trends, highlighting the imperative of employing robust hosts and cutting-edge genetic engineering to secure high-quality, high-yield outputs while circumventing protein aggregation and ensuring correct folding for enhanced activity. Recombinant technology has paved the way for the food industry to produce alternative proteins like leghemoglobin and cytokines, along with enzyme preparations such as proteases and lipases, and to modify microbial pathways for synthesizing beneficial compounds, including pigments, terpenes, flavonoids, and functional sugars. However, scaling microbial production to industrial scales presents economic, efficiency, and environmental challenges that demand innovative solutions, including high-throughput screening and CRISPR/Cas9 systems, to bolster protein yield and quality. Although recombinant technology holds much promise, it must navigate high costs and scalability to satisfy the escalating global demand for RPs in therapeutics and food. The variability in ethical and regulatory hurdles across regions further complicates market acceptance, underscoring an urgent need for robust regulatory frameworks for genetically modified organisms. These frameworks are essential for safeguarding the production process, ensuring product safety, and upholding the efficacy of RPs in industrial applications.
Collapse
Affiliation(s)
- Ming Liu
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Ran Xiao
- College of Agriculture, Henan University, Kaifeng, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Xiaolin Li
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Yingyu Zhao
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Jihong Huang
- College of Agriculture, Henan University, Kaifeng, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
- School of Food and Pharmacy, Xuchang University, Xuchang, Henan, P. R. China
| |
Collapse
|
5
|
Li Z, You L, Du X, Yang H, Yang L, Zhu Y, Li L, Jiang Z, Li Q, He N, Lin R, Chen Z, Ni H. New strategies to study in depth the metabolic mechanism of astaxanthin biosynthesis in Phaffia rhodozyma. Crit Rev Biotechnol 2025; 45:454-472. [PMID: 38797672 DOI: 10.1080/07388551.2024.2344578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using Phaffia rhodozyma. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in P. rhodozyma, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as crtYB, crtS, and crtI, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in P. rhodozyma and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.
Collapse
Affiliation(s)
- Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Li You
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Xiping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Haoyi Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Liang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Rui Lin
- College of Ocean and Earth Sciences, and Research and Development Center for Ocean Observation Technologies, Xiamen University, Xiamen, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| |
Collapse
|
6
|
Wang J, Ji X, Yi R, Li D, Shen X, Liu Z, Xia Y, Shi S. Heterologous Biosynthesis of Terpenoids in Saccharomyces cerevisiae. Biotechnol J 2025; 20:e202400712. [PMID: 39834096 DOI: 10.1002/biot.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Terpenoids are widely distributed in nature and have various applications in healthcare products, pharmaceuticals, and fragrances. Despite the significant potential that terpenoids possess, traditional production methods, such as plant extraction and chemical synthesis, face challenges in meeting current market demand. With the advancement of synthetic biology and metabolic engineering, it becomes feasible to construct efficient microbial cell factories for large-scale production of terpenoids. This article primarily centers on the heterologous expression of terpenoids in Saccharomyces cerevisiae, detailing the expression of terpenoid biosynthesis pathways through the utilization of cellular microcompartments, strategies for the efficient expression of key P450 enzymes in the synthesis pathway, and the regulation and optimization of host metabolism to enhance flux to terpenoids synthesis. Additionally, we analyze current challenges and propose solutions to further refine yeast chassis for more effective terpenoids production.
Collapse
Affiliation(s)
- Junyang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu Ji
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Renhe Yi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Dengbin Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaolin Shen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yaying Xia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
7
|
Liu Q, Chen X, Hu G, Chu R, Liu J, Li X, Gao C, Liu L, Wei W, Song W, Wu J. Systems metabolic engineering of Escherichia coli for high-yield production of Para-hydroxybenzoic acid. Food Chem 2024; 457:140165. [PMID: 38936118 DOI: 10.1016/j.foodchem.2024.140165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Para-hydroxybenzoic acid (PHBA) is extensively used as an additive in the food and cosmetics industries, significantly enhancing product shelf life and stability. While microbial fermentation offers an environment-friendly and sustainable method for producing PHBA, the titer and productivity are limited due to product toxicity and complex metabolic flux distributions. Here, we initially redesigned a L-phenylalanine-producing Escherichia coli by employing rational metabolic engineering strategies, resulting in the production of PHBA reached the highest reported level of 14.17 g/L. Subsequently, a novel accelerated evolution system was devised comprising deaminase, the alpha subunit of RNA polymerase, an uracil-DNA glycosylase inhibitor, and the PHBA-responsive promoter PyhcN. This system enabled us to obtain a mutant strain exhibiting a 47% increase in the half-inhibitory concentration (IC50) for PHBA within 15 days. Finally, the evolved strain achieved a production of 21.35 g/L PHBA in a 5-L fermenter, with a yield of 0.19 g/g glucose and a productivity rate of 0.44 g/L/h. This engineered strain emerges as a promising candidate for industrial production of PHBA through an eco-friendly approach.
Collapse
Affiliation(s)
- Quan Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruyin Chu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Chen A, Dong Y, Jiang H, Yang S, Zhang J, Wei D. Identification and analysis of the key genes for Escherichia coli heterologous protein expression by transcriptomic profiling. Mol Biol Rep 2024; 51:1074. [PMID: 39425817 DOI: 10.1007/s11033-024-10011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Escherichia coli is a frequently used host for heterologous protein expression, but its expression efficiency is hindered by several limitations, such as formation of inclusion bodies and proteolytic degradation. METHODS AND RESULTS In this study, we employed high-density fermentation of heterologous protein production in a 5-L bioreactor, resulting in a yield 2.25 times higher than that of the control group. Transcriptional analysis was conducted at three time points after induction for 0 h, 4 h, and 12 h, revealing 420, 301, and 570 upregulated differentially expressed genes, as well as 424, 202, and 525 downregulated genes, respectively. By conducting enrichment analysis, we constructed strains that relieved without iron limitation, exhibiting a 36% increase in biomass and a 32% increase in protein expression. Furthermore, no overflow metabolism of acetic acid was detected during the protein expression process when utilizing chemostat culture, which indicated that the utilization efficiency of glucose was significantly enhanced without iron limitation. CONCLUSIONS This study presents a novel approach to better comprehend the mechanism of high-yield production of heterologous proteins in Escherichia coli.
Collapse
Affiliation(s)
- Anxiang Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Huaigu Jiang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shengli Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
9
|
Zhou D, Fei Z, Liu G, Jiang Y, Jiang W, Lin CSK, Zhang W, Xin F, Jiang M. The bioproduction of astaxanthin: A comprehensive review on the microbial synthesis and downstream extraction. Biotechnol Adv 2024; 74:108392. [PMID: 38825214 DOI: 10.1016/j.biotechadv.2024.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Astaxanthin is a valuable orange-red carotenoid with wide applications in agriculture, food, cosmetics, pharmaceuticals and nutraceuticals areas. At present, the biological synthesis of astaxanthin mainly relies on Haematococcus pluvialis and Xanthophyllomyces dendrorhous. With the rapid development of synthetic biology, more recombinant microbial hosts have been genetically constructed for astaxanthin production including Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica. As multiple genes (15) were involved in the astaxanthin synthesis, it is particularly important to adopt different strategies to balance the metabolic flow towards the astaxanthin synthesis. Furthermore, astaxanthin is a fat-soluble compound stored intracellularly, hence efficient extraction methods are also essential for the economical production of astaxanthin. Several efficient and green extraction methods of astaxanthin have been reported in recent years, including the superfluid extraction, ionic liquid extraction and microwave-assisted extraction. Accordingly, this review will comprehensively introduce the advances on the astaxanthin production and extraction by using different microbial hosts and strategies to improve the astaxanthin synthesis and extraction efficiency.
Collapse
Affiliation(s)
- Dawei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengyue Fei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Guannan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, 999077, Hong Kong
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
10
|
Zhou W, Ding W, Wu X, Sun J, Bai W. Microbial synthesis of anthocyanins and pyranoanthocyanins: current bottlenecks and potential solutions. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38935054 DOI: 10.1080/10408398.2024.2369703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Anthocyanins (ACNs) are secondary metabolites found in plants. Due to their impressive biological activities, ACNs have gained significant popularity and extensive application within the food, pharmaceutical, and nutraceutical industries. A derivative of ACNs: pyranoanthocyanins (PACNs) possesses more stable properties and interesting biological activities. However, conventional methods for the production of ACNs, including chemical synthesis and plant extraction, involve organic solvents. Microbial synthesis of ACNs from renewable biomass, such as amino acids or flavonoids, is considered a sustainable and environmentally friendly method for large-scale production of ACNs. Recently, the construction of microbial cell factories (MCFs) for the efficient biosynthesis of ACNs and PACNs has attracted much attention. In this review, we summarize the cases of microbial synthesis of ACNs, and analyze the bottlenecks in reconstructing the metabolic pathways for synthesizing PACNs in microorganisms. Consequently, there is an urgent need to investigate the mechanisms behind the development of MCFs for PACNs synthesis. Such research also holds significant promise for advancing the production of food pigments. Meanwhile, we propose potential solutions to the bottleneck problem based on metabolic engineering and enzyme engineering. Finally, the development prospects of natural food and biotechnology are discussed.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Weiqiu Ding
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, Guangdong, China
| | - Xingyuan Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Jianxia Sun
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangdong, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| |
Collapse
|
11
|
Einhaus A, Baier T, Kruse O. Molecular design of microalgae as sustainable cell factories. Trends Biotechnol 2024; 42:728-738. [PMID: 38092627 DOI: 10.1016/j.tibtech.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 06/09/2024]
Abstract
Microalgae are regarded as sustainable and potent chassis for biotechnology. Their capacity for efficient photosynthesis fuels dynamic growth independent from organic carbon sources and converts atmospheric CO2 directly into various valuable hydrocarbon-based metabolites. However, approaches to gene expression and metabolic regulation have been inferior to those in more established heterotrophs (e.g., prokaryotes or yeast) since the genetic tools and insights in expression regulation have been distinctly less advanced. In recent years, however, these tools and their efficiency have dramatically improved. Various examples have demonstrated new trends in microalgal biotechnology and the potential of microalgae for the transition towards a sustainable bioeconomy.
Collapse
Affiliation(s)
- Alexander Einhaus
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
12
|
Wang DN, Yu CX, Feng J, Wei LJ, Chen J, Liu Z, Ouyang L, Zhang L, Liu F, Hua Q. Comparative transcriptome analysis reveals the redirection of metabolic flux from cell growth to astaxanthin biosynthesis in Yarrowia lipolytica. Yeast 2024; 41:369-378. [PMID: 38613186 DOI: 10.1002/yea.3938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Engineering Yarrowia lipolytica to produce astaxanthin provides a promising route. Here, Y. lipolytica M2 producing a titer of 181 mg/L astaxanthin was isolated by iterative atmospheric and room-temperature plasma mutagenesis and diphenylamine-mediated screening. Interestingly, a negative correlation was observed between cell biomass and astaxanthin production. To reveal the underlying mechanism, RNA-seq analysis of transcriptional changes was performed in high producer M2 and reference strain M1, and a total of 1379 differentially expressed genes were obtained. Data analysis revealed that carbon flux was elevated through lipid metabolism, acetyl-CoA and mevalonate supply, but restrained through central carbon metabolism in strain M2. Moreover, upregulation of other pathways such as ATP-binding cassette transporter and thiamine pyrophosphate possibly provided more cofactors for carotenoid hydroxylase and relieved cell membrane stress caused by astaxanthin insertion. These results suggest that balancing cell growth and astaxanthin production may be important to promote efficient biosynthesis of astaxanthin in Y. lipolytica.
Collapse
Affiliation(s)
- Dan-Ni Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chen-Xi Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jie Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| |
Collapse
|
13
|
Zhou Q, Huang D, Yang H, Hong Z, Wang C. Improvement of Carotenoids' Production by Increasing the Activity of Beta-Carotene Ketolase with Different Strategies. Microorganisms 2024; 12:377. [PMID: 38399781 PMCID: PMC10891602 DOI: 10.3390/microorganisms12020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Canthaxanthin is an important antioxidant with wide application prospects, and β-carotene ketolase is the key enzyme involved in the biosynthesis of canthaxanthin. However, the challenge for the soluble expression of β-carotene ketolase is that it hinders the large-scale production of carotenoids such as canthaxanthin and astaxanthin. Hence, this study employed several strategies aiming to improve the soluble expression of β-carotene ketolase and its activity, including selecting optimal expression vectors, screening induction temperatures, adding soluble expression tags, and adding a molecular chaperone. Results showed that all these strategies can improve the soluble expression and activity of β-carotene ketolase in Escherichia coli. In particular, the production of soluble β-carotene ketolase was increased 8 times, with a commercial molecular chaperon of pG-KJE8, leading to a 1.16-fold enhancement in the canthaxanthin production from β-carotene. Interestingly, pG-KJE8 could also enhance the soluble expression of β-carotene ketolase derived from eukaryotic microalgae. Further research showed that the production of canthaxanthin and echinenone was significantly improved by as many as 30.77 times when the pG-KJE8 was added, indicating the molecular chaperone performed differently among different β-carotene ketolase. This study not only laid a foundation for further research on the improvement of β-carotene ketolase activity but also provided new ideas for the improvement of carotenoid production.
Collapse
Affiliation(s)
- Qiaomian Zhou
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
| | - Danqiong Huang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, Shenzhen 518060, China
| | - Haihong Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
| | - Zeyu Hong
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
| | - Chaogang Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, Shenzhen 518060, China
| |
Collapse
|
14
|
Su B, Deng MR, Zhu H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules 2023; 13:1747. [PMID: 38136618 PMCID: PMC10742120 DOI: 10.3390/biom13121747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are naturally occurring pigments that are abundant in the natural world. Due to their excellent antioxidant attributes, carotenoids are widely utilized in various industries, including the food, pharmaceutical, cosmetic industries, and others. Plants, algae, and microorganisms are presently the main sources for acquiring natural carotenoids. However, due to the swift progress in metabolic engineering and synthetic biology, along with the continuous and thorough investigation of carotenoid biosynthetic pathways, recombinant strains have emerged as promising candidates to produce carotenoids. The identification and manipulation of gene targets that influence the accumulation of the desired products is a crucial challenge in the construction and metabolic regulation of recombinant strains. In this review, we provide an overview of the carotenoid biosynthetic pathway, followed by a summary of the methodologies employed in the discovery of gene targets associated with carotenoid production. Furthermore, we focus on discussing the gene targets that have shown potential to enhance carotenoid production. To facilitate future research, we categorize these gene targets based on their capacity to attain elevated levels of carotenoid production.
Collapse
Affiliation(s)
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| |
Collapse
|
15
|
Roth JH, Ward VCA. Production of Astaxanthin Using CBFD1/HFBD1 from Adonis aestivalis and the Isopentenol Utilization Pathway in Escherichia coli. Bioengineering (Basel) 2023; 10:1033. [PMID: 37760135 PMCID: PMC10525928 DOI: 10.3390/bioengineering10091033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Astaxanthin is a powerful antioxidant and is used extensively as an animal feed additive and nutraceutical product. Here, we report the use of the β-carotene hydroxylase (CBFD1) and the β-carotene ketolase (HBFD1) from Adonis aestivalis, a flowering plant, to produce astaxanthin in E. coli equipped with the P. agglomerans β-carotene pathway and an over-expressed 4-methylerythritol-phosphate (MEP) pathway or the isopentenol utilization pathway (IUP). Introduction of the over-expressed MEP pathway and the IUP resulted in a 3.2-fold higher carotenoid content in LB media at 36 h post-induction compared to the strain containing only the endogenous MEP. However, in M9 minimal media, the IUP pathway dramatically outperformed the over-expressed MEP pathway with an 11-fold increase in total carotenoids produced. The final construct split the large operon into two smaller operons, both with a T7 promoter. This resulted in slightly lower productivity (70.0 ± 8.1 µg/g·h vs. 53.5 ± 3.8 µg/g·h) compared to the original constructs but resulted in the highest proportion of astaxanthin in the extracted carotenoids (73.5 ± 0.2%).
Collapse
Affiliation(s)
| | - Valerie C. A. Ward
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
16
|
Wang N, Peng H, Yang C, Guo W, Wang M, Li G, Liu D. Metabolic Engineering of Model Microorganisms for the Production of Xanthophyll. Microorganisms 2023; 11:1252. [PMID: 37317226 PMCID: PMC10223009 DOI: 10.3390/microorganisms11051252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Xanthophyll is an oxidated version of carotenoid. It presents significant value to the pharmaceutical, food, and cosmetic industries due to its specific antioxidant activity and variety of colors. Chemical processing and conventional extraction from natural organisms are still the main sources of xanthophyll. However, the current industrial production model can no longer meet the demand for human health care, reducing petrochemical energy consumption and green sustainable development. With the swift development of genetic metabolic engineering, xanthophyll synthesis by the metabolic engineering of model microorganisms shows great application potential. At present, compared to carotenes such as lycopene and β-carotene, xanthophyll has a relatively low production in engineering microorganisms due to its stronger inherent antioxidation, relatively high polarity, and longer metabolic pathway. This review comprehensively summarized the progress in xanthophyll synthesis by the metabolic engineering of model microorganisms, described strategies to improve xanthophyll production in detail, and proposed the current challenges and future efforts needed to build commercialized xanthophyll-producing microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Papapostolou H, Kachrimanidou V, Alexandri M, Plessas S, Papadaki A, Kopsahelis N. Natural Carotenoids: Recent Advances on Separation from Microbial Biomass and Methods of Analysis. Antioxidants (Basel) 2023; 12:antiox12051030. [PMID: 37237896 DOI: 10.3390/antiox12051030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Biotechnologically produced carotenoids occupy an important place in the scientific research. Owing to their role as natural pigments and their high antioxidant properties, microbial carotenoids have been proposed as alternatives to their synthetic counterparts. To this end, many studies are focusing on their efficient and sustainable production from renewable substrates. Besides the development of an efficient upstream process, their separation and purification as well as their analysis from the microbial biomass confers another important aspect. Currently, the use of organic solvents constitutes the main extraction process; however, environmental concerns along with potential toxicity towards human health necessitate the employment of "greener" techniques. Hence, many research groups are focusing on applying emerging technologies such as ultrasounds, microwaves, ionic liquids or eutectic solvents for the separation of carotenoids from microbial cells. This review aims to summarize the progress on both the biotechnological production of carotenoids and the methods for their effective extraction. In the framework of circular economy and sustainability, the focus is given on green recovery methods targeting high-value applications such as novel functional foods and pharmaceuticals. Finally, methods for carotenoids identification and quantification are also discussed in order to create a roadmap for successful carotenoids analysis.
Collapse
Affiliation(s)
- Harris Papapostolou
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | | | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | - Stavros Plessas
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| |
Collapse
|
18
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
19
|
Amendola S, Kneip JS, Meyer F, Perozeni F, Cazzaniga S, Lauersen KJ, Ballottari M, Baier T. Metabolic Engineering for Efficient Ketocarotenoid Accumulation in the Green Microalga Chlamydomonas reinhardtii. ACS Synth Biol 2023; 12:820-831. [PMID: 36821819 DOI: 10.1021/acssynbio.2c00616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Astaxanthin is a valuable ketocarotenoid with various pharmaceutical and nutraceutical applications. Green microalgae harbor natural capacities for pigment accumulation due to their 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Recently, a redesigned ß-carotene ketolase (BKT) was found to enable ketocarotenoid accumulation in the model microalga Chlamydomonas reinhardtii, and transformants exhibited reduced photoinhibition under high-light. Here, a systematic screening by synthetic transgene design of carotenoid pathway enzymes and overexpression from the nuclear genome identified phytoene synthase (PSY/crtB) as a bottleneck for carotenoid accumulation in C. reinhardtii. Increased ß-carotene hydroxylase (CHYB) activity was found to be essential for engineered astaxanthin accumulation. A combined BKT, crtB, and CHYB expression strategy resulted in a volumetric astaxanthin production of 9.5 ± 0.3 mg L-1 (4.5 ± 0.1 mg g-1 CDW) in mixotrophic and 23.5 mg L-1 (1.09 mg L-1 h-1) in high cell density conditions, a 4-fold increase compared to previous reports in C. reinhardtii. This work presents a systematic investigation of bottlenecks in astaxanthin accumulation in C. reinhardtii and the phototrophic green cell factory design for competitive use in industrial biotechnology.
Collapse
Affiliation(s)
- Sofia Amendola
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jacob S Kneip
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Federico Perozeni
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Stefano Cazzaniga
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
20
|
Sources, dynamics in vivo, and application of astaxanthin and lutein in laying hens: A review. ANIMAL NUTRITION 2023; 13:324-333. [DOI: 10.1016/j.aninu.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
|
21
|
Yoshimi T, Hashimoto S, Kubo Y, Takeuchi M, Morimoto D, Nakagawa S, Sawayama S. Improvement of Astaxanthin Production in Aurantiochytrium limacinum by Overexpression of the Beta-Carotene Hydroxylase Gene. Appl Biochem Biotechnol 2023; 195:1255-1267. [PMID: 36346562 DOI: 10.1007/s12010-022-04172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Aurantiochytrium limacinum is a heterotrophic eukaryotic microorganism that can accumulate high levels of commercial products such as astaxanthin and docosahexaenoic acid. Due to its rapid growth and relatively simple extraction method, A. limacinum is considered a promising astaxanthin resource to replace the conventional microalgal production. However, the astaxanthin biosynthetic process in A. limacinum remains incompletely understood, especially in those catalysed by β-carotene hydroxylase (CrtZ) and ketolase. In this study, we overexpressed a crtZ candidate gene to increase astaxanthin production and expand our understanding of the conversion from beta-carotene to astaxanthin. The resultant transformant AlcrtZ#10 cultivated for 5 days showed a significant increase in astaxanthin production per culture (2.8-fold) and per cell (4.5-fold) compared with that of the wild-type strain. Strikingly, longer light exposure increased astaxanthin production and decreased the beta-carotene content in the wild-type strain, suggesting that light exposure duration is important for astaxanthin production in A. limacinum. Among several predicted intermediates, furthermore, the cantaxanthin produced from β-carotene by ketolase activity were enhanced in the transformant AlcrtZ#10. Although the further investigation is needed, this result suggested that the main route of astaxanthin was via cantaxanthin. Thus, our findings will be valuable not only for its application, but also for understanding the astaxanthin biosynthetic process in A. limacinum.
Collapse
Affiliation(s)
- Toru Yoshimi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Sakiko Hashimoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuki Kubo
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masato Takeuchi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Daichi Morimoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Satoshi Nakagawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shigeki Sawayama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
22
|
Wang DN, Feng J, Yu CX, Zhang XK, Chen J, Wei LJ, Liu Z, Ouyang L, Zhang L, Hua Q, Liu F. Integrated pathway engineering and transcriptome analysis for improved astaxanthin biosynthesis in Yarrowia lipolytica. Synth Syst Biotechnol 2022; 7:1133-1141. [PMID: 36092272 PMCID: PMC9428815 DOI: 10.1016/j.synbio.2022.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Astaxanthin is a high value carotenoid with a broad range of commercial applications due to its superior antioxidant properties. In this study, β-carotene-producing Yarrowia lipolytica XK17 constructed in the lab was employed for astaxanthin biosynthesis. The catalytic effects of β-carotene ketolase CrtW and β-carotene hydroxylase CrtZ from various species were investigated. The PspCrtW from Paracoccus sp. and HpCrtZ# from Haematococcus pluvialis were confirmed to be the best combination in converting β-carotene. Several key bottlenecks in biomass and astaxanthin biosynthesis were effectively eliminated by optimizing the expression of the above enzymes and restoring uracil/leucine biosynthesis. In addition, the effects of astaxanthin biosynthesis on cell metabolism were investigated by integrated analysis of pathway modification and transcriptome information. After further optimization, strain DN30 was able to synthesize up to 730.3 mg/L astaxanthin in laboratory 5-L fermenter. This study provides a good metabolic strategy and a sustainable development platform for high-value carotenoid production.
Collapse
Affiliation(s)
- Dan-Ni Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Jie Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Chen-Xi Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Xin-Kai Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| |
Collapse
|
23
|
Jing Y, Wang Y, Zhou D, Wang J, Li J, Sun J, Feng Y, Xin F, Zhang W. Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin. Biotechnol Adv 2022; 61:108033. [PMID: 36096404 DOI: 10.1016/j.biotechadv.2022.108033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Carotenoids are natural pigments that widely exist in nature. Due to their excellent antioxidant, anticancer and anti-inflammatory properties, carotenoids are commonly used in food, medicine, cosmetic and other fields. At present, natural carotenoids are mainly extracted from plants, algae and microorganisms. With the rapid development of metabolic engineering and molecular biology as well as the continuous in-depth study of carotenoids synthesis pathways, industrial microorganisms have showed promising applications in the synthesis of carotenoids. In this review, we introduced the properties of several carotenoids and their biosynthetic metabolism process. Then, the microorganisms synthesizing carotenoids through the natural and non-natural pathways and the extraction methods of carotenoids were summarized and compared. Meanwhile, the influence of substrates on the carotenoids production was also listed. The methods and strategies for achieving high carotenoid production are categorized to help with future research.
Collapse
Affiliation(s)
- Yiwen Jing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yanxia Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Dawei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiawen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yifan Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
24
|
Li M, Zhou P, Chen M, Yu H, Ye L. Spatiotemporal Regulation of Astaxanthin Synthesis in S. cerevisiae. ACS Synth Biol 2022; 11:2636-2649. [PMID: 35914247 DOI: 10.1021/acssynbio.2c00044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a high-valued antioxidant, astaxanthin biosynthesis using microbial cell factories has attracted increasing attention. However, its lipophilic nature conflicts with the limited storage capacity for lipophilic substances of model microorganisms such as Saccharomyces cerevisiae. Expansion of lipid droplets by enhancing lipid synthesis provides more storage room while diverting the metabolic flux from the target pathway. Therefore, proper spatial regulation is required. In this study, a library of genes related to lipid metabolism were screened using the trifunctional CRISPR system, identifying opi3 and hrd1 as new engineering targets to promote astaxanthin synthesis by moderately rather than excessively upregulating lipid synthesis. The astaxanthin yield reached 9.79 mg/g DCW after lipid engineering and was further improved to 10.21 mg/g DCW by balancing the expression of β-carotene hydroxylase and ketolase. Finally, by combining spatial regulation through lipid droplet engineering and temporal regulation via temperature-responsive pathway expression, 446.4 mg/L astaxanthin was produced in fed-batch fermentation.
Collapse
Affiliation(s)
- Min Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Mingkai Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| |
Collapse
|
25
|
Zhu Y, Hu Y, Yan Y, Du S, Pan F, Li S, Xu H, Luo Z. Metabolic Engineering of Bacillus amyloliquefaciens to Efficiently Synthesize L-Ornithine From Inulin. Front Bioeng Biotechnol 2022; 10:905110. [PMID: 35757793 PMCID: PMC9214239 DOI: 10.3389/fbioe.2022.905110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus amyloliquefaciens is the dominant strain used to produce γ-polyglutamic acid from inulin, a non-grain raw material. B. amyloliquefaciens has a highly efficient tricarboxylic acid cycle metabolic flux and glutamate synthesis ability. These features confer great potential for the synthesis of glutamate derivatives. However, it is challenging to efficiently convert high levels of glutamate to a particular glutamate derivative. Here, we conducted a systematic study on the biosynthesis of L-ornithine by B. amyloliquefaciens using inulin. First, the polyglutamate synthase gene pgsBCA of B. amyloliquefaciens NB was knocked out to hinder polyglutamate synthesis, resulting in the accumulation of intracellular glutamate and ATP. Second, a modular engineering strategy was applied to coordinate the degradation pathway, precursor competition pathway, and L-ornithine synthesis pathway to prompt high levels of intracellular precursor glutamate for l-ornithine synthesis. In addition, the high-efficiency L-ornithine transporter was further screened and overexpressed to reduce the feedback inhibition of L-ornithine on the synthesis pathway. Combining these strategies with further fermentation optimizations, we achieved a final L-ornithine titer of 31.3 g/L from inulin. Overall, these strategies hold great potential for strengthening microbial synthesis of high value-added products derived from glutamate.
Collapse
Affiliation(s)
- Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
26
|
Rinaldi MA, Tait S, Toogood HS, Scrutton NS. Bioproduction of Linalool From Paper Mill Waste. Front Bioeng Biotechnol 2022; 10:892896. [PMID: 35711639 PMCID: PMC9195575 DOI: 10.3389/fbioe.2022.892896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
A key challenge in chemicals biomanufacturing is the maintenance of stable, highly productive microbial strains to enable cost-effective fermentation at scale. A “cookie-cutter” approach to microbial engineering is often used to optimize host stability and productivity. This can involve identifying potential limitations in strain characteristics followed by attempts to systematically optimize production strains by targeted engineering. Such targeted approaches however do not always lead to the desired traits. Here, we demonstrate both ‘hit and miss’ outcomes of targeted approaches in attempts to generate a stable Escherichia coli strain for the bioproduction of the monoterpenoid linalool, a fragrance molecule of industrial interest. First, we stabilized linalool production strains by eliminating repetitive sequences responsible for excision of pathway components in plasmid constructs that encode the pathway for linalool production. These optimized pathway constructs were then integrated within the genome of E. coli in three parts to eliminate a need for antibiotics to maintain linalool production. Additional strategies were also employed including: reduction in cytotoxicity of linalool by adaptive laboratory evolution and modification or homologous gene replacement of key bottleneck enzymes GPPS/LinS. Our study highlights that a major factor influencing linalool titres in E. coli is the stability of the genetic construct against excision or similar recombination events. Other factors, such as decreasing linalool cytotoxicity and changing pathway genes, did not lead to improvements in the stability or titres obtained. With the objective of reducing fermentation costs at scale, the use of minimal base medium containing paper mill wastewater secondary paper fiber as sole carbon source was also investigated. This involved simultaneous saccharification and fermentation using either supplemental cellulase blends or by co-expressing secretable cellulases in E. coli containing the stabilized linalool production pathway. Combined, this study has demonstrated a stable method for linalool production using an abundant and low-cost feedstock and improved production strains, providing an important proof-of-concept for chemicals production from paper mill waste streams. For scaled production, optimization will be required, using more holistic approaches that involve further rounds of microbial engineering and fermentation process development.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Future Biomanufacturing Research Hub, Manchester, United Kingdom.,Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Shirley Tait
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Helen S Toogood
- Future Biomanufacturing Research Hub, Manchester, United Kingdom.,Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Nigel S Scrutton
- Future Biomanufacturing Research Hub, Manchester, United Kingdom.,Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.,C3 Biotechnologies (Maritime and Aerospace) Ltd, Lancaster, United Kingdom
| |
Collapse
|
27
|
Zhu X, Meng C, Sun F, Wei Z, Chen L, Chen W, Tong S, Du H, Gao J, Ren J, Li D, Gao Z. Sustainable production of astaxanthin in microorganisms: the past, present, and future. Crit Rev Food Sci Nutr 2022; 63:10239-10255. [PMID: 35694786 DOI: 10.1080/10408398.2022.2080176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Astaxanthin (3,3'-dihydroxy-4,4'-diketo-β-carotene) is a type of C40 carotenoid with remarkable antioxidant characteristics, showing significant application prospects in many fields. Traditionally, the astaxanthin is mainly obtained from chemical synthesis and natural acquisition, with both approaches having many limitations and not capable of meeting the growing market demand. In order to cope with these challenges, novel techniques, e.g., the innovative cell engineering strategies, have been developed to increase the astaxanthin production. In this review, we first elaborated the biosynthetic pathway of astaxanthin, with the key enzymes and their functions discussed in the metabolic process. Then, we summarized the conventional, non-genetic strategies to promote the production of astaxanthin, including the methods of exogenous additives, mutagenesis, and adaptive evolution. Lastly, we reviewed comprehensively the latest studies on the synthesis of astaxanthin in various recombinant microorganisms based on the concept of microbial cell factory. Furthermore, we have proposed several novel technologies for improving the astaxanthin accumulation in several model species of microorganisms.
Collapse
Affiliation(s)
- Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| | - Zuoxi Wei
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Sheng Tong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Huanmin Du
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Jinshan Gao
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Jiali Ren
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
28
|
Basiony M, Ouyang L, Wang D, Yu J, Zhou L, Zhu M, Wang X, Feng J, Dai J, Shen Y, Zhang C, Hua Q, Yang X, Zhang L. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synth Syst Biotechnol 2022; 7:689-704. [PMID: 35261927 PMCID: PMC8866108 DOI: 10.1016/j.synbio.2022.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
The global market demand for natural astaxanthin is rapidly increasing owing to its safety, the potential health benefits, and the diverse applications in food and pharmaceutical industries. The major native producers of natural astaxanthin on industrial scale are the alga Haematococcus pluvialis and the yeast Xanthopyllomyces dendrorhous. However, the natural production via these native producers is facing challenges of limited yield and high cost of cultivation and extraction. Alternatively, astaxanthin production via metabolically engineered non-native microbial cell factories such as Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica is another promising strategy to overcome these limitations. In this review we summarize the recent scientific and biotechnological progresses on astaxanthin biosynthetic pathways, transcriptional regulations, the interrelation with lipid metabolism, engineering strategies as well as fermentation process control in major native and non-native astaxanthin producers. These progresses illuminate the prospects of producing astaxanthin by microbial cell factories on industrial scale.
Collapse
Affiliation(s)
- Mostafa Basiony
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Danni Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaming Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mohan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuyuan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijie Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengguo Zhang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiuliang Yang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
29
|
Zhang M, Gong Z, Tang J, Lu F, Li Q, Zhang X. Improving astaxanthin production in Escherichia coli by co-utilizing CrtZ enzymes with different substrate preference. Microb Cell Fact 2022; 21:71. [PMID: 35468798 PMCID: PMC9036794 DOI: 10.1186/s12934-022-01798-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background The bifunctional enzyme β-carotene hydroxylase (CrtZ) catalyzes the hydroxylation of carotenoid β-ionone rings at the 3, 3’ position regardless of the presence of keto group at 4, 4’ position, which is an important step in the synthesis of astaxanthin. The level and substrate preference of CrtZ may have great effect on the amount of astaxanthin and the accumulation of intermediates. Results In this study, the substrate preference of PCcrtZ from Paracoccus sp. PC1 and PAcrtZ from Pantoea Agglomerans were certified and were combined utilization for increase astaxanthin production. Firstly, PCcrtZ from Paracoccus sp. PC1 and PAcrtZ from P. Agglomerans were expressed in platform strains CAR032 (β-carotene producing strain) and Can004 (canthaxanthin producing strain) separately to identify their substrate preference for carotenoids with keto groups at 4,4’ position or not. The results showed that PCcrtZ led to a lower zeaxanthin yield in CAR032 compared to that of PAcrtZ. On the contrary, higher astaxanthin production was obtained in Can004 by PCcrtZ than that of PAcrtZ. This demonstrated that PCCrtZ has higher canthaxanthin to astaxanthin conversion ability than PACrtZ, while PACrtZ prefer using β-carotene as substrate. Finally, Ast010, which has two copies of PAcrtZ and one copy of PCcrtZ produced 1.82 g/L of astaxanthin after 70 h of fed-batch fermentation. Conclusions Combined utilization of crtZ genes, which have β-carotene and canthaxanthin substrate preference respectively, can greatly enhance the production of astaxanthin and increase the ratio of astaxanthin among total carotenoids. Supplementary information The online version contains supplementary material available at 10.1186/s12934-022-01798-1.
Collapse
|
30
|
Zhu HZ, Jiang S, Wu JJ, Zhou XR, Liu PY, Huang FH, Wan X. Production of High Levels of 3 S,3' S-Astaxanthin in Yarrowia lipolytica via Iterative Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2673-2683. [PMID: 35191700 DOI: 10.1021/acs.jafc.1c08072] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Astaxanthin is a highly value-added keto-carotenoid compound. The astaxanthin 3S,3'S-isomer is more desirable for food additives, cosmetics, and pharmaceuticals due to health concerns about chemically synthesized counterparts with a mixture of three isomers. Biosynthesis of 3S,3'S-astaxanthin suffers from limited content and productivity. We engineered Yarrowia lipolytica to produce high levels of 3S,3'S-astaxanthin. We first assessed various β-carotene ketolases (CrtW) and β-carotene hydroxylases (CrtZ) from two algae and a plant. HpCrtW and HpCrtZ from Haematococcus pluvialis exhibited the strongest activity in converting β-carotene into astaxanthin in Y. lipolytica. We then fine-tuned the HpCrtW and HpCrtZ transcriptional expression by increasing the rounds of gene integration into the genome and applied a modular enzyme assembly of HpCrtW and HpCrtZ simultaneously. Next, we rescued leucine biosynthesis in the engineered Y. lipolytica, leading to a five-fold increase in biomass. The astaxanthin production achieved from these strategies was 3.3 g/L or 41.3 mg/g dry cell weight under fed-batch conditions, which is the highest level reported in microbial chassis to date. This study provides the potential for industrial production of 3S,3'S-astaxanthin, and this strategy empowers us to build a sustainable biorefinery platform for generating other value-added carotenoids in the future.
Collapse
Affiliation(s)
- Hang-Zhi Zhu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shan Jiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun-Jie Wu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | | | - Peng-Yang Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng-Hong Huang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Xia Wan
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
31
|
Lu Q, Zhou XL, Liu JZ. Adaptive laboratory evolution and shuffling of Escherichia coli to enhance its tolerance and production of astaxanthin. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:17. [PMID: 35418156 PMCID: PMC8851715 DOI: 10.1186/s13068-022-02118-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/10/2022] [Indexed: 01/01/2023]
Abstract
Background Astaxanthin is one of the strongest antioxidants in nature and has been widely used in aquaculture, food, cosmetic and pharmaceutical industries. Numerous stresses caused in the process of a large scale-culture, such as high acetate concentration, high osmolarity, high level of reactive oxygen species, high glucose concentration and acid environment, etc., limit cell growth to reach the real high cell density, thereby affecting astaxanthin production. Results We developed an adaptive laboratory evolution (ALE) strategy to enhance the production of chemicals by improving strain tolerance against industrial fermentation conditions. This ALE strategy resulted in 18.5% and 53.7% increases in cell growth and astaxanthin production in fed-batch fermentation, respectively. Whole-genome resequencing showed that 65 mutations with amino acid substitution were identified in 61 genes of the shuffled strain Escherichia coli AST-4AS. CRISPR interference (CRISPRi) and activation (CRISPRa) revealed that the shuffled strain with higher astaxanthin production may be associated with the mutations of some stress response protein genes, some fatty acid biosynthetic genes and rppH. Repression of yadC, ygfI and rcsC, activation of rnb, envZ and recC further improved the production of astaxanthin in the shuffled strain E. coli AST-4AS. Simultaneous deletion of yadC and overexpression of rnb increased the production of astaxanthin by 32% in the shuffled strain E. coli AST-4AS. Conclusion This ALE strategy will be powerful in engineering microorganisms for the high-level production of chemicals. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02118-w.
Collapse
Affiliation(s)
- Qian Lu
- Institute of Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao-Ling Zhou
- Institute of Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
32
|
Tang X, Man Y, Hu X, Xu X, Ren L. Identification of carotenoids biosynthesis pathway in Schizochytrium sp. and utilization in astaxanthin biosynthesis. Enzyme Microb Technol 2022; 156:110018. [DOI: 10.1016/j.enzmictec.2022.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
|
33
|
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: a state-of-the-art review. BIORESOUR BIOPROCESS 2022; 9:8. [PMID: 38647847 PMCID: PMC10992905 DOI: 10.1186/s40643-022-00497-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In current years, natural pigments are facing a fast-growing global market due to the increase of people's awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - WeiNing Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
34
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
35
|
|
36
|
Ren Y, Deng J, Huang J, Wu Z, Yi L, Bi Y, Chen F. Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. BIORESOURCE TECHNOLOGY 2021; 340:125736. [PMID: 34426245 DOI: 10.1016/j.biortech.2021.125736] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Astaxanthin is one of the secondary carotenoids involved in mediating abiotic stress of microalgae. As an important antioxidant and nutraceutical compound, astaxanthin is widely applied in dietary supplements and cosmetic ingredients. However, most astaxanthin in the market is chemically synthesized, which are structurally heterogeneous and inefficient for biological uptake. Astaxanthin refinery from Haematococcus pluvialis is now a growing industrial sector. H. pluvialis can accumulate astaxanthin to ∼5% of dry weight. As productivity is a key metric to evaluate the production feasibility, understanding the biological mechanisms of astaxanthin accumulation is beneficial for further production optimization. In this review, the biosynthesis mechanism of astaxanthin and production strategies are summarized. The current research on enhancing astaxanthin accumulation and the potential joint-production of astaxanthin with lipids was also discussed. It is conceivable that with further improvement on the productivity of astaxanthin and by-products, the algal-derived astaxanthin would be more accessible to low-profit applications.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Deng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Junchao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhaoming Wu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuge Bi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
37
|
Takemura M, Kubo A, Watanabe A, Sakuno H, Minobe Y, Sahara T, Murata M, Araki M, Harada H, Terada Y, Yaoi K, Ohdan K, Misawa N. Pathway engineering for high-yield production of lutein in Escherichia coli. Synth Biol (Oxf) 2021; 6:ysab012. [PMID: 34712837 PMCID: PMC8546607 DOI: 10.1093/synbio/ysab012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 11/15/2022] Open
Abstract
Lutein is an industrially important carotenoid pigment, which is essential for photoprotection and photosynthesis in plants. Lutein is crucial for maintaining human health due to its protective ability from ocular diseases. However, its pathway engineering research has scarcely been performed for microbial production using heterologous hosts, such as Escherichia coli, since the engineering of multiple genes is required. These genes, which include tricky key carotenoid biosynthesis genes typically derived from plants, encode two sorts of cyclases (lycopene ε- and β-cyclase) and cytochrome P450 CYP97C. In this study, upstream genes effective for the increase in carotenoid amounts, such as isopentenyl diphosphate isomerase (IDI) gene, were integrated into the E. coli JM101 (DE3) genome. The most efficient set of the key genes (MpLCYe, MpLCYb and MpCYP97C) was selected from among the corresponding genes derived from various plant (or bacterial) species using E. coli that had accumulated carotenoid substrates. Furthermore, to optimize the production of lutein in E. coli, we introduced several sorts of plasmids that contained some of the multiple genes into the genome-inserted strain and compared lutein productivity. Finally, we achieved 11 mg/l as lutein yield using a mini jar. Here, the high-yield production of lutein was successfully performed using E. coli through approaches of pathway engineering. The findings obtained here should be a base reference for substantial lutein production with microorganisms in the future.
Collapse
Affiliation(s)
- Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Akiko Kubo
- Applied Research Laboratory, Ezaki Glico Co., Ltd., Osaka, Japan
| | - Asuka Watanabe
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Hanayo Sakuno
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yuka Minobe
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Takehiko Sahara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | - Hisashi Harada
- Faculty of Engineering, Tottori University, Tottori, Japan
| | - Yoshinobu Terada
- Mechanism-Based Research Laboratory, Ezaki Glico Co., Ltd., Osaka, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Kohji Ohdan
- Applied Research Laboratory, Ezaki Glico Co., Ltd., Osaka, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| |
Collapse
|
38
|
Ma Y, Li J, Huang S, Stephanopoulos G. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica. Metab Eng 2021; 68:152-161. [PMID: 34634493 DOI: 10.1016/j.ymben.2021.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
Metabolic engineering approaches for the production of high-value chemicals in microorganisms mostly use the cytosol as general reaction vessel. However, sequestration of enzymes and substrates, and metabolic cross-talk frequently prevent efficient synthesis of target compounds in the cytosol. Organelle compartmentalization in eukaryotic cells suggests ways for overcoming these challenges. Here we have explored this strategy by expressing the astaxanthin biosynthesis pathway in sub-organelles of the oleaginous yeast Yarrowia lipolytica. We first showed that fusion of the two enzymes converting β-carotene to astaxanthin, β-carotene ketolase and hydroxylase, performs better than the expression of individual enzymes. We next evaluated the pathway when expressed in compartments of lipid body, endoplasmic reticulum or peroxisome, individually and in combination. Targeting the astaxanthin pathway to subcellular organelles not only accelerated the conversion of β-carotene to astaxanthin, but also significantly decreased accumulation of the ketocarotenoid intermediates. Anchoring enzymes simultaneously to all three organelles yielded the largest increase of astaxanthin synthesis, and ultimately produced 858 mg/L of astaxanthin in fed-batch fermentation (a 141-fold improvement over the initial strain). Our study is expected to help unlock the full potential of subcellular compartments and advance LB-based compartmentalized isoprenoid biosynthesis in Y. lipolytica.
Collapse
Affiliation(s)
- Yongshuo Ma
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, United States; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jingbo Li
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, United States
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, United States.
| |
Collapse
|
39
|
Liu T, Liu Y, Li L, Liu X, Guo Z, Cheng J, Zhu X, Lu L, Zhang J, Fan G, Xie N, Lu J, Jiang H. De Novo Biosynthesis of Polydatin in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5917-5925. [PMID: 34018734 DOI: 10.1021/acs.jafc.1c01557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polydatin, with better structural stability and biological activities than resveratrol, is mainly extracted from the traditional Chinese medicinal plant Polygonum cuspidatum. In this study, based on the transcriptome analysis of P. cuspidatum, we identified the key glycosyltransferase of resveratrol and achieved the biosynthesis of polydatin from glucose by incorporation with the resveratrol biosynthesis module, UDP-glucose supply module, and glycosyltransferase expression module. Through metabolic engineering and fermentation optimization, the production of polydatin reached 545 mg/L, and the dry cell weight was 27.83 mg/g DCW, which was about twice that of extracted from the P. cuspidatum root (11.404 mg/g DCW). Therefore, it is possible to replace the production mode of polydatin from plant extraction to microbial chassis in the future.
Collapse
Affiliation(s)
- Tian Liu
- Life Science and Technology College, Guangxi University, Nanning, Guangxi 530004, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yuqian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhaokuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Yunnan Agricultural University, Kunming, Yunnan 650201, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaoxi Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Lina Lu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Junlin Zhang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Nengzhong Xie
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Jian Lu
- Life Science and Technology College, Guangxi University, Nanning, Guangxi 530004, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
40
|
Escherichia coli as a platform microbial host for systems metabolic engineering. Essays Biochem 2021; 65:225-246. [PMID: 33956149 DOI: 10.1042/ebc20200172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Bio-based production of industrially important chemicals and materials from non-edible and renewable biomass has become increasingly important to resolve the urgent worldwide issues including climate change. Also, bio-based production, instead of chemical synthesis, of food ingredients and natural products has gained ever increasing interest for health benefits. Systems metabolic engineering allows more efficient development of microbial cell factories capable of sustainable, green, and human-friendly production of diverse chemicals and materials. Escherichia coli is unarguably the most widely employed host strain for the bio-based production of chemicals and materials. In the present paper, we review the tools and strategies employed for systems metabolic engineering of E. coli. Next, representative examples and strategies for the production of chemicals including biofuels, bulk and specialty chemicals, and natural products are discussed, followed by discussion on materials including polyhydroxyalkanoates (PHAs), proteins, and nanomaterials. Lastly, future perspectives and challenges remaining for systems metabolic engineering of E. coli are discussed.
Collapse
|
41
|
Wan X, Zhou XR, Moncalian G, Su L, Chen WC, Zhu HZ, Chen D, Gong YM, Huang FH, Deng QC. Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering. Prog Lipid Res 2020; 81:101083. [PMID: 33373616 DOI: 10.1016/j.plipres.2020.101083] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
There is an increasing demand for astaxanthin in food, feed, cosmetics and pharmaceutical applications because of its superior anti-oxidative and coloring properties. However, naturally produced astaxanthin is expensive, mainly due to low productivity and limited sources. Reprogramming of microorganisms for astaxanthin production via metabolic engineering is a promising strategy. We primarily focus on the application of synthetic biology, enzyme engineering and metabolic engineering in enhancing the synthesis and accumulation of astaxanthin in microorganisms in this review. We also discuss the biosynthetic pathways of astaxanthin within natural producers, and summarize the achievements and challenges in reprogramming microorganisms for enhancing astaxanthin production. This review illuminates recent biotechnological advances in microbial production of astaxanthin. Future perspectives on utilization of new technologies for boosting microbial astaxanthin production are also discussed.
Collapse
Affiliation(s)
- Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | | | - Gabriel Moncalian
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Wen-Chao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Hang-Zhi Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Dan Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yang-Min Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Feng-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | - Qian-Chun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| |
Collapse
|