1
|
Ali M, Kim YS. A comprehensive review and advanced biomolecule-based therapies for osteoporosis. J Adv Res 2025; 71:337-354. [PMID: 38810908 DOI: 10.1016/j.jare.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The prevalence of osteoporosis (OP) on a global scale is significantly elevated that causes life threatening issues. The potential of groundbreaking biomolecular therapeutics in the field of OP is highly encouraging. The administration of biomolecular agents has the potential to mitigate the process of bone demineralization while concurrently augmenting the regenerative capacity of bone tissue, thereby facilitating a personalized therapeutic approach. Biomolecules-based therapies showed promising results in term of bone mass protection and restoration in OP. AIM OF REVIEW We summarized the recent biomolecular therapies with notable progress in clinical, demonstrating the potential to transform illness management. These treatments frequently utilize different biomolecule based strategies. Biomolecular therapeutics has a targeted character, which results in heightened specificity and less off-target effects, ultimately leading to increased patient outcomes. These aspects have the capacity to greatly enhance the management of OP, thus resulting in a major enhancement in the quality of life encountered by individuals affected by this condition.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
2
|
Biswal S, Sahoo SK, Biswal BK. Shikonin a potent phytotherapeutic: a comprehensive review on metabolic reprogramming to overcome drug resistance in cancer. Mol Biol Rep 2025; 52:347. [PMID: 40156720 DOI: 10.1007/s11033-025-10459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Drug resistance remains a major challenge in cancer therapy, often leading to treatment failure. Metabolic reprogramming, a hallmark of cancer, plays a pivotal role in drug resistance. Phytocompounds, particularly shikonin, a naphthoquinone derived from Lithospermum erythrorhizon, have garnered significant interest as potential alternatives for cancer prevention and treatment. This review focuses on the anticancer properties of shikonin, particularly its ability to modulate metabolic reprogramming and overcome drug resistance. This review, based on extensive searches in databases like PubMed, Web of Science, Google Scholar, and Scopus, highlights shikonin's potential as a therapeutic agent. Shikonin exhibits a wide range of anticancer activities, including induction of apoptosis, autophagy, necroptosis, inhibition of angiogenesis, invasion, and migration, as well as disruption of the cell cycle and promotion of DNA damage. It targets altered cancer cell metabolism to inhibit proliferation and reverse drug resistance, making it a promising candidate for therapeutic development. Preliminary clinical trials suggest that shikonin can enhance the efficacy of established chemotherapeutic agents, immunotherapies, and radiation through additive and synergistic interactions. Despite its promise, further research is needed to elucidate the precise mechanisms underlying shikonin's metabolic reprogramming effects in cancer. A comprehensive understanding could pave the way for its integration into standard oncological treatments. With its capacity to act on multiple cancer pathways and enhance conventional treatments, shikonin stands out as a viable candidate for combating drug-resistant cancers and advancing clinical oncology.
Collapse
Affiliation(s)
- Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | | | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
3
|
Roman M, Wrobel TP, Panek A, Kwiatek WM. Comparison of biochemical changes induced in radioresistant prostate cancer cells by X-rays, radiosensitizing drugs, and a combined therapy using Raman microspectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125218. [PMID: 39353252 DOI: 10.1016/j.saa.2024.125218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Cancer radioresistance is a major problem in radiotherapy. Many strategies have been proposed to overcome this process including the use of radiosensitizing drugs such as C75 or silibinin. The overall result of all treatments (radiotherapy, chemotherapy, and combined treatment) is cancer cell death. On the other hand, each treatment affects cancer cells differently at the molecular level. However, little is known about biochemical changes induced in cancer cells by these treatments (especially in combined therapy) at the submicroscale. In this study, Raman microspectroscopy was applied to follow such changes induced in radioresistant prostate cancer cells by X-rays, radiosensitizing drugs (C75, silibinin), and a combined treatment. The analysis was supported by the Partial Least Squares Regression method to reveal spectral changes induced by an increasing dose of X-rays and concentrations of the drugs. The obtained regression coefficient (β) plots were compared to each other using a correlation coefficient (R). Our results show that PC-3 cells exhibit dose- and concentration-dependent responses to the treatment with different biochemical changes induced by X-rays in the presence of C75 and silibinin. Moreover, both drugs affect the cells differently at the submicroscale and independently from the X-ray's presence. Finally, C75 shows significant efficiency in the reduction of cell radioresistance.
Collapse
Affiliation(s)
- Maciej Roman
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland.
| | - Tomasz P Wrobel
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland
| | - Agnieszka Panek
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| |
Collapse
|
4
|
Yuan X, Yu B, Ding H, Li H, Wang Q, Lin L, Zhang W, Fang X. Novel lipid metabolism factor HIBCH inhibitor synergizes with doxorubicin to suppress osteosarcoma growth and impacts clinical prognosis in osteosarcoma patients. J Bone Oncol 2024; 49:100652. [PMID: 39687213 PMCID: PMC11646752 DOI: 10.1016/j.jbo.2024.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background Osteosarcoma (OS) is a highly malignant primary bone tumor primarily affecting children and adolescents. Despite advancements in therapeutic strategies, long-term survival rates for OS remain unfavorable, especially in advanced or recurrent cases. Emerging evidence has noted the involvement of lipid metabolism dysregulation in OS progression, but the specific mechanisms remain unclear. Methods A risk model incorporating lipid metabolism-related genes was established to stratify OS patients into high-risk and low-risk groups. Functional assays were conducted to assess the role of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) in OS cell activities. Ultra-fast liquid chromatography-mass spectrometry was adopted to analyze the impact of HIBCH on OS cell metabolism. Moreover, the combined effect of HIBCH inhibitor SBF-1 with doxorubicin (DOX) was evaluated through in vitro studies and mouse xenograft models. Results HIBCH was identified as a key gene involved in the malignant behaviors of OS cells. HIBCH knockdown disrupted tricarboxylic acid (TCA) cycle activity and reduced oxidative phosphorylation in OS cells. SBF-1 showed synergistic effects with DOX in inhibiting malignant phenotypes of OS cells by modulating the Akt-mTOR pathway. In vivo experiments demonstrated that the combination of SBF-1 and DOX significantly suppressed tumor growth in mouse xenograft models. Conclusions This study reveals the critical role of lipid metabolism in OS progression and suggests a new therapeutic strategy against chemotherapy resistance in OS based on the synergistic combination of SBF-1 with DOX.
Collapse
Affiliation(s)
- Xuhui Yuan
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Bo Yu
- Department of Orthopedic, Huaqiao Hospital, Jinan University, Guangzhou, China
| | - Haiqi Ding
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Hongyan Li
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qijing Wang
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Orthopaedic, Affiliated Mindong of Fujian Medical University, Fuan, China
| | - Lan Lin
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xinyu Fang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
5
|
Khan A, Rehman AU, Siddiqui S, Khan J, Massey S, Singh P, Saluja D, Husain SA, Iqbal MA. Withaferin A decreases glycolytic reprogramming in breast cancer. Sci Rep 2024; 14:23147. [PMID: 39366987 PMCID: PMC11452501 DOI: 10.1038/s41598-024-72221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
Reprogrammed glucose metabolism is considered as the hallmark of cancer with therapeutic implications. Phytocompounds have potential to inhibit cancer metabolism. Here, we tested the ability of Withaferin A (WA), a withanolide derived from Withania somnifera, in modulating cancer metabolism. The assessed effect of WA on aerobic glycolysis in breast cancer cell lines showed that WA decreases the glucose uptake, lactate production and ATP generation by inhibiting the expression of key glycolytic enzymes i.e., GLUT1, HK2 and PKM2. We also identified that WA induced inhibition of cancer glycolysis by targeting c-myc as validated by silencing experiments followed by metabolic readouts. Decreased glycolysis resulted in reduced cell viability, biomass and colony forming ability of breast cancer cells. To further validate our in vitro findings in breast cancer patients, we analyzed 90 metabolic pathways in ~ 2000 breast tumors and observed that glycolysis is the most deregulated pathway in breast tumors. Deregulated glycolysis also predicted poor prognosis in breast cancer patients. In addition, patient data showed correlation between c-myc expression and glycolytic deregulation in breast cancer. Taken together, our results highlight the role of WA in inhibiting breast cancer metabolism via c-myc/glycolysis axis.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Asad Ur Rehman
- Medical Biotechnology Laboratory, Dr B R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Jiyauddin Khan
- Medical Biotechnology Laboratory, Dr B R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Sheersh Massey
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Prithvi Singh
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr B R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
- Thumbay Research Institute for Precision Medicine (TRIPM), College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.
| |
Collapse
|
6
|
Sharma M, Pandey V, Poli G, Tuccinardi T, Lolli ML, Vyas VK. A comprehensive review of synthetic strategies and SAR studies for the discovery of PfDHODH inhibitors as antimalarial agents. Part 1: triazolopyrimidine, isoxazolopyrimidine and pyrrole-based (DSM) compounds. Bioorg Chem 2024; 146:107249. [PMID: 38493638 DOI: 10.1016/j.bioorg.2024.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
One of the deadliest infectious diseases, malaria, still has a significant impact on global morbidity and mortality. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in de novo pyrimidine nucleotide biosynthesis and has been clinically validated as an innovative and promising target for the development of novel targeted antimalarial drugs. PfDHODH inhibitors have the potential to significantly slow down parasite growth at the blood and liver stages. Several PfDHODH inhibitors based on various scaffolds have been explored over the past two decades. Among them, triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based derivatives known as DSM compounds showed tremendous potential as novel antimalarial agents, and one of the triazolopyrimidine-based compounds (DSM265) was able to reach phase IIa clinical trials. DSM compounds were synthesized as PfDHODH inhibitors with various substitutions based on structure-guided medicinal chemistry approaches and further optimised as well. For the first time, this review provides an overview of all the synthetic approaches used for the synthesis, alternative synthetic routes, and novel strategies involving various catalysts and chemical reagents that have been used to synthesize DSM compounds. We have also summarized SAR study of all these PfDHODH inhibitors. In an attempt to assist readers, scientists, and researchers involved in the development of new PfDHODH inhibitors as antimalarials, this review provides accessibility of all synthetic techniques and SAR studies of the most promising triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based PfDHODH inhibitors.
Collapse
Affiliation(s)
- Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Vinita Pandey
- MIT College of Pharmacy, Ramganga Vihar, Phase-II, Moradabad, UP-244001, India
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 - Turin, Italy
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India.
| |
Collapse
|
7
|
Khan A, Khan A, Khan MA, Malik Z, Massey S, Parveen R, Mustafa S, Shamsi A, Husain SA. Phytocompounds targeting epigenetic modulations: an assessment in cancer. Front Pharmacol 2024; 14:1273993. [PMID: 38596245 PMCID: PMC11002180 DOI: 10.3389/fphar.2023.1273993] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024] Open
Abstract
For centuries, plants have been serving as sources of potential therapeutic agents. In recent years, there has been a growing interest in investigating the effects of plant-derived compounds on epigenetic processes, a novel and captivating Frontier in the field of epigenetics research. Epigenetic changes encompass modifications to DNA, histones, and microRNAs that can influence gene expression. Aberrant epigenetic changes can perturb key cellular processes, including cell cycle control, intercellular communication, DNA repair, inflammation, stress response, and apoptosis. Such disruptions can contribute to cancer development by altering the expression of genes involved in tumorigenesis. However, these modifications are reversible, offering a unique avenue for therapeutic intervention. Plant secondary compounds, including terpenes, phenolics, terpenoids, and sulfur-containing compounds are widely found in grains, vegetables, spices, fruits, and medicinal plants. Numerous plant-derived compounds have demonstrated the potential to target these abnormal epigenetic modifications, including apigenin (histone acetylation), berberine (DNA methylation), curcumin (histone acetylation and epi-miRs), genistein (histone acetylation and DNA methylation), lycopene (epi-miRs), quercetin (DNA methylation and epi-miRs), etc. This comprehensive review highlights these abnormal epigenetic alterations and discusses the promising efficacy of plant-derived compounds in mitigating these deleterious epigenetic signatures in human cancer. Furthermore, it addresses ongoing clinical investigations to evaluate the therapeutic potential of these phytocompounds in cancer treatment, along with their limitations and challenges.
Collapse
Affiliation(s)
- Aqsa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Asifa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mohammad Aasif Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
- Department of Radiation Oncology, The University of Texas Health Science Centre at San Antonio, San Antonio, TX, United States
| | - Zoya Malik
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sheersh Massey
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rabea Parveen
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Saad Mustafa
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Syed A. Husain
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
8
|
Singh P, Sen K, Sa P, Khuntia A, Raghav SK, Swain RK, Sahoo SK. Piperlongumine based nanomedicine impairs glycolytic metabolism in triple negative breast cancer stem cells through modulation of GAPDH & FBP1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155181. [PMID: 38091824 DOI: 10.1016/j.phymed.2023.155181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and exhibits high rate of chemoresistance, metastasis, and relapse. This can be attributed to the failure of conventional therapeutics to target a sub-population of slow cycling or quiescent cells called as cancer stem cells (CSCs). Therefore, elimination of CSCs is essential for effective TNBC treatment. PURPOSE Research suggests that breast CSCs exhibit elevated glycolytic metabolism which directly contributes in maintenance of stemness, self-renewability and chemoresistance as well as in tumor progression. Therefore, this study aimed to target rewired metabolism which can serve as Achilles heel for CSCs population and have far reaching effect in TNBC treatment. METHODS We used two preclinical models, zebrafish and nude mice to evaluate the fate of nanoparticles as well as the therapeutic efficacy of both piperlongumine (PL) and its nanomedicine (PL-NPs). RESULTS In this context, we explored a phytochemical piperlongumine (PL) which has potent anti-cancer properties but poor pharmacokinetics impedes its clinical translation. So, we developed PLGA based nanomedicine for PL (PL-NPs), and demonstrated that it overcomes the pharmacokinetic limitations of PL, along with imparting advantages of selective tumor targeting through Enhanced Permeability and Retention (EPR) effect in zebrafish xenograft model. Further, we demonstrated that PL-NPs efficiently inhibit glycolysis in CSCs through inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by modulating glutathione S-transferase pi 1 (GSTP1) and upregulation of fructose-1,6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis. We also illustrated that inhibition of glycolysis results in overall tumor regression in two preclinical models. CONCLUSION This study discusses novel mechanism of action by which PL acts on CSCSs. Taken together our study provides insight into development of PL based nanomedicine which could be exploited in clinics to achieve complete eradication of TNBC by targeting CSCs.
Collapse
Affiliation(s)
- Priya Singh
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India
| | - Kaushik Sen
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India
| | - Pratikshya Sa
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India
| | - Auromira Khuntia
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India
| | - Sunil K Raghav
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India
| | - Rajeeb K Swain
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India
| | - Sanjeeb Kumar Sahoo
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India.
| |
Collapse
|
9
|
Mitra P, Jana S, Roy S. Insights into the Therapeutic uses of Plant Derive Phytocompounds onDiabetic Nephropathy. Curr Diabetes Rev 2024; 20:e230124225973. [PMID: 38265383 DOI: 10.2174/0115733998273395231117114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 01/25/2024]
Abstract
Diabetic nephropathy (DN) is one of the primary consequences of diabetes mellitus, affecting many people worldwide and is the main cause of death under the age of sixty. Reactive oxygen species (ROS) production rises during hyperglycemia and is crucial to the development of diabetic complications. Advanced glycation end products (AGEs) are produced excessively in a diabetic state and are accumulated in the kidney, where they change renal architecture and impair renal function. Another important targeted pathway for the formation of DN includes nuclear factor kappa-B (NF-kB), Nuclear factor E2-related factor 2 (Nrf2), NLR family pyrin domain containing 3 (NLRP3), protein kinase B/mammalian target of rapamycin (Akt/mTOR), and autophagy. About 40% of individuals with diabetes eventually acquire diabetic kidney disease and end-stage renal disease that needs hemodialysis, peritoneal dialysis, or kidney transplantation to survive. The current state of acceptable therapy for this kidney ailment is limited. The studies revealed that some naturally occurring bioactive substances might shield the kidney by controlling oxidative stress, renal fibrosis, inflammation, and autophagy. In order to provide new potential therapeutic lead bioactive compounds for contemporary drug discovery and clinical management of DN, this review was designed to examine the various mechanistic pathways by which conventional plants derive phytocompounds that are effective for the control and treatment of DN.
Collapse
Affiliation(s)
- Palash Mitra
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, Paschim Medinipur, West Bengal, India
| | - Sahadeb Jana
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, Paschim Medinipur, West Bengal, India
| | - Suchismita Roy
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, India
| |
Collapse
|
10
|
Mia MAR, Dey D, Sakib MR, Biswas MY, Prottay AAS, Paul N, Rimti FH, Abdullah Y, Biswas P, Iftehimul M, Paul P, Sarkar C, El-Nashar HAS, El-Shazly M, Islam MT. The efficacy of natural bioactive compounds against prostate cancer: Molecular targets and synergistic activities. Phytother Res 2023; 37:5724-5754. [PMID: 37786304 DOI: 10.1002/ptr.8017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Globally, prostate cancer (PCa) is regarded as a challenging health issue, and the number of PCa patients continues to rise despite the availability of effective treatments in recent decades. The current therapy with chemotherapeutic drugs has been largely ineffective due to multidrug resistance and the conventional treatment has restricted drug accessibility to malignant tissues, necessitating a higher dosage resulting in increased cytotoxicity. Plant-derived bioactive compounds have recently attracted a great deal of attention in the field of PCa treatment due to their potent effects on several molecular targets and synergistic effects with anti-PCa drugs. This review emphasizes the molecular mechanism of phytochemicals on PCa cells, the synergistic effects of compound-drug interactions, and stem cell targeting for PCa treatment. Some potential compounds, such as curcumin, phenethyl-isothiocyanate, fisetin, baicalein, berberine, lutein, and many others, exert an anti-PCa effect via inhibiting proliferation, metastasis, cell cycle progression, and normal apoptosis pathways. In addition, multiple studies have demonstrated that the isolated natural compounds: d-limonene, paeonol, lanreotide, artesunate, and bicalutamide have potential synergistic effects. Further, a significant number of natural compounds effectively target PCa stem cells. However, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals against PCa.
Collapse
Affiliation(s)
- Md Abdur Rashid Mia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Musfiqur Rahman Sakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Md Yeaman Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Niloy Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Fahmida Hoque Rimti
- Bachelor of Medicine and Surgery, Chittagong Medical College, Chawkbazar, Bangladesh
| | - Yusuf Abdullah
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Md Iftehimul
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| |
Collapse
|
11
|
Yang HL, Lin PY, Vadivalagan C, Lin YA, Lin KY, Hseu YC. Coenzyme Q 0 defeats NLRP3-mediated inflammation, EMT/metastasis, and Warburg effects by inhibiting HIF-1α expression in human triple-negative breast cancer cells. Arch Toxicol 2023; 97:1047-1068. [PMID: 36847822 DOI: 10.1007/s00204-023-03456-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023]
Abstract
Coenzyme Q0 (CoQ0) is a derivative quinone from Antrodia camphorata (AC) that exerts anticancer activities. This study examined the anticancer attributes of CoQ0 (0-4 µM) on inhibited anti-EMT/metastasis and NLRP3 inflammasome, and altered Warburg effects via HIF-1α inhibition in triple-negative breast cancer (MDA-MB-231 and 468) cells. MTT assay, cell migration/invasion assays, Western blotting, immunofluorescence, metabolic reprogramming, and LC-ESI-MS were carried out to assess the therapy potential of CoQ0. CoQ0 inhibited HIF-1α expression and suppressed the NLRP3 inflammasome and ASC/caspase-1 expression, followed by downregulation of IL-1β and IL-18 expression in MDA-MB-231 and 468 cells. CoQ0 ameliorated cancer stem-like markers by decreasing CD44 and increasing CD24 expression. Notably, CoQ0 modulated EMT by upregulating the epithelial marker E-cadherin and downregulating the mesenchymal marker N-cadherin. CoQ0 inhibited glucose uptake and lactate accumulation. CoQ0 also inhibited HIF-1α downstream genes involved in glycolysis, such as HK-2, LDH-A, PDK-1, and PKM-2 enzymes. CoQ0 decreased extracellular acidification rate (ECAR), glycolysis, glycolytic capacity, and glycolytic reserve in MDA-MB-231 and 468 cells under normoxic and hypoxic (CoCl2) conditions. CoQ0 inhibited the glycolytic intermediates lactate, FBP, and 2/3-PG, and PEP levels. CoQ0 increased oxygen consumption rate (OCR), basal respiration, ATP production, maximal respiration, and spare capacity under normoxic and hypoxic (CoCl2) conditions. CoQ0 increased TCA cycle metabolites, such as citrate, isocitrate, and succinate. CoQ0 inhibited aerobic glycolysis and enhanced mitochondrial oxidative phosphorylation in TNBC cells. Under hypoxic conditions, CoQ0 also mitigated HIF-1α, GLUT1, glycolytic-related (HK-2, LDH-A, and PFK-1), and metastasis-related (E-cadherin, N-cadherin, and MMP-9) protein or mRNA expression in MDA-MB-231 and/or 468 cells. Under LPS/ATP stimulation, CoQ0 inhibited NLRP3 inflammasome/procaspase-1/IL-18 activation and NFκB/iNOS expression. CoQ0 also hindered LPS/ATP-stimulated tumor migration and downregulated LPS/ATP-stimulated N-cadherin and MMP-2/-9 expression. The present study revealed that suppression of HIF-1α expression caused by CoQ0 may contribute to inhibition of NLRP3-mediated inflammation, EMT/metastasis, and Warburg effects of triple-negative breast cancers.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Ping-Yu Lin
- Institute of Nutrition, College of Health Care, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Yi-An Lin
- Institute of Nutrition, College of Health Care, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 710, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan.
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
12
|
Delices M, Muller JDAI, Arunachalam K, Martins DTDO. Anadenanthera colubrina (Vell) Brenan: Ethnobotanical, phytochemical, pharmacological and toxicological aspects. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115745. [PMID: 36162548 DOI: 10.1016/j.jep.2022.115745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anadenanthera colubrina (Vell.) Brenan is an endemic tree to South America and different parts of it are used by the population for the treatment of various diseases, as well as in indigenous rituals. This species has high pharmacological potential but may present toxic potential due to the presence of psychotropic compounds. AIM OF THE STUDY To review published studies with the species A. colubrina regarding ethnobotanical, phytochemical, pharmacological and toxicological aspects, as well as discuss perspectives for new research and protection of this species. MATERIALS AND METHODS A literature review was performed by accessing published articles on databases such as: PubMed, Science Direct, Scielo, Scopus, Taylor and Francis online, Springer Link, National Center for Biotechnology Information (NCBI), ACS Publications, Chemspider and Google Scholar. The keywords used were: "Anadenanthera colubrina" or "Mimosa colubrina" or "Piptadenia colubrina" or "Piptadenia macrocarpa" or "Piptadenia grata" or "Anadenanthera macrocarpa" and "medicinal plants" or "pharmacological" or "phytochemicals" or "traditional use" or "toxicological" or "ethnobotanical" or "pre-clinical trial" or "clinical". Articles found by database searches and search engines were screened at four stages: (i) title screening, (ii) locality screening, (iii) abstract screening, and (iv) full text. Other articles found through supplementary searches were screened in the full text whenever available. Each article was assessed by three reviewers at the title and abstract screening stages, except for those found in Portuguese databases that were assessed by the native reviewer. RESULTS This robust tree has been popularly useful for agroeconomic, medicinal and as a hallucinogen in religious rituals. According to the published studies, the main parts of the plant are the bark and seeds that are mostly used for respiratory conditions and as entheogens, respectively. It is a rich traditional herbal medicine with many pharmacological properties such as anti-inflammatory, antinociceptive, antidiarrheal, wound healing, antimicrobial, antitumoral, antioxidant, antiaddictive, insecticide and allelopathic that were described in in vitro and in vivo assays, and approximately 56 compounds were identified, suggesting a therapeutic potential for this species. Although most relate to medicinal uses, these are preliminaries and do not show the mechanism of action. The phytochemical assays showed the presence of phenolic compounds, flavonoids, triterpenes, steroids and alkaloids. Some of the compounds are anadanthoflavone, which is exclusive to this species, and no pharmacological or toxicological studies have yet demonstrated this compound. Another important compound is bufotenine which was isolated from seeds and is related to hallucinogenic and antiviral activity. The extracts made from leaves, bark, gum, and fruits appear to be safe, according to both in vivo and in vitro toxicology testing, which all shown low toxicity. Due to the presence of bufotenine in the seeds, it can be toxic, however, it was not found in toxicological assays with the seed extracts. CONCLUSIONS Therefore, part of the studies confirms the popular use of A. colubrina, however, more assays with isolated compounds and with the different extracts are necessary to corroborate other uses and the mechanism of action of their pharmacological effects needs to discuss in more detail. Therefore, the present review would be identified the gaps and suggests further studies oriented to validate the popular use. Thus, it must be noted that the use of this species must be controlled in order to minimize the environmental impact, as most of the pharmacological potential was shown with the bark and seeds. Due to its wide use in folk medicine, it is part of the Brazilian medicinal species with priority for conservation.
Collapse
Affiliation(s)
- Merline Delices
- Área de Farmacologia, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Jessica de Araujo Isaias Muller
- Área de Farmacologia, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Karuppusamy Arunachalam
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil; Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, China.
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil; Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| |
Collapse
|
13
|
Shannar A, Sarwar MS, Kong ANT. A New Frontier in Studying Dietary Phytochemicals in Cancer and in Health: Metabolic and Epigenetic Reprogramming. Prev Nutr Food Sci 2022; 27:335-346. [PMID: 36721757 PMCID: PMC9843711 DOI: 10.3746/pnf.2022.27.4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2023] Open
Abstract
Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in regulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic cofactors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mechanisms by which phytochemicals can mitigate cancer.
Collapse
Affiliation(s)
- Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA,
Correspondence to Ah-Ng Tony Kong,
| |
Collapse
|
14
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Qi X, Jha SK, Jha NK, Dewanjee S, Dey A, Deka R, Pritam P, Ramgopal K, Liu W, Hou K. Antioxidants in brain tumors: current therapeutic significance and future prospects. Mol Cancer 2022; 21:204. [PMID: 36307808 PMCID: PMC9615186 DOI: 10.1186/s12943-022-01668-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Brain cancer is regarded among the deadliest forms of cancer worldwide. The distinct tumor microenvironment and inherent characteristics of brain tumor cells virtually render them resistant to the majority of conventional and advanced therapies. Oxidative stress (OS) is a key disruptor of normal brain homeostasis and is involved in carcinogenesis of different forms of brain cancers. Thus, antioxidants may inhibit tumorigenesis by preventing OS induced by various oncogenic factors. Antioxidants are hypothesized to inhibit cancer initiation by endorsing DNA repair and suppressing cancer progression by creating an energy crisis for preneoplastic cells, resulting in antiproliferative effects. These effects are referred to as chemopreventive effects mediated by an antioxidant mechanism. In addition, antioxidants minimize chemotherapy-induced nonspecific organ toxicity and prolong survival. Antioxidants also support the prooxidant chemistry that demonstrate chemotherapeutic potential, particularly at high or pharmacological doses and trigger OS by promoting free radical production, which is essential for activating cell death pathways. A growing body of evidence also revealed the roles of exogenous antioxidants as adjuvants and their ability to reverse chemoresistance. In this review, we explain the influences of different exogenous and endogenous antioxidants on brain cancers with reference to their chemopreventive and chemotherapeutic roles. The role of antioxidants on metabolic reprogramming and their influence on downstream signaling events induced by tumor suppressor gene mutations are critically discussed. Finally, the review hypothesized that both pro- and antioxidant roles are involved in the anticancer mechanisms of the antioxidant molecules by killing neoplastic cells and inhibiting tumor recurrence followed by conventional cancer treatments. The requirements of pro- and antioxidant effects of exogenous antioxidants in brain tumor treatment under different conditions are critically discussed along with the reasons behind the conflicting outcomes in different reports. Finally, we also mention the influencing factors that regulate the pharmacology of the exogenous antioxidants in brain cancer treatment. In conclusion, to achieve consistent clinical outcomes with antioxidant treatments in brain cancers, rigorous mechanistic studies are required with respect to the types, forms, and stages of brain tumors. The concomitant treatment regimens also need adequate consideration.
Collapse
Affiliation(s)
- Xuchen Qi
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.,Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India. .,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India. .,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700032, India
| | - Rahul Deka
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Pingal Pritam
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Kritika Ramgopal
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Weiting Liu
- School of Nursing, Anhui University of Chinese Medicine, Hefei, 230001, Anhui, China.
| | - Kaijian Hou
- School of Nursing, Anhui University of Chinese Medicine, Hefei, 230001, Anhui, China. .,School of Public Health, Shantou University, Shantou, 515000, Guangdong, China.
| |
Collapse
|
16
|
Malik Z, Parveen R, Abass S, Irfan Dar M, Husain SA, Ahmad S. Receptor-Mediated Targeting in Breast Cancer through Solid Lipid Nanoparticles and Its Mechanism. Curr Drug Metab 2022; 23:800-817. [PMID: 35430962 DOI: 10.2174/1389200223666220416213639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023]
Abstract
Nanoparticles have gained prominence in many areas and domains worldwide, such as metallic NP, carbon dots, quantum dots, polymeric NP, nano-suspension, nanocrystals, solid lipid nanoparticles (SLN), etc. and have been applied in the field of medicine as nanomedicine with promising results. Rise in cancer mortality rate has been an issue for a long time with female breast cancer as one of the most detected cancers. No permanent treatment has been developed till date could combat breast cancer with minimum side effects that are not long-lasting as there is no proper technique through which the anticancer drugs can recognize benign or malignant or normal cells that causes systematic toxicity. Advancement in technology has led to the discovery of many biological pathways and mechanisms. Tumor cells or cancer cells overexpress some high-affinity receptors that can be targeted to deliver the anticancer drugs at specific site using these pathways and mechanisms. Solid lipid nanoparticles (SLN) are among some of the excellent drug delivery systems, especially stealth SLN (sSLN). SLN, when conjugated with a ligand (called as sSLN), has affinity and specificity towards a specific receptor, and can deliver the drug in breast cancer cells overexpressing the receptors. Using this technique, various investigations have reported better anti-breast cancer activity than simple SLN (non-conjugated to ligand or no receptor targeting). This review includes the investigations and data on receptor-mediated targeting in breast cancer from 2010 to 2021 by searching different databases. Overall, information on SLN in different cancers is reviewed. In vivo investigations, pharmacokinetics, biodistribution, and stability are discussed to describe the efficacy of sSLN. Investigations included in this review demonstrate that sSLN delivers the drug by overcoming the biological barriers and shows enhanced and better activity than non-conjugated SLN which also verifies that a lesser concentration of drug can show anti-breast cancer activity. The efficacy of medicines could be increased with lower cancer deaths through stealth-SLN. Due to the low cost of synthesis, biocompatibility and easy to formulate, more study is needed in vitro and in vivo so that this novel technique could be utilized in the treatment of human breast cancer.
Collapse
Affiliation(s)
- Zoya Malik
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Rabea Parveen
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sageer Abass
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Irfan Dar
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India.,Proteomics and Bioinformatics Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi-110025, India
| | - Syed Akhtar Husain
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
17
|
Zhang B, Fu R, Duan Z, Shen S, Zhu C, Fan D. Ginsenoside CK induces apoptosis in triple-negative breast cancer cells by targeting glutamine metabolism. Biochem Pharmacol 2022; 202:115101. [PMID: 35618001 DOI: 10.1016/j.bcp.2022.115101] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022]
Abstract
Breast cancer (BC) has replaced lung cancer as the most common cancer worldwide. Ginsenoside CK (CK) can effectively inhibit triple-negative breast cancer (TNBC), the occurrence and development of which are associated with glutamine addiction. However, the connection between CK and glutamine metabolism in TNBC proliferation and the mechanism of cell death induction remains unclear. Here, we found that high glutamine-addicted TNBC cells were particularly sensitive to CK treatment. CK exerted antitumour activity against TNBC by suppressing glutamine consumption and glutamate production via downregulation of glutaminase 1 (GLS1) expression. CK treatment further decreased cellular ATP production, reduced the utilisation of amino acids associated with glutamine metabolism, and induced glutathione (GSH) depletion and reactive oxygen species (ROS) accumulation, consequently triggering apoptosis in TNBC. Furthermore, CK decreased GLS1 expression in SUM159 xenograft mouse mammary tumours and significantly inhibited tumour growth with few side effects. Together, our data provide a powerful theoretical basis for the application of CK as a glutamine metabolic inhibitor in TNBC treatment.
Collapse
Affiliation(s)
- Bo Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Shihong Shen
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
18
|
Koperniku A, Garcia AA, Mochly-Rosen D. Boosting the Discovery of Small Molecule Inhibitors of Glucose-6-Phosphate Dehydrogenase for the Treatment of Cancer, Infectious Diseases, and Inflammation. J Med Chem 2022; 65:4403-4423. [PMID: 35239352 PMCID: PMC9553131 DOI: 10.1021/acs.jmedchem.1c01577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present an overview of small molecule glucose-6-phosphate dehydrogenase (G6PD) inhibitors that have potential for use in the treatment of cancer, infectious diseases, and inflammation. Both steroidal and nonsteroidal inhibitors have been identified with steroidal inhibitors lacking target selectivity. The main scaffolds encountered in nonsteroidal inhibitors are quinazolinones and benzothiazinones/benzothiazepinones. Three molecules show promise for development as antiparasitic (25 and 29) and anti-inflammatory (32) agents. Regarding modality of inhibition (MOI), steroidal inhibitors have been shown to be uncompetitive and reversible. Nonsteroidal small molecules have exhibited all types of MOI. Strategies to boost the discovery of small molecule G6PD inhibitors include exploration of structure-activity relationships (SARs) for established inhibitors, employment of high-throughput screening (HTS), and fragment-based drug discovery (FBDD) for the identification of new hits. We discuss the challenges and gaps associated with drug discovery efforts of G6PD inhibitors from in silico, in vitro, and in cellulo to in vivo studies.
Collapse
Affiliation(s)
- Ana Koperniku
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
- Corresponding Author: Ana Koperniku,
| | - Adriana A. Garcia
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|