1
|
Chen Y, Fang H, Chen H, Liu X, Zhao J, Stanton C, Ross RP, Chen W, Yang B. Bifidobacterium inhibits the progression of colorectal tumorigenesis in mice through fatty acid isomerization and gut microbiota modulation. Gut Microbes 2025; 17:2464945. [PMID: 39924893 PMCID: PMC11812354 DOI: 10.1080/19490976.2025.2464945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Colorectal cancer (CRC) represents the third most common cancer worldwide. Consequently, there is an urgent need to identify novel preventive and therapeutic strategies for CRC. This study aimed to screen for beneficial bacteria that have a preventive effect on CRC and to elucidate the potential mechanisms. Initially, we compared gut bacteria and bacterial metabolites of healthy volunteers and CRC patients, which demonstrated that intestinal conjugated linoleic acid (CLA), butyric acid, and Bifidobacterium in CRC patients were significantly lower than those in healthy volunteers, and these indicators were significantly negatively correlated with CRC. Next, spontaneous CRC mouse model were conducted to explore the effect of supplemental CLA-producing Bifidobacterium on CRC. Supplementation of mice with CLA-producing Bifidobacterium breve CCFM683 and B. pseudocatenulatum MY40C significantly prevented CRC. Moreover, molecular approaches demonstrated that CLA and the CLA-producing gene, bbi, were the key metabolites and genes for CCFM683 to prevent CRC. Inhibitor intervention results showed that PPAR-γ was the key receptor for preventing CRC. CCFM683 inhibited the NF-κB signaling pathway, up-regulated MUC2, Claudin-1, and ZO-1, and promoted tumor cell apoptosis via the CLA-PPAR-γ axis. Additionally, fecal microbiota transplantation (FMT) and metagenomic analysis showed that CCFM683 up-regulated Odoribacter splanchnicus through CLA production, which then prevented CRC by producing butyric acid, up-regulating TJ proteins, regulating cytokines, and regulating gut microbiota. These results will contribute to the clinical trials of Bifidobacterium and the theoretical research and development of CRC dietary products.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Huiting Fang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Catherine Stanton
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, Jiangsu, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R. Paul Ross
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Chen Y, Li M, Deng L, Zhu Y, Mu Y, Wang C, Xia L, Wang R, Zhou M. Orally administered Chrysophyta polysaccharide ameliorates DSS-induced colitis via intestinal barrier improvement, oxidative stress regulation, NF-κB pathway inhibition, and gut microbiota modulation. Int J Biol Macromol 2025; 315:144500. [PMID: 40409618 DOI: 10.1016/j.ijbiomac.2025.144500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/03/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Chrysophyta polysaccharide (CPP) exhibits immunomodulatory and antioxidant properties. However, its potential to alleviate colitis remains unclear. This study aimed to examine the effects of CPP on colitis and its underlying mechanisms. CPP was administered at three doses: H-CPP (100 mg/kg/day), M-CPP (50 mg/kg/day), and L-CPP (25 mg/kg/day). Treatment with H-CPP and M-CPP significantly up-regulated tight junction proteins, inhibited epithelial cell apoptosis, regulated oxidative stress, and alleviated colitis. H-CPP and M-CPP treatments inhibited the NF-κB pathway and modulated TNF-α, IL-10, and IL-1β. Furthermore, H-CPP treatment improved the gut microbiota by increasing Akkermansia and Bifidobacterium while decreasing Clostridium sensu stricto 1, Escherichia-Shigella, Dorea, and Parabacteroides. Simultaneously, H-CPP treatment promoted the production of Acetovanillone and L-Tryptophan. Therefore, in a dose-dependent manner, CPP reduces the severity of colitis by regulating cytokines, protecting intestinal mucosal barrier, promoting beneficial metabolites, and regulating gut microbiota. These findings will enhance our understanding of the mechanisms underlying the health-regulating effects of CPP and the development of dietary supplements targeting colitis, with significant economic and social implications.
Collapse
Affiliation(s)
- Yang Chen
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mengchen Li
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lei Deng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yunli Zhu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yang Mu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chao Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lusha Xia
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430068, China
| | - Ran Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
3
|
Chen Y, Liu N, Chen F, Liu M, Mu Y, Wang C, Xia L, Peng M, Zhou M. Alleviation effects of Lactobacillus plantarum in colitis aggravated by a high-salt diet depend on intestinal barrier protection, NF-κB pathway regulation, and oxidative stress improvement. Food Funct 2025; 16:2718-2736. [PMID: 40111251 DOI: 10.1039/d4fo06377e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A high-salt diet (HSD) can result in numerous health issues, including exacerbation of intestinal inflammation. Therefore, there is an immediate necessity of developing dietary supplements that can mitigate colitis exacerbated by a HSD. This study examined the impact of Lactobacillus plantarum HGD228 on colitis exacerbated by a HSD and the mechanisms underlying its alleviation. HGD228 treatment significantly enhanced colonic goblet cells and MUC2, upregulated ZO-1 and occludin, inhibited epithelial cell apoptosis, and mitigated colitis exacerbated by a HSD. Moreover, HGD228 significantly regulated oxidative stress-related enzymes, including SOD, GSH-PX, and CAT. HGD228 treatment significantly suppressed the NF-κB pathway induced by a HSD and regulated the levels of cytokines, including TNF-α, IL-10, and IL-1β. Furthermore, HGD228 reestablished the gut microbiota altered by HSDDSS, increasing Bifidobacterium while decreasing Escherichia-Shigella and Clostridium sensu stricto 1. HGD228 treatment also enhanced the production of butyric acid and acetic acid, suppressed pro-inflammatory cytokines, and strengthened the intestinal mucosal barrier. Therefore, HGD228 enhanced the production of beneficial metabolites by regulating inflammatory cytokines and oxidative stress, preserving the mucosal barrier, and enhancing gut microbiota, and mitigated colitis aggravated by a HSD. These results will aid in clinical trials of probiotics and the development of dietary supplements for colitis, with promising application value.
Collapse
Affiliation(s)
- Yang Chen
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Nian Liu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Fangyi Chen
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Mengyuan Liu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Yang Mu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Chao Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Lusha Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430068, China
| | - Mingye Peng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
4
|
Niu B, Gao W, Li F, Pei Z, Wang H, Tian F, Zhao J, Lu W. Enhancing colonic health with encapsulated grape seed anthocyanins: Oral capsule for Colon-targeted delivery. Food Chem 2025; 469:142544. [PMID: 39721444 DOI: 10.1016/j.foodchem.2024.142544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/27/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Grape seed anthocyanins (GSA) offer health benefits and protect against diseases, including colitis. Its unpleasant smell and instability prevent widespread application. Antisolvent pretreatment GSA was encapsulated in chitosan-phytic acid 3D gel network. SEM and X-ray diffraction results demonstrate that pretreatment reduces GSA particle size and exhibits amorphous structure. FTIR confirmed they were physically encapsulated and not covalently bound. Its subsequent simulations digestion and fermentation showed only 26.69 % upper digestive tract leakage and altered gut microbiota and metabolites profile. In DSS-induced colitis model, it ameliorated the symptoms, including diarrhea, bloody stools, weight loss, and DAI score. Additionally, it regulates colitis mice pro- and anti-inflammatory cytokines, modifies cecum and colon SCFA profile, improves intestinal barrier, and restores colonic cell redox equilibrium. Collectively, GSA ameliorates experimental colitis via inhibiting TRL4/NF-κB and activating Nrf2 signaling pathway. In conclusion, we propose our GSA capsule can effectively deliver an intact parent form of GSA to the colon and has the potential to be a colonic health strategy.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenyu Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feng Li
- The Second People's Hospital of Anhui Province, Anhui, Hefei, China; Affiliated Hospital of Anhui Medical College, Anhui, Hefei, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Chen Y, Liu J, Zhong S, Zhang T, Yuan J, Zhang J, Chen Y, Liang J, Chen Y, Hou S, Huang H, Gao J. Monotropein inhibits epithelial-mesenchymal transition in chronic colitis via the mTOR/P70S6K pathway. Front Pharmacol 2025; 16:1536091. [PMID: 40041493 PMCID: PMC11876156 DOI: 10.3389/fphar.2025.1536091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Patients with chronic colitis are at risk of developing intestinal fibrosis through epithelial-mesenchymal transition (EMT). Monotropein (MON) is the main active ingredient in the traditional Chinese medicine Morinda officinalis How. It has been reported that monotropein can improve ulcerative colitis, but the mechanism remains unclear. However, whether monotropein can improve chronic colitis-associated intestinal fibrosis remains unknown. The study aimed to investigate the effect of monotropein on EMT in chronic colitis and its underlying mechanism. Methods The mice chronic colitis model was induced by dextran sodium sulfate (DSS). Cytokines were detected by ELISA. Concentrations of fluorescein isothiocyanate dextran (FITC-Dextran) in serum were detected using a fluorescein microplate analyzer. Intestinal tight junction proteins were detected by immunofluorescence. EMT marker proteins were detected by immunohistochemistry. Transforming growth factor-β1 (TGF-β1) was used to induce EMT in IEC-6 cells. Western blot, real-time quantitative PCR, and immunofluorescence were used to test the inhibitory effect of monotropein on the development of EMT and explore its mechanism. Results Results showed that monotropein significantly improved colonic injury and inhibited the expression of colonic tissue EMT marker protein. In addition, molecular docking and molecular dynamics (MD) simulation, cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay validated monotropein targeting of mTOR. Monotropein inhibited TGF-β1-induced EMT in IEC-6 cells, inhibited the phosphorylation of mTOR and its downstream proteins, and increased the autophagy activity in chronic colitis mice and IEC-6 cells. Discussion The study indicates that monotropein inhibits the development of EMT in DSS-induced chronic colitis mice and TGF-β1-induced IEC-6 cells. Its inhibitory effect on EMT is associated with the mTOR/P70S6K pathway.
Collapse
Affiliation(s)
- Yuanfan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- College of Education, Guangzhou Huali Science and Technology Vocational College, Guangzhou, Guangdong, China
- College of Education, University of Visayas, Cebu, Philippines
| | - Jiaying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shaowen Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tianwu Zhang
- Pu’er Hospital of Traditional Chinese Medicine, Puer, Kunming, Yunnan, China
| | - Jin Yuan
- Pu’er Hospital of Traditional Chinese Medicine, Puer, Kunming, Yunnan, China
| | - Jing Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haiyang Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Development Planning Department, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jie Gao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Qin L, Lv W. Dietary content and eating behavior in ulcerative colitis: a narrative review and future perspective. Nutr J 2025; 24:12. [PMID: 39849464 PMCID: PMC11755847 DOI: 10.1186/s12937-025-01075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Ulcerative colitis (UC) has experienced a steady increase in global incidence and prevalence recently. Current research into UC pathogenesis focuses on the complex interplay of genetic and environmental factors with the immune system and gut microbiome, leading to disruption of the intestinal barrier. Normally, the microbiome, intestinal epithelium, and immune system interact to maintain intestinal homeostasis. However, when this equilibrium is disturbed, a harmful cycle of dysbiosis, immune dysregulation, and inflammation emerges, resulting in intestinal barrier dysfunction and UC progression. Among various risk factors, diet significantly influences epithelial barrier integrity and architectural stability through both direct and indirect mechanisms, shaping the entire UC continuum from pre-clinical prevention to active phase treatment and remission maintenance. This review provides insights into the impact of dietary content and eating behaviors on UC, focusing on specific food, food groups, nutrients, and intermittent fasting, while providing a detailed explanation of why the gut microbiota may mediate the sustained effects of diet across all stages of UC. Additionally, it addresses the limitations of current studies, explores underexamined areas in UC dietary research and proposes potential directions for future research and expansion.
Collapse
Affiliation(s)
- Lingxi Qin
- Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wenliang Lv
- Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Chen Y, Xiao J, Zhu X, Fan X, Peng M, Mu Y, Wang C, Xia L, Zhou M. Exploiting conjugated linoleic acid for health: a recent update. Food Funct 2025; 16:147-167. [PMID: 39639784 DOI: 10.1039/d4fo04911j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Conjugated linoleic acid (CLA) is widely used as a dietary supplement due to its reported benefits in enhancing immunity, regulating inflammation, treating obesity, and preventing cancer. However, there is a lack of comprehensive studies on its mechanisms and dose-effect relationships. Moreover, there are insufficient in-depth studies on CLA's new functions, safety, side effects, and clinical utility. This review systematically examines the structure and sources of CLA, summarizes its role in improving human health, and critically reviews the potential mechanisms behind these benefits. It also analyzes the side effects of CLA and addresses issues related to dosing and oxidative decomposition in CLA research. Additionally, the potential of using CLA-producing probiotics to manage diseases is explored. This review can guide and promote further research on CLA's functions and support the development of CLA dietary supplements. It will accelerate the development of CLA nutritional and medical foods, contribute to the improvement of human health, and have important social meaning and economic value.
Collapse
Affiliation(s)
- Yang Chen
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Junfeng Xiao
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xiaoqing Zhu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xin Fan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Mingye Peng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Yang Mu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Chao Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Lusha Xia
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430068, China
| | - Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
8
|
Xiao Y, Huang L, Zhao J, Chen W, Lu W. The gut core microbial species Bifidobacterium longum: Colonization, mechanisms, and health benefits. Microbiol Res 2025; 290:127966. [PMID: 39547052 DOI: 10.1016/j.micres.2024.127966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Bifidobacterium longum (B. longum) is a species of the core microbiome in the human gut, whose abundance is closely associated with host age and health status. B. longum has been shown to modulate host gut microecology and have the potential to alleviate various diseases. Comprehensive understanding on the colonization mechanism of B. longum and mechanism of the host-B. longum interactions, can provide us possibility to prevent and treat human diseases through B. longum-directed strategies. In this review, we summarized the gut colonization characteristics of B. longum, discussed the diet factors that have ability/potential to enrich indigenous and/or ingested B. longum strains, and reviewed the intervention mechanisms of B. longum in multiple diseases. The key findings are as follows: First, B. longum has specialized colonization mechanisms, like a wide carbohydrate utilization spectrum that allows it to adapt to the host's diet, species-level conserved genes encoding bile salt hydrolase (BSHs), and appropriate bacterial surface structures. Second, dietary intervention (e.g., anthocyanins) could effectively improve the gut colonization of B. longum, demonstrating the feasibility of diet-tuned strain colonization. Finally, we analyzed the skewed abundance of B. longum in different types of diseases and summarized the main mechanisms by which B. longum alleviates digestive (repairing the intestinal mucosal barrier by stimulating Paneth cell activity), immune (up-regulating the regulatory T cell (Treg) populations and maintaining the balance of Th1/Th2), and neurological diseases (regulating the kynurenine pathway and quinolinic acid levels in the brain through the gut-brain axis).
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Lijuan Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
9
|
Zhang J, Duan X, Chen X, Qian S, Ma J, Jiang Z, Hou J. Lactobacillus rhamnosus 1.0320 Postbiotics Ameliorate Dextran Sodium Sulfate-Induced Colonic Inflammation and Oxidative Stress by Regulating the Intestinal Barrier and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25078-25093. [PMID: 39485947 DOI: 10.1021/acs.jafc.4c06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Probiotics are increasingly being used as an adjunctive therapy for ulcerative colitis. However, some safety issues have been found in the clinical use of probiotics. Postbiotics have attracted much attention due to their storage stability, safety, and potential functions, but the dose required to exert a significant protective effect is unknown. Therefore, this study evaluated the potential mechanisms of different doses (200, 400, 600 mg/kg) of Lactobacillus rhamnosus 1.0320 postbiotics (1.0320P) in alleviating dextran sodium sulfate (DSS)-induced colitis. The study revealed that 1.0320P could mitigate DSS-induced colitis with signs of reductions in the disease activity index, amelioration of colon tissue damage, decreased secretion of proinflammatory cytokines, reduced oxidative stress levels, and lower bone marrow peroxidase activity. Furthermore, high dose of 1.0320P could upregulated the expression of key proteins in the Nrf2/ARE pathway (NQO1, Nrf2, and HO-1) and downregulated the expression of key proteins in the TLR4/NF-κB signaling pathway (TLR4, MyD88, and NF-κB p65). In addition, high dose of 1.0320P could upregulate the expression of tight junction (TJ) proteins including ZO-1, Occludin, and Claudin-1, contributing to the restoration of the intestinal mucosal barrier function. Additionally, 1.0320P was found to effectively correct imbalances in the intestinal microbiota and enhance the synthesis of short-chain fatty acids (SCFAs), thereby regulating homeostasis in the intestinal internal environment. Overall, our findings suggest that postbiotics could ameliorate colonic inflammation while being somewhat dose-dependent. This study provides new insights into postbiotics as a next-generation biotherapeutic agent for the treatment of ulcerative colitis and even other diseases.
Collapse
Affiliation(s)
- Jing Zhang
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science (Northeast Agricultural University), Harbin 150030, China
| | - Xiaolei Duan
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science (Northeast Agricultural University), Harbin 150030, China
| | - Xianhui Chen
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science (Northeast Agricultural University), Harbin 150030, China
| | - Shanshan Qian
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| | - Jiage Ma
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science (Northeast Agricultural University), Harbin 150030, China
| | - Zhanmei Jiang
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science (Northeast Agricultural University), Harbin 150030, China
| | - Juncai Hou
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science (Northeast Agricultural University), Harbin 150030, China
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| |
Collapse
|
10
|
Niu B, Li F, Lv X, Xiao Y, Zhu J, Zhao J, Lu W, Chen W. Unveiling the therapeutic potential and mechanism of inulin in DSS-induced colitis mice. Int J Biol Macromol 2024; 280:135861. [PMID: 39307495 DOI: 10.1016/j.ijbiomac.2024.135861] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Inulin has been reported to alleviate colitis. In this study, colitis patients' feces were used to simulate fermentation to demonstrate changes in the microbiota profile in the presence of inulin. We found inulin can reshape the gut microbiota profile of colitis patients, especially by altering the abundance of Faecalibacterium and Blautia. Interestingly, the subsequent co-culture with inulin demonstrated that inulin promoted the growth of these two strains of bacteria. The dextran sodium sulfate (DSS)-induced mouse model was used to examine the effect of inulin and its combination with two probiotics on colitis. Results showed that all three treatments can alleviate the clinical symptoms, including weight-losing, colon-shortening, and the Disease Activity Index (DAI) score. Further investigations showed that the administrations regulate colitis mice's pro- and anti-inflammatory cytokines, such as TNF-α, IL-1β, IL-6, IL-10, and IL-17. Also, they alter the relative abundance of Faecalibacterium and Blautia, change the short-chain fatty acids (SCFAs) profile in the cecum and colon, and improve the intestinal barrier; specifically, the intervention increased the expressions of Claudin, Occludin, Zonula Occludens (ZO)-1, and Mucin (MUC)-2 in colonic tissues, thus restoring the colonic tissue structure and morphology of colitis mice. Collectively, our results confirm that inulin can alter the colitis patients' characteristic microbial community, and they can ameliorate experimental colitis by inhibiting the TRL4/MyD88/NF-κB signaling pathway-improving the inflammatory response and enhancing the intestinal barrier. In conclusion, we propose that inulin may hold promise as a functional food therapeutic approach for the treatment of colitis.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feng Li
- The Second People's Hospital of Anhui Province, Anhui, Hefei, China; Affiliated Hospital of Anhui Medical College, Anhui, Hefei, China
| | - Xinchen Lv
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Piccioni A, Spagnuolo F, Candelli M, Voza A, Covino M, Gasbarrini A, Franceschi F. The Gut Microbiome in Sepsis: From Dysbiosis to Personalized Therapy. J Clin Med 2024; 13:6082. [PMID: 39458032 PMCID: PMC11508704 DOI: 10.3390/jcm13206082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Sepsis is a complex clinical syndrome characterized by an uncontrolled inflammatory response to an infection that may result in septic shock and death. Recent research has revealed a crucial link between sepsis and alterations in the gut microbiota, showing that the microbiome could serve an essential function in its pathogenesis and prognosis. In sepsis, the gut microbiota undergoes significant dysbiosis, transitioning from a beneficial commensal flora to a predominance of pathobionts. This transformation can lead to a dysfunction of the intestinal barrier, compromising the host's immune response, which contributes to the severity of the disease. The gut microbiota is an intricate system of protozoa, fungi, bacteria, and viruses that are essential for maintaining immunity and metabolic balance. In sepsis, there is a reduction in microbial heterogeneity and a predominance of pathogenic bacteria, such as proteobacteria, which can exacerbate inflammation and negatively influence clinical outcomes. Microbial compounds, such as short-chain fatty acids (SCFAs), perform a crucial task in modulating the inflammatory response and maintaining intestinal barrier function. However, the role of other microbiota components, such as viruses and fungi, in sepsis remains unclear. Innovative therapeutic strategies aim to modulate the gut microbiota to improve the management of sepsis. These include selective digestive decontamination (SDD), probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT), all of which have shown potential, although variable, results. The future of sepsis management could benefit greatly from personalized treatment based on the microbiota. Rapid and easy-to-implement tests to assess microbiome profiles and metabolites associated with sepsis could revolutionize the disease's diagnosis and management. These approaches could not only improve patient prognosis but also reduce dependence on antibiotic therapies and promote more targeted and sustainable treatment strategies. Nevertheless, there is still limited clarity regarding the ideal composition of the microbiota, which should be further characterized in the near future. Similarly, the benefits of therapeutic approaches should be validated through additional studies.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
| | - Fabio Spagnuolo
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
| | - Antonio Voza
- Department of Emergency Medicine, IRCCS-Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Marcello Covino
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Medical and Surgical Science Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
12
|
Li YY, Sun JW, Chen L, Lu YM, Wu QX, Yan C, Chen Y, Zhang M, Zhang WN. Structural characteristics of a polysaccharide from Armillariella tabescens and its protective effect on colitis mice via regulating gut microbiota and intestinal barrier function. Int J Biol Macromol 2024; 277:133719. [PMID: 38992544 DOI: 10.1016/j.ijbiomac.2024.133719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
A new polysaccharide fraction (ATP) was obtained from Armillariella tabescens mycelium. Structural analysis suggested that the backbone of ATP was →4)-α-D-Glcp(1 → 2)-α-D-Galp(1 → 2)-α-D-Glcp(1 → 4)-α-D-Glcp(1→, which branched at O-3 of →2)-α-D-Glcp(1 → and terminated with T-α-D-Glcp or T-α-D-Manp. Besides, ATP significantly alleviated ulcerative colitis (UC) symptoms and inhibited the production of pro-inflammation cytokines (IL-1β, IL-6). Meanwhile, ATP could improve colon tissue damage by elevating the expression of MUC2 and tight junction proteins (ZO-1, occludin and claudin-1) levels and enhance intestinal barrier function through inhibiting the activation of MMP12/MLCK/p-MLC2 signaling pathway. Further studies exhibited that ATP could increase the relative abundance of beneficial bacteria such as f. Muribaculacese, g. Muribaculaceae, and g. Alistips, and decrease the relative abundance of g. Desulfovibrio, g. Colidextribacter, g. Ruminococcaceae and g.Oscillibacter, and regulate the level of short-chain fatty acids. Importantly, FMT intervention with ATP-derived microbiome certified that gut microbiota was involved in the protective effects of ATP on UC. The results indicated that ATP was potential to be further developed into promising therapeutic agent for UC.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jing-Wen Sun
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Lei Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yong-Ming Lu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qing-Xi Wu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Chao Yan
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Afliated Hospital of Anhui Medical University, Hefei, China
| | - Wen-Na Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
13
|
Shao X, Li J, Shao Q, Qu R, Ouyang X, Wang Y, Chen C. Water-soluble garlic polysaccharide (WSGP) improves ulcerative volitis by modulating the intestinal barrier and intestinal flora metabolites. Sci Rep 2024; 14:21504. [PMID: 39277703 PMCID: PMC11401863 DOI: 10.1038/s41598-024-72797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
WSGP has demonstrated significant potential for various bioactive effects. However, limited research has explored their anti-ulcerative colitis (UC) effects and mechanism on the colonic system and gut microbial metabolites. We evaluated the ameliorative effects of WSGP on the UC mice model. Using H&E to assess histological injury of colon morphology, AB-PAS staining to detect mucin secretion from goblet cells and the mucous layer, IF to evaluate the expression of intercellular tight junction proteins, ELISA to measure inflammatory factors, WB analysis to measure protein expression of inflammatory signaling pathways, RT-qPCR to quantify gene transcription of inflammatory factors, and LC-MS to analyze metabolites in mouse cecum contents. WSGP supplementation increased food intake, body weight, and colon length while reducing disease activity and histological scores in colitis-afflicted mice. WSGP mitigated colonic tissue damage and restored intestinal barrier integrity by suppressing NF-κB/STAT3 signaling, thereby decreasing gene transcription, protein expression of proinflammatory factors, and nitric oxide production. Additionally, WSGP improved UC by altering the variety of intestinal microbial metabolites. This study demonstrates that WSGP supplementation attenuates UC mice by suppressing the NF-κB/STAT3 signaling pathway, enhancing mucosal barrier function, reducing pro-inflammatory cytokines, and modulating gut microbial metabolites.
Collapse
Affiliation(s)
- Xin Shao
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, 525000, Guangdong, China
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, Guangdong, China
| | - JiaLong Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qi Shao
- Department of Cell Biology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Rong Qu
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xin Ouyang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - ChunBo Chen
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, 525000, Guangdong, China.
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
14
|
Chen Y, Ma W, Zhao J, Stanton C, Ross RP, Zhang H, Chen W, Yang B. Lactobacillus plantarum Ameliorates Colorectal Cancer by Ameliorating the Intestinal Barrier through the CLA-PPAR-γ Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19766-19785. [PMID: 39186442 DOI: 10.1021/acs.jafc.4c02824] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) is the third-largest cancer worldwide. Lactobacillus can regulate the intestinal barrier and gut microbiota. However, the mechanisms of Lactobacillus that alleviate CRC remained unknown. This study aimed to explore the regulatory effect of Lactobacillus plantarum on CRC and its potential mechanism. CCFM8661 treatment significantly ameliorated CRC compared with phosphate-buffered solution (PBS) treatment in ApcMin/+ mice. In addition, conjugated linoleic acid (CLA) was proved to be the key metabolite for CCFM8661 in ameliorating CRC by molecular biology techniques. Peroxisome proliferator-activated receptor γ (PPAR-γ) was proved to be the key receptor in ameliorating CRC by inhibitor intervention experiments. Moreover, supplementation with CCFM8661 ameliorated CRC by producing CLA to inhibit NF-κB pathway and pro-inflammatory cytokines, up-regulate ZO-1, Claudin-1, and MUC2, and promote tumor cell apoptosis in a PPAR-γ-dependent manner. Metagenomic analysis showed that CCFM8661 treatment significantly increased Odoribacter splanchnicus, which could ameliorate CRC by repairing the intestinal barrier. Clinical results showed that intestinal CLA, butyric acid, PPAR-γ, and Lactobacillus were significantly decreased in CRC patients, and these indicators were significantly negatively correlated with CRC. CCFM8661 alleviated CRC by ameliorating the intestinal barrier through the CLA-PPAR-γ axis. These results will promote the development of dietary probiotic supplements for CRC.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Weiwei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Catherine Stanton
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, Jiangsu, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, Jiangsu, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
15
|
Xiong H, He Z, Wei Y, Li Q, Xiao Q, Yang L, Deng X, Wu K, Wang K, Deng X. Probiotic Compounds Enhanced Recovery after Surgery for Patients with Distal Gastric Cancer: A Prospective, Controlled Clinical Trial. Ann Surg Oncol 2024; 31:5240-5251. [PMID: 38739239 DOI: 10.1245/s10434-024-15394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Enhanced recovery after surgery (ERAS) for radical distal gastrectomy needs to be improved urgently. We investigated the effects of probiotic compounds (including Lactobacillus plantarum, L. rhamnosus, L. acidophilus, and Bifidobacterium animalis subsp.lactis) on enhance recovery after gastrectomy. METHODS The patients in this prospective study were divided into probiotic group (PG group, n = 36) and placebo group (CG group, n = 38), taking corresponding capsule according to the protocol during the perioperative period. We compared the trends in perioperative hematologic findings and the postoperative outcomes. Patients' feces were collected for bacterial 16S rRNA sequencing. Patients were followed up at 1 month postoperatively. RESULTS After the application of probiotics, the patients' postoperative inflammatory response level was reduced, and the trend of postoperative NLR decrease was significantly faster in the patients of the PG group than in the CG group (P = 0.047, partial η2 = 0.054). The trend of postoperative increase in serum albumin concentration in the patients of the PG group was significantly better than that in the CG group (P = 0.016, partial η2 = 0.078). In addition, patients in the PG group met discharge criteria earlier postoperatively and had fewer medical expenses. The quality of life of PG group was improved postoperatively. Postoperative inflammation-related markers, including the ratio of Firmicutes/Bacteroidetes, were increasing in untreated patients. In addition, the postoperative microbial diversity and abundance in the PG group remained stable. CONCLUSIONS Probiotic compounds can reduce the inflammatory response after gastrectomy and enhance the recovery of the DGC patients by maintaining the stability of the gut microbiota.
Collapse
Affiliation(s)
- Huan Xiong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhipeng He
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yuan Wei
- Department of Ophthalmology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Qiang Li
- Department of Vascular Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, People's Republic of China
| | - Qun Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan, People's Republic of China
| | - Liang Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xi Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Kai Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Keqiang Wang
- Department of General Surgery, Yingtan 184 Hospital, Yingtan, Jiangxi, People's Republic of China.
| | - Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
16
|
Han M, Liang J, Hou M, Liu Y, Li H, Gao Z. Bifidobacterium bifidum Ameliorates DSS-Induced Colitis in Mice by Regulating Microbial Metabolome and Targeting Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38838169 DOI: 10.1021/acs.jafc.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent inflammatory condition affecting the gastrointestinal tract, and its clinical treatment remains suboptimal. Probiotics have shown effectiveness in alleviating dextran sulfate sodium salt (DSS)-induced colitis, exhibiting strain-specific anti-inflammatory properties. In this study, we compared the therapeutic effects of five strains of Bifidobacterium bifidum isolated from healthy adult feces on DSS-induced colitis in mice. Additionally, we investigated the underlying mechanisms by examining gut microbiota composition and microbial metabolome. Our findings highlighted the superior efficacy of B. bifidum M1-3 compared to other strains. It significantly improved colitis symptoms, mitigated gut barrier disruption, and reduced colonic inflammation in DSS-treated mice. Moreover, gut microbiota composition analysis revealed that B. bifidum M1-3 treatment increased the abundance and diversity of gut microbiota. Specifically, it significantly increased the abundance of Muribaculaceae, Lactobacillus, Bacteroides, and Enterorhabdus, while decreasing the abundance of Escherichia-Shigella. Furthermore, our nontargeted metabolomics analysis illustrated that B. bifidum M1-3 treatment had a regulatory effect on various metabolic pathways, including tyrosine metabolism, lysine degradation, and tryptophan metabolism. Importantly, we confirmed that the therapeutic efficiency of B. bifidum M1-3 was dependent on the gut microbiota. These results are conducive to the development of probiotic products for alleviating colitis.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Mengxin Hou
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Yuanye Liu
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| |
Collapse
|
17
|
Xie L, Chen T, Li H, Xiao J, Wang L, Kim SK, Huang Z, Xie J. An Exopolysaccharide from Genistein-Stimulated Monascus Purpureus: Structural Characterization and Protective Effects against DSS-Induced Intestinal Barrier Injury Associated with the Gut Microbiota-Modulated Short-Chain Fatty Acid-TLR4/MAPK/NF-κB Cascade Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7476-7496. [PMID: 38511260 DOI: 10.1021/acs.jafc.3c09290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease is a major health problem that can lead to prolonged damage to the digestive system. This study investigated the effects of an exopolysaccharide from genistein-stimulated Monascus purpureus (G-EMP) in a mouse model of colitis to clarify its molecular mechanisms and identified its structures. G-EMP (Mw = 56.4 kDa) was primarily consisted of → 4)-α-D-Galp-(1 →, → 2,6)-α-D-Glcp-(1→ and →2)-β-D-Manp-(1 → , with one of the branches being α-D-Manp-(1 →. G-EMP intervention reduced the loss of body weight, degree of colonic damage and shortening, disease activity index scores, and histopathology scores, while restoring goblet cell production and oxidative homeostasis, repairing colonic functions, and regulating inflammatory cytokines. RNA sequencing and Western blot analysis indicated that G-EMP exerts anti-inflammatory properties by suppressing the TLR4/MAPK/NF-κB inflammatory signaling pathway. G-EMP modulated the gut microbiota by improving its diversities, elevating the relative abundances of beneficial bacteria, declining the Firmicutes/Bacteroidota value, and regulating the level of short-chain fatty acids (SCFAs). Correlation analysis demonstrated strong links between SCFAs, gut microbiota, and the inflammatory response, indicating the potential of G-EMP to prevent colitis.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jindan Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Linchun Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
18
|
Schreiber F, Balas I, Robinson MJ, Bakdash G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 2024; 13:477. [PMID: 38534321 PMCID: PMC10969408 DOI: 10.3390/cells13060477] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut mucosal epithelium is one of the largest organs in the body and plays a critical role in regulating the crosstalk between the resident microbiome and the host. To this effect, the tight control of what is permitted through this barrier is of high importance. There should be restricted passage of harmful microorganisms and antigens while at the same time allowing the absorption of nutrients and water. An increased gut permeability, or "leaky gut", has been associated with a variety of diseases ranging from infections, metabolic diseases, and inflammatory and autoimmune diseases to neurological conditions. Several factors can affect gut permeability, including cytokines, dietary components, and the gut microbiome. Here, we discuss how the gut microbiome impacts the permeability of the gut epithelial barrier and how this can be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Ghaith Bakdash
- Microbiotica Ltd., Cambridge CB10 1XL, UK; (F.S.); (I.B.); (M.J.R.)
| |
Collapse
|
19
|
Wang X, Li L, Liu T, Shi Y. More than nutrition: Therapeutic potential and mechanism of human milk oligosaccharides against necrotizing enterocolitis. Life Sci 2024; 339:122420. [PMID: 38218534 DOI: 10.1016/j.lfs.2024.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Human milk is the most valuable source of nutrition for infants. The structure and function of human milk oligosaccharides (HMOs), which are key components of human milk, have long been attracting particular research interest. Several recent studies have found HMOs to be efficacious in the prevention and treatment of necrotizing enterocolitis (NEC). Additionally, they could be developed in the future as non-invasive predictive markers for NEC. Based on previous findings and the well-defined functions of HMOs, we summarize potential protective mechanisms of HMOs against neonatal NEC, which include: modulating signal receptor function, promoting intestinal epithelial cell proliferation, reducing apoptosis, restoring intestinal blood perfusion, regulating microbial prosperity, and alleviating intestinal inflammation. HMOs supplementation has been demonstrated to be protective against NEC in both animal studies and clinical observations. This calls for mass production and use of HMOs in infant formula, necessitating more research into the safety of industrially produced HMOs and the appropriate dosage in infant formula.
Collapse
Affiliation(s)
- Xinru Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Ling Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| |
Collapse
|
20
|
Guo W, Mao B, Tang X, Zhang Q, Zhao J, Zhang H, Chen W, Cui S. Improvement of inflammatory bowel disease by lactic acid bacteria-derived metabolites: a review. Crit Rev Food Sci Nutr 2023; 65:1261-1278. [PMID: 38078699 DOI: 10.1080/10408398.2023.2291188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Lactic acid bacteria (LAB) plays a crucial role in the establishment and maintenance of host health, as well as the improvement of some diseases. One of the major modes is the secretion of metabolites that may be intermediate or end products of the LAB's metabolism. In this review, we summarized some common metabolites (particularly short-chain fatty acids [SCFAs], bacteriocin, and exopolysaccharide [EPS]) from LAB in fermented foods and the gut for the first time. The effects of LAB-derived metabolites (LABM) on inflammation, oxidative stress, the intestinal barrier, and gut microbiota in inflammatory bowel disease (IBD) model are also discussed. The discovery of LABM and identification of IBD biomarkers are mainly attributed to the development of metabolomics technologies, especially nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography tandem mass spectrometry (LC-MS). The application of these metabolomics technologies in identification of LABM and IBD biomarkers are also summarized and analyzed. Although the beneficial effects of some LABM have been explored, undiscovered metabolites and their functions still need further investigations.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Li N, Wang R, Li W, Du Q, Deng Z, Fan Y, Zheng L. Identification of OLA1 as a Novel Protein Target of Vitexin to Ameliorate Dextran Sulfate Sodium-Induced Colitis with Tissue Thermal Proteome Profiling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16057-16066. [PMID: 37856434 DOI: 10.1021/acs.jafc.3c01559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Vitexin, which exists in various medicinal plants and food sources, has recently received increasing attention because of its anti-inflammatory properties. This study aims to identify the protein target of vitexin that ameliorates dextran sulfate sodium (DSS)-induced colitis. The results showed that vitexin not only alleviated the clinical symptoms and colonic damage in mice with DSS-induced colitis but also suppressed the colonic production of inflammatory cytokines (IL-1β, IL-6, ICAM, and VCAM) and enhanced the expression of barrier-associated proteins (ZO-1, Occludin, and E-cadherin). Based on tissue thermal proteome profiling (Tissue-TPP) and molecular docking, OLA1 was creatively identified as a potential protein target for vitexin. Further siRNA-mediated knockdown of the OLA1 gene in Caco-2 cells demonstrated the ability of OLA1 to increase Nrf2 protein expression and, thus, mediated the anti-inflammatory effects of vitexin. Interaction of the OLA1-vitexin complex with Keap1 protein to disrupt the Keap1-Nrf2 interaction may be required for activating Nrf2. Our findings revealed a novel role for OLA1 as a protein target of vitexin that contributes to its anti-inflammatory action by activating Nrf2, which may provide a promising molecular mechanism for novel therapeutic strategies to treat colitis and the associated systemic inflammation.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Ruiyan Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Wenwen Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Qian Du
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, Jiangxi, China
| | - Yawei Fan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
22
|
Liu C, Liu J, Wang W, Yang M, Chi K, Xu Y, Guo N. Epigallocatechin Gallate Alleviates Staphylococcal Enterotoxin A-Induced Intestinal Barrier Damage by Regulating Gut Microbiota and Inhibiting the TLR4-NF-κB/MAPKs-NLRP3 Inflammatory Cascade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16286-16302. [PMID: 37851930 DOI: 10.1021/acs.jafc.3c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Natural phytochemicals have attracted increasing attention because of their promising ability to tackle bacteriotoxin-induced public safety concerns. However, it is unclear how natural phytochemicals regulate the intestinal barrier dysfunction caused by bacteriotoxin, such as staphylococcal enterotoxin A (SEA). This study aims to illustrate the in vitro and in vivo protective mechanism of epigallocatechin gallate (EGCG) on SEA-triggered intestinal barrier damage and inflammation. Results show that EGCG alleviates intestinal barrier damage by effectively inhibiting SEA-induced intestinal permeability increase, tight junction protein and mucin loss, and intestinal cell apoptosis. EGCG also reduces intestinal inflammation by suppressing the TLR4-NF-κB/MAPKs-NLRP3 pathway. Importantly, EGCG reverses gut microbiota dysbiosis and short-chain fatty acid (SCFA) content decrease induced by SEA. It is worth noting that this study also detects the direct interaction between the phytochemical and virulence factors and finds that EGCG effectively not only inhibits the secretion of SEA but also binds with the secreted SEA to attenuate its toxicity. Taken together, EGCG mitigates SEA-induced intestinal barrier dysfunction via gut microbiota SCFA-mediated TLR4-NF-κB/MAPKs-NLRP3 inflammatory cascade inhibition. Overall, this research provides enlightening insight into the application of bacteriotoxin-targeting natural compounds in the field of food safety and human wellness.
Collapse
Affiliation(s)
- Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jingbo Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Weilin Wang
- Changchun Customs Port Outpatient Department, Jilin International Travel Healthcare Centre, Changchun, Jilin 130022, People's Republic of China
| | - Meng Yang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Kunmei Chi
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yanyang Xu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
23
|
Wu Y, Zhuang J, Zhang Q, Zhao X, Chen G, Han S, Hu B, Wu W, Han S. Aging characteristics of colorectal cancer based on gut microbiota. Cancer Med 2023; 12:17822-17834. [PMID: 37548332 PMCID: PMC10524056 DOI: 10.1002/cam4.6414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Aging is one of the factors leading to cancer. Gut microbiota is related to aging and colorectal cancer (CRC). METHODS A total of 11 metagenomic data sets related to CRC were collected from the R package curated Metagenomic Data. After batch effect correction, healthy individuals and CRC samples were divided into three age groups. Ggplot2 and Microbiota Process packages were used for visual description of species composition and PCA in healthy individuals and CRC samples. LEfSe analysis was performed for species relative abundance data in healthy/CRC groups according to age. Spearman correlation coefficient of age-differentiated bacteria in healthy individuals and CRC samples was calculated separately. Finally, the age prediction model and CRC risk prediction model were constructed based on the age-differentiated bacteria. RESULTS The structure and composition of the gut microbiota were significantly different among the three groups. For example, the abundance of Bacteroides vulgatus in the old group was lower than that in the other two groups, the abundance of Bacteroides fragilis increased with aging. In addition, seven species of bacteria whose abundance increases with aging were screened out. Furthermore, the abundance of pathogenic bacteria (Escherichia_coli, Butyricimonas_virosa, Ruminococcus_bicirculans, Bacteroides_fragilis and Streptococcus_vestibularis) increased with aging in CRCs. The abundance of probiotics (Eubacterium_eligens) decreased with aging in CRCs. The age prediction model for healthy individuals based on the 80 age-related differential bacteria and model of CRC patients based on the 58 age-related differential bacteria performed well, with AUC of 0.79 and 0.71, respectively. The AUC of CRC risk prediction model based on 45 disease differential bacteria was 0.83. After removing the intersection between the disease-differentiated bacteria and the age-differentiated bacteria from the healthy samples, the AUC of CRC risk prediction model based on remaining 31 bacteria was 0.8. CRC risk prediction models for each of the three age groups showed no significant difference in accuracy (young: AUC=0.82, middle: AUC=0.83, old: AUC=0.85). CONCLUSION Age as a factor affecting microbial composition should be considered in the application of gut microbiota to predict the risk of CRC.
Collapse
Affiliation(s)
- Yinhang Wu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central HospitalHuzhouChina
| | - Jing Zhuang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central HospitalHuzhouChina
| | - Qi Zhang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
| | - Xingming Zhao
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Gong Chen
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central HospitalHuzhouChina
| | - Shugao Han
- Second Affiliated Hospital of School of MedicineZhejiang UniversityHangzhouChina
| | - Boyang Hu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central HospitalHuzhouChina
| | - Wei Wu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central HospitalHuzhouChina
| | - Shuwen Han
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central HospitalHuzhouChina
| |
Collapse
|
24
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
25
|
Li M, Zhang Z, Yu B, Jia S, Cui B. Lycium barbarum Oligosaccharides Alleviate Hepatic Steatosis by Modulating Gut Microbiota in C57BL/6J Mice Fed a High-Fat Diet. Foods 2023; 12:foods12081617. [PMID: 37107413 PMCID: PMC10138177 DOI: 10.3390/foods12081617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
High-fat diets (HFD) can promote the development of hepatic steatosis by altering the structure and composition of gut flora. In this study, the potential therapeutic mechanism of Lycium barbarum oligosaccharide (LBO) against hepatic steatosis was investigated by analyzing the changes in the intestinal flora and metabolites in mice. Mice on an HFD were administered LBO by gavage once daily for a continuous period of eight weeks. Compared with the HFD group, the levels of triglyceride (TG), alanine aminotransferase (ALT) in the serum, and hepatic TG were significantly reduced in the LBO group, and liver lipid accumulation was obviously improved. In addition, LBO could regulate the HFD-induced alteration of intestinal flora. The HFD increased the proportion of Barnesiellaceae, Barnesiella, and CHKCI001. LBO increased the proportion of Dubosiella, Eubacterium, and Lactobacillus. LBO also altered the fecal metabolic profile. Significantly different metabolites between LBO and the HFD, such as taurochenodeoxycholate, taurocholate, fluvastatin, and kynurenic acid, were related to the cholesterol metabolism, bile acid metabolism, and tryptophan metabolic pathways. In light of the above, LBO can alleviate HFD-induced NAFLD by modulating the components of the intestinal flora and fecal metabolites.
Collapse
Affiliation(s)
- Mengjie Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Siqiang Jia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| |
Collapse
|
26
|
Li S, Zhuge A, Xia J, Wang S, Lv L, Wang K, Jiang H, Yan R, Yang L, Bian X, Jiang X, Wang Q, Han S, Li L. Bifidobacterium longum R0175 protects mice against APAP-induced liver injury by modulating the Nrf2 pathway. Free Radic Biol Med 2023; 203:11-23. [PMID: 37003500 DOI: 10.1016/j.freeradbiomed.2023.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Acetaminophen (APAP) overdose is the most common driver of drug-induced liver injury (DILI) worldwide, and the gut microbiome plays a crucial role in this process. In this study, we estimated the effect of Bifidobacterium longum R0175 on APAP-induced liver injury in mice and discovered that B. longum R0175 alleviated liver injury by diminishing inflammation, reducing oxidative stress levels, inhibiting hepatocyte death and improving APAP-induced microbiome dysbiosis. Further studies revealed that the antioxidative effects of B. longum R0175 were primarily due to activation of the Nrf2 pathway, which was supported by the Nrf2 pathway inhibitor ML385 counteracting these ameliorative effects. B. longum R0175 modified intestinal metabolites, especially the key metabolite sedanolide, which could activate the Nrf2 pathway and contribute to the protective effects against APAP-induced liver injury. Moreover, we found that sedanolide exhibited close interrelationships with specific microbial taxa, indicating that this factor may be derived from gut microbes. In conclusion, our work demonstrated that B. longum R0175 could reduce oxidative damage, inflammation and hepatocyte death by activating the Nrf2 pathway. Importantly, we identified the microbiota-derived metabolite sedanolide, which was first discovered in the mouse intestine, as a key agonist of the Nrf2 pathway and primary effector of B. longum R0175 in APAP challenge. These findings provide new perspectives for APAP overdose therapy and demonstrate the enormous potential of B. longum R0175 in alleviating acute liver injury.
Collapse
Affiliation(s)
- Shengjie Li
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Liya Yang
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innocation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
27
|
Guo Y, Zhang T, Xu Y, Karrar E, Cao M, Sun X, Liu R, Chang M, Wang X. Effects of Medium- and Long-Chain Structured Triacylglycerol on the Therapeutic Efficacy of Vitamin D on Ulcerative Colitis: A Consideration for Efficient Lipid Delivery Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4101-4112. [PMID: 36847830 DOI: 10.1021/acs.jafc.2c07437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to intestinal malabsorption and poor water solubility, vitamin D (VitD) deficiency in ulcerative colitis (UC) continues to increase. Medium- and long-chain triacylglycerols (MLCT), as novel lipids, have been widely applied in the field of functional food and medicine nutrition. Our previous studies showed that the difference in MLCT structure could affect VitD bioaccessibility in vitro. In this study, our results further indicate that, although identical in fatty acid composition, structured triacylglycerol (STG) had a higher VitD bioavailability (AUC = 15470.81 μg/L × h) and metabolism efficacy [s-25(OH)D, p < 0.05] than physical mixtures of triacylglycerol (PM), which further affect the amelioration efficiency in UC mice. Compared with PM, the damage of colonic tissues, intestinal barrier proteins, and inflammatory cytokines in STG showed better amelioration at the same dose of VitD. This study provides a comprehensive understanding of the mechanism of nutrients in different carriers and a solution for developing nutrients with high absorption efficiency.
Collapse
Affiliation(s)
- Yiwen Guo
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- European Research Institute for the Biology of Aging, University Medical Centre Groningen, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Ying Xu
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Emad Karrar
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Minjie Cao
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaotian Sun
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruijie Liu
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Chang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingguo Wang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
28
|
Shahini A, Shahini A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal 2023; 17:55-74. [PMID: 36112307 PMCID: PMC10030733 DOI: 10.1007/s12079-022-00695-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is considered a chronic inflammatory and multifactorial disease of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two types of chronic IBD. Although there is no accurate information about IBD pathophysiology, evidence suggests that various factors, including the gut microbiome, environment, genetics, lifestyle, and a dysregulated immune system, may increase susceptibility to IBD. Moreover, inflammatory mediators such as interleukin-6 (IL-6) are involved in the immunopathogenesis of IBDs. IL-6 contributes to T helper 17 (Th17) differentiation, mediating further destructive inflammatory responses in CD and UC. Moreover, Th1-mediated responses participate in IBD, and the antiapoptotic IL-6/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signals are responsible for preserving Th1 cells in the site of inflammation. It has been revealed that fecal bacteria isolated from UC-active and UC-remission patients stimulate the hyperproduction of several cytokines, such as IL-6, tumor necrosis factor-α (TNF-α), IL-10, and IL-12. Given the importance of the IL-6/IL-6R axis, various therapeutic options exist for controlling or treating IBD. Therefore, alternative therapeutic approaches such as modulating the gut microbiome could be beneficial due to the failure of the target therapies so far. This review article summarizes IBD immunopathogenesis focusing on the IL-6/IL-6R axis and discusses available therapeutic approaches based on the gut microbiome alteration and IL-6/IL-6R axis targeting and treatment failure.
Collapse
Affiliation(s)
- Arshia Shahini
- Department of Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Qu D, Yu L, Tian F, Zhang H, Chen W, Gu Z, Zhai Q. Bifidobacterium bifidum FJSWX19M5 alleviated 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced chronic colitis by mitigating gut barrier injury and increasing regulatory T cells. Food Funct 2023; 14:181-194. [PMID: 36477762 DOI: 10.1039/d2fo02659g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Probiotics have been evaluated as alternative approaches for preventing the relapse of Crohn's disease (CD). Previously, we observed strain-specific anti-inflammatory properties of Bifidobacterium bifidum in 2,4,6-trinitrobenzene sulfonic acid (TNBS) acute colitis models. In this study, we further assessed the effects of several B. bifidum strains on colonic damage, fibrosis, inflammatory factors, intestinal microbial and metabolic profiles, and peripheral regulatory T cells (Tregs) in the context of TNBS chronic colitis in mice. These results indicated that B. bifidum FJSWX19M5, but not FXJWS17M4, ameliorated body weight loss, reduced colonic shortening and injury, decreased markers of gut inflammation, and rebalanced colonic metabolism in TNBS-treated mice. FJSWX19M5 supplementation also promoted Treg cell differentiation and intestinal barrier restoration compared to other strains. All living B. bifidum strains (FJSWX19M5, FXJWS17M4 and FHENJZ3M6) seemed to restore the disruption of the gut microbiota caused by TNBS. The co-culture of B. bifidum strains and mesenteric lymph node cells from TNBS-treated mice showed that those strains with anti-colitis could induce higher IL-10 levels and a lower ratio of IL-22/IL-10 and IL-17/IL-10 when compared to those strains that were not protective. Furthermore, heat-killed FJSWX19M5 exhibited a relief effect on colitis-related symptoms (including body weight loss, colonic shortening and injury). These data imply that specific B. bifidum strains or their lysates may be the current therapeutic alternatives for CD.
Collapse
Affiliation(s)
- Dingwu Qu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational, Medicine Research Institute, Wuxi Branch, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
30
|
Mills S, Yang B, Smith GJ, Stanton C, Ross RP. Efficacy of Bifidobacterium longum alone or in multi-strain probiotic formulations during early life and beyond. Gut Microbes 2023; 15:2186098. [PMID: 36896934 PMCID: PMC10012958 DOI: 10.1080/19490976.2023.2186098] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
The significance of Bifidobacterium to human health can be appreciated from its early colonization of the neonatal gut, where Bifidobacterium longum represents the most abundant species. While its relative abundance declines with age, it is further reduced in several diseases. Research into the beneficial properties of B. longum has unveiled a range of mechanisms, including the production of bioactive molecules, such as short-chain fatty acids, polysaccharides, and serine protease inhibitors. From its intestinal niche, B. longum can have far-reaching effects in the body influencing immune responses in the lungs and even skin, as well as influencing brain activity. In this review, we present the biological and clinical impacts of this species on a range of human conditions beginning in neonatal life and beyond. The available scientific evidence reveals a strong rationale for continued research and further clinical trials that investigate the ability of B. longum to treat or prevent a range of diseases across the human lifespan.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Co Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Zhou Y, Zhang F, Mao L, Feng T, Wang K, Xu M, Lv B, Wang X. Bifico relieves irritable bowel syndrome by regulating gut microbiota dysbiosis and inflammatory cytokines. Eur J Nutr 2023; 62:139-155. [PMID: 35918555 PMCID: PMC9899748 DOI: 10.1007/s00394-022-02958-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Gut microbiota dysbiosis, a core pathophysiology of irritable bowel syndrome (IBS), is closely related to immunological and metabolic functions. Gut microbiota-based therapeutics have been recently explored in several studies. Bifico is a probiotic cocktail widely used in gastrointestinal disorders which relate to the imbalance of gut microbiota. However, the efficacy and potential mechanisms of Bifico treatment in IBS remains incompletely understood. METHODS Adopting a wrap restraint stress (WRS) -induced IBS mice model. Protective effect of Bifico in IBS mice was examined through abdominal withdrawal reflex (AWR) scores. 16S rDNA, 1H nuclear magnetic resonance (1H-NMR) and western blot assays were performed to analyze alterations of gut microbiota, microbiome metabolites and inflammatory cytokines, respectively. RESULTS Bifico could decrease intestinal visceral hypersensitivity. Although gut microbiota diversity did not increase, composition of gut microbiota was changed after treatment of Bifico, which were characterized by an increase of Proteobacteria phylum and Actinobacteria phylum, Muribaculum genus, Bifidobacterium genus and a decrease of Parabacteroides genus, Sutterella genus and Lactobacillus genus. Moreover, Bifico elevated the concentration of short-chain fatty acids (SCFAs) and reduced protein levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). From further Spearman's correlation analysis, Bifidobacterium genus were positively correlated with SCFAs including propionate, butyrate, valerate and negatively correlated with IL-6 and TNF-α. CONCLUSION Bifico could alleviate symptoms of IBS mice through regulation of the gut microbiota, elevating production of SCFAs and reducing the colonic inflammatory response.
Collapse
Affiliation(s)
- Yanlin Zhou
- grid.417400.60000 0004 1799 0055Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China ,grid.268505.c0000 0000 8744 8924The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| | - Fan Zhang
- grid.268505.c0000 0000 8744 8924The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China ,grid.417400.60000 0004 1799 0055Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China
| | - Liqi Mao
- grid.411440.40000 0001 0238 8414Department of Gastroenterology, The First People’s Hospital of Huzhou, The First Affiliated Hospital of Huzhou Teachers College, Huzhou, 313000 Zhejiang China
| | - Tongfei Feng
- grid.417400.60000 0004 1799 0055Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| | - Kaijie Wang
- grid.417400.60000 0004 1799 0055Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| | - Maosheng Xu
- grid.417400.60000 0004 1799 0055Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China
| | - Bin Lv
- grid.417400.60000 0004 1799 0055Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| |
Collapse
|
32
|
Cayratia japonica Prevents Ulcerative Colitis by Promoting M2 Macrophage Polarization through Blocking the TLR4/MAPK/NF- κB Pathway. Mediators Inflamm 2022; 2022:1108569. [PMID: 36619207 PMCID: PMC9822765 DOI: 10.1155/2022/1108569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/31/2022] Open
Abstract
Background and Aims Several components of Cayratia japonica (CJ) such as rutin and quercetin have shown anti-inflammatory effect, yet its function in ulcerative colitis (UC) remains to be clarified. This study focuses on the modulatory effect of CJ on UC as well as molecular mechanism by which CJ regulates macrophage polarization in UC. Methods The targets related to CJ components and UC were, respectively, obtained through in silico analysis, and their intersection targets were selected for pathway enrichment analysis. RAW264.7 cells were stimulated with lipopolysaccharide (LPS) to induce M1 macrophages. Expression of the macrophage polarization M1 marker CD11b and M2 marker CD206 was measured to determine the phenotype of macrophages. The mouse model was treated with dextran sodium sulfate (DSS) to induce UC to observe the effects of CJ on UC in vivo. Results The in silico analysis suggested the crucial significance of TLR4 and its downstream MAPK/NF-κB pathways in the modulatory effect of CJ on UC. Furthermore, experimental data revealed that CJ could promote M2 macrophage polarization but alleviate immune inflammation and reduce colon damage in DSS-evoked UC model. Additionally, CJ can inhibit the expression of TLR4/MAPK/NF-κB signaling pathway to enhance the M2-like polarization. Conclusion Hence, CJ may exert anti-inflammatory effects and an inhibitory role in UC by inhibiting the TLR4/MAPK/NF-κB pathway and subsequent M1-like macrophage polarization.
Collapse
|
33
|
Xin JY, Wang J, Ding QQ, Chen W, Xu XK, Wei XT, Lv YH, Wei YP, Feng Y, Zu XP. Potential role of gut microbiota and its metabolites in radiation-induced intestinal damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114341. [PMID: 36442401 DOI: 10.1016/j.ecoenv.2022.114341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Radiation-induced intestinal damage (RIID) is a serious disease with limited effective treatment. Nuclear explosion, nuclear release, nuclear application and especially radiation therapy are all highly likely to cause radioactive intestinal damage. The intestinal microecology is an organic whole with a symbiotic relationship formed by the interaction between a relatively stable microbial community living in the intestinal tract and the host. Imbalance and disorders of intestinal microecology are related to the occurrence and development of multiple systemic diseases, especially intestinal diseases. Increasing evidence indicates that the gut microbiota and its metabolites play an important role in the pathogenesis and prevention of RIID. Radiation leads to gut microbiota imbalance, including a decrease in the number of beneficial bacteria and an increase in the number of harmful bacteria that cause RIID. In this review, we describe the pathological mechanisms of RIID, the changes in intestinal microbiota, the metabolites induced by radiation, and their mechanism in RIID. Finally, the mechanisms of various methods for regulating the microbiota in the treatment of RIID are summarized.
Collapse
Affiliation(s)
- Jia-Yun Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian-Qian Ding
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China
| | - Wei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xi-Ke Xu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xin-Tong Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan-Hui Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan-Ping Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yu Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xian-Peng Zu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
34
|
Huang X, Li X, Deng Y, Zhou T, Chen T, Wu S, Xia R, Kang Y, Yin W. The flavonoids extract from Okra flowers protects against DSS-induced colitis via regulating NF-κB signaling pathway and gut microbiota. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
35
|
Xia C, Cai Y, Ren S, Xia C. Role of microbes in colorectal cancer therapy: Cross-talk between the microbiome and tumor microenvironment. Front Pharmacol 2022; 13:1051330. [PMID: 36438840 PMCID: PMC9682563 DOI: 10.3389/fphar.2022.1051330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 08/10/2023] Open
Abstract
The human gut microbiota is associated with the development and progression of colorectal cancer, and manipulation of the gut microbiota is a novel strategy for the prevention and treatment of colorectal cancer. Some bacteria have antitumor activity against colorectal cancer, where specific bacteria can improve the tumor microenvironment, activate immune cells including dendritic cells, helper T cells, natural killer cells, and cytotoxic T cells, and upregulate the secretion of pro-tumor immune cytokines such as interleukin-2 and interferon. In this paper, we summarize some bacteria with potential benefits in colorectal cancer and describe their roles in the tumor microenvironment, demonstrate the application of gut microbes in combination with immunosuppressive agents, and provide suggestions for further experimental studies and clinical practice applications.
Collapse
Affiliation(s)
- Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Shuangyi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Cui S, Gu Z, Wang W, Tang X, Zhang Q, Mao B, Zhang H, Zhao J. Characterization of peptides available to different bifidobacteria. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Zhang J, Liang F, Chen Z, Chen Y, Yuan J, Xiong Q, Hou S, Huang S, Liu C, Liang J. Vitexin Protects against Dextran Sodium Sulfate-Induced Colitis in Mice and Its Potential Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12041-12054. [PMID: 36124900 DOI: 10.1021/acs.jafc.2c05177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vitexin, one of the major active components in hawthorn, has been shown to possess multiple pharmacological activities. Here, we sought to investigate the effect of vitexin on an ameliorating dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mouse model and further explored its potential mechanism. The results indicated that vitexin administration could significantly alleviate the signs of colitis via suppressing body weight loss, reducing disease activity index (DAI) score, and mitigating colonic damage. Also, vitexin treatment in colitis mice markedly inhibited the production of pro-inflammation cytokines (such as IL-1β, IL-6, and TNF-α). Meanwhile, vitexin also could markedly down-regulate the phosphorylation levels of p65, IκB, and STAT1. Moreover, vitexin also dose-dependently increased the expressions of muc-2, ZO-1, and occludin proteins in colonic tissues of colitis mice. Further studies revealed that vitexin dramatically modulated the disturbed intestinal flora in colitis mice. Vitexin is beneficial for regulating abundances of some certain bacteria, such as Bacteroides, Helicobacter, Alistipes, Lachnospiraceae_NK4A136_group, and Lachnospiraceae_UCG-006. Interestingly, the correlation analysis indicated that key microbes were strongly correlated with colitis features, such as pro-inflammatory cytokines and gut barrier. Collectively, these results demonstrated that vitexin treatment alleviated inflammation, intestinal barrier dysfunction, and intestinal flora dysbiosis in colitis mice. Vitexin is expected to be a promising compound for UC treatment.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Feilin Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zongwen Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, Guangdong 510006, China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Song Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, Guangdong 510006, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, Guangdong 510006, China
| |
Collapse
|
38
|
Li L, Liu T, Gu Y, Wang X, Xie R, Sun Y, Wang B, Cao H. Regulation of gut microbiota-bile acids axis by probiotics in inflammatory bowel disease. Front Immunol 2022; 13:974305. [PMID: 36211363 PMCID: PMC9539765 DOI: 10.3389/fimmu.2022.974305] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing inflammation of gastrointestinal tract, with steadily increased incidence and prevalence worldwide. Although the precise pathogenesis remains unclear, gut microbiota, bile acids (BAs), and aberrant immune response play essential roles in the development of IBD. Lately, gut dysbiosis including certain decreased beneficial bacteria and increased pathogens and aberrant BAs metabolism have been reported in IBD. The bacteria inhabited in human gut have critical functions in BA biotransformation. Patients with active IBD have elevated primary and conjugated BAs and decreased secondary BAs, accompanied by the impaired transformation activities (mainly deconjugation and 7α-dehydroxylation) of gut microbiota. Probiotics have exhibited certain positive effects by different mechanisms in the therapy of IBD. This review discussed the effectiveness of probiotics in certain clinical and animal model studies that might involve in gut microbiota-BAs axis. More importantly, the possible mechanisms of probiotics on regulating gut microbiota-BAs axis in IBD were elucidated, which we focused on the elevated gut bacteria containing bile salt hydrolase or BA-inducible enzymes at genus/species level that might participate in the BA biotransformation. Furthermore, beneficial effects exerted by activation of BA-activated receptors on intestinal immunity were also summarized, which might partially explain the protect effects and mechanisms of probiotics on IBD. Therefore, this review will provide new insights into a better understanding of probiotics in the therapy targeting gut microbiota-BAs axis of IBD.
Collapse
|
39
|
Chen W, Tu P, Ye X, Tang Q, Yu T, Zheng X. Cyanidin-3-O-glucoside impacts fecal discharge of polystyrene microplastics in mice: Potential role of microbiota-derived metabolites. Toxicol Appl Pharmacol 2022; 453:116212. [PMID: 36057402 DOI: 10.1016/j.taap.2022.116212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Microplastic particles degraded from plastic litters are recognized as a global environmental pollutant, which can be transferred and enriched via the food chain to impact ecosystems and human health. A balanced gut microbiota contributes to human health through host-gut interactions, environmentally-driven factors such as microplastic exposure would disturb the gut bacteria and affect its functionality. Dietary compounds can remodel the compositions of gut microbes, and interact with bacteria exerting profound effects on host physiology. This study explored the effects of bayberry-derived anthocyanin cyanidin-3-O-glucoside (C3G) and microplastic polystyrene (PS) on the gut microbiome in C57BL/6 mice, especially the alterations of gut bacteria and its metabolites. Using 16S rRNA high-throughput sequencing, variations in gut bacterial composition and enrichment of functional pathways were found upon PS and C3G administration. Meanwhile, the differential metabolites and metabolic pathways were identified by metabolomic analysis. Importantly, colonic and fecal PS levels were found to be strongly correlated with key microbiota-derived metabolites, which are associated with xenobiotic metabolism via regulation of xenobiotics-metabolizing enzymes and transporters. These results may offer new insights regarding the protective effects of C3G against xenobiotic PS exposure and the roles of gut bacterial metabolites.
Collapse
Affiliation(s)
- Wen Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Tu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xiang Ye
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Qiong Tang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
Ren Z, Chen S, Lv H, Peng L, Yang W, Chen J, Wu Z, Wan C. Effect of Bifidobacterium animalis subsp. lactis SF on enhancing the tumor suppression of irinotecan by regulating the intestinal flora. Pharmacol Res 2022; 184:106406. [PMID: 35987480 DOI: 10.1016/j.phrs.2022.106406] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
The gut microbiota plays a role in tumor therapy by participating in immune regulation. Here, we demonstrated through 8-day probiotic supplementation experiments and fecal microbiota transplantation experiments that Bifidobacterium animalis subsp. lactis SF enhanced the antitumor effect of irinotecan and prevented the occurrence of intestinal damage by modulating the gut microbiota and reducing the relative abundance of pro-inflammatory microbiota. Therefore, the intestinal inflammation was inhibited, the TGF-β leakage was reduced, and the PI3K/AKT pathway activation was inhibited. Thus, the tumor apoptotic autophagy was finally promoted. Simultaneously, the reduction of TGF-β relieved the immunosuppression caused by CPT-11, promoted the differentiation of CD4+ and CD8+ T cells in tumor tissue, and consequently inhibited tumor growth and invasion. This study disclosed the mechanism of B. lactis SF assisting CPT-11 in antitumor activity and suggested that B. lactis SF plays a new role in anticancer effects as a nutritional intervention.
Collapse
Affiliation(s)
- Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Shufang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Huihui Lv
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Wanyu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jiahui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| | - Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|