1
|
Fu JX, Jiao J, Gai QY, Gao J, Wang XQ, Zhang ZY, He J, Wen MN, Fu YJ. A Novel Endophytic Fungus Fusarium falciforme R-423 for the Control of Rhizoctonia solani Root Rot in Pigeon Pea as Reflected by the Alleviation of Reactive Oxygen Species-Mediated Host Defense Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3373-3388. [PMID: 39884855 DOI: 10.1021/acs.jafc.4c09886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Rhizoctonia solani root rot is a devastating fungal disease that causes significant yield losses in legume crops. A novel endophytic fungus Fusarium falciforme R-423 isolated from pigeon pea had a significant antagonistic capacity against R. solani. F. falciforme R-423 extracts could inhibit R. solani growth and cause it to die. Four host-specific and 15 genus-specific metabolites were identified as potential antimicrobial compounds. F. falciforme R-423's inoculation effectively controlled R. solani root rot in pigeon pea seedlings and promoted root growth. Co-inoculation of F. falciforme R-423 and R. solani reduced the levels of oxidative stress, pathogenesis- and biosynthesis-related gene expression, and phenolic compound accumulation in roots compared to those infected with R. solani, confirming that reactive oxygen species-mediated host defense responses were alleviated due to the effective control of R. solani by F. falciforme R-423. Overall, F. falciforme R-423 was a promising biocontrol agent against R. solani root rot in legume crops.
Collapse
Affiliation(s)
- Jin-Xian Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jiao Jiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Qing-Yan Gai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jie Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Xiao-Qing Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Zi-Yi Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jing He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Mo-Nan Wen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
2
|
Wang L, Liu S, Liu L, Wang L, Pan Y, Fu X. Bacillus safensis LS01 provides biological control of potato common scab with potential effects from secondary metabolites. J Appl Microbiol 2024; 135:lxae307. [PMID: 39701816 DOI: 10.1093/jambio/lxae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
AIMS Potato common scab (CS), caused by pathogenic Streptomyces, is a devastating disease affecting potato crops worldwide. Antagonistic microorganisms have been used as biological control agents to inhibit Streptomyces scabies and reduce the use of synthetic pesticides. However, identifying beneficial microorganisms for controlling CS remains undetermined. METHODS AND RESULTS Strain LS01 was isolated from the geocaulosphere soils of healthy potato tubers. In vitro and pot experiments demonstrated that strain LS01 significantly inhibited the mycelial growth and sporulation of S. scabies, thereby reducing the severity of CS. Sequencing of the 16S rRNA of LS01 indicated that the strain belonged to the species Bacillus safensis. Whole-genome sequencing, metabolomic analysis with liquid chromatograph mass spectrometer, and uultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry analyses indicated that hygromycin B and plantazolicin may be the active secondary metabolites by which B. safensis LS01 inhibits S. scabies. CONCLUSIONS Bacillus safensis LS01 is a potential biocontrol agent for CS, with its secondary metabolites exerting effective inhibitory effects.
Collapse
Affiliation(s)
- Lixue Wang
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161000, China
| | - Song Liu
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161000, China
| | - Lihe Liu
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161000, China
| | - Lichun Wang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161000, China
- Key Laboratory of Potato Biology and Genetics, Ministry of Agriculture and Rural Affairs, Qiqihar, 161000, China
| | - Yang Pan
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161000, China
- Key Laboratory of Potato Biology and Genetics, Ministry of Agriculture and Rural Affairs, Qiqihar, 161000, China
| | - Xuepeng Fu
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161000, China
- Key Laboratory of Potato Biology and Genetics, Ministry of Agriculture and Rural Affairs, Qiqihar, 161000, China
- Agricultural Microbial Preparations Industrialization Technology Innovation Center, Qiqihar, 161000, China
| |
Collapse
|
3
|
Neal M, Brakewood W, Betenbaugh M, Zengler K. Pan-genome-scale metabolic modeling of Bacillus subtilis reveals functionally distinct groups. mSystems 2024; 9:e0092324. [PMID: 39365060 PMCID: PMC11575223 DOI: 10.1128/msystems.00923-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Bacillus subtilis is an important industrial and environmental microorganism known to occupy many niches and produce many compounds of interest. Although it is one of the best-studied organisms, much of this focus including the reconstruction of genome-scale metabolic models has been placed on a few key laboratory strains. Here, we substantially expand these prior models to pan-genome-scale, representing 481 genomes of B. subtilis with 2,315 orthologous gene clusters, 1,874 metabolites, and 2,239 reactions. Furthermore, we incorporate data from carbon utilization experiments for eight strains to refine and validate its metabolic predictions. This comprehensive pan-genome model enables the assessment of strain-to-strain differences related to nutrient utilization, fermentation outputs, robustness, and other metabolic aspects. Using the model and phenotypic predictions, we divide B. subtilis strains into five groups with distinct patterns of behavior that correlate across these features. The pan-genome model offers deep insights into B. subtilis' metabolism as it varies across environments and provides an understanding as to how different strains have adapted to dynamic habitats. IMPORTANCE As the volume of genomic data and computational power have increased, so has the number of genome-scale metabolic models. These models encapsulate the totality of metabolic functions for a given organism. Bacillus subtilis strain 168 is one of the first bacteria for which a metabolic network was reconstructed. Since then, several updated reconstructions have been generated for this model microorganism. Here, we expand the metabolic model for a single strain into a pan-genome-scale model, which consists of individual models for 481 B. subtilis strains. By evaluating differences between these strains, we identified five distinct groups of strains, allowing for the rapid classification of any particular strain. Furthermore, this classification into five groups aids the rapid identification of suitable strains for any application.
Collapse
Affiliation(s)
- Maxwell Neal
- Department of Bioengineering, University of California, San Diego, California, USA
| | - William Brakewood
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karsten Zengler
- Department of Bioengineering, University of California, San Diego, California, USA
- Department of Pediatrics, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Moroz N, Colvin B, Jayasinghe S, Gleason C, Tanaka K. Phytocytokine StPep1-Secreting Bacteria Suppress Potato Powdery Scab Disease. PHYTOPATHOLOGY 2024; 114:2055-2063. [PMID: 38970808 DOI: 10.1094/phyto-01-24-0019-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Powdery scab is an important potato disease caused by the soilborne pathogen Spongospora subterranea f. sp. subterranea. Currently, reliable chemical control and resistant cultivars for powdery scab are unavailable. As an alternative control strategy, we propose a novel approach involving the effective delivery of a phytocytokine to plant roots by the rhizobacterium Bacillus subtilis. The modified strain is designed to secrete the plant elicitor peptide StPep1. In our experiments employing a hairy root system, we observed a significant reduction in powdery scab pathogen infection when we directly applied the StPep1 peptide. Furthermore, our pot assay, which involved pretreating potato roots with StPep1-secreting B. subtilis, demonstrated a substantial decrease in disease symptoms, including reduced root galling and fewer tuber lesions. These findings underscore the potential of engineered bacteria as a promising strategy for safeguarding plants against powdery scab.
Collapse
Affiliation(s)
- Natalia Moroz
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Benjamin Colvin
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Samodya Jayasinghe
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| |
Collapse
|
5
|
Rajapaksha RWPM, Attanayaka DPSTG, Vivehananthan K, McNevin D. Metagenomic analysis of endophytic bacteria in seed potato ( Solanum tuberosum). Open Life Sci 2024; 19:20220897. [PMID: 39071489 PMCID: PMC11282915 DOI: 10.1515/biol-2022-0897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/30/2024] Open
Abstract
To date, the association of potato tuber microbiota is poorly understood. In this study, the endophytic bacterial flora of seed potato tubers was identified and the diversity of healthy and unhealthy tubers was compared. Metagenomic DNA extracted from healthy and unhealthy samples of seed potato tubers was used for the analysis of microbial communities. Next generation sequencing of the ∼460 bp v3-v4 region of the 16S rRNA gene was carried out using the Illumina Miseq platform. The data were analysed using the Divisive Amplicon Denoising Algorithm 2 pipeline. Sequence analysis of the potato metagenome identified amplicon sequence variants (ASVs) assigned to 745 different taxa belonging to eight Phyla: Firmicutes (46.2%), Proteobacteria (36.9%), Bacteroidetes (1.8%), Actinobacteria (0.1%), Tenericutes (0.005%), Saccharibacteria (0.003%), Verrucomicrobiota (0.003%), and Acidobacteria (0.001%). In healthy seed potato tubers, 55-99% of ASVs belonged to Firmicutes, including Bacillus, Salinibacillus, Staphylococcus, Lysinibacillus, Paenibacillus, and Brevibacillus genera within the taxonomic order Bacillales. However, in the visually unhealthy tubers, only 0.5-3.9% of ASVs belonged to Firmicutes while 84.1-97% of ASVs belonged to Proteobacteria. This study highlights that diverse bacterial communities colonize potato tubers, which contributes to the understanding of plant-microbe interactions and underscores the significance of metagenomic approaches in agricultural research.
Collapse
Affiliation(s)
| | | | - Kalaivani Vivehananthan
- Department of Basic Sciences, Faculty of Health Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Dennis McNevin
- Centre for Forensic Science, School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
6
|
Chen X, Zhang Y, Chao S, Song L, Wu G, Sun Y, Chen Y, Lv B. Biocontrol potential of endophytic Bacillus subtilis A9 against rot disease of Morchella esculenta. Front Microbiol 2024; 15:1388669. [PMID: 38873148 PMCID: PMC11169702 DOI: 10.3389/fmicb.2024.1388669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Morchella esculenta is a popular edible fungus with high economic and nutritional value. However, the rot disease caused by Lecanicillium aphanocladii, pose a serious threat to the quality and yield of M. esculenta. Biological control is one of the effective ways to control fungal diseases. Methods and results In this study, an effective endophytic B. subtilis A9 for the control of M. esculenta rot disease was screened, and its biocontrol mechanism was studied by transcriptome analysis. In total, 122 strains of endophytic bacteria from M. esculenta, of which the antagonistic effect of Bacillus subtilis A9 on L. aphanocladii G1 reached 72.2% in vitro tests. Biological characteristics and genomic features of B. subtilis A9 were analyzed, and key antibiotic gene clusters were detected. Scanning electron microscope (SEM) observation showed that B. subtilis A9 affected the mycelium and spores of L. aphanocladii G1. In field experiments, the biological control effect of B. subtilis A9 reached to 62.5%. Furthermore, the transcritome profiling provides evidence of B. subtilis A9 bicontrol at the molecular level. A total of 1,246 differentially expressed genes (DEGs) were identified between the treatment and control group. Gene Ontology (GO) enrichment analysis showed that a large number of DEGs were related to antioxidant activity related. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the main pathways were Nitrogen metabolism, Pentose Phosphate Pathway (PPP) and Mitogen-Activated Protein Kinases (MAPK) signal pathway. Among them, some important genes such as carbonic anhydrase CA (H6S33_007248), catalase CAT (H6S33_001409), tRNA dihydrouridine synthase DusB (H6S33_001297) and NAD(P)-binding protein NAD(P) BP (H6S33_000823) were found. Furthermore, B. subtilis A9 considerably enhanced the M. esculenta activity of Polyphenol oxidase (POD), Superoxide dismutase (SOD), Phenylal anineammonia lyase (PAL) and Catalase (CAT). Conclusion This study presents the innovative utilization of B. subtilis A9, for effectively controlling M. esculenta rot disease. This will lay a foundation for biological control in Morchella, which may lead to the improvement of new biocontrol agents for production.
Collapse
Affiliation(s)
- Xue Chen
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yin Zhang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - ShengQian Chao
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - LiLi Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - GuoGan Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - YiFan Chen
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - BeiBei Lv
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai, China
| |
Collapse
|
7
|
Noh JS, Hwang SH, Maung CEH, Cho JY, Kim KY. Enhanced control efficacy of Bacillus subtilis NM4 via integration of chlorothalonil on potato early blight caused by Alternaria solani. Microb Pathog 2024; 190:106604. [PMID: 38490458 DOI: 10.1016/j.micpath.2024.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.
Collapse
Affiliation(s)
- Jun Su Noh
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Seo Hyun Hwang
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Chaw Ei Htwe Maung
- Department of Agricultural and Biological Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea.
| | - Kil Yong Kim
- Department of Agricultural and Biological Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
8
|
Cao CY, Hou ZJ, Ding MZ, Gao GR, Qiao B, Wei SY, Cheng JS. Integrated Biofilm Modification and Transcriptional Analysis for Improving Fengycin Production in Bacillus amyloliquefaciens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10266-8. [PMID: 38652228 DOI: 10.1007/s12602-024-10266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Although fengycin exhibits broad-spectrum antifungal properties, its application is hindered due to its low biosynthesis level and the co-existence of iturin A and surfactin in Bacillus amyloliquefaciens HM618, a probiotic strain. In this study, transcriptome analysis and gene editing were used to explore the potential mechanisms regulating fengycin production in B. amyloliquefaciens. The fengycin level of B. amyloliquefacien HM-3 (∆itu-ΔsrfAA) was 88.41 mg/L after simultaneously inhibiting the biosyntheses of iturin A and surfactin. The knockout of gene eps associated with biofilm formation significantly increased the fengycin level of the strain HM618, whereas the fengycin level decreased 32.05% after knocking out sinI, a regulator of biofilm formation. Transcriptome analysis revealed that the differentially expressed genes, involved in pathways of amino acid and fatty acid syntheses, were significantly down-regulated in the recombinant strains, which is likely associated with a decrease of fengycin production. The knockout of gene comQXPA and subsequent transcriptome analysis revealed that the ComQXPA quorum sensing system played a positive regulatory role in fengycin production. Through targeted genetic modifications and fermentation optimization, the fengycin production of the engineered strain HM-12 (∆itu-ΔsrfAA-ΔyvbJ) in a 5-L fermenter reached 1.172 g/L, a 12.26-fold increase compared to the fengycin level in the strain HM-3 (∆itu-ΔsrfAA) in the Erlenmeyer flask. Taken together, these results reveal the underlying metabolic mechanisms associated with fengycin synthesis and provide a potential strategy for improving fengycin production in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Chun-Yang Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Geng-Rong Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Si-Yu Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China.
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
9
|
Li D, Shen J, Ding Q, Wu J, Chen X. Recent progress of atmospheric and room-temperature plasma as a new and promising mutagenesis technology. Cell Biochem Funct 2024; 42:e3991. [PMID: 38532652 DOI: 10.1002/cbf.3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
At present, atmospheric and room-temperature plasma (ARTP) is regarded as a new and powerful mutagenesis technology with the advantages of environment-friendliness, operation under mild conditions, and fast mutagenesis speed. Compared with traditional mutagenesis strategies, ARTP is used mainly to change the structure of microbial DNA, enzymes, and proteins through a series of physical, chemical, and electromagnetic effects with the organisms, leading to nucleotide breakage, conversion or inversion, causing various DNA damages, so as to screen out the microbial mutants with better biological characteristics. As a result, in recent years, ARTP mutagenesis and the combination of ARTP with traditional mutagenesis have been widely used in microbiology, showing great potential for application. In this review, the recent progress of ARTP mutagenesis in different application fields and bottlenecks of this technology are systematically summarized, with a view to providing a theoretical basis and technical support for better application. Finally, the outlook of ARTP mutagenesis is presented, and we identify the challenges in the field of microbial mutagenesis by ARTP.
Collapse
Affiliation(s)
- Dongao Li
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jie Shen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Qiang Ding
- Yichang Sanxia Pharmaceutical Co., Ltd., Yichang City, Hubei Province, China
| | - Jinyong Wu
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Xiangsong Chen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| |
Collapse
|
10
|
Tao H, Wang S, Li X, Li X, Cai J, Zhao L, Wang J, Zeng J, Qin Y, Xiong X, Cai Y. Biological control of potato common scab and growth promotion of potato by Bacillus velezensis Y6. Front Microbiol 2023; 14:1295107. [PMID: 38149275 PMCID: PMC10750399 DOI: 10.3389/fmicb.2023.1295107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Potato common scab, caused mainly by Streptomyces scabies, causes surface necrosis and reduces the economic value of potato tubers, but effective chemical control is still lacking. In this study, an attempt was made to control potato common scab by inoculating potatoes with Bacillus velezensis (B. velezensis) and to further investigate the mechanism of biological control. The results showed that B. velezensis Y6 could reduce the disease severity of potato common scab from 49.92 ± 25.74% [inoculated with Streptomyces scabies (S. scabies) only] to 5.56 ± 1.89% (inoculated with S. scabies and Y6 on the same day) and increase the potato yield by 37.32% compared with the control under pot experiment in this study. Moreover, in the field trial, it was found that Y6 could also significantly reduce disease severity from 13.20 ± 1.00% to 4.00 ± 0.70% and increase the potato yield from 2.07 ± 0.10 ton/mu to 2.87 ± 0.28 ton/mu (p < 0.01; Tukey's test). Furthermore, RNA-seq analysis indicated that 256 potato genes were upregulated and 183 potato genes were downregulated in response to B. velezensis Y6 inoculation. In addition, strain Y6 was found to induce the expression of plant growth-related genes in potato, including cell wall organization, biogenesis, brassinosteroid biosynthesis, and plant hormone transduction genes, by 1.01-4.29 times. As well as up-regulate hydroquinone metabolism-related genes and several transcription factors (bHLH, MYB, and NAC) by 1.13-4.21 times. In summary, our study will help to understand the molecular mechanism of biological control of potato common scab and improve potato yield.
Collapse
Affiliation(s)
- Huan Tao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Shisong Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xiaobo Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianying Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Lanfeng Zhao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jia Wang
- Guangdong Institute Center of Wine and Spirits, Guangdong Institute of Food Inspection, Guangzhou, China
| | - Ji Zeng
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yuzhi Qin
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education Changsha, Hunan Provincial Engineering Research Center for Potatoes, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xingyao Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanfei Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Xue J, Sun L, Xu H, Gu Y, Lei P. Bacillus atrophaeus NX-12 Utilizes Exosmotic Glycerol from Fusarium oxysporum f. sp. cucumerinum for Fengycin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37410693 DOI: 10.1021/acs.jafc.3c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Bacillus strains are widely used as biological control agents to protect plants from fungal pathogens. However, whether Bacillus can exploit fungal pathogens to increase its biocontrol efficacy remains largely unexplored. Here, Bacillus atrophaeus NX-12 showed a high inhibition efficacy against Fusarium oxysporum f. sp. cucumerinum (FOC). The primary extracellular antifungal component of B. atrophaeus NX-12 was identified as fengycin by matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) analysis. NX-12-secreted fengycin not only inhibited the germination of FOC spores but also induced the production of reactive oxygen species (ROS) in FOC cells, leading to oxidative stress and the accumulation of glycerol. Additionally, NX-12-secreted fengycin increased FOC cell wall hydrolase activity, leading to cell splitting and the exosmose of accumulated glycerol. The increased exosmose of glycerol further promoted the production of fengycin. Our results showed that in addition to the direct inhibition of FOC, NX-12 can indirectly strengthen its antagonistic efficacy against the pathogen by exploiting the exosmotic glycerol from FOC.
Collapse
Affiliation(s)
- Jian Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
12
|
Zhou Y, Yang X, Li Q, Peng Z, Li J, Zhang J. Optimization of fermentation conditions for surfactin production by B. subtilis YPS-32. BMC Microbiol 2023; 23:117. [PMID: 37101148 PMCID: PMC10131397 DOI: 10.1186/s12866-023-02838-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Surfactin produced by microbial fermentation has attracted increasing attention because of its low toxicity and excellent antibacterial activity. However, its application is greatly limited by high production costs and low yield. Therefore, it is important to produce surfactin efficiently while reducing the cost. In this study, B. subtilis strain YPS-32 was used as a fermentative strain for the production of surfactin, and the medium and culture conditions for the fermentation of B. subtilis YPS-32 for surfactin production were optimized. RESULTS First, Landy 1 medium was screened as the basal medium for surfactin production by B. subtilis strain YPS-32. Then, using single-factor optimization, the optimal carbon source for surfactin production by B. subtilis YPS-32 strain was determined to be molasses, nitrogen sources were glutamic acid and soybean meal, and inorganic salts were KCl, K2HPO4, MgSO4, and Fe2(SO4)3. Subsequently, using Plackett-Burman design, MgSO4, time (h) and temperature (°C) were identified as the main effect factors. Finally, Box-Behnken design were performed on the main effect factors to obtain optimal fermentation conditions: temperature of 42.9 °C, time of 42.8 h, MgSO4 = 0.4 g·L- 1. This modified Landy medium was predicted to be an optimal fermentation medium: molasses 20 g·L- 1, glutamic acid 15 g·L- 1, soybean meal 4.5 g·L- 1, KCl 0.375 g·L- 1, K2HPO4 0.5 g·L- 1, Fe2(SO4)3 1.725 mg·L- 1, MgSO4 0.4 g·L- 1. Using the modified Landy medium, the yield of surfactin reached 1.82 g·L- 1 at pH 5.0, 42.9 ℃, and 2% inoculum for 42.8 h, which was 2.27-fold higher than that of the Landy 1 medium in shake flask fermentation. Additionally, under these optimal process conditions, further fermentation was carried out at the 5 L fermenter level by foam reflux method, and at 42.8 h of fermentation, surfactin reached a maximum yield of 2.39 g·L- 1, which was 2.96-fold higher than that of the Landy 1 medium in 5 L fermenter. CONCLUSION In this study, the fermentation process of surfactin production by B. subtilis YPS-32 was improved by using a combination of single-factor tests and response surface methodology for test optimization, which laid the foundation for its industrial development and application.
Collapse
Affiliation(s)
- Yingjun Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Qingdao Vland Biotech Group Co., Ltd, Qingdao, 266000, China
| | - Xiaoxue Yang
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Qing Li
- Qingdao Vland Biotech Group Co., Ltd, Qingdao, 266000, China
| | - Zheng Peng
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Juan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
13
|
Li A, Wang M, Zhang Y, Lin Z, Xu M, Wang L, Kulyar MFEA, Li J. Complete genome analysis of Bacillus subtilis derived from yaks and its probiotic characteristics. Front Vet Sci 2023; 9:1099150. [PMID: 36713867 PMCID: PMC9875379 DOI: 10.3389/fvets.2022.1099150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Probiotics have attracted attention due to their multiple health benefits to the host. Yaks inhabiting the Tibetan plateau exhibit excellent disease resistance and tolerance, which may be associated with their inner probiotics. Currently, research on probiotics mainly focuses on their positive effects on the host, but information regarding their genome remains unclear. To reveal the potential functional genes of Bacillus subtilis isolated from yaks, we sequenced its whole genome. Results indicated that the genomic length of Bacillus subtilis was 866,044,638 bp, with 4,429 coding genes. The genome of this bacteria was composed of one chromosome and one plasmid with lengths of 4,214,774 and 54,527 bp, respectively. Moreover, Bacillus subtilis contained 86 tRNAs, 27 rRNAs (9 16S_rRNA, 9 23S_rRNA, and 9 5S_rRNA), and 114 other ncRNA. KEGG annotation indicated that most genes in Bacillus subtilis were associated with biosynthesis of amino acids, carbon metabolism, purine metabolism, pyrimidine metabolism, and ABC transporters. GO annotation demonstrated that most genes in Bacillus subtilis were related to nucleic acid binding transcription factor activity, transporter activity, antioxidant activity, and biological adhesion. EggNOG uncovered that most genes in Bacillus subtilis were related to energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism. CAZy annotation found glycoside hydrolases (33.65%), glycosyl transferases (22.11%), polysaccharide lyases (3.84%), carbohydrate esterases (14.42%), auxiliary activities (3.36%), and carbohydrate-binding modules (22.59%). In conclusion, this study investigated the genome and genetic properties of Bacillus subtilis derived from yaks, which contributed to understanding the potential prebiotic mechanism of probiotics from the genetic perspective.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meng Wang
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, China,*Correspondence: Jiakui Li ✉
| |
Collapse
|
14
|
Guo S, Hu H, Wang W, Bilal M, Zhang X. Production of Antibacterial Questiomycin A in Metabolically Engineered Pseudomonas chlororaphis HT66. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7742-7750. [PMID: 35708224 DOI: 10.1021/acs.jafc.2c03216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pseudomonas chlororaphis has been demonstrated as a valuable source of antimicrobial metabolites for plant disease biocontrol and biopesticide development. Although phenazine-1-carboxylic acid (PCA) secreted by P. chlororaphis has been commercialized as an antifungal biopesticide, it shows poor antibacterial activity. Questiomycin A, with versatile antibacterial activities, is mainly discovered in some well-known phenazine-producing strains but not in Pseudomonas. Its low titer hinders practical applications. In this work, a metabolite was first identified as Questiomycin A in P. chlororaphis-derived strain HT66ΔphzBΔNat. Subsequently, Questiomycin A has been elucidated to share the same biosynthesis process with PCA by gene deletion and in vitro assays. Through rational metabolic engineering, heterologous phenoxazinone synthase introduction, and medium optimization, the titer reached 589.78 mg/L in P. chlororaphis, the highest production reported to date. This work contributes to a better understanding of Questiomycin A biosynthesis and demonstrates a promising approach to developing a new antibacterial biopesticide in Pseudomonas.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|