1
|
Chen T, Gao Y, Chen X, Dong Y, Wang S, Huang Q, Lin S, Wang J, Liao M, Fan H. Self-assembling nanoparticle vaccine elicits a robust protective immune response against avian influenza H5N6 virus in chickens. Int J Biol Macromol 2025; 287:138405. [PMID: 39643188 DOI: 10.1016/j.ijbiomac.2024.138405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/09/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The continuous circulation and evolution of the H5N6 subtype highly pathogenic avian influenza virus (HPAIV) challenge the development of the global poultry industry and human public health security. To address the potential threat of the H5N6 virus, a secure and efficacious vaccine is urgent. In our research, a self-assembling nanoparticle vaccine presenting the hemagglutinin of the H5N6 AIV was developed based on the ferritin antigen display platform. The results showed that a single-dose vaccination of this nanoparticle vaccine elicited potent hemagglutination inhibition (HI) antibody responses and neutralizing antibody responses in the chickens. Meanwhile, the fused HA-ferritin nanoparticle vaccine induced significantly higher levels of Th1/Th2 immune responses. After a lethal attack with the H5N6 virus, the fused HA-ferritin nanoparticle vaccine conferred chickens with 100 % (10/10) challenge protection. Importantly, the fused HA-ferritin nanoparticle with only 28 hemagglutination units (HAU) provided chickens with immune protection comparable to commercial inactivated vaccines and protected the chickens from severe lung pathological damage. These results in our study support the superiority of ferritin as an antigen display platform and suggest that self-assembled nanoparticle vaccines based on this platform possess the potential as an avian influenza candidate vaccine.
Collapse
Affiliation(s)
- Taoran Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Yinze Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Xingtao Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Yajing Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Shiqian Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Qiao Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Shaorong Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Jiaxin Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China.
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China.
| |
Collapse
|
2
|
Wang R, Zhang X, Ye H, Yang X, Zhao Y, Wu L, Liu H, Wen Y, Wang J, Wang Y, Yu M, Ma C, Wang L. Fibroblast growth factor 21 improves diabetic cardiomyopathy by inhibiting ferroptosis via ferritin pathway. Cardiovasc Diabetol 2024; 23:394. [PMID: 39488694 PMCID: PMC11531115 DOI: 10.1186/s12933-024-02469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 2 diabetes mellitus, and its mechanisms are complex and poorly understood. Despite growing evidence suggesting that ferroptosis plays a significant role in cardiovascular disease, it has been less extensively studied in DCM. Fibroblast growth factor 21 (FGF21), whose mechanism of action is closely related to ferroptosis, is widely utilized in studies focused on the prevention and treatment of glucolipid metabolism-related diseases and cardiovascular diseases. OBJECTIVE To confirm the significant role of ferroptosis in DCM and to investigate whether FGF21 improves DCM by inhibiting ferroptosis and elucidating its specific molecular mechanisms. METHODS The animal DCM models were established through high-fat feeding combined with streptozotocin injection in C57BL/6J mice or by db/db mice, and the diabetic cardiomyocyte injury model was created using high glucose and high fat (HG/HF) culture of primary cardiomyocytes. Intervention modeling of FGF21 were performed by injecting adeno-associated virus 9-FGF21 in mice and transfecting FGF21 siRNA or overexpression plasmid in primary cardiomyocytes. RESULTS The findings indicated that ferroptosis was exacerbated and played a significant role in DCM. The overexpression of FGF21 inhibited ferroptosis and improved cardiac injury and function, whereas the knockdown of FGF21 aggravated ferroptosis and cardiac injury and function in DCM. Furthermore, we discovered that FGF21 inhibited ferroptosis in DCM by directly acting on ferritin and prolonging its half-life. Specifically, FGF21 binded to the heavy and light chains of ferritin, thereby reducing its excessive degradation in the proteasome and lysosomal-autophagy pathways in DCM. Additionally, activating transcription factor 4 (ATF4) served as the upstream regulator of FGF21 in DCM. CONCLUSIONS The ATF4-FGF21-ferritin axis mediates the protective effects in DCM through the ferroptosis pathway and represents a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Ruxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaofang Zhang
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Haowen Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xian Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yongting Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Liangyan Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Han Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yun Wen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jiaxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Meixin Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Caixia Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Lihong Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Zhang J, Fan M, Tang J, Lin X, Liu G, Wen C, Xu X. Possibility and challenge of plant-derived ferritin cages encapsulated polyphenols in the precise nutrition field. Int J Biol Macromol 2024; 275:133579. [PMID: 38964678 DOI: 10.1016/j.ijbiomac.2024.133579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Polyphenols have attracted extensive attention due to their rich functional activities, such as antioxidant, anti-inflammatory and anti-tumor. However, the low solubility and poor stability limit their bioavailability and functional activities. Plant-derived ferritin cages have a unique hollow cage structure that can embed polyphenols to improve their unfavorable properties. Therefore, it is essential to adequately elaborate and summarize plant-derived ferritin cages to maximize their potential benefits in nutritional interventions. This review focuses on the fundamental properties of plant-derived ferritin cages, including the preparation process, purification technology, identification methods, and structural and functional properties. The relevant research on ferritin cages in polyphenol delivery has been summarized, including the delivery of water/lipid soluble polyphenols, modification of ferritin cages, and the interaction between polyphenols and ferritin cages. The research progress, shortcomings and prospects of plant-derived ferritin cages in precise nutrition are introduced. In addition, the relevant research on ferritin in immune response and protein engineering is also discussed to provide the theoretical basis for applying plant-derived ferritin cages in many frontier fields.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Guangling College, Yangzhou University, Yangzhou 225000, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
4
|
Wang Z, Xu X, Zhu Y, Qian Y, Feng Y, Li H, Hu G. Preparation and brain targeting effects study of recombinant human ferritin nanoparticles. Biochem Biophys Res Commun 2024; 712-713:149939. [PMID: 38640729 DOI: 10.1016/j.bbrc.2024.149939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Human heavy-chain ferritin is a naturally occurring protein with high stability and multifunctionality in biological systems. This study aims to utilize a prokaryotic expression system to produce recombinant human heavy-chain ferritin nanoparticles and investigate their targeting ability in brain tissue. The human heavy-chain ferritin gene was cloned into the prokaryotic expression vector pET28a and transformed into Escherichia coli BL21 (DE3) competent cells to explore optimal expression conditions. The recombinant protein was then purified to evaluate its immunoreactivity and characteristics. Additionally, the distribution of the administered protein in normal mice and its permeability in an in vitro blood-brain barrier (BBB) model were measured. The results demonstrate that the purified protein can self-assemble extracellularly into nano-cage structures of approximately 10 nm and is recognized by corresponding antibodies. The protein effectively penetrates the blood-brain barrier and exhibits slow clearance in mouse brain tissue, showing excellent permeability in the in vitro BBB model. This study highlights the stable expression of recombinant human heavy-chain ferritin using the Escherichia coli prokaryotic expression system, characterized by favorable nano-cage structures and biological activity. Its exceptional brain tissue targeting and slow metabolism lay an experimental foundation for its application in neuropharmaceutical delivery and vaccine development fields.
Collapse
Affiliation(s)
- Zhixian Wang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China; First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Guoheng Hu
- First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|