1
|
Li WY, Chen H, Lin D, Zhang T, Chen YL, Jin T, Cao MJ. Purification, crystal structural characterization of porcine kidney dipeptidyl peptidase IV (PkDPP-IV) and its interaction with oyster derived inhibitory peptide ILAPPER. Int J Biol Macromol 2025; 298:140047. [PMID: 39828169 DOI: 10.1016/j.ijbiomac.2025.140047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/01/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Dipeptidyl peptidase IV (DPP-IV) is an important target enzyme for the treatment of type 2 diabetes mellitus (T2DM). Increasing researchers try to screen DPP-IV inhibitory peptides while the cost of DPP-IV is high. In this study, PkDPP-IV was efficiently purified by acid precipitation, ammonium sulfate salting out and gel filtration chromatography with a purification of 283.5 folds and 16.5 % yield. PkDPP-IV is a glycoprotein with molecular weight of 110 kDa and optimal activity at pH 7.0 and 40 °C. Crystal structure indicated that PkDPP-IV is composed of an α/β hydrolase domain and a β-propeller domain, which is highly similar to that of human DPP-IV. A peptide ILAPPER derived from oyster exhibited high inhibitory activity with Ki value of 0.131 μM against PkDPP-IV. The crystal structure of the PkDPP-IV + ILAPPER complex revealed that ILAPPER stably occupy the S1 and S2 catalytic pockets of PkDPP-IV by forming three hydrogen bonds with Tyr-547, Ser-630, and Tyr-662, thereby inhibiting enzyme activity. Analysis of transmembrane transport pathway suggested that ILAPPER is transported by the Caco-2 cell monolayer via the paracellular pathway. All the results provide a new approach for rapid preparation of natural PkDPP-IV, and the potential application of ILAPPER as an antihyperglycemic peptide in functional foods.
Collapse
Affiliation(s)
- Wan-Yu Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hong Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Duanquan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tengchuan Jin
- CAS Key Laboratory of innate immunity and chronic disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230007, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Guo C, Ling N, Tian H, Wang Z, Gao M, Chen Y, Ji C. Comprehensive review of extraction, purification, structural characteristics, pharmacological activities, structure-activity relationship and application of seabuckthorn protein and peptides. Int J Biol Macromol 2025; 294:139447. [PMID: 39756720 DOI: 10.1016/j.ijbiomac.2024.139447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Seabuckthorn (Hippophae rhamnoides) is an excellent plant that has the concomitant function of both medicine and foodstuff with high nutritional and health-promoting properties. As a pivotal bioactive component mainly existing in the seeds and leaves, seabuckthorn protein and its derived peptides have aroused wide attention owing to their multifaceted pharmacological activities, including anti-hypertensive, hypoglycemic, anti-obesity, anti-freeze, immunomodulatory, anti-inflammatory, sobriety, anti-oxidant and anti-neurodegenerative functions. Despite these promising attributes, the application of seabuckthorn peptides as functional food and medicines are impeded due to lack of a comprehensive understanding of pharmacological activities and intricate structure-activity relationship. Therefore, this review systematically summarizes the latest advancements in the extraction, purification, structural characteristics, pharmacological activities, digestion, absorption and transport, and application of seabuckthorn protein or peptides. Noteworthily, the structure-activity relationship is specifically delved into the hypoglycemic, anti-hypertensive, anti-obesity, anti-neurodegenerative and anti-oxidant peptides. Moreover, the shortcomings of current research and promising prospects are also highlighted. This comprehensive overview will provide a framework for future exploration and application of seabuckthorn protein or peptides in the realms of food and pharmaceuticals, offering a promising horizon for health benefits.
Collapse
Affiliation(s)
- Chunqiu Guo
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| | - Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Zihao Wang
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Yin Chen
- School of Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chenfeng Ji
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
3
|
de Sousa Araujo AC, Coimbra Pereira A, Gomes RMM, Buitrago Ramirez JR, da Silva Noda K, Santos LG, Latorres JM, Ramos DF, Monserrat JM, Martins VG. Protein hydrolysates derived from superworm (Zophobas morio): Composition, bioactivity, and techno-functional properties. Int J Biol Macromol 2025; 295:139668. [PMID: 39793808 DOI: 10.1016/j.ijbiomac.2025.139668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
This study aimed to produce protein hydrolysates from superworm (Zophobas morio) flour using the enzymes alcalase (HA), protamex (HP), or flavourzyme (HF), and to characterize their nutritional composition, techno-functional properties, bioactive capacity, and bioaccessibility index. The enzymatic process increased the total amino acid and crude protein contents of the hydrolysates by approximately 36 % and 46 %, respectively, generating better foaming capacity, oil retention, and emulsification capacity, when compared to raw flour. Although 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical capture was similar between the hydrolysates, HA (1479,66 μM FeSO4/g) and HP (1514,66 μM FeSO4/g) showed greater antimicrobial and iron reducing power (FRAP) activity, while HF has a higher scavenging efficiency for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (27.53 %). The best antimicrobial activity was observed for HA against Vibrio corallilyticus (400 mg/mL), and HP showed a better antioxidant response scavenging for DPPH radical. The antioxidant capacity against ABTS radical after in vitro simulation of gastrointestinal digestion (GID) was as follows: HA (79.07 ± 1.53 %), HP (74.65 ± 5.85 %), and HF (57.95 ± 8.31 %). Therefore, insect flour is a promising ingredient for the production of protein hydrolysates and their application in animal and human feeds.
Collapse
Affiliation(s)
- Alan Carvalho de Sousa Araujo
- Laboratory of Functional Biochemistry of Aquatic Organisms, Institute of Oceanography, Federal University of Rio Grande, FURG, Rio Grande, RS 96201-900, Brazil; Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, FURG, Av. Itália, Km 08, 96203-900, Brazil; Graduate Program in Aquaculture, Federal University of Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil.
| | - Andressa Coimbra Pereira
- Laboratory of Functional Biochemistry of Aquatic Organisms, Institute of Oceanography, Federal University of Rio Grande, FURG, Rio Grande, RS 96201-900, Brazil; Graduate Program in Aquaculture, Federal University of Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil
| | - Robson Matheus Marreiro Gomes
- Laboratory of Functional Biochemistry of Aquatic Organisms, Institute of Oceanography, Federal University of Rio Grande, FURG, Rio Grande, RS 96201-900, Brazil; Graduate Program in Aquaculture, Federal University of Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil
| | - Juan Rafael Buitrago Ramirez
- Laboratory of Functional Biochemistry of Aquatic Organisms, Institute of Oceanography, Federal University of Rio Grande, FURG, Rio Grande, RS 96201-900, Brazil; Graduate Program in Aquaculture, Federal University of Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil
| | - Karoline da Silva Noda
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, FURG, Av. Itália, Km 08, 96203-900, Brazil
| | - Luan Gustavo Santos
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, FURG, Av. Itália, Km 08, 96203-900, Brazil
| | - Juliana Machado Latorres
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, FURG, Av. Itália, Km 08, 96203-900, Brazil
| | - Daniela Fernandes Ramos
- Center for the Development of New Drugs (NUDEFA), Federal University of Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - José María Monserrat
- Laboratory of Functional Biochemistry of Aquatic Organisms, Institute of Oceanography, Federal University of Rio Grande, FURG, Rio Grande, RS 96201-900, Brazil; Institute of Biological Sciences, Federal University of Rio Grande, - FURG, Av. Itália, Km 08, 96201-900, Brazil; Graduate Program in Aquaculture, Federal University of Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil.
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, FURG, Av. Itália, Km 08, 96203-900, Brazil; Graduate Program in Aquaculture, Federal University of Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil
| |
Collapse
|
4
|
Mubango E, Fu Z, Dou P, Tan Y, Luo Y, Chen L, Wu K, Hong H. Dual function antioxidant and anti-inflammatory fish maw peptides: Isolation and structure-activity analysis via tandem molecular docking and quantum chemical calculation. Food Chem 2025; 465:141970. [PMID: 39546995 DOI: 10.1016/j.foodchem.2024.141970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The structure-function relationship of gastrointestinal tract digestion-derived fish maw peptides remains largely unknown. This study aims to elucidate the active sites and cellular bioactivities of these peptides through molecular docking (MD), density functional theory (DFT) computations, in silico bioinformatic analysis, and in cellulo Caco-2 cell studies. In silico screening identified 29 non-toxic, non-allergenic, and water-soluble peptides. Seven peptides exhibited favorable binding to the Keap1-Kelch (2FLU) and TNF-α (2AZ5) proteins. Specifically, peptides WIDPNQG, GFPGER, and FLLFRQ demonstrated the highest electron affinities and smallest HOMO-LUMO energy gaps, suggesting strong free-radical scavenging potential. Both DFT and ex situ MD confirmed the active sites of the seven peptides. The guanidinium group was the dominant active site on six peptides. The isolated peptides improved cellular redox balance, reduced malonaldehyde, and suppressed inflammatory cytokines. This study confirmed DFT computations as a novel tool for elucidating the structure-function relationship of food-derived peptides.
Collapse
Affiliation(s)
- Elliot Mubango
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixin Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peipei Dou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Chen
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Kefeng Wu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Hui Hong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Xu C, Liu Y, Li K, Zhang J, Wei B, Wang H. Absorption of food-derived peptides: Mechanisms, influencing factors, and enhancement strategies. Food Res Int 2024; 197:115190. [PMID: 39593400 DOI: 10.1016/j.foodres.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Food-derived peptides (FPs) are bioactive molecules produced from dietary proteins through enzymatic hydrolysis or fermentation. These peptides exhibit various biological activities. However, their efficacy largely depends on bioavailability, the ability to cross absorption barriers, and reach target sites within the body. This review addresses key issues in FP absorption, including barriers, pathways, influencing factors, and strategies to enhance absorption. The biochemical and physical barriers to FP absorption include pH variations, enzymes, unstirred water layer, mucus layer, and intestinal epithelial cells. FPs enter the bloodstream via four main pathways: carrier-mediated transport, endocytosis, paracellular, and passive diffusion. The barrier-crossing efficiency depends on the structural properties and state of FPs and coexisting substances. Absorption efficiency can be significantly improved with permeability enhancers, nano-delivery systems, and chemical modifications. These insights provide a scientific basis and practical guidance for optimizing the bioactivity and health benefits of food-derived peptides.
Collapse
Affiliation(s)
- Chengzhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yuting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Ke Li
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Juntao Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China.
| |
Collapse
|
6
|
Wang X, Yang Z, Zhang W, Xing L, Luo R, Cao S. Obstacles, research progress, and prospects of oral delivery of bioactive peptides: a comprehensive review. Front Nutr 2024; 11:1496706. [PMID: 39610876 PMCID: PMC11602335 DOI: 10.3389/fnut.2024.1496706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
Bioactive peptides hold significant potential for enhancing human health, however, their limited oral bioavailability poses a substantial barrier to their widespread use in the food and pharmaceutical industries. This article reviews the key factors influencing the absorption efficiency of oral bioactive peptides, including issues related to bitter taste perception, challenges in gastrointestinal environmental stability, and limitations in transmembrane transport. Furthermore, it highlights the latest technologies, such as osmotic technology, chemical modification, and advanced delivery systems, and discusses their advantages in enhancing the stability of bioactive peptides and facilitating intestinal absorption. In addition, the application and challenges of common delivery systems such as liposomes, emulsions, polymer nanoparticles, and hydrogels in oral bioactive peptide delivery are also discussed. This paper aims to provide a theoretical foundation for scientific research and practical applications of oral delivery of bioactive peptides, thereby promoting the further development of bioactive peptides in the context of human health.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Zeyao Yang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Wangang Zhang
- Key Lab of Meat Processing and Quality Control, MOE, School of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lujuan Xing
- Key Lab of Meat Processing and Quality Control, MOE, School of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ruiming Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Songmin Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
7
|
Yang Y, Li B. Effect of Oral Administration of Collagen Peptide OG-5 on Advanced Atherosclerosis Development in ApoE -/- Mice. Nutrients 2024; 16:3752. [PMID: 39519585 PMCID: PMC11547735 DOI: 10.3390/nu16213752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Atherosclerosis is a chronic inflammatory disease of the arterial wall, which involves multiple cell types. Peptide OG-5 is identified from collagen hydrolysates derived from Salmo salar and exhibits an inhibitory effect on early atherosclerosis. The primary objective of this study was to investigate the impact of OG-5 on advanced atherosclerotic lesions as well as its stability during absorption. METHODS In this study, the ApoE-/- mice were employed to establish advanced atherosclerosis model to investigate the treatment effect of peptide OG-5. RESULTS The results showed that oral administration of OG-5 at a dosage of 150 mg/kg bw resulted in a 30% reduction in the aortic plaque formation area in ApoE-/- mice with few bleeding risks. Specifically, intervention with a low dose of OG-5 (50 mg/kg bw), initiated in the early stage of atherosclerosis, continues to provide benefits into the middle and late stages without bleeding risks. Furthermore, treatment of OG-5 increased expression levels of contractile phenotype markers and reduced the accumulation of lipoprotein in VSMCs induced by ox-LDL. Peptide OG-5 could ensure transport across Caco-2 cell monolayers, exhibiting a Papp value of 1.80 × 10-5 cm/s, and exhibited a robust stability in plasma with remaining content >70% after 8 h incubation. In vivo studies revealed that OG-5 reached maximum concentration in blood after 120 min. CONCLUSION The present results demonstrate the potential efficacy of peptide OG-5 as a promising agent for intervention in anti-atherogenesis strategies.
Collapse
Affiliation(s)
- Yijie Yang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| |
Collapse
|
8
|
Xiao Y, Zhao Z, Zhang T, Xu X, Anik K, Qiu Y, Xu Z, Li S, Xu H. A new glycoprotein from pigeon egg: Study on its structure and digestive characteristics. Food Res Int 2024; 194:114875. [PMID: 39232513 DOI: 10.1016/j.foodres.2024.114875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Pigeon egg white (PEW) is widely recognized as a promising source of bioactive proteins, with a high degree of glycosylation. This study focused on the characterization of a novel glycoprotein extracted from PEW, known as ovalbumin-related protein Y (OVAY). Our investigation included an analysis of the N-glycan and protein structures of OVAY, as well as an examination of simulated gastrointestinal digestive products and the transmembrane transport mechanism of OVAY-digested peptides. The results revealed that OVAY contains two glycosylation sites (Asn 62, 215) and consists of 30 N-linked glycoforms, with the top three glycans being N6H3, N6H7S1, and N6H5. Additionally, OVAY is rich in Gal and sialic acid and exhibits a rod-like molecular structure. Furthermore, it was found that OVAY demonstrates resistance to gastric digestion, with its digested peptides primarily transported via PepT1 and endocytosis. This study provides insight into the glycoprotein structure of OVAY and elucidates its physiological activity, providing a theoretical reference for the development of a novel sialate-rich protein.
Collapse
Affiliation(s)
- Yu Xiao
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Zeyun Zhao
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Tao Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| | - Xiaoqi Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China.
| | - Khan Anik
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Yibin Qiu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Zheng Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Sha Li
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Hong Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
9
|
Cao S, Pan Y, Zheng W, Chen S, Yin T, Liu R, You J. Effect of ozone oxidation on gastrointestinal digestion and absorption characteristics of silver carp (Hypophthalmichthys molitrix) surimi gels in vitro. Food Res Int 2024; 192:114759. [PMID: 39147534 DOI: 10.1016/j.foodres.2024.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
To investigate the quality of different ozone-oxidized surimi gels and their in vitro digestion and absorption characteristics, surimi rinsed with different concentrations of ozonated water (0, 8, 26 mg/L) were prepared. Then, the degree of oxidation and gel structure of surimi were determined, the in vitro digestion and absorption of the gels were simulated, and the digestion and absorption products were analyzed by LC-MS/MS. The results showed that the quality of surimi gels was improved after proper ozone oxidation. After ozone water rinsing, the dry matter digestibility, peptide, and amino acid content increased, and the changes of all three were in line with the Logistic kinetic model (R2 = 0.95-0.99). Caco-2 cell absorption experiments showed that the absorption rate of peptides and amino acids decreased after ozone water rinsing. In summary, ozone oxidation can promote the digestion of surimi gels, but it also reduces the absorption of peptides and amino acids by Caco-2 cells. This study provides a reference for the application of ozone in the food field.
Collapse
Affiliation(s)
- Shuning Cao
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China.
| | - Yuping Pan
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China.
| | - Wendong Zheng
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China.
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, China.
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, China.
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, China.
| |
Collapse
|
10
|
Kondrashina A, Arranz E, Cilla A, Faria MA, Santos-Hernández M, Miralles B, Hashemi N, Rasmussen MK, Young JF, Barberá R, Mamone G, Tomás-Cobos L, Bastiaan-Net S, Corredig M, Giblin L. Coupling in vitro food digestion with in vitro epithelial absorption; recommendations for biocompatibility. Crit Rev Food Sci Nutr 2024; 64:9618-9636. [PMID: 37233192 DOI: 10.1080/10408398.2023.2214628] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As food transits the gastrointestinal tract, food structures are disrupted and nutrients are absorbed across the gut barrier. In the past decade, great efforts have focused on the creation of a consensus gastrointestinal digestion protocol (i.e., INFOGEST method) to mimic digestion in the upper gut. However, to better determine the fate of food components, it is also critical to mimic food absorption in vitro. This is usually performed by treating polarized epithelial cells (i.e., differentiated Caco-2 monolayers) with food digesta. This food digesta contains digestive enzymes and bile salts, and if following the INFOGEST protocol, at concentrations that although physiologically relevant are harmful to cells. The lack of a harmonized protocol on how to prepare the food digesta samples for downstream Caco-2 studies creates challenges in comparing inter laboratory results. This article aims to critically review the current detoxification practices, highlight potential routes and their limitations, and recommend common approaches to ensure food digesta is biocompatible with Caco-2 monolayers. Our ultimate aim is to agree a harmonized consensus protocol or framework for in vitro studies focused on the absorption of food components across the intestinal barrier.
Collapse
Affiliation(s)
- Alina Kondrashina
- Global Research and Technology Centre, H&H Group, H&H Research, Fermoy, Ireland
| | - Elena Arranz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Miguel A Faria
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| | - Marta Santos-Hernández
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research laboratories, Addenbrooke's Hospital, Cambridge, UK
| | - Beatriz Miralles
- Institute of Food Science Research CIAL (CSIC-UAM), Madrid, Spain
| | - Negin Hashemi
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | | | - Jette F Young
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Gianfranco Mamone
- Institute of Food Sciences - National Research Council, Avellino, Italy
| | - Lidia Tomás-Cobos
- In vitro preclinical studies department, AINIA, Avenida Benjamín Franklin 5-11, Parque Tecnológico de Valencia, Paterna, Spain
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, WG Wageningen, The Netherlands
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork, Ireland
| |
Collapse
|
11
|
Yu Z, Liu D, Wu C, Zhao W. Intestinal absorption of bioactive oligopeptides: paracellular transport and tight junction modulation. Food Funct 2024; 15:6274-6288. [PMID: 38787733 DOI: 10.1039/d4fo00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Bioactive oligopeptides have gained increasing attention due to their diverse physiological functions, and these can be transported into the vasculature via transcellular and paracellular pathways. Among these, paracellular transport through the intercellular space is a passive diffusion process without energy consumption. It is currently the most frequently reported absorption route for food-derived bioactive oligopeptides. Previous work has demonstrated that paracellular pathways are mainly controlled by tight junctions, but the mechanism by which they regulate paracellular absorption of bioactive oligopeptides remains unclear. In this review, we summarized the composition of paracellular pathways across the intercellular space and elaborated on the paracellular transport mechanism of bioactive oligopeptides in terms of the interaction between oligopeptides and tight junction proteins, the protein expression level of tight junctions, the signaling pathways regulating intestinal permeability, and the properties of oligopeptides themselves. These findings contribute to a more profound understanding of the paracellular absorption of bioactive oligopeptides.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Di Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China
| | - Chunjian Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| |
Collapse
|
12
|
Nakatani E, Sasai M, Miyazaki H, Tanaka S, Hirota T, Okura T. Investigating the Transepithelial Transport and Enzymatic Stability of Lactononadecapeptide (NIPPLTQTPVVVPPFLQPE), a 19-Amino Acid Casein-Derived Peptide in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12719-12724. [PMID: 38789103 PMCID: PMC11157532 DOI: 10.1021/acs.jafc.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/26/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Lactononadecapeptide (LNDP; NIPPLTQTPVVVPPFLQPE), a casein-derived peptide comprising 19 residues, is known for its capacity to enhance cognitive function. This study aimed to explore the transepithelial transport and stability of LNDP. Results showed that LNDP retained over 90% stability after 2 h of treatment with gastrointestinal enzymes. The stability of LNDP on Caco-2 cell monolayers ranged from 93.4% ± 0.9% to 101.1% ± 1.2% over a period of 15-60 min, with no significant differences at each time point. The permeability of LNDP across an artificial lipid membrane was very low with the effective permeability of 3.6 × 10-11 cm/s. The Caco-2 assay demonstrated that LNDP could traverse the intestinal epithelium, with an apparent permeability of 1.22 × 10-6 cm/s. Its transport was significantly inhibited to 67.9% ± 5.0% of the control by Gly-Pro, a competitor of peptide transporter 1 (PEPT1). Furthermore, PEPT1 knockdown using siRNA significantly inhibited LNDP transport by 77.6% ± 1.9% in Caco-2 cell monolayers. The LNDP uptake in PEPT1-expressing HEK293 cells was significantly higher (54.5% ± 14.6%) than that in mock cells. These findings suggest that PEPT1 plays a crucial role in LNDP transport, and LNDP exhibits good resistance to gastrointestinal enzymes.
Collapse
Affiliation(s)
- Eriko Nakatani
- Laboratory
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Masaki Sasai
- Core
Technology Laboratories, Asahi Quality and
Innovations, Ltd., 1-1-21
Midori, Moriya, Ibaraki 302-0106, Japan
| | - Hidetoshi Miyazaki
- Core
Technology Laboratories, Asahi Quality and
Innovations, Ltd., 1-1-21
Midori, Moriya, Ibaraki 302-0106, Japan
| | - Shimako Tanaka
- Laboratory
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tatsuhiko Hirota
- Core
Technology Laboratories, Asahi Quality and
Innovations, Ltd., 1-1-21
Midori, Moriya, Ibaraki 302-0106, Japan
| | - Takashi Okura
- Laboratory
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
13
|
Hu YY, Xiao S, Zhou GC, Chen X, Wang B, Wang JH. Bioactive peptides in dry-cured ham: A comprehensive review of preparation methods, metabolic stability, safety, health benefits, and regulatory frameworks. Food Res Int 2024; 186:114367. [PMID: 38729727 DOI: 10.1016/j.foodres.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Dry-cured hams contain abundant bioactive peptides with significant potential for the development of functional foods. However, the limited bioavailability of food-derived bioactive peptides has hindered their utilization in health food development. Moreover, there is insufficient regulatory information regarding bioactive peptides and related products globally. This review summarizes diverse bioactive peptides derived from dry-cured ham and by-products originating from various countries and regions. The bioactivity, preparation techniques, bioavailability, and metabolic stability of these bioactive peptides are described, as well as the legal and regulatory frameworks in various countries. The primary objectives of this review are to dig deeper into the functionality of dry-cured ham and provide theoretical support for the commercialization of bioactive peptides from food sources, especially the dry-cured ham.
Collapse
Affiliation(s)
- Yao-Yao Hu
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Xiao
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Gui-Cheng Zhou
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuan Chen
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Bo Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| | - Ji-Hui Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| |
Collapse
|
14
|
Wu S, Jiang P, Zhang X, Mao C, Dai Y, Zhuang H, Pang Y. Understanding the Transepithelial Transport and Transbilayer Diffusion of the Antihypertensive Peptide Asn-Cys-Trp: Insights from Caco-2 Cell Monolayers and the DPPC Model Membrane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9828-9841. [PMID: 38639269 DOI: 10.1021/acs.jafc.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Understanding the transport mechanism of the peptide Asn-Cys-Trp (NCW) is crucial to improving its intestinal absorption and bioavailability. This study investigated the absorption of NCW through Caco-2 cell monolayers and its interaction with the DPPC bilayers. Results revealed that after a 3 h incubation, the Papp (AP-BL) and Papp (BL-AP) values of NCW at a concentration of 5 mmol/L were (22.24 ± 4.52) × 10-7 and (6.63 ± 2.31) × 10-7 cm/s, respectively, with the transport rates of 1.59 ± 0.32 and 0.62 ± 0.20%, indicating its moderate absorption. NCW was found to be transported via PepT1 and paracellular transport pathways, as evidenced by the significant impact of Gly-Pro and cytochalasin D on the Papp values. Moreover, NCW upregulated ZO-1 mRNA expression. Further investigation of the ZO-1-mediated interaction between NCW and tight junction proteins will contribute to a better understanding of the paracellular transport mechanism of NCW. The interaction between NCW and the DPPC bilayers was predominantly driven by entropy. NCW permeated the bilayers through electrostatic, hydrogen bonding, and hydrophobic interactions, resulting in increased fluidity, flexibility, and disorder as well as phase transition and phase separation of the bilayers.
Collapse
Affiliation(s)
- Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Ping Jiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Chen Mao
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Yaxi Dai
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Yong Pang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
15
|
Wang S, Zhang L, Wang H, Hu Z, Xie X, Chen H, Tu Z. Identification of novel angiotensin converting enzyme (ACE) inhibitory peptides from Pacific saury: In vivo antihypertensive effect and transport route. Int J Biol Macromol 2024; 254:127196. [PMID: 37793525 DOI: 10.1016/j.ijbiomac.2023.127196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Nature food-derived angiotensin converting enzyme inhibitory peptides (ACEIPs) can be potent and safe therapeutics for many medical illnesses, particularly hypertension. In this study, novel ACEIPs were screened and identified from Pacific saury by bio-activity guided approach through ultrafiltration membrane, Sephadex G-25 and RP-HPLC. The antihypertensive effect of ultrafiltration fraction was confirmed with spontaneous hypertensive rats' (SHRs) model. The peptides sequences of which gave the best activity was identified by Q-Orbitrap-MS/MS and selectively synthesized based on the binding energy of molecular docking. Five peptides VVLASLK, LTLK, LEPWR, ELPPK and LPTEK were synthesized, and the peptide LEPWR (IC50 = 99.5 μM) showed the best ACE inhibitory ability. Furthermore, LEPWR against ACE in a mixed competitive pattern and formed six hydrogen bonds with ACE. Additionally, the apparent permeability coefficient (Papp) of LEPWR was 3.56 ± 0.14 × 10-6 cm/s and paracellular transport across tight junctions was the main pathway across the Caco-2 monolayer. Therefore, the Pacific saury is a good material to prepare ACEIPs, but antihypertensive mechanism of peptide LEPWR on SHRs needs further investigation.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Lu Zhang
- National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Zizi Hu
- National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xing Xie
- National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Haiqi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
16
|
Yu X, Liu X, Zhou D. A critical review of a typical research system for food-derived metal-chelating peptides: Production, characterization, identification, digestion, and absorption. Compr Rev Food Sci Food Saf 2024; 23:e13277. [PMID: 38284607 DOI: 10.1111/1541-4337.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 01/30/2024]
Abstract
In the past decade, food-derived metal-chelating peptides (MCPs) have attracted significant attention from researchers working towards the prevention of metal (viz., iron, zinc, and calcium) deficiency phenomenon by primarily inhibiting the precipitation of metals caused by the gastrointestinal environment and exogenous substances (including phytic and oxalic acids). However, for the improvement of limits of current knowledge foundations and future investigation directions of MCP or their derivatives, several review categories should be improved and emphasized. The species' uniqueness and differences in MCP productions highly contribute to the different values of chelating ability with particular metal ions, whereas comprehensive reviews of chelation characterization determined by various kinds of technique support different horizons for explaining the chelation and offer options for the selection of characterization methods. The reviews of chelation mechanism clearly demonstrate the involvement of potential groups and atoms in chelating metal ions. The discussions of digestive stability and absorption in various kinds of absorption model in vitro and in vivo as well as the theory of involved cellular absorption channels and pathways are systematically reviewed and highlighted compared with previous reports as well. Meanwhile, the chelation mechanism on the molecular docking level, the binding mechanism in amino acid identification level, the utilizations of everted rat gut sac model for absorption, and the involvement of cellular absorption channels and pathway are strongly recommended as novelty in this review. This review makes a novel contribution to the literature by the comprehensive prospects for the research and development of food-derived mineral supplements.
Collapse
Affiliation(s)
- Xuening Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
17
|
You H, Li J, Li Y, Wang W, Yu Z, Liu J, Liu X, Ding L. Absorption of egg white hydrolysate in the intestine: Clathrin-dependent endocytosis as the main transport route. Food Res Int 2023; 173:113480. [PMID: 37803802 DOI: 10.1016/j.foodres.2023.113480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
This paper aimed to investigate the in vivo absorption of egg white hydrolysate (EWH) in rats and the transport route across the intestinal epithelium. Results showed that the level of plasma peptide-bound amino acid (PAA) of the EWH-supplemented rats (EWH-R) was determined to be 2012.18 ± 300.98 μmol/L, 10.72% higher than that of the control group, and was significantly positively correlated to that of EWH. Thirty-three egg white-derived peptides were successfully identified from the plasma of EWH-R, and 20 of them were found in both EWH-R plasma and EWH, indicating that these peptides tend to be absorbed through the intestinal epithelium in intact forms into the blood circulation. In addition, 637 up-regulated and 577 down-regulated genes in Caco-2 cells incubated with EWH were detected by RNA-sequencing and the clathrin-dependent endocytosis was the most enriched pathway in KEGG analysis. EWH significantly increased the mRNA levels of the key genes involved in the clathrin-dependent endocytosis but these changes would be inhibited by the clathrin-dependent endocytosis inhibitor of chlorpromazine. Moreover, the transepithelial transport of EWH across Caco-2 cell monolayers was significantly reduced by chlorpromazine. This study provided molecular-level evidence for the first time that clathrin-dependent endocytosis might be the main transport route of EWH in the intestinal epithelium.
Collapse
Affiliation(s)
- Haixi You
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Juanrui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yiju Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Wei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Zhipeng Yu
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jingbo Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
18
|
Yu Z, Ma W, Ji H, Fan Y, Zhao W. Interaction mechanism of egg derived peptides RVPSL and QIGLF with dipalmitoyl phosphatidylcholine membrane: microcalorimetric and molecular dynamics simulation studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6383-6393. [PMID: 37205773 DOI: 10.1002/jsfa.12714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Egg-derived peptides are becoming increasingly popular due to their biological activity and non-toxic effects. The egg-derived peptides Arg-Val-Pro-Ser-Leu (RVPSL) and Gln-Ile-Gly-Leu-Phe (QIGLF) display strong angiotensin-converting enzyme inhibitory activity and they can be taken up by intestinal epithelial cells. The interaction of the egg-derived peptides RVPSL and QIGLF with the membrane remains unclear. RESULTS The position and structure of the peptides in the membrane were calculated. The maximum density values of RVPSL and QIGLF were 2.27 and 1.22 nm from the center of the 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membrane, respectively, indicating that peptides penetrated the membrane-water interface and were embedded in the membrane. The interaction of RVPSL and QIGLF with the DPPC membrane did not affect the average area per lipid or the lipid sequence parameters. The thermodynamic parameters ΔH, ΔG, and ΔS of the interaction between the peptide RVPSL with the DPPC membrane were 17.91 kJ mol-1 , -17.63 kJ mol-1 , 187.5 J mol-1 ·k-1 , respectively. The thermodynamic parameters ΔH, ΔG, and ΔS of the interaction between peptide QIGLF with DPPC membrane were 17.10 kJ mol-1 , -17.12 kJ mol-1 , 114.8 J mol-1 ·k-1 , respectively. CONCLUSION The results indicated that the binding of peptides RVPSL and QIGLF to DPPC is an endothermic, spontaneous, and entropy-driven reaction. The results of the study are relevant to the problem of the low bioavailability of bioactive peptides (BP). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| | - Wenhao Ma
- College of Food Science and Engineering, Bohai University, Jinzhou, P. R. China
| | - Huizhuo Ji
- College of Food Science and Engineering, Bohai University, Jinzhou, P. R. China
| | - Yue Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xian, P. R. China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| |
Collapse
|
19
|
Liu F, Liu M, Zhang T, Zhao X, Wang X, Kong W, Cui L, Luo H, Guo L, Guo Y. Transportation of whey protein-derived peptides using Caco-2 cell model and identification of novel cholesterol-lowering peptides. Food Nutr Res 2023; 67:9079. [PMID: 37288087 PMCID: PMC10243119 DOI: 10.29219/fnr.v67.9079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/11/2023] [Accepted: 04/02/2023] [Indexed: 06/09/2023] Open
Abstract
Background The increasing morbidity and mortality of cardiovascular disease have become a major factor in human death. Serum cholesterol is considered to be an important risk factor for inducing coronary heart disease, atherosclerosis and other cardiovascular diseases. To screen intestinal absorbable functional small peptides with cholesterol-lowering activity by enzymatic hydrolysis of whey protein and develop cholesterol-based functional food that may become a substitute for chemically synthesized drugs, providing new ideas for diseases caused by high cholesterol. Objective This study aimed to evaluate the cholesterol-lowering activity of intestinal absorbable whey protein-derived peptides hydrolyzed by alkaline protease, trypsin and chymotrypsin, respectively. Method The whey protein hydrolysates acquired by enzymatic hydrolysis under optimal conditions were purified by a hollow fiber ultrafiltration membrane with a molecular weight cutoff of 10 kDa. The fractions obtained by Sephadex G-10 gel filtration chromatography were transported through a Caco-2 cell monolayer. The transported peptides were detected in the basolateral aspect of Caco-2 cell monolayers using ultra- performance liquid chromatography-tandem mass spectrometry (UPLC-MS). Results His-Thr-Ser-Gly-Tyr (HTSGY), Ala-Val-Phe-Lys (AVFK) and Ala-Leu-Pro-Met (ALPM) were unreported peptides with cholesterol-lowering activity. The cholesterol-lowering activities of the three peptides did not change significantly during simulated gastrointestinal digestion. Conclusion This study not only provides theoretical support for the development of bioactive peptides that can be directly absorbed by the human body, but also provides new treatment ideas for hypercholesterolemia.
Collapse
Affiliation(s)
- Feifan Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Mingzhen Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Tao Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Xuan Zhao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Xiaozhi Wang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Weimei Kong
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Li Cui
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Haibo Luo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Lili Guo
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, PR China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| |
Collapse
|
20
|
Xu Z, Bai H, Ma X, Wu Y, Wu Z, Yang A, Mao W, Li X, Chen H. Cytological evaluation by Caco-2 and KU812 of non-allergenic peptides from simulated digestion of infant formula in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Digestion, absorption, and transport properties of soy-fermented douchi hypoglycemic peptides VY and SFLLR under simulated gastrointestinal digestion and Caco-2 cell monolayers. Food Res Int 2023; 164:112340. [PMID: 36737933 DOI: 10.1016/j.foodres.2022.112340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Two novel hypoglycemic peptides VY and SFLLR were identified from douchi as the major peptides responsible for the glucose uptake activity. The present work aimed to elucidate their digestion, absorption and transport properties using simulated digestion and Caco-2 cell monolayers transport models. Besides, the effects of digestion and absorption on the structure and activity were also studied. The results showed that VY was resistant to gastrointestinal tract digestion and could cross Caco-2 cell monolayers intactly via both TJs-mediated passive paracellular pathway and PepT1-mediated active route. In comparison, SFLLR was partially degraded into small fragments of SFLL, SFL, and SF by the digestive system, leading to increased glucose uptake activity. Notably, SFLLR, SFLL, and SFL were partly hydrolyzed by aminopeptidase N or dipeptidyl peptidase IV during transport, but they were transported intact. SFL was transported via both paracellular diffusion and PepT1-mediated routes, while SFLLR and SFLL were via paracellular route only.
Collapse
|
22
|
Álvarez-Olguín MA, Beltrán-Barrientos LM, Hernandez-Mendoza A, González-Córdova AF, Vallejo-Cordoba B. Current trends and perspectives on bioaccessibility and bioavailability of food bioactive peptides: in vitro and ex vivo studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6824-6834. [PMID: 35716022 DOI: 10.1002/jsfa.12077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The bioaccessibility and bioavailability of food-derived bioactive compounds are important issues when assessing their in vivo physiological health-promoting effects. Food components such as proteins and peptides are exposed to different proteases and peptidases during gastrointestinal digestion and absorption. Different in vitro approaches have therefore been developed to evaluate the bioaccessibility and stability of bioactive peptides. The static simulated gastrointestinal digestion model (SGD) was widely reported to assess the bioaccessibility of bioactive peptides. On the other hand, although the dynamic SGD model may better simulate human digestion, it has rarely been explored in bioaccessibility studies of food bioactive peptides due to its high cost and lack of standardization. For bioavailability studies, the Caco-2 cell monolayer model has been used extensively for the assessment of food bioactive peptides. In fact, very few reports using alternative methods for determining transepithelial transport of bioactive peptides have been employed. In this sense, ex vivo tissue-based models such as the Ussing chamber and the everted sac gut have been used. Current evidence supports the fact that using SGD with cell-based models for evaluating the bioaccessibility, absorption, and bioavailability of food-derived bioactive peptides, is the most commonly used approach. Nevertheless, SGD with ex vivo tissue-based models such as the everted sac, remains to be further explored because it seems to be the model that better mimics the physiological process - it is also fast and inexpensive, and several compounds may be tested simultaneously. In the present review, we discuss information available on the different in vitro approaches for the determination of bioaccessibility and bioavailability of food-derived bioactive peptides with special emphasis on ex vivo tissue-based models such as the everted sac and the Ussing chamber models. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miguel A Álvarez-Olguín
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Lilia M Beltrán-Barrientos
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Adrian Hernandez-Mendoza
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Aarón F González-Córdova
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Belinda Vallejo-Cordoba
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| |
Collapse
|
23
|
Shirai I, Karasawa K, Kodaira Y, Iwasaki Y, Shigemura Y, Makabe H, Katayama S. Intestinal permeability of agaro-oligosaccharides: Transport across Caco-2 cell monolayers and pharmacokinetics in rats. Front Nutr 2022; 9:996607. [PMID: 36185657 PMCID: PMC9525106 DOI: 10.3389/fnut.2022.996607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Agaro-oligosaccharides (AOSs), even-numbered oligosaccharides prepared from agar, are applied to various food, including supplements, drinks, and jellies because of their biological activities. This study aimed to evaluate the AOS permeation in the gastrointestinal tract in vivo and in vitro. Agarobiose (Abi), agarotetraose (Ate), and agarohexaose (Ahe) were detected in rat plasma after oral administration of AOSs. The detection level of agarobiose in the plasma was higher than that of agarohexaose, which was consistent with the permeation study using Caco-2 cell monolayers. Further, the adenosine triphosphate inhibitor (sodium azide) or endocytosis inhibitor (colchicine) did not inhibit AOS permeation through Caco-2 cell monolayers. Conversely, AOS permeation enhanced upon treatment with cytochalasin B, a tight junction disrupter, suggesting that AOSs might have passed mainly through the tight junctions between the intestinal epithelial cells. These results indicate that AOSs, especially agarobiose, can be absorbed as an intact form via the gastrointestinal tract across the intestinal epithelium through the paracellular pathway.
Collapse
Affiliation(s)
- Ikuya Shirai
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Ina Food Industry Co., Ltd., Ina, Japan
| | | | - Yusuke Kodaira
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Yu Iwasaki
- Faculty of Domestic Science, Tokyo Kasei University, Tokyo, Japan
| | | | - Hidefumi Makabe
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Shigeru Katayama
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
24
|
Wang Z, Sun J, Ma X, Liu X, Yin F, Li D, Nakamura Y, Yu C, Zhou D. Characterization of a synthetic zinc-chelating peptide from sea cucumber (Stichopus japonicus) and its gastrointestinal digestion and absorption in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4542-4550. [PMID: 35137406 DOI: 10.1002/jsfa.11811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zinc absorption in intestinal system could be strongly affected by the gastrointestinal digestion and absorption of zinc-chelating peptides serving as zinc carriers. In this study, a novel zinc-chelating sea cucumber synthetic peptide (SCSP) was synthesized to estimate its gastrointestinal digestion and promotive effect of zinc absorption in vitro. RESULTS Analysis of isothermal titration calorimetry suggested that the binding of SCSP and zinc (N ≈ 1) was exothermic, with relatively weak binding affinity (K = 1.0 × 10-3 mol L-1 ). The formation of SCSP-Zn complexes brought morphological changes to the peptides confirmed by scanning electron microscopy (SEM), which also indicated 6.88% of the existence of zinc element. In addition, the SCSP-Zn complexes remained stable under simulated human gastrointestinal digestion. In an in vitro study, the SCSP-Zn complex could successfully transport through the intestinal membrane in the model of everted rat gut sacs (nearly 7.5 μM cm-2 ) as well as Caco-2 cells where the zinc transport reached 0.0014 mg mL-1 carried by SCSP. Fluorescence staining experiments revealed free zinc accumulation inside the tissues and cells treated with the SCSP-Zn complex. CONCLUSIONS The chelation SCSP-Zn had the promotion ability of zinc absorption in vitro and ex vivo experiments, which suggested a theoretical basis for the design and production of effective zinc chelating peptides as zinc carriers to improve zinc bioavailability. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zixu Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiatong Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaoyu Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Fawen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Deyang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Chenxu Yu
- National Engineering Research Center of Seafood, Dalian, China
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| |
Collapse
|
25
|
Fan H, Wu K, Wu J. LRW fails to reduce blood pressure in spontaneously hypertensive rats due to its low gastrointestinal stability and transepithelial permeability. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Sun J, Liu X, Wang Z, Yin F, Liu H, Nakamura Y, Yu C, Zhou D. Gastrointestinal digestion and absorption characterization in vitro of zinc-chelating hydrolysate from scallop adductor (Patinopecten yessoensis). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3277-3286. [PMID: 34802153 DOI: 10.1002/jsfa.11673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/17/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUD Zinc (Zn) is an essential catalytic element in the human health system but its absorption in the intestinal system can be strongly affected by gastrointestinal (GI) digestion. In this study, the food-derived potential Zn carrier, scallop adductor hydrolysates (SAHs), was produced and characterized. RESULTS During temporary storage at 4 °C, SAH decreased in Zn-chelating capacity in the aqueous phase, whereas the SAH-Zn complex exhibited high stability. Moreover, the secondary structure of SAH had no significant alteration. Zn morphologically altered the surface structures of SAH, which was involving in carboxyl group of SAH. Results of in vitro GI digestion suggested that the SAH-Zn maintained good stability in GI system and only proportion of high molecular weight cleaved. In addition, SAH could successfully carry and transport Zn while the fluorescence staining revealed free Zn accumulation inside the tissue. Finally, three representative absorbed peptides (around 600 Da) were identified and synthesized. Three synthetic peptides exhibit higher Zn-chelating capacity than SAH and could also successfully transported through the intestine. CONCLUSION This study provided a theoretical basis for the investigation of digestion and absorption of marine animal-derived peptides as Zn carriers. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiatong Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Zixu Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Fawen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Huilin Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Chenxu Yu
- National Engineering Research Center of Seafood, Dalian, China
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| |
Collapse
|
27
|
Shukla P, Chopada K, Sakure A, Hati S. Current Trends and Applications of Food-derived Antihypertensive
Peptides for the Management of Cardiovascular Disease. Protein Pept Lett 2022; 29:408-428. [DOI: 10.2174/0929866529666220106100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/26/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Food derived Antihypertensive peptides is considered as a natural supplement for controlling the hypertension. Food protein not only serve as a macronutrient but also act as raw material for biosynthesis of physiologically active peptides. Food sources like milk and milk products, animal protein such as meat, chicken, fish, eggs and plant derived proteins from soy, rice, wheat, mushroom, pumpkins contain high amount of antihypertensive peptides. The food derived antihypertensive peptides has ability to supress the action of rennin and Angiotesin converting enzyme (ACE) which is mainly involved in regulation of blood pressure by RAS. The biosynthesis of endothelial nitric oxide synthase is also improved by ACE inhibitory peptides which increase the production of nitric oxide in vascular walls and encourage vasodilation. Interaction between the angiotensin II and its receptor is also inhibited by the peptides which help to reduce hypertension. This review will explore the novel sources and applications of food derived peptides for the management of hypertension.
Collapse
Affiliation(s)
- Pratik Shukla
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| | - Keval Chopada
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| | - Amar Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand- 388110, Gujarat,
India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| |
Collapse
|
28
|
Pei J, Liu Z, Pan D, Zhao Y, Dang Y, Gao X. Transport, Stability, and In Vivo Hypoglycemic Effect of a Broccoli-Derived DPP-IV Inhibitory Peptide VPLVM. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4934-4941. [PMID: 35436096 DOI: 10.1021/acs.jafc.1c08191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetes is a major metabolic disease that requires long-term pharmacotherapy. Bioactive peptides have unique advantages such as higher potency, selectivity, and safety over small molecules and have achieved great success in the treatment of diabetes. We previously isolated a dipeptidyl peptidase-IV (DPP-IV) inhibitory peptide VPLVM with IC50 = 99.68 μM from the protein hydrolysates of broccoli stems and leaves. Here, we evaluated the interaction with DPP-IV, transport, stability, and in vivo hypoglycemic effects of VPLVM. VPLVM interacted closely and steadily with DPP-IV at S1 and S2 pockets. VPLVM had a good gastrointestinal enzyme resistance and was transported through the Caco-2 cell monolayer via paracellular diffusion and by the PepT1 with a Papp of 6.96 × 10-7 cm/s. VPLVM has a t1/2 of 12.56 ± 0.41 min in vitro plasma stability. In the oral glucose tolerance test, VPLVM showed an excellent hypoglycemic effect at 30 min after administration. VPLVM has potential as a candidate for the treatment of hyperglycemia.
Collapse
Affiliation(s)
- Jingyan Pei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou 310004, China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Yali Dang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
29
|
Yu MM, Fan YC, Liu YX, Yin FW, Li DY, Liu XY, Zhou DY, Zhu BW. Effects of antioxidants of bamboo leaves on protein digestion and transport of cooked abalone muscles. Food Funct 2022; 13:1785-1796. [PMID: 35142324 DOI: 10.1039/d1fo03389a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of oxidation on protein digestion and transport in cooked abalone muscles were investigated using a combination of simulated digestion and everted-rat-gut-sac models for the first time. Boiling heat treatments caused protein oxidation in the abalone muscles, reflected by increases in the carbonyl group and disulfide bond contents, protein hydrophobicity and aggregation degree, as well as decreases in the free sulfhydryl group and amino acid contents. Protein oxidation significantly inhibited the degree of hydrolysis, digestion rate, and digestibility of the abalone muscles in the simulated digestion model. The results from the everted-rat-gut-sac model showed that amino acid and peptide transport levels from the digestion products of the cooked abalone muscles were lower than those of the uncooked samples. In contrast, the addition of antioxidants of bamboo leaves mitigated heat-treatment-induced protein oxidation, aggregation and increased hydrophobicity, and consequently improved abalone muscle protein digestibility and transport levels.
Collapse
Affiliation(s)
- Man-Man Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Ying-Chen Fan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Yu-Xin Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,National Engineering Research Center of Seafood, Dalian, 116034, PR China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China
| | - Fa-Wen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,National Engineering Research Center of Seafood, Dalian, 116034, PR China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China
| | - De-Yang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,National Engineering Research Center of Seafood, Dalian, 116034, PR China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China
| | - Xiao-Yang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,National Engineering Research Center of Seafood, Dalian, 116034, PR China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,National Engineering Research Center of Seafood, Dalian, 116034, PR China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,National Engineering Research Center of Seafood, Dalian, 116034, PR China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China
| |
Collapse
|
30
|
Fang M, Xiong S, Yin T, Hu Y, Liu R, Du H, Liu Y, You J. In vivo digestion and absorption characteristics of surimi gels with different degrees of cross-linking induced by transglutaminase (TGase). Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Zhang X, Noisa P, Yongsawatdigul J. Identification and characterization of tilapia antioxidant peptides that protect AAPH-induced HepG2 cell oxidative stress. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Yang M, Liu J, Li Y, Yang Q, Liu X, Liu C, Ma S, Liu B, Zhang T, Xiao H, Du Z. A self-assembled amphiphilic polysaccharide-based co-delivery system for egg white derived peptides and curcumin with oral bioavailability enhancement. Food Funct 2021; 12:10512-10523. [PMID: 34568882 DOI: 10.1039/d1fo01649k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Egg white derived peptides (EWDP) and curcumin are well known for diverse biological activities, but the combinational usage of the two natural nutraceuticals is extremely limited by their low oral bioavailability and distinctly different polarities. Therefore, this study aimed to exploit a facile self-assembled amphiphilic system for oral co-delivery of hydrophilic egg white derived peptides (EWDP) and hydrophobic curcumin. The hydrophobic curcumin was first loaded into the hydrophobic cavity of β-cyclodextrin (β-CD) as a core. Then, the hydrophilic EWDP was absorbed into the region between the core and the N-[(2-hydroxy-3-trimethyl ammonium) propyl] chitosan (HTCC) shell to form the amphiphilic nanoparticles (NPs) via layer-by-layer self-assembly. The resulting NPs showed ideal oral applicability with excellent colloidal properties and encapsulation capacity for EWDP and curcumin at pH 2.0-7.0. X-ray Photoelectron Spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results indicated that hydrogen bonding and hydrophobic interaction were the main driving force for the formation of amphiphilic NPs. Upon combination with HTCC, EWDP (both shell material and core nutraceuticals) could facilitate curcumin loading into the deeper β-CD cavity site with admirable solubility improvement. Moreover, EWDP and curcumin after co-delivery exhibited superior bioavailability (especially for bioactivity and cellular absorption) than the simple mixture and conventional curcumin inclusion complex. Overall, these findings are enlightening for the rational peptide based oral co-delivery system formulations for a broader range of hydrophilic and hydrophobic nutraceuticals (initially synergistic or not) in the food and related health-promoting fields.
Collapse
Affiliation(s)
- Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Sitong Ma
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Boqun Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
33
|
Katimba HA, Wang R, Cheng C. Current findings support the potential use of bioactive peptides in enhancing zinc absorption in humans. Crit Rev Food Sci Nutr 2021:1-21. [PMID: 34708681 DOI: 10.1080/10408398.2021.1996328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
More than two billion people around the world are affected by zinc deficiency, mainly due to the inadequate intake and absorption of zinc. Based on recent research findings, the bioactive peptides could potentially be used to combat zinc deficiency particularly due to their Zinc chelating ability. The main aim of this review was to present current findings, supporting the potential use of bioactive peptides based on their ability to enhance zinc absorption. In-vivo, in-vitro, and ex-vivo studies have demonstrated that zinc chelating peptides can enhance the retention, transportation, and absorption of zinc. Comparative studies on zinc bioavailability from protein hydrolysates and zinc salts have demonstrated that the protein hydrolysates-zinc complexes are more bioavailable than the zinc salts. Data from the structure-function relationship of zinc chelating peptides suggest that the zinc chelating capacities of peptides increase in the following order; the position of zinc chelator > zinc chelator strength > abundance of zinc chelators > net charge > molecular weight. In addition, the transport mechanism of peptide-zinc complex is hypothesized, and the potential use of bioactive peptides based on their safety and taste and limitations to their commercialization are also discussed.
Collapse
Affiliation(s)
- Hija Athman Katimba
- Department of Food Science and Engineering, Harbin Institute of Technology, Harbin, China.,Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rongchun Wang
- Department of Food Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Cuilin Cheng
- Department of Food Science and Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
34
|
Xiang L, Qiu Z, Zhao R, Zheng Z, Qiao X. Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit Rev Food Sci Nutr 2021; 63:1437-1463. [PMID: 34521280 DOI: 10.1080/10408398.2021.1964433] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Food-derived antihypertensive peptides have attracted increasing attention in functional foods for health promotion, due to their high biological activity, low toxicity and easy metabolism in the human body. Angiotensin converting enzyme (ACE) is a key enzyme that causes the increase in blood pressure in mammals. However, few reviews have summarized the current understanding of ACE inhibitory peptides and their knowledge gaps. This paper focuses on the food origins and production methods of ACE inhibitory peptides. Compared with conventional methods, the advanced technologies and emerging bioinformatics approaches have recently been applied for efficient and targeted release of ACE inhibitory peptides from food proteins. Furthermore, the transport and underlying mechanisms of ACE inhibitory peptides are emphatically described. Molecular modeling and the Michaelis-Menten equation can provide information on how ACE inhibitors function. Finally, we discuss the structure-activity relationships and other bio-functional properties of ACE inhibitory peptides. Molecular weight, hydrophobic amino acid residues, charge, amino acid composition and sequence (especially at the C-terminal and N-terminal) have a significant influence on ACE inhibitory activity. Some studies are required to increase productivity, improve bioavailability of peptides, evaluate their bio-accessibility and efficiency on reducing blood pressure to provide a reference for the development and application of health products and auxiliary treatment drugs.
Collapse
Affiliation(s)
- Lu Xiang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhichang Qiu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Renjie Zhao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhenjia Zheng
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuguang Qiao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
35
|
Nakao R, Shen W, Shimajiri Y, Kainou K, Sato Y, Ulla A, Ohnishi K, Ninomiya M, Ohno A, Uchida T, Tanaka M, Akama K, Matsui T, Nikawa T. Oral intake of rice overexpressing ubiquitin ligase inhibitory pentapeptide prevents atrophy in denervated skeletal muscle. NPJ Sci Food 2021; 5:25. [PMID: 34504092 PMCID: PMC8429733 DOI: 10.1038/s41538-021-00108-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
We previously reported that intramuscular injections of ubiquitin ligase CBLB inhibitory pentapeptide (Cblin; Asp-Gly-pTyr-Met-Pro) restored lost muscle mass caused by sciatic denervation. Here, we detected Cblin on the basolateral side of Caco-2 cells after being placed on the apical side, and found that cytochalasin D, a tight junction opener, enhanced Cblin transport. Orally administered Cblin was found in rat plasma, indicating that intact Cblin was absorbed in vitro and in vivo. Furthermore, transgenic Cblin peptide-enriched rice (CbR) prevented the denervation-induced loss of muscle mass and the upregulation of muscle atrophy-related ubiquitin ligases in mice. These findings indicated that CbR could serve as an alternative treatment for muscle atrophy.
Collapse
Affiliation(s)
- Reiko Nakao
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Weilin Shen
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Yasuka Shimajiri
- grid.411621.10000 0000 8661 1590Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane Japan ,EditForce, Fukuoka, Japan
| | - Kumiko Kainou
- grid.411621.10000 0000 8661 1590Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane Japan
| | - Yuki Sato
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Anayt Ulla
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kohta Ohnishi
- grid.267335.60000 0001 1092 3579Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Miyuki Ninomiya
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ayako Ohno
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Uchida
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuru Tanaka
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Kazuhito Akama
- grid.411621.10000 0000 8661 1590Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane Japan
| | - Toshiro Matsui
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Takeshi Nikawa
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
36
|
Song H, Tian Q, Li B. Novel Hyp-Gly-containing antiplatelet peptides from collagen hydrolysate after simulated gastrointestinal digestion and intestinal absorption. Food Funct 2021; 11:5553-5564. [PMID: 32520033 DOI: 10.1039/d0fo00219d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bioactive components causing the antiplatelet activity upon collagen hydrolysate (CH) ingestion have not been clarified yet. This study aimed to identify antiplatelet peptides from CH after simulated gastrointestinal digestion and intestinal absorption. Four antiplatelet peptides containing the Hyp-Gly (OG) sequence including OG, Hyp-Gly-Glu (OGE), Pro-Gly-Glu-Hyp-Gly (PGEOG) and Val-Gly-Pro-Hyp-Gly-Pro-Ala (VGPOGPA) were successfully identified. All four peptides exhibited antiplatelet activity, but OGE and PGEOG exerted stronger activity than OG and VGPOGPA. The IC50 value of OGE and PGEOG was 1.076 mM and 1.167 mM, respectively. These four antiplatelet peptides could survive simulated gastrointestinal digestion and be absorbed intact by Caco-2 cells. Furthermore, plasma stability experiments showed that OG and OGE showed a good stability in human plasma, but PGEOG and VGPOGPA showed a relatively poor stability. In vivo studies indicated that OG and OGE were present in blood after the oral administration of CH. Meanwhile, OGE exerted significant in vivo anti-thrombotic activity after its ingestion. The present study clarifies the antiplatelet components causing the CH activity and highlights the potential application of CH or these four peptides as functional foods to combat thrombosis by inhibiting platelet aggregation.
Collapse
Affiliation(s)
- Hongdong Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. and Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qi Tian
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. and Beijing Higher Institution Engineering Research Center of Animal Product, Beijing 100083, China
| |
Collapse
|
37
|
Guha S, Alvarez S, Majumder K. Transport of Dietary Anti-Inflammatory Peptide, γ-Glutamyl Valine (γ-EV), across the Intestinal Caco-2 Monolayer. Nutrients 2021; 13:nu13051448. [PMID: 33923345 PMCID: PMC8145144 DOI: 10.3390/nu13051448] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
The present study analyzed the transepithelial transport of the dietary anti-inflammatory peptide, γ-glutamyl valine (γ-EV). γ-EV is naturally found in dry edible beans. Our previous study demonstrated the anti-inflammatory potency of γ-EV against vascular inflammation at a concentration of 1mM, and that it can transport with the apparent permeability coefficient (Papp) of 1.56 × 10-6 ± 0.7 × 10-6 cm/s across the intestinal Caco-2 cells. The purpose of the current study was to explore whether the permeability of the peptide could be enhanced and to elucidate the mechanism of transport of γ-EV across Caco-2 cells. The initial results indicated that γ-EV was nontoxic to the Caco-2 cells up to 5 mM concentration and could be transported across the intestinal cells intact. During apical-to-basolateral transport, a higher peptide dose (5 mM) significantly (p < 0.01) enhanced the transport rate to 2.5 × 10-6 ± 0.6 × 10-6 cm/s. Cytochalasin-D disintegrated the tight-junction proteins of the Caco-2 monolayer and increased the Papp of γ-EV to 4.36 × 10-6 ± 0.16 × 10-6 cm/s (p < 0.001), while theaflavin 3'-gallate and Gly-Sar significantly decreased the Papp (p < 0.05), with wortmannin having no effects on the peptide transport, indicating that the transport route of γ-EV could be via both PepT1-mediated and paracellular.
Collapse
Affiliation(s)
- Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA;
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA;
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA;
- Correspondence: ; Tel.: +1-(402)-472-3510; Fax: +1-(402)-472-4474
| |
Collapse
|
38
|
Brunner J, Ragupathy S, Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev 2021; 171:266-288. [PMID: 33617902 DOI: 10.1016/j.addr.2021.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Intercellular tight junctions represent a formidable barrier against paracellular drug absorption at epithelia (e.g., nasal, intestinal) and the endothelium (e.g., blood-brain barrier). In order to enhance paracellular transport of drugs and increase their bioavailability and organ deposition, active excipients modulating tight junctions have been applied. First-generation of permeation enhancers (PEs) acted by unspecific interactions, while recently developed PEs address specific physiological mechanisms. Such target specific tight junction modulators (TJMs) have the advantage of a defined specific mechanism of action. To date, merely a few of these novel active excipients has entered into clinical trials, as their lack in safety and efficiency in vivo often impedes their commercialisation. A stronger focus on the development of such active excipients would result in an economic and therapeutic improvement of current and future drugs.
Collapse
Affiliation(s)
- Joël Brunner
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Sakthikumar Ragupathy
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
39
|
Xue L, Yin R, Howell K, Zhang P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Compr Rev Food Sci Food Saf 2021; 20:1150-1187. [PMID: 33527706 DOI: 10.1111/1541-4337.12711] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory peptides are able to inhibit the activity of ACE, which is the key enzymatic factor mediating systemic hypertension. ACE-inhibitory peptides can be obtained from edible proteins and have the function of antihypertension. The amino acid sequences and the secondary structures of ACE-inhibitory peptides determine the inhibitory activities and stability. The resistance of ACE-inhibitory peptides to digestive enzymes and peptidase affect their antihypertensive bioactivity in vivo. In this paper, the mechanism of ACE-inhibition, sources of the inhibitory peptides, structure-activity relationships, stability during digestion, absorption and transportation of ACE-inhibitory peptides, and consumption of ACE-inhibitory peptides are reviewed, which provide guidance to the development of new functional foods and production of antihypertensive nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Lu Xue
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Rongxin Yin
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
40
|
ACE inhibitory peptide KYIPIQ derived from yak milk casein induces nitric oxide production in HUVECs and diffuses via a transcellular mechanism in Caco-2 monolayers. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Moreno-Fernández S, Garcés-Rimón M, Miguel M. Egg-derived peptides and hydrolysates: A new bioactive treasure for cardiometabolic diseases. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020; 25:E4479. [PMID: 33003506 PMCID: PMC7582556 DOI: 10.3390/molecules25194479] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.
Collapse
Affiliation(s)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Research in Food Sciences (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
43
|
Mann JK, Ndung'u T. The potential of lactoferrin, ovotransferrin and lysozyme as antiviral and immune-modulating agents in COVID-19. Future Virol 2020. [PMCID: PMC7543043 DOI: 10.2217/fvl-2020-0170] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS coronavirus 2 (SARS-CoV-2), is spreading rapidly with no established effective treatments. While most cases are mild, others experience uncontrolled inflammatory responses with oxidative stress, dysregulation of iron and coagulation as features. Lactoferrin, ovotransferrin and lysozyme are abundant, safe antimicrobials that have wide antiviral as well as immunomodulatory properties. In particular, lactoferrin restores iron homeostasis and inhibits replication of SARS-CoV, which is closely related to SARS-CoV-2. Ovotransferrin has antiviral peptides and activities that are shared with lactoferrin. Both lactoferrin and lysozyme are ‘immune sensing’ as they may stimulate immune responses or resolve inflammation. Mechanisms by which these antimicrobials may treat or prevent COVID-19, as well as sources and forms of these, are reviewed.
Collapse
Affiliation(s)
- Jaclyn Kelly Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
- Africa Health Research Institute, Durban, 4001, South Africa
- Ragon Institute of MGH, MIT & Harvard University, Cambridge, MA 02139, USA
- Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
- Division of Infection & Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
44
|
Zhang R, Zhang Q, Ma LQ, Cui X. Effects of Food Constituents on Absorption and Bioaccessibility of Dietary Synthetic Phenolic Antioxidant by Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4670-4677. [PMID: 32064879 DOI: 10.1021/acs.jafc.9b07315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One typical synthetic phenolic antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT) is widely used in foodstuff. Concerns are rising on the toxicity of BHT and its metabolites through dietary exposure. In this study, the effects of food macronutrients (i.e., lipid, carbohydrate, fiber, protein, and fasted (as control)) on absorption and bioaccessibility of BHT by Caco-2 cells were investigated. Food components decreased the absorption and bioaccessibility by Caco-2 cells. The highest absorption rate by Caco-2 cells was fasted state (first-order rate constant = 4.26 h-1), followed by carbohydrate (2.36 h-1), fiber (1.39 h-1), lipid (1.34 h-1), and protein (1.15 h-1). The order of bioaccessibility of BHT and its metabolites was fasted (100 ± 11.5%) > protein (83.1 ± 2.69%) > fiber (65.8 ± 2.67%) > carbohydrate (56.8 ± 1.58%) ≈ lipid (56.7 ± 0.82%). A solid-phase microextraction test together with a computational in vitro kinetic model suggested that the macronutrients may bind to BHT to reduce its free concentration and decrease the bioaccessibility. To our knowledge, this is the first study to report food influence on the absorption and bioaccessibility of BHT by Caco-2 cells. Results here can provide important implications for the safety regulation for dietary synthetic phenolic antioxidants.
Collapse
Affiliation(s)
- Ruirui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518057, China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518057, China
| |
Collapse
|
45
|
Ye M, Zhang C, Zhu L, Jia W, Shen Q. Yak (Bos grunniens) bones collagen-derived peptides stimulate osteoblastic proliferation and differentiation via the activation of Wnt/β-catenin signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2600-2609. [PMID: 31975417 DOI: 10.1002/jsfa.10286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND As the world's population is transitioning gradually to an ageing stage, the incidence of osteoporosis is increasing annually. Yak bone is one of the major components of Tibetan medicine and it has mainly been associated with an improvement in bone health, for example against osteoporosis. However, the functional bioactive ingredients and the underlying mechanisms are still unclear. RESULTS Sequential purification of yak-bone hydrolysates was achieved by ultrafiltration, size exclusion chromatography, and semi-preparative reverse-phase high-performance liquid chromatography. After this, 35 novel peptides were identified by mass spectrometry analysis, of which peptide GPAGPPGPIGNV (GP-12) displayed the highest osteoblast proliferation-promoting activity, with an increase of 42.7% in cell growth. An in vitro stability study demonstrated that GP-12 was digested into smaller peptides (GP-9, GV-9, AV-10 and GP-11) after simulated gastrointestinal digestion and absorption (Caco-2 cell monolayers) experiments. However, some of them still can be absorbed intact through the (Caco-2 cell monolayers by a paracellular route (Papp: 5.36 ± 0.34 cm s-1 ). Flow cytometry results indicated that GP-12 enhanced osteoblastic proliferation by inducing the alteration of the cell-cycle progression both from the G0/G1 to the S phase and from the S to the G2/M phase. Quantitative real-time polymerase chain reaction (PCR) and western blot results revealed that GP-12 induced osteoblastic proliferation and differentiation in a dose-response manner through the activation of a Wnt/β-catenin signaling pathway. CONCLUSION These findings highlighted that such peptides hold the promise of discovering candidates for functional and health-promoting foods, which could be potentially used for the treatment of osteoporosis. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengliang Ye
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyu Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Tea and Food Science & Technology, Anhui agricultural university, Hefei, China
| | - Wei Jia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshan Shen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
46
|
Wang L, Ding L, Du Z, Liu J. Effects of hydrophobicity and molecular weight on the transport permeability of oligopeptides across Caco-2 cell monolayers. J Food Biochem 2020; 44:e13188. [PMID: 32173923 DOI: 10.1111/jfbc.13188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The objective of this paper was to investigate the effects of hydrophobicity and molecular weight (MW) on the transepithelial transport permeability of oligopeptides across Caco-2 cell monolayers. Results showed that oligopeptides with different N-terminal amino acids had a wide range of permeability values and could be divided into three levels according to their correlations with log D and MW. At a good level of permeability, the permeability was positively correlated with log D, but negatively correlated with MW (p < .001); at an intermediate level of permeability, the permeability was negatively correlated with log D and MW (p < .001); and at a low level of permeability, the permeability was positively correlated with log D and MW (p < .01). These results suggest for the first time that the transport of oligopeptides across Caco-2 cell monolayers might be closely related to their molecular properties of log D and MW. PRACTICAL APPLICATIONS: A great number of food-derived bioactive peptides display health-promoting effects and show potential as bioactive ingredients in functional foods. However, the poor absorption in the intestine limits the application of food bioactive peptides, especially for the oligopeptides containing more than three amino acids. Although the transepithelial transport of food-derived oligopeptides in the intestinal epithelium has been widely reported, its transport mechanism is still obscure. Our study shows a three-level relationship between the transport permeability and log D and MW of oligopeptides across Caco-2 cell monolayers and provides a novel evidence for the coexistence of transcellular and paracellular pathways for the transport of oligopeptides through the intestine. This result will contribute to the understanding of the transport mechanisms of oligopeptides in the intestine.
Collapse
Affiliation(s)
- Liying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, P.R. China.,College of Food Science and Engineering, Jilin University, Changchun, P.R. China
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, P.R. China.,College of Food Science and Engineering, Jilin University, Changchun, P.R. China
| | - Zhiyang Du
- College of Food Science and Engineering, Jilin University, Changchun, P.R. China
| | - Jingbo Liu
- College of Food Science and Engineering, Jilin University, Changchun, P.R. China
| |
Collapse
|
47
|
Evaluating in vitro dipeptidyl peptidase IV inhibition by peptides from common carp (Cyprinus carpio) roe in cell culture models. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03399-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Tianrui Z, Bingtong L, Ling Y, Liping S, Yongliang Z. ACE inhibitory activity in vitro and antihypertensive effect in vivo of LSGYGP and its transepithelial transport by Caco-2 cell monolayer. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
49
|
Zhang H, Duan Y, Feng Y, Wang J. Transepithelial Transport Characteristics of the Cholesterol- Lowing Soybean Peptide, WGAPSL, in Caco-2 Cell Monolayers. Molecules 2019; 24:E2843. [PMID: 31387268 PMCID: PMC6696373 DOI: 10.3390/molecules24152843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that soybean protein and its peptides have cholesterol-lowering activities. However, it is not clear whether these peptides could overcome physiological barriers, such as phase II metabolism in gastrointestinal tract and poor permeability, to reach the blood stream in its intact form. Therefore, the transepithelial transport characteristics of soybean peptide Trp-Gly-Ala-Pro-Ser-Leu (WGAPSL) with cholesterol- lowering activity were investigated in Caco-2 cells. In this study; the transepithelial absorption of WGAPSL was studied using human intestinal Caco-2 cell monolayers. The results showed that WGAPSL had good stability (83.9% ±1.98%) after simulated gastric and intestinal digestion. During the apical (AP) side to basolateral (BL) side transport, WGAPSL was absorbed intact through Caco-2 cell monolayers with apparent permeability coefficient (Papp) values of 4.4 × 10-8 to 1.2 × 10-8 cm/s. Cytochalasin D loosened the tight junctions of Caco-2 cell monolayers and significantly (p < 0.05) improved the transport process. Sodium azide, wortmannin, and Gly-Pro had minimal effects on transport, demonstrating that the major transport route of WGAPVL was paracellular via tight junctions. Finally, LC-MS analysis showed that Gly-Ala-Pro (GAP) was the important part for the intact absorption of WGAPVL and Trp (W) was the most unstable amino acid residue.
Collapse
Affiliation(s)
- Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yawen Duan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yulin Feng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
50
|
Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of Stripped weakfish (Cynoscion guatucupa). Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|