1
|
Wang H, Gao Y, He Q, Liao J, Zhou S, Liu Y, Guo C, Li X, Zhao X, Pan Y. 2-Hydrazinoterephthalic Acid as a Novel Negative-Ion Matrix-Assisted Laser Desorption/Ionization Matrix for Qualitative and Quantitative Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Analysis of N-Glycans in Peach Allergy Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:952-962. [PMID: 36541565 DOI: 10.1021/acs.jafc.2c06822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glycans recently attracted considerable attention as the proposal of cross-reactive carbohydrate determinants for food allergy. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is powerful in analyzing biomolecules, while its applications in glycans are still challenging. Herein, a novel reactive matrix-assisted laser desorption/ionization (MALDI) matrix, 2-hydrazinoterephthalic acid, was rationally designed and synthesized. It provides uniform co-crystallization with glycans and only produces deprotonated ions with high intensities in the negative-ion mode. In combination with sinapic acid, a rapid and high-throughput method was established for on-target analysis of glycans with a superior limit of detection at the femtomole level and a good linearity (R2 > 0.999). Furthermore, the established method was successfully applied to quantify N-glycans in different cultivars and tissues of peach [Prunus persica (L.) Batsch]. Our work suggests the potential role of N-glycans as biomarkers for food-borne allergy and lays a methodological foundation for the elucidation of the possible relationship between carbohydrate epitopes and food allergy.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Yuexia Gao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Jiancong Liao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Shiwen Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiaoyong Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| |
Collapse
|
2
|
Guo R, Zhang T, Lambert TOT, Wang T, Voglmeir J, Rand KD, Liu L. PNGase H + variant from Rudaea cellulosilytica with improved deglycosylation efficiency for rapid analysis of eukaryotic N-glycans and hydrogen deuterium exchange mass spectrometry analysis of glycoproteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9376. [PMID: 35945033 PMCID: PMC9541014 DOI: 10.1002/rcm.9376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The analysis of glycoproteins and the comparison of protein N-glycosylation from different eukaryotic origins require unbiased and robust analytical workflows. The structural and functional analysis of vertebrate protein N-glycosylation currently depends extensively on bacterial peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidases (PNGases), which are indispensable enzymatic tools in releasing asparagine-linked oligosaccharides (N-glycans) from glycoproteins. So far, only limited PNGase candidates are available for N-glycans analysis, and particularly the analysis of plant and invertebrate N-glycans is hampered by the lack of suitable PNGases. Furthermore, liquid chromatography-mass spectrometry (LC-MS) workflows, such as hydrogen deuterium exchange mass spectrometry (HDX-MS), require a highly efficient enzymatic release of N-glycans at low pH values to facilitate the comprehensive structural analysis of glycoproteins. Herein, we describe a previously unstudied superacidic bacterial N-glycanase (PNGase H+ ) originating from the soil bacterium Rudaea cellulosilytica (Rc), which has significantly improved enzymatic properties compared to previously described PNGase H+ variants. Active and soluble recombinant PNGase Rc was expressed at a higher protein level (3.8-fold) and with higher specific activity (~56% increase) compared to the currently used PNGase H+ variant from Dyella japonicum (Dj). Recombinant PNGase Rc was able to deglycosylate the glycoproteins horseradish peroxidase and bovine lactoferrin significantly faster than PNGase Dj (10 min vs. 6 h). The versatility of PNGase Rc was demonstrated by releasing N-glycans from a diverse array of samples such as peach fruit, king trumpet mushroom, mouse serum, and the soil nematode Caenorhabditis elegans. The presence of only two disulfide bonds shown in the AlphaFold protein model (so far all other superacidic PNGases possess more disulfide bonds) could be corroborated by intact mass- and peptide mapping analysis and provides a possible explanation for the improved recombinant expression yield of PNGase Rc.
Collapse
Affiliation(s)
- Rui‐Rui Guo
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Tian‐Chan Zhang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | | | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Kasper D. Rand
- Protein Analysis Group, Department of PharmacyUniversity of CopenhagenCopenhagenDenmark
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
3
|
Veličković D, Liao YC, Thibert S, Veličković M, Anderton C, Voglmeir J, Stacey G, Zhou M. Spatial Mapping of Plant N-Glycosylation Cellular Heterogeneity Inside Soybean Root Nodules Provided Insights Into Legume-Rhizobia Symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:869281. [PMID: 35651768 PMCID: PMC9150855 DOI: 10.3389/fpls.2022.869281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Although ubiquitously present, information on the function of complex N-glycan posttranslational modification in plants is very limited and is often neglected. In this work, we adopted an enzyme-assisted matrix-assisted laser desorption/ionization mass spectrometry imaging strategy to visualize the distribution and identity of N-glycans in soybean root nodules at a cellular resolution. We additionally performed proteomics analysis to probe the potential correlation to proteome changes during symbiotic rhizobia-legume interactions. Our ion images reveal that intense N-glycosylation occurs in the sclerenchyma layer, and inside the infected cells within the infection zone, while morphological structures such as the cortex, uninfected cells, and cells that form the attachment with the root are fewer N-glycosylated. Notably, we observed different N-glycan profiles between soybean root nodules infected with wild-type rhizobia and those infected with mutant rhizobia incapable of efficiently fixing atmospheric nitrogen. The majority of complex N-glycan structures, particularly those with characteristic Lewis-a epitopes, are more abundant in the mutant nodules. Our proteomic results revealed that these glycans likely originated from proteins that maintain the redox balance crucial for proper nitrogen fixation, but also from enzymes involved in N-glycan and phenylpropanoid biosynthesis. These findings indicate the possible involvement of Lewis-a glycans in these critical pathways during legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Yen-Chen Liao
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Stephanie Thibert
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Marija Veličković
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Christopher Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
4
|
Kim J, Kim J, Ryu C, Lee J, Park CS, Jin M, Kang M, Kim A, Mun C, Kim HH. Unidentified N-glycans by N-glycosidase A were Identified by Nglycosidase
F under Denaturing Conditions in Plant Glycoprotein. Protein Pept Lett 2022; 29:440-447. [DOI: 10.2174/0929866529666220328152941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Background:
The identification of N-glycans in plant glycoproteins or plant-made pharmaceuticals is essential for understanding their structure, function, properties, immunogenicity, and allergenicity (induced by plant-specific core-fucosylation or xylosylation) in the applications of plant food, agriculture, and plant biotechnology. N-glycosidase A is widely used to release the N-glycans of plant glycoproteins because the core-fucosylated N-glycans of plant glycoproteins are hydrolyzed by N-glycosidase A but not by N-glycosidase F. However, the efficiency of N-glycosidase A activity on plant glycoproteins remains unclear.
Objective:
To elucidate the efficient use of N-glycosidases to identify and quantify the N-glycans of plant glycoproteins, the identification of released N-glycans by N-glycosidase F and their relative quantities with a focus on unidentified N-glycans by N-glycosidase A in plant glycoproteins, Phaseolus vulgaris lectin (PHA) and horseradish peroxidase (HRP), were investigated.
Methods:
Liquid chromatography–tandem mass spectrometry was used to analyze and compare the N-glycans of PHA and HRP treated with either N-glycosidase A or F under denaturing conditions. The relative quantities (%) of each N-glycan (>0.1%) to the total N-glycans (100%) were determined.
Results:
N-glycosidase A and F released 9 identical N-glycans of PHA, but 2 additional core-fucosylated N-glycans were released by only N-glycosidase A, as expected. By contrast, in HRP, 8 N-glycans comprising 6 core-fucosylated N-glycans, 1 xylosylated N-glycan, and 1 mannosylated N-glycan were released by N-glycosidase A. Moreover, 8 unexpected N-glycans comprising 1 core-fucosylated N-glycan, 4 xylosylated N-glycans, and 3 mannosylated N-glycans were released by N-glycosidase F. Of these, 3 xylosylated and 2 mannosylated N-glycans were released by only N-glycansodase F.
Conclusion:
These results demonstrated that N-glycosidase A alone is insufficient to release the N-glycans of all plant glycoproteins, suggesting that to identify and quantify the released N-glycans of the plant glycoprotein HRP, both N-glycosidase A and F treatments are required.
Collapse
Affiliation(s)
- Jeongeun Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jihye Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Changsoo Ryu
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
| | - Jaeryong Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chi Soo Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Mijung Jin
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Minju Kang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ahyeon Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chulmin Mun
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Wang T, Liu L, Voglmeir J. mAbs N-glycosylation: Implications for biotechnology and analytics. Carbohydr Res 2022; 514:108541. [DOI: 10.1016/j.carres.2022.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
|
6
|
Deng Y, Chen LX, Zhu BJ, Zhao J, Li SP. A quantitative method for polysaccharides based on endo-enzymatic released specific oligosaccharides: A case of Lentinus edodes. Int J Biol Macromol 2022; 205:15-22. [PMID: 35181321 DOI: 10.1016/j.ijbiomac.2022.02.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/05/2023]
Abstract
Polysaccharides exhibit multiple pharmacological activities, which are closely related to their structural characteristics. Therefore, quantitative quality control of polysaccharides based on chemical properties is of importance for their applications. However, polysaccharides are mixed macromolecular compounds that are difficult to separate, and the lack of standards made direct quantification more difficult. In this study, we proposed a new quantitative method based on the released specific oligosaccharides for polysaccharides from Lentinus edodes (shiitake) and other related fungi. Specific oligosaccharides were firstly released from polysaccharides using 1,3-β-glucanase, then derivatized with 2-aminobenzamide (2-AB), which further separated by hydrophilic interaction chromatography (HILIC) and quantitatively determined by UPLC coupled with fluorescence detector (FLR). Laminaritriose was used as the universal standard for quantification of all the oligosaccharides. This method was validated according to linearity, limit of detection, limit of quantitation, precision, accuracy, repeatability and stability. In addition, the four specific oligosaccharides released from polysaccharides in L. edodes were qualitatively analyzed by extracted ion chromatogram (EIC) from UPLC-MS profiles, which were identified to be disaccharide, trisaccharide and tetrasccharide. The proposed strategy not only realized the quantitative analysis of polysaccharides by UPLC-FLR, but also could achieve the qualitative distinction of different polysaccharides.
Collapse
Affiliation(s)
- Yong Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, China
| | - Ling-Xiao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, China
| | - Bao-Jie Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, China.
| |
Collapse
|
7
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
8
|
Takashima S, Kurogochi M, Osumi K, Sugawara SI, Mizuno M, Takada Y, Amano J, Matsuda A. Novel endo-β-N-acetylglucosaminidases from Tannerella species hydrolyze multibranched complex-type N-glycans with different specificities. Glycobiology 2020; 30:923-934. [PMID: 32337602 DOI: 10.1093/glycob/cwaa037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Endo-β-N-acetylglucosaminidases are enzymes that hydrolyze the N,N'-diacetylchitobiose unit of N-glycans. Many endo-β-N-acetylglucosaminidases also exhibit transglycosylation activity, which corresponds to the reverse of the hydrolysis reaction. Because of these activities, some of these enzymes have recently been used as powerful tools for glycan remodeling of glycoproteins. Although many endo-β-N-acetylglucosaminidases have been identified and characterized to date, there are few enzymes that exhibit hydrolysis activity toward multibranched (tetra-antennary or more) complex-type N-glycans on glycoproteins. Therefore, we searched for novel endo-β-N-acetylglucosaminidases that exhibit hydrolysis activity toward multibranched complex-type N-glycans in this study. From database searches, we selected three candidate enzymes from Tannerella species-Endo-Tsp1006, Endo-Tsp1263 and Endo-Tsp1457-and prepared them as recombinant proteins. We analyzed the hydrolysis activity of these enzymes toward N-glycans on glycoproteins and found that Endo-Tsp1006 and Endo-Tsp1263 exhibited hydrolysis activity toward complex-type N-glycans, including multibranched N-glycans, preferentially, whereas Endo-Tsp1457 exhibited hydrolysis activity toward high-mannose-type N-glycans exclusively. We further analyzed substrate specificities of Endo-Tsp1006 and Endo-Tsp1263 using 18 defined glycopeptides as substrates, each having a different N-glycan structure. We found that Endo-Tsp1006 preferred N-glycans with galactose or α2,6-linked sialic acid residues in their nonreducing ends as substrates, whereas Endo-Tsp1263 preferred N-glycans with N-acetylglucosamine residues in their nonreducing ends as substrates.
Collapse
Affiliation(s)
- Shou Takashima
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Masaki Kurogochi
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Kenji Osumi
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Shu-Ichi Sugawara
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Yoshio Takada
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Junko Amano
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Akio Matsuda
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan.,Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| |
Collapse
|
9
|
Guo RR, Comamala G, Yang HH, Gramlich M, Du YM, Wang T, Zeck A, Rand KD, Liu L, Voglmeir J. Discovery of Highly Active Recombinant PNGase H + Variants Through the Rational Exploration of Unstudied Acidobacterial Genomes. Front Bioeng Biotechnol 2020; 8:741. [PMID: 32719787 PMCID: PMC7348039 DOI: 10.3389/fbioe.2020.00741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/10/2020] [Indexed: 11/13/2022] Open
Abstract
Peptide-N 4-(N-acetyl-β-glucosaminyl) asparagine amidases (PNGases, N-glycanases, EC 3.5.1.52) are indispensable tools in releasing N-glycans from glycoproteins. So far, only a limited number of PNGase candidates are available for the structural analysis of glycoproteins and their glycan moieties. Herein, a panel of 13 novel PNGase H+ candidates (the suffix H+ refers to the acidic pH optimum of these acidobacterial PNGases) was tested in their recombinant form for their deglycosylation performance. One candidate (originating from the bacterial species Dyella japonica) showed superior properties both in solution-phase and immobilized on amino-, epoxy- and nitrilotriacetate resins when compared to currently acidic available PNGases. The high expression yield compared to a previously described PNGase H+, broad substrate specificity, and good storage stability of this novel N-glycanase makes it a valuable tool for the analysis of protein glycosylation.
Collapse
Affiliation(s)
- Rui-Rui Guo
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gerard Comamala
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Huan-Huan Yang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Marius Gramlich
- Natural and Medical Sciences Institute (NMI), University of Tubingen, Reutlingen, Germany
| | - Ya-Min Du
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Anne Zeck
- Natural and Medical Sciences Institute (NMI), University of Tubingen, Reutlingen, Germany
| | - Kasper Dyrberg Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Zhang Q, Li Z, Song X. Preparation of Complex Glycans From Natural Sources for Functional Study. Front Chem 2020; 8:508. [PMID: 32719769 PMCID: PMC7348041 DOI: 10.3389/fchem.2020.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023] Open
Abstract
One major barrier in glycoscience is the lack of diverse and biomedically relevant complex glycans in sufficient quantities for functional study. Complex glycans from natural sources serve as an important source of these glycans and an alternative to challenging chemoenzymatic synthesis. This review discusses preparation of complex glycans from several classes of glycoconjugates using both enzymatic and chemical release approaches. Novel technologies have been developed to advance the large-scale preparation of complex glycans from natural sources. We also highlight recent approaches and methods developed in functional and fluorescent tagging and high-performance liquid chromatography (HPLC) isolation of released glycans.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhonghua Li
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Tuzimski T, Petruczynik A. Review of New Trends in the Analysis of Allergenic Residues in Foods and Cosmetic Products. J AOAC Int 2020; 103:997-1028. [PMID: 33241349 PMCID: PMC8370415 DOI: 10.1093/jaoacint/qsaa015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Allergies represent an important health problem in industrialized countries. Allergen sensitization is an important risk factor for the development of allergic diseases; thus, the identification of an individual's allergen sensitization is essential for the diagnosis and treatment of diseases. OBJECTIVE This review compares different modern methods applied for the analysis of allergens in various matrices (from 2015 to the end of September 2019). CONCLUSIONS Immunological methods are still most frequently used for detection of allergens. These methods are sensitive, but the lack of specificity and cross-reaction of some antibodies can still be a relevant source of errors. DNA-based methods are fast and reliable for determination of protein allergens, but the epitopes of protein allergens with posttranslational modifications and their changes, originated during various processing, cannot be identified through the use of this method. Methods based on application of biosensors are very rapid and easy to use, and can be readily implemented as screening methods to monitor allergens. Recent developments of new high-resolution MS instruments are encouraging and enable development in the analysis of allergens. Fast, very sensitive, reliable, and accurate detection and quantification of allergens in complex samples can be used in the near future. Mass spectrometry coupled with LC, GC, or electrophoretic methods bring additional advances in allergen analysis. The use of LC-MS or LC-MS/MS for the quantitative detection of allergens in various matrices is at present gaining acceptance as a protein-based confirmatory technique over the routinely performed enzyme-linked immunosorbent assays.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Medical University of Lublin, Department of Physical Chemistry, 4A Chodzki Street, Lublin, Poland, 20-093
| | - Anna Petruczynik
- Medical University of Lublin, Department of Inorganic Chemistry, 4A Chodzki Street, Lublin, Poland, 20-093
| |
Collapse
|
12
|
Cao WQ, Liu MQ, Kong SY, Wu MX, Huang ZZ, Yang PY. Novel methods in glycomics: a 2019 update. Expert Rev Proteomics 2020; 17:11-25. [PMID: 31914820 DOI: 10.1080/14789450.2020.1708199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Glycomics, which aims to define the glycome of a biological system to better assess the biological attributes of the glycans, has attracted increasing interest. However, the complexity and diversity of glycans present challenging barriers to glycome definition. Technological advances are major drivers in glycomics.Areas covered: This review summarizes the main methods and emphasizes the most recent advances in mass spectrometry-based methods regarding glycomics following the general workflow in glycomic analysis.Expert opinion: Recent mass spectrometry-based technological advances have significantly lowered the barriers in glycomics. The field of glycomics is moving toward both generic and precise analysis.
Collapse
Affiliation(s)
- Wei-Qian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Ming-Qi Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Si-Yuan Kong
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meng-Xi Wu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Zheng-Ze Huang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng-Yuan Yang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Zhang YY, Senan AM, Wang T, Liu L, Voglmeir J. 1-(2-Aminoethyl)-3-methyl-1 H-imidazol-3-ium tetrafluoroborate: synthesis and application in carbohydrate analysis. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Reductive alkylation of the carbonyl group of carbohydrates with fluorescence or ionizing labels is a prerequisite for the sensitive analysis of carbohydrates by chromatographic and mass spectrometric techniques. Herein, 1-(2-aminoethyl)-3-methyl-1H-imidazol-3-ium tetrafluoroborate ([MIEA][BF4]) was successfully synthesized using tert-butyl N-(2-bromoethyl)carbamate and N-methylimidazole as starting materials. MIEA+ was then investigated as a multifunctional oligosaccharide label for glycan profiling and identification using LC-ESI-ToF and by MALDI-ToF mass spectrometry. The reductive amination of this diazole with carbohydrates was exemplified by labeling N-glycans from the model glycoproteins horseradish peroxidase, RNase B, and bovine lactoferrin. The produced MIEA+ glycan profiles were comparable to the corresponding 2AB labeled glycan derivatives and showed improved ESI-MS ionization efficiency over the respective 2AB derivatives, with detection sensitivity in the low picomol to the high femtomol range.
Collapse
Affiliation(s)
- Yao Y. Zhang
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Ahmed M. Senan
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Ting Wang
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Li Liu
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
14
|
Shi Z, Yin B, Li Y, Zhou G, Li C, Xu X, Luo X, Zhang X, Qi J, Voglmeir J, Liu L. N-Glycan Profile as a Tool in Qualitative and Quantitative Analysis of Meat Adulteration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10543-10551. [PMID: 31464438 DOI: 10.1021/acs.jafc.9b03756] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adulteration of meat and meat products causes concerns to consumers. It is necessary to develop novel robust and sensitive methods that can authenticate the origin of meat by qualitative and quantitative means to minimize the drawbacks of the existing methods. This study has shown that the protein N-glycosylation profiles of different meats are species specific and thus can be used for meat authentication. Based on the N-glycan pattern, the investigated five meat species (beef, chicken, pork, duck, and mutton) can be distinguished by principal component analysis, and partial least square regression was performed to build a calibration and validation model for the prediction of adulteration ratio. Using this method, beef samples adulterated with a lower-value duck meat could be detected down to the addition ratio as low as 2.2%. The most distinguishing N-glycans from beef and duck were elucidated for the detailed structures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Xibin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering , Shandong Agricultural University , Taian , Shandong 271018 , China
- New Hope Liuhe Co. Ltd. , Beijing 100102 , China
| | - Jun Qi
- Anhui Engineering Laboratory for Agro-products Processing , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | | | | |
Collapse
|
15
|
Development of a colorimetric PNGase activity assay. Carbohydr Res 2019; 472:58-64. [PMID: 30476755 DOI: 10.1016/j.carres.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/19/2018] [Accepted: 11/10/2018] [Indexed: 11/22/2022]
Abstract
PNGases are crucial targets and valuable tools in analyzing asparagine-linked carbohydrate moieties (N-glycans) of glycoproteins. Activity tests of PNGases have been little improved since their discovery four decades ago, and still rely on observing deglycosylation patterns of glycoproteins or glycopeptides using SDS-PAGE or HPLC analysis. These techniques cannot be easily adapted for automated sampling and high-throughput procedures. Herein, we describe a PNGase activity assay which relies on the conversion of WST-1, a yellowish, water-soluble tetrazolium dye (sodium 2-(4-Iodophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolate), into a blue formazan dye. In this work, we showed that WST-1 could be reduced by N-glycans, which were enzymatically released from glycoprotein substrates. After optimization of the assay conditions, the robustness of the method was challenged by quantifying the activity of various PNGase isoforms at different purification stages using a microwell plate reader. Furthermore, the assay could be used to obtain steady-state kinetics of PNGase H+ wild-type and mutant variants, which showed significant differences in their enzymatic reaction rates. The simplicity and robustness of this method might be of benefit for the detection of PNGase activity in routine applications of large amounts of samples.
Collapse
|
16
|
Du YM, Zheng SL, Liu L, Voglmeir J, Yedid G. Analysis of N-glycans from Raphanus sativus Cultivars Using PNGase H. J Vis Exp 2018. [PMID: 29985337 DOI: 10.3791/57979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In recent years, the carbohydrate moieties of plants have received considerable attention, as they are a potential source of cross-reactive, allergy-provoking immune responses. In addition, carbohydrate structures also play a critical role in plant metabolism. Here, we present a simple and rapid method for preparing and analyzing N-glycans from different cultivars of radish (Raphanus sativus) using an N-glycanase specific for the release of plant-derived carbohydrate structures. To achieve this, crude trichloroacetic acid precipitates of radish homogenates were treated with PNGase H+, and labeled using 2-aminobenzamide as a fluorescent tag. The labeled N-glycan samples were subsequently analyzed by ultra performance liquid chromatography (UPLC) separation and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for a detailed structural evaluation and to quantify relative abundancies of the radish-derived N-glycan structures. This protocol can also be used for the analysis of N-glycans from various other plant species, and may be useful for further investigation of the function and effects of N-glycans on human health.
Collapse
Affiliation(s)
- Ya-Min Du
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University
| | - Shen-Li Zheng
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University;
| | - Gabriel Yedid
- College of Life Science, Nanjing Agricultural University;
| |
Collapse
|
17
|
Kameyama A, Dissanayake SK, Thet Tin WW. Rapid chemical de-N-glycosylation and derivatization for liquid chromatography of immunoglobulin N-linked glycans. PLoS One 2018; 13:e0196800. [PMID: 29723274 PMCID: PMC5933716 DOI: 10.1371/journal.pone.0196800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022] Open
Abstract
Glycan analysis may result in exploitation of glycan biomarkers and evaluation of heterogeneity of glycosylation of biopharmaceuticals. For N-linked glycan analysis, we investigated alkaline hydrolysis of the asparagine glycosyl carboxamide of glycoproteins as a deglycosylation reaction. By adding hydroxylamine into alkaline de-N-glycosylation, we suppressed the degradation of released glycans and obtained a mixture of oximes, free glycans, and glycosylamines. The reaction was completed within 1 h, and the mixture containing oximes was easily tagged with 2-aminobenzamide by reductive amination. Here, we demonstrated N-linked glycan analysis using this method for a monoclonal antibody, and examined whether this method could liberate glycans without degradation from apo-transferrin containing NeuAc and NeuGc and horseradish peroxidase containing Fuc α1-3 GlcNAc at the reducing end. Furthermore, we compared glycan recoveries between conventional enzymatic glycan release and this method. Increasing the reaction temperature and reaction duration led to degradation, whereas decreasing these parameters resulted in lower release. Considering this balance, we proposed to carry out the reaction at 80°C for 1 h for asialo glycoproteins from mammals and at 50°C for 1 h for sialoglycoproteins.
Collapse
Affiliation(s)
- Akihiko Kameyama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Santha Kumara Dissanayake
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Wai Wai Thet Tin
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Advances in sample preparation strategies for MS-based qualitative and quantitative N-glycomics. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Wang T, Hu XC, Cai ZP, Voglmeir J, Liu L. Qualitative and Quantitative Analysis of Carbohydrate Modification on Glycoproteins from Seeds of Ginkgo biloba. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7669-7679. [PMID: 28800704 DOI: 10.1021/acs.jafc.7b01690] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent progress in the relationship between carbohydrate cross-reactive determinants (CCDs) and allergic response highlights the importance of carbohydrate moieties in the innate immune system. Previous research pointed out that the protein allergen in Ginkgo biloba seeds is glycosylated, and the oligosaccharides conjugated to these proteins might also contribute to the allergy. The aim of this study was to analyze carbohydrate moieties, especially N-linked glycans, of glycoproteins from Ginkgo seeds originating from different places for detailed structures, to enable further research on the role played by N-glycans in Ginkgo-caused allergy. Results of monosaccharide composition and immunoblotting assays indicated the existence of N-glycans. Detailed structural elucidation of the N-glycans was further carried out by means of hydrophilic interaction ultraperformance liquid chromatography (HILIC-UPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In total, 14 out of 16 structures detected by UPLC were confirmed by MALDI-TOF-MS and tandem mass spectrometry, among which complex-type N-glycans bearing Lewis A determinants and high-mannose-type N-glycans were identified from Ginkgo seeds for the first time. Precise quantification of N-glycans was performed by use of an external standard, and both the absolute amount of each N-glycan and the percentage of different types of N-glycan showed significant diversity among the samples without any pattern of geographic variation.
Collapse
Affiliation(s)
- Ting Wang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210014, China
| | - Xiao-Chun Hu
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210014, China
| | - Zhi-Peng Cai
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210014, China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210014, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210014, China
| |
Collapse
|
20
|
Shajahan A, Heiss C, Ishihara M, Azadi P. Glycomic and glycoproteomic analysis of glycoproteins-a tutorial. Anal Bioanal Chem 2017. [PMID: 28585084 DOI: 10.1007/s00216-017-04067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The structural analysis of glycoproteins is a challenging endeavor and is under steadily increasing demand, but only a very limited number of labs have the expertise required to accomplish this task. This tutorial is aimed at researchers from the fields of molecular biology and biochemistry that have discovered that glycoproteins are important in their biological research and are looking for the tools to elucidate their structure. It provides brief descriptions of the major and most common analytical techniques used in glycomics and glycoproteomics analysis, including explanations of the rationales for individual steps and references to published literature containing the experimental details necessary to carry out the analyses. Glycomics includes the comprehensive study of the structure and function of the glycans expressed in a given cell or organism along with identification of all the genes that encode glycoproteins and glycosyltransferases. Glycoproteomics which is subset of both glycomics and proteomics is the identification and characterization of proteins bearing carbohydrates as posttranslational modification. This tutorial is designed to ease entry into the glycomics and glycoproteomics field for those without prior carbohydrate analysis experience.
Collapse
Affiliation(s)
- Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
21
|
Shajahan A, Heiss C, Ishihara M, Azadi P. Glycomic and glycoproteomic analysis of glycoproteins-a tutorial. Anal Bioanal Chem 2017; 409:4483-4505. [PMID: 28585084 PMCID: PMC5498624 DOI: 10.1007/s00216-017-0406-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023]
Abstract
The structural analysis of glycoproteins is a challenging endeavor and is under steadily increasing demand, but only a very limited number of labs have the expertise required to accomplish this task. This tutorial is aimed at researchers from the fields of molecular biology and biochemistry that have discovered that glycoproteins are important in their biological research and are looking for the tools to elucidate their structure. It provides brief descriptions of the major and most common analytical techniques used in glycomics and glycoproteomics analysis, including explanations of the rationales for individual steps and references to published literature containing the experimental details necessary to carry out the analyses. Glycomics includes the comprehensive study of the structure and function of the glycans expressed in a given cell or organism along with identification of all the genes that encode glycoproteins and glycosyltransferases. Glycoproteomics which is subset of both glycomics and proteomics is the identification and characterization of proteins bearing carbohydrates as posttranslational modification. This tutorial is designed to ease entry into the glycomics and glycoproteomics field for those without prior carbohydrate analysis experience.
Collapse
Affiliation(s)
- Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
22
|
Effects of microvirin monomers and oligomers on hepatitis C virus. Biosci Rep 2017; 37:BSR20170015. [PMID: 28507200 PMCID: PMC6434159 DOI: 10.1042/bsr20170015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/25/2022] Open
Abstract
Microvirin (MVN) is a carbohydrate-binding protein which shows high specificity for high-mannose type N-glycan structures. In the present study, we tried to identify whether MVN could bind to high-mannose containing hepatitis C virus (HCV) envelope glycoproteins, which are heavily decorated high-mannose glycans. In addition, recombinantly expressed MVN oligomers in di-, tri- and tetrameric form were evaluated for their viral inhibition. MVN oligomers bound more efficiently to HCV virions, and displayed in comparison with the MVN monomer a higher neutralization potency against HCV infection. The antiviral effect was furthermore affected by the peptide linker sequence connecting the MVN monomers. The results indicate that MVN oligomers such as trimers and tetramers may be used as future neutralization agents against HCV infections.
Collapse
|
23
|
|
24
|
Zhou L, Wang Y, Wang X, Liang Y, Huang Z, Zeng X. MALDI-TOF/TOF Mass Spectrometric Determination and Antioxidative Activity of Purified Phosphatidylcholine Fractions from Shrimp Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1229-1238. [PMID: 28112912 DOI: 10.1021/acs.jafc.7b00217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Purification, characterization, and antioxidative activity in vitro of shrimp phosphatidylcholines (PCs) were investigated. The molecular structures of shrimp PCs were determined by MALDI-TOF/TOF MS. The MS2 fragments produced from protonated PC precursors and sodiated PC precursors were identified. The specific fragments including [M + Na - trimethylamine]+, [M + Na - 205]+, [M + Na - RCOOH - trimethylamine]+, and [M + H - RCOOH - trimethylamine]+ could distinguish the precursor type to confirm PC molecular structures. The antioxidative activities of purified shrimp PC fractions were evaluated by assay of DPPH free radical scavenging activity, and their effects on the oxidative stability of camellia oil were measured by monitoring changes in the peroxide value assay during oxidation. The PC fractions from Penaeus chinesis and Macrobranchium nipponense showed stronger antioxidative activities than those of other species. All of the shrimp PCs at 0.2% (w/w) improved the oxidative stability of camellia oil significantly (P < 0.05) compared to controls. The experimental findings suggest that shrimp PCs might be a valuable source of natural antioxidants for edible oils or other food dispersions.
Collapse
Affiliation(s)
- Li Zhou
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| | - Yan Wang
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| | - Xiaolin Wang
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| | - Yi Liang
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| | - Zheng Huang
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| |
Collapse
|
25
|
Affiliation(s)
- Stefan Gaunitz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nicola L. B. Pohl
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Regional Center for Applied Molecular Oncology, Masaryk Memorial Oncological Institute, 656 53 Brno, Czech Republic
| |
Collapse
|
26
|
Hajba L, Csanky E, Guttman A. Liquid phase separation methods for N-glycosylation analysis of glycoproteins of biomedical and biopharmaceutical interest. A critical review. Anal Chim Acta 2016; 943:8-16. [PMID: 27769380 DOI: 10.1016/j.aca.2016.08.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022]
Abstract
Comprehensive carbohydrate analysis of glycoproteins from human biological samples and biotherapeutics are important from diagnostic and therapeutic points of view. This review summarizes the current state-of-the-art liquid phase separation techniques used in N-glycosylation analysis. The different liquid chromatographic techniques and capillary electrophoresis methods are critically discussed in detail. Miniaturization of these methods is also important to increase throughput and decrease analysis time. The sample preparation and labeling methods for asparagine linked oligosaccharides are also addressed.
Collapse
Affiliation(s)
- Laszlo Hajba
- MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary
| | | | - Andras Guttman
- MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary; Horvath Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
27
|
Liu S, Kulinich A, Cai ZP, Ma HY, Du YM, Lv YM, Liu L, Voglmeir J. The fucosidase-pool ofEmticicia oligotrophica: Biochemical characterization and transfucosylation potential. Glycobiology 2016; 26:871-879. [DOI: 10.1093/glycob/cww030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/29/2016] [Indexed: 11/14/2022] Open
|