1
|
Wang Y, Wang J, Zhou T, Chen Z, Wang W, Liu B, Li Y. Investigating the potential mechanism and therapeutic effects of SLXG for cholesterol gallstone treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155886. [PMID: 39059092 DOI: 10.1016/j.phymed.2024.155886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/30/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Shugan Lidan Xiaoshi Granules (SLXG) is a traditional Chinese medicine (TCM) formulation frequently employed to prevent and treat cholesterol gallstones. SLXG is formulated based on the Chaihu Shugan Formula found in an ancient Chinese medical book, a traditional remedy in China for centuries, and has demonstrated successful treatment of numerous patients with gallbladder stones. PURPOSE This research sought to clarify the therapeutic impact and molecular mechanisms of SLXG and its active components in the treatment of cholesterol gallbladder stones. METHODS The study employed network pharmacology, UPLC-HRMS transcriptome sequencing, animal model experiments, molecular docking, and Surface Plasmon Resonance (SPR) to explore the molecular mechanisms of SLXG and its relationship with Traditional Chinese Medicines (TCMs) and potential targets. Furthermore, PPI network analysis, along with GO and KEGG enrichment analyses, were performed to explore the potential mechanisms through which SLXG and its active ingredient, naringenin, prevent and treat cholesterol gallstones. The mechanism of action was further elucidated using an animal model for gallbladder stone formation. RESULTS The study employed a network pharmacology and UPLC-HRMS to investigate the active compounds of SLXG for the treatment of cholesterol gallbladder stones, and subsequently constructed a network of therapeutic targets of SLXG. The results from gene enrichment analyses indicated that SLXG targets the metabolic pathway of bile secretion and the cholesterol metabolism pathway in addressing cholesterol gallbladder stones. The molecular docking results confirmed the interaction between the genes enriched in the pathways and the active ingredients in SLXG. Transcriptome sequencing results demonstrated that SLXG exerts its therapeutic effect on gallstones by regulating cholesterol and bile acid synthesis and metabolism. Furthermore, animal model experiments and SPR provided evidence that SLXG and its active ingredient, naringenin, exert therapeutic effects on cholesterol gallbladder stones by targeting the genes HMGCR, SOAT2, and UGT1A1, and influencing substances associated with cholesterol synthesis and metabolism. CONCLUSIONS Using systematic network pharmacology methods combined with in vivo validation experiments, we uncovered the fundamental pharmacological effects and potential mechanisms of SLXG and its active ingredient, naringenin, in the treatment of cholesterol gallstones. This research underscores the valuable role that traditional remedies can play in addressing medical challenges and suggests a promising direction for further exploration of natural treatments for the disease.
Collapse
Affiliation(s)
- Yang Wang
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China
| | - Jiaxing Wang
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China
| | - Tong Zhou
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China
| | - Zitong Chen
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China
| | - Wujie Wang
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China
| | - Bin Liu
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China
| | - Yuliang Li
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China.
| |
Collapse
|
2
|
Hayat MF, Zohaib M, Ijaz MU, Batool M, Ashraf A, Almutairi BO, Atique U. Ameliorative potential of eriocitrin against cadmium instigated hepatotoxicity in rats via regulating Nrf2/keap1 pathway. J Trace Elem Med Biol 2024; 84:127445. [PMID: 38613902 DOI: 10.1016/j.jtemb.2024.127445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Cadmium (Cd) is a hazardous heavy metal that adversely affects the vital body organs particularly liver. Eriocitrin (ERCN) is a plant-based flavonoid that is well-known for its wide range of pharmacological potential. This research trial was aimed to determine the ameliorative potential of ERCN against Cd provoked hepatotoxicity in rats. METHODOLOGY Twenty-four rats (Rattus norvegicus) were apportioned into control, Cd treated (5 mg/kg), Cd (5 mg/kg) + ERCN (25 mg/kg) and only ERCN (25 mg/kg) administrated group. Expressions of Nrf2/Keap1 pathway and apoptotic markers were assessed through qRT-PCR. The levels of inflammatory and liver function markers were evaluated by using standard ELISA kits. KEY FINDINGS Cd exposure reduced the expression of Nrf2 and anti-oxidant genes as well as the activity of catalase (CAT), glutathione reductase (GSR), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione (GSH) contents while escalating the expression of Keap1. Furthermore, Cd intoxication augmented malondialdehyde (MDA) and reactive oxygen species (ROS) levels in hepatic tissues. Exposure to Cd resulted in a notable elevation in the levels of alanine transaminase (ALT), alkaline phosphatase (ALP) and aspartate aminotransferase (AST). Cd administration upregulated nuclear factor-kappa B (NF-κB), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) levels as well as cyclooxygenase-2 (COX-2) activity. Furthermore, Cd administration upsurged Bax and Caspase-3 expression while reducing the expression of Bcl-2. Moreover, Cd intoxication disrupted the normal architecture of hepatic tissues. However, supplementation of ERCN significantly (p < 0.05) ameliorated the aforementioned disruptions induced by Cd intoxication. CONCLUSION ERCN treatment remarkably ameliorated the hepatic tissues owing to its antioxidant, anti-inflammatory, and anti-apoptotic potentials. These findings underscore the therapeutic potential of ERCN to counteract the adverse effects of environmental pollutants on hepatic tissues.
Collapse
Affiliation(s)
- Muhammad Faisal Hayat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Moazama Batool
- Department of Zoology, Govt. College Women University, Sialkot, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Usman Atique
- College of Biological Systems, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
3
|
Zhao Z, Gao W, Ding X, Xu X, Xiao C, Mao G, Xing W. The association between dietary intake of flavonoids and its subclasses and the risk of metabolic syndrome. Front Nutr 2023; 10:1195107. [PMID: 37476404 PMCID: PMC10354435 DOI: 10.3389/fnut.2023.1195107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Background The healthiest way to prevent metabolic syndrome (MetS) is through behavioral and nutritional adjustments. We examined the relationship between total flavonoids intake, flavonoid subclasses, and clinically manifest MetS. Methods A cross-sectional analysis was conducted among 28,719 individuals from the National Health and Nutrition Examination Survey (NHANES) and Food and Nutrient Database for Dietary Studies (FNDDS) 2007-2011 and 2017-2018. Two 24-h reviews were conducted to determine flavonoids intake and subclasses. The link between flavonoids intake and MetS was investigated using a multivariate logistic regression model. Results Q2 and Q3 of total flavonoids intake were associated with 20 and 19% lower risk of incident MetS after adjusting age and sex. Anthocyanidins and flavanones intake in Q2 and Q3 substantially reduced the MetS risk compared to Q1. MetS risk decreased steadily as the total intake of flavonoids increased to 237.67 mg/d. Flavanones and anthocyanidins also displayed V-shaped relationship curves (34.37 and 23.13 mg/d). Conclusion MetS was adversely linked with total flavonoids intake, flavanones, and anthocyanidins. Moreover, the most effective doses of total flavonoids, flavanones, and anthocyanidins were 237.67, 34.37, and 23.13 mg/d, respectively, potentially preventing MetS.
Collapse
Affiliation(s)
- Zhenlei Zhao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaoli Ding
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Changqian Xiao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
4
|
Wang S, Du Q, Meng X, Zhang Y. Natural polyphenols: a potential prevention and treatment strategy for metabolic syndrome. Food Funct 2022; 13:9734-9753. [PMID: 36134531 DOI: 10.1039/d2fo01552h] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Metabolic syndrome (MS) is the term for a combination of hypertension, dyslipidemia, insulin resistance, and central obesity as factors leading to cardiovascular and metabolic disease. Epidemiological investigation has shown that polyphenol intake is negatively correlated with the incidence of MS. Natural polyphenols are widely found in cocoa beans, tea, vegetables, fruits, and some Chinese herbal medicines; they are a class of plant compounds containing a variety of phenolic structural units, which are potent antioxidants and anti-inflammatory agents in plants. Polyphenols are composed of flavonoids (such as flavanols, anthocyanidins, anthocyanins, isoflavones, etc.) and non-flavonoids (such as phenolic acids, stilbenes, and lignans). Modern pharmacological studies have proved that polyphenols can reduce blood pressure, improve lipid metabolism, lower blood glucose, and reduce body weight, thereby preventing and improving MS. Due to the unique characteristics and potential development and application value of polyphenols, this review summarizes some natural polyphenols that could treat MS, including their chemical properties, plant sources, and pharmacological action against MS, to provide a basis for the further study of polyphenols in MS.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Zhu M, Jia Z, Yan X, Liu L, Fang C, Feng M, Dai Y, Zhang Y, Wu H, Huang B, Li Y, Liu J, Xiao H. Danhe granule ameliorates nonalcoholic steatohepatitis and fibrosis in rats by inhibiting ceramide de novo synthesis related to CerS6 and CerK. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115427. [PMID: 35654350 DOI: 10.1016/j.jep.2022.115427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhe granule (DHG) is used by Chinese doctors to treat blood stasis, phlegm and dampness. Its lipid-lowering ability has been investigated in our previous research. However, the anti-liver inflammatory and fibrotic effects and mechanism of action of DHG in non-alcoholic steatohepatitis (NASH) have not been explored. AIM OF THE STUDY To evaluate the ameliorative effects of DHG on liver inflammation and fibrosis in a methionine/choline-deficient (MCD) diet-induced NASH rat model, and its underlying mechanism. MATERIALS AND METHODS Sprague-Dawley rats were fed an MCD diet for two weeks and then treated with or without DHG by oral gavage for eight weeks. Their body weight and liver index were measured. The serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activities as well as the liver triglyceride (TG) and free fatty acid (FFA) levels were tested using reagent kits. Inflammatory cytokines, including Tnf-α, Il-β and Il-6, and fibrosis genes, including Acta2, Col1a1, Col1a2 and Tgf-β were examined by real-time quantitative PCR (RT-qPCR). Hematoxylin-eosin (H&E), Oil Red O, Masson's and Sirius Red staining were used to observe liver changes. The plasma and liver ceramide levels were analyzed using HPLC-QQQ-MS/MS. The expression of serine palmitoyl-CoA transferase (Spt), ceramide synthase 6 (Cers6), dihydroceramide desaturase 1 (Des1), glucosylceramide synthase (Gcs), and ceramide kinase (Cerk) mRNA was assayed by RT-qPCR, while the protein expression of CerS6, DES1, GCS, CerK, and casein kinase 2α (CK2α) was tested by western blotting (WB). CerS6 degradation was evaluated using a cycloheximide (CHX) assay in vitro. RESULTS The liver index decreased by 20% in DHG groups and the serum ALT and AST decreased by approximately 50% and 30%, respectively in the DHG-H group. The liver Oil Red O staining, TG, and FFA changes showed that DHG reduced hepatic lipid accumulation by approximately 30% in NASH rats. H&E, Masson's and Sirius Red staining and the mRNA levels of Tnf-α, Il-β, Il-6, Acta2, Col1a1, Col1a2 and Tgf-β revealed that DHG alleviated liver inflammation and fibrosis in NASH rats. The ceramide (Cer 16:0), and hexosylceramide (HexCer 16:0, HexCer 18:0, HexCer 22:0, HexCer 24:0 and HexCer 24:1) levels decreased by approximately 17-56% in the plasma of the DHG-M and H rats. The Cer 16:0 content in the liver decreased by 20%, 50%, and 70% with the DHG-L, M, and H treatments; additionally, the dhCer 16:0, Cer 18:0, HexCer 18:0, HexCer 20:0 Cer 22:0-1P, Cer 24:0-1p, Cer 24:1-1p, and Cer 26:1-1p levels decreased in the DHG groups. The mRNA and protein expression levels of DES1, GCS, Cerk, CerS6, and CHX assay indicated that DHG decreased the mRNA and protein expression levels of CerK and reduced CerS6 protein expression by promoting its degradation. Additionally, DHG attenuated the protein expression of CK2α which could increase CerS6 enzymatic activity by phosphorylating its C-terminal region. CONCLUSION DHG ameliorated the levels of liver FFA and TG and inflammation and fibrosis in MCD-induced rats, which were associated with decreasing ceramide species in the plasma and liver by reducing the expression levels of CerS6 and CerK.
Collapse
Affiliation(s)
- Meixia Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Jia
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoning Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Lirong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Yihang Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Wen QH, Wang R, Zhao SQ, Chen BR, Zeng XA. Inhibition of Biofilm Formation of Foodborne Staphylococcus aureus by the Citrus Flavonoid Naringenin. Foods 2021; 10:foods10112614. [PMID: 34828898 PMCID: PMC8622481 DOI: 10.3390/foods10112614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Taking into consideration the importance of biofilms in food deterioration and the potential risks of antiseptic compounds, antimicrobial agents that naturally occurring are a more acceptable choice for preventing biofilm formation and in attempts to improve antibacterial effects and efficacy. Citrus flavonoids possess a variety of biological activities, including antimicrobial properties. Therefore, the anti-biofilm formation properties of the citrus flavonoid naringenin on the Staphylococcus aureus ATCC 6538 (S. aureus) were investigated using subminimum inhibitory concentrations (sub-MICs) of 5~60 mg/L. The results were confirmed using laser and scanning electron microscopy techniques, which revealed that the thick coating of S. aureus biofilms became thinner and finally separated into individual colonies when exposed to naringenin. The decreased biofilm formation of S. aureus cells may be due to a decrease in cell surface hydrophobicity and exopolysaccharide production, which is involved in the adherence or maturation of biofilms. Moreover, transcriptional results show that there was a downregulation in the expression of biofilm-related genes and alternative sigma factor sigB induced by naringenin. This work provides insight into the anti-biofilm mechanism of naringenin in S. aureus and suggests the possibility of naringenin being used in the industrial food industry for the prevention of biofilm formation.
Collapse
Affiliation(s)
- Qing-Hui Wen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Q.-H.W.); (R.W.); (S.-Q.Z.); (B.-R.C.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Rui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Q.-H.W.); (R.W.); (S.-Q.Z.); (B.-R.C.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Si-Qi Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Q.-H.W.); (R.W.); (S.-Q.Z.); (B.-R.C.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Bo-Ru Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Q.-H.W.); (R.W.); (S.-Q.Z.); (B.-R.C.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Q.-H.W.); (R.W.); (S.-Q.Z.); (B.-R.C.)
- School of Food Science and Engineering, Foshan University, Foshan 528000, China
- Correspondence: ; Tel.: +86-208-7112-894
| |
Collapse
|
7
|
Zhang S, Xu M, Zhang W, Liu C, Chen S. Natural Polyphenols in Metabolic Syndrome: Protective Mechanisms and Clinical Applications. Int J Mol Sci 2021; 22:ijms22116110. [PMID: 34204038 PMCID: PMC8201163 DOI: 10.3390/ijms22116110] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) is a chronic disease, including abdominal obesity, dyslipidemia, hyperglycemia, and hypertension. It should be noted that the occurrence of MetS is closely related to oxidative stress-induced mitochondrial dysfunction, ectopic fat accumulation, and the impairment of the antioxidant system, which in turn further aggravates the intracellular oxidative imbalance and inflammatory response. As enriched anti-inflammatory and antioxidant components in plants, natural polyphenols exhibit beneficial effects, including improving liver fat accumulation and dyslipidemia, reducing blood pressure. Hence, they are expected to be useful in the prevention and management of MetS. At present, epidemiological studies indicate a negative correlation between polyphenol intake and MetS incidence. In this review, we summarized and discussed the most promising natural polyphenols (including flavonoid and non-flavonoid drugs) in the precaution and treatment of MetS, including their anti-inflammatory and antioxidant properties, as well as their regulatory functions involved in glycolipid homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Siyu Chen
- Correspondence: ; Tel./Fax: +86-25-86185645
| |
Collapse
|
8
|
Natural products and analogs as preventive agents for metabolic syndrome via peroxisome proliferator-activated receptors: An overview. Eur J Med Chem 2021; 221:113535. [PMID: 33992930 DOI: 10.1016/j.ejmech.2021.113535] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Natural products and synthetic analogs have drawn much attention as potential therapeutical drugs to treat metabolic syndrome. We reviewed the underlying mechanisms of 32 natural products and analogs with potential pharmacological effects in vitro, and especially in rodent models and/or patients, that usually act on the PPAR pathway, along with other molecular targets. Recent outstanding total syntheses or semisyntheses of these lead compounds are stated. In general, they can activate the transcriptional activity of PPARα, PPARγ, PPARα/γ, PPARβ/δ, PPARα/δ, PPARγ/δ and panPPAR as weak, partial agonists or selective PPARγ modulators (SPPARγM), which may be useful for managing obesity, type 2 diabetes (T2D), dyslipidemia and non-fatty liver disease (NAFLD). Terpenoids is the largest group of compounds that act as potential modulators on PPARs and are comprised from small lipophilic cannabinoids to lipophilic pentacyclic triterpenes and polar saponins. Shikimates-phenylpropanoids include polar heterocyclic flavonoids and phenolic compounds containing at least one C3-C6 unit and usually a double bond on the propyl chain. Quercetin (19), resveratrol (24) and curcumin (27), stand out from this group for exhibiting beneficial effects on patients. Alkaloids, the minor group of potential modulators on PPARs, include berberine (30), which has been widely explored in preclinical and clinical studies for its potential beneficial effects on T2D and dyslipidemia. However, large-scale clinical trials may be warranted for the promising compounds.
Collapse
|
9
|
Zhu X, Yang L, He Y, Sun Y, Shi W, Ou C. Liver Function of Male Rats Exposed to Manganese at Different Time Points. Biol Trace Elem Res 2020; 198:224-230. [PMID: 32100273 DOI: 10.1007/s12011-020-02067-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/30/2020] [Indexed: 01/15/2023]
Abstract
As an essential trace element in the human body, manganese (Mn) is involved in many important biochemical reactions. However, excessive exposure to manganese can cause multiple systematic damages to the body. This study aims to investigate the effects of manganese exposure on serum hepatic enzymes in male rats at different time points. After adaptive feeding for 7 days, male Sprague-Dawley (SD) rats were injected intraperitoneally with 30 mg/kg MnCl2·4H2O once a day for 21 days at zeitgeber time point 2 (ZT2), ZT8, ZT14, and ZT20, respectively. We found that short-term repeated exposure to manganese caused slower body weight gain and increased relative liver and spleen weight index in male rats at different time points. Moreover, serum total bile acid (TBA) increased while aspartate aminotransferase (AST) decreased at ZT2, ZT8, and ZT20. Cholinesterase (ChE) decreased at ZT2 and ZT20, lactic dehydrogenase (LDH) decreased at ZT2, ZT14, and ZT20, and acid phosphatase (ACP) decreased at ZT2 and ZT14. Alkaline phosphatase (ALP) decreased at ZT2, ZT14, and ZT20, but increased at ZT8. Alanine amino transferase (ALT) decreased at ZT2 and ZT20, but increased at ZT8. There was a negative correlation between relative liver weight index with AST, ACP, ALP, and LDH, while a positive correlation with TBA. However, relative spleen weight index had a positive correlation with relative liver weight index and TBA, while a negative correlation with ALT, AST, ACP, ALP, LDH, and ChE. Our study shows that the injury of liver function is caused by short-term repeated manganese exposure at different time points. The time effect should be considered in manganese toxicity evaluation.
Collapse
Affiliation(s)
- Xiaonian Zhu
- Department of Health Toxicology, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, Guangxi, 541004, People's Republic of China
| | - Lin Yang
- Department of Health Toxicology, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, Guangxi, 541004, People's Republic of China
| | - Yonghua He
- Department of Health Toxicology, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, Guangxi, 541004, People's Republic of China
| | - Yi Sun
- Department of Health Toxicology, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, Guangxi, 541004, People's Republic of China
| | - Wenxiang Shi
- Department of Health Toxicology, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, Guangxi, 541004, People's Republic of China
| | - Chaoyan Ou
- Department of Health Toxicology, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, Guangxi, 541004, People's Republic of China.
| |
Collapse
|
10
|
Chen K, Ma Z, Yan X, Liu J, Xu W, Li Y, Dai Y, Zhang Y, Xiao H. Investigation of the Lipid-Lowering Mechanisms and Active Ingredients of Danhe Granule on Hyperlipidemia Based on Systems Pharmacology. Front Pharmacol 2020; 11:528. [PMID: 32435189 PMCID: PMC7218108 DOI: 10.3389/fphar.2020.00528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Investigate the active ingredients and underlying hypolipidemic mechanisms of Danhe granule (DHG). Methods The lipid-lowering effect of DHG was evaluated in hyperlipidemic hamsters induced by a high-fat diet. The ingredients absorbed into the blood after oral administration of DHG in hamsters were identified by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). A systems pharmacology approach incorporating target prediction and network construction, gene ontology (GO) enrichment and pathway analysis was performed to predict the active compounds and map the compounds-targets-disease network. Real-time polymerase chain reaction (RT-PCR) and Western blot were utilized to analyze the mRNA and protein expression levels of predicted targets. Results DHG remarkably lowered the levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), and arteriosclerosis index (AI), at the same time, elevated the levels of serum high-density lipoprotein cholesterol (HDL-c) and HDL-c/TC ratio in hyperlipidemic hamsters. Sixteen ingredients absorbed into blood after oral administration of DHG were identified as the possible components interacted with targets. Moreover, 65 potential targets were predicted after targets intersection and compounds–targets–disease network mapping. Then, compounds–targets–pathways network mapping revealed that six active compounds (emodin, naringenin, etc.) compounds could interact with 10 targets such as sterol regulatory element binding protein (SREBP) 1c, SREBP-2 and peroxisome proliferation-activated receptor (PPAR) α, regulate three lipid metabolism-related pathways including SREBP control of lipid synthesis pathway, PPAR signaling pathway and nuclear receptors in lipid metabolism and toxicity pathway, and further affect lipid metabolic processes including fatty acid biosynthesis, low-density lipoprotein receptor (LDLR)-mediated cholesterol uptake, bile acid biosynthesis, and cholesterol efflux. Experimental results indicated that DHG significantly increased SREBP-2, LDLR, PPARα, liver X receptor alpha (LXRα), cholesterol 7α-hydroxylase (CYP7A1), and ATP binding cassette subfamily A member 1 (ABCA1) mRNA and protein expressions while decreased SREBP-1c and fatty acid synthase (FAS) mRNA, and protein expressions. Conclusion DHG possessed a good hypolipidemic effect that may be through affecting the mRNA and protein expressions of SREBP-1c, FAS, SREBP-2, LDLR, PPARα, LXRα, CYP7A1, and ABCA1, involving in fatty acid synthesis, LDLR-mediated cholesterol uptake, bile acid biosynthesis, and cholesterol efflux. This study further provided experimental evidence about its practical application for treating hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Kuikui Chen
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaochen Ma
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoning Yan
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjuan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yihang Dai
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhuan Zhang
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Jha DK, Shah DS, Talele SR, Amin PD. Correlation of two validated methods for the quantification of naringenin in its solid dispersion: HPLC and UV spectrophotometric methods. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
12
|
Wang LH, Wen QH, Zeng XA, Han Z, Brennan CS. Influence of naringenin adaptation and shock on resistance of Staphylococcus aureus and Escherichia coli to pulsed electric fields. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Lin HJ, Ku KL, Lin IH, Yeh CC. Naringenin attenuates hepatitis B virus X protein-induced hepatic steatosis. Altern Ther Health Med 2017; 17:505. [PMID: 29183361 PMCID: PMC5706293 DOI: 10.1186/s12906-017-2019-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Naringenin (Nar), a common dietary flavonoid abundantly present in fruits, vegetables, and Chinese herbs, is believed to possess strong anti-inflammatory properties and to modulate hepatic apolipoprotein and lipid synthesis. However, there are no reports describing Nar's effects on the hepatitis B virus protein X (HBx) -induced hepatic steatosis, and the detailed molecular mechanisms of the compound's effects are still unclear. METHODS Nar was administered by oral gavage to HBx-transgenic mice from 4 to 6 weeks of age. Mice were sacrificed after 14 days of once-daily naringenin administration. Liver tissues and sera were collected for histopathology and biochemical analysis. RESULTS Nar counteracted hepatic lipid accumulation and liver dysfunction in HBx-transgenic mice. In addition, Nar significantly decreased expression of adipogenic and lipogenic genes in mice, suggesting that the compound may have therapeutic effects in the early stages of HBx-mediated hepatic steatosis. These results indicated that naringenin inhibits HBx-induced expression of hepatic adipogenic and lipogenic genes through suppression of HBx-induced gene expression, including decreases in the transcriptional activity of SREBP1c, LXRα, and PPARγ in HBx-trangenic mice and HBx-transfected HepG2 cells. CONCLUSIONS Results from this study suggested that Nar may serve as a therapeutic agent for preventing HBx-infected hepatic steatosis in humans.
Collapse
|
14
|
Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:481-490. [PMID: 29138066 DOI: 10.1016/j.bbamem.2017.11.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/11/2017] [Accepted: 11/10/2017] [Indexed: 11/24/2022]
Abstract
In this work, modifications of cell membrane fluidity, fatty acid composition and fatty acid biosynthesis-associated genes of Escherichia coli ATCC 25922 (E. coli) and Staphylococcus aureus ATCC 6538 (S. aureus), during growth in the presence of naringenin (NAR), one of the natural antibacterial components in citrus plants, was investigated. Compared to E. coli, the growth of S. aureus was significantly inhibited by NAR in low concentrations. Combination of gas chromatography-mass spectrometry with fluorescence polarization analysis revealed that E. coli and S. aureus cells increased membrane fluidity by altering the composition of membrane fatty acids after exposure to NAR. For example, E. coli cells produced more unsaturated fatty acids (from 18.5% to 43.3%) at the expense of both cyclopropane and saturated fatty acids after growth in the concentrations of NAR from 0 to 2.20mM. For S. aureus grown with NAR at 0 to 1.47mM, the relative proportions of anteiso-branched chain fatty acids increased from 37.2% to 54.4%, whereas iso-branched and straight chain fatty acids decreased from 30.0% and 33.1% to 21.6% and 23.7%, respectively. Real time q-PCR analysis showed that NAR at higher concentrations induced a significant down-regulation of fatty acid biosynthesis-associated genes in the bacteria, with the exception of an increased expression of fabA gene. The minimum inhibitory concentration (MIC) of NAR against these two bacteria was determined, and both of bacteria underwent morphological changes after exposure to 1.0 and 2.0 MIC.
Collapse
|