1
|
Hidalgo M, Railef B, Rodríguez V, Navarro C, Rubio V, Meneses-Pacheco J, Soto-Alarcón S, Kreindl C, Añazco C, Zuñiga L, Porras O. The antioxidant property of CAPE depends on TRPV1 channel activation in microvascular endothelial cells. Redox Biol 2025; 80:103507. [PMID: 39848056 PMCID: PMC11794178 DOI: 10.1016/j.redox.2025.103507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC). By monitoring cytoplasmic Ca2+ in a microvascular EC model, we compared the calcium responses evoked by three structurally related compounds: caffeic acid phenethyl ester, neochlorogenic acid and caffeic acid. Only CAPE induced rapid and transient calcium responses at nanomolar concentrations together with a gradual increase in cytoplasmic sodium levels, suggesting the activation of a non-selective cationic permeation at the plasma membrane. Electrophysiological as well as pharmacological, and RNA silencing assays confirmed the involvement of TRPV1 in the recognition of CAPE by ECs. Finally, we demonstrated that Ca2+ influx by TRPV1 was necessary for recording CAPE-induced cytoplasmic redox changes, a phenomenon captured in real-time in ECs expressing the HyPer biosensor. Our data depict a molecular mechanism behind the antioxidant effect of CAPE in endothelial cells, connecting the activation of TRPV1 ion channels, cytoplasmic calcium increase, and a reduction of disulfide bonds on a redox biosensor. This phenomenon occurs within seconds to minutes and contributes to a better understanding of the mechanisms underlying the vasodilatory effect of CAPE and other compounds that interact with TRPV1 in the vascular bed.
Collapse
Affiliation(s)
- Miltha Hidalgo
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| | - Bárbara Railef
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| | - Vania Rodríguez
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| | - Carolina Navarro
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| | - Vanessa Rubio
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| | - Jorge Meneses-Pacheco
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| | - Sandra Soto-Alarcón
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile; Nutrition and Dietetics, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, 7500912, Chile.
| | - Christine Kreindl
- Nutrition and Dietetics, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, 7500912, Chile.
| | - Carolina Añazco
- Nutritional Biochemistry Laboratory, Faculty of Science for Health Care, Universidad San Sebastian, Valdivia, Chile.
| | - Leandro Zuñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Casilla, Talca, 3460000, Chile.
| | - Omar Porras
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| |
Collapse
|
2
|
Tun TN, Yoshino S, Kayaki H, Kuwahara H, Matsui T. Sulfated and Glucuronidated Conjugates of 3-(4-Hydroxy-3-methoxyphenyl) Propionic Acid Can Promote NO Production by Elevated Ca 2+ Release from the Endoplasmic Reticulum in HUVECs. ACS OMEGA 2025; 10:2887-2896. [PMID: 39895728 PMCID: PMC11780417 DOI: 10.1021/acsomega.4c09008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
We aimed to clarify whether metabolic conjugates of sulfated and glucuronidated forms have the physiological potential to produce the vasorelaxant nitric oxide (NO) in human umbilical vein endothelial cells (HUVECs), using 3-(4-hydroxy-3-methoxyphenyl) propionic acid (HMPA), a metabolite of dietary flavonoids in the gut. Treatment of HUVECs with sulfated and glucuronidated HMPAs significantly increased NO production and eNOS phosphorylation. A transporter-inhibitor-aided cellular uptake experiment of HMPAs revealed that both conjugates were incorporated into cells via MCT, OATP1A2, and GLUT transporters, whereas intact HMPA was transported via the MCT and OATP1A2 routes. A Fluo-4-probe Ca2+ assay demonstrated that the incorporated HMPAs significantly increased intracellular Ca2+ concentration by stimulating the IP3R of the endoplasmic reticulum in the CaMKII/eNOS signaling cascade. In conclusion, to our knowledge, this study provides the first evidence that sulfated and glucuronidated forms of HMPAs may stimulate NO production in HUVECs.
Collapse
Affiliation(s)
- Tint Ni
Ni Tun
- Department
of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Susumu Yoshino
- Research
Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama 729-3102, Japan
| | - Hiroyuki Kayaki
- Research
Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama 729-3102, Japan
| | - Hiroshige Kuwahara
- Research
Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama 729-3102, Japan
| | - Toshiro Matsui
- Department
of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Tang S, Li J, Li Y, Du H, Zhu W, Zhang R, Wan J. Effects of Saccharomyces boulardii on microbiota composition and metabolite levels in the small intestine of constipated mice. BMC Microbiol 2024; 24:493. [PMID: 39578737 PMCID: PMC11585213 DOI: 10.1186/s12866-024-03647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Saccharomyces boulardii (S. boulardii) is a fungal probiotic used to treat digestive disorders. However, the mechanism(s) by which S. boulardii affects the small intestine remains unclear. Here, we aimed to explore the effects of S. boulardii on the small intestine and the underlying mechanisms in mice with loperamide-induced constipation. While S. boulardii administration did not fully reverse the alterations in loperamide-induced defecation parameters, it altered the small intestinal floral composition toward a community conducive to alleviate constipation. Moreover, S. boulardii up-regulated the expression of tyrosine-protein kinase Kit (c-Kit), aquaporin 3 (AQP3), interleukin (IL)-10, myosin light chain kinase (MLCK), and phosphorylated myosin light chain 20 (P-MLC20), while concurrently down-regulating the expression levels of inducible nitric oxide synthase (iNOS), p65, and IL-17 A. These alterations indicate a discernible effect of small intestinal water reabsorption, inflammatory factor levels, and smooth muscle contraction. Saccharomyces boulardii also positively regulated small intestinal metabolite levels, such as fructose 6-phosphate, dihomo-alpha-linolenic acid, and 3-(4-hydroxyphenyl) lactate, and participated in metabolic pathways such as arginine biosynthesis, linoleic acid metabolism, and protein digestion and absorption. While not fully reversing defecation changes, Saccharomyces boulardii alters intestinal flora, up-regulates key proteins affecting water reabsorption and inflammation, and positively influences metabolic pathways. Our study provides serves as a basis for further studies on the application of S. boulardii in the treatment of intestinal disorders.
Collapse
Affiliation(s)
- Shuai Tang
- Medical School of Chinese PLA, 28 Fuxing Road, Haidian District, Beijing, 100039, China
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100039, China
| | - Jia Li
- Department of Gastroenterology, The 983rd Hospital of Joint Logistic Support Force of PLA, Huangwei Road, Hebei District, Tianjin, 300142, China
| | - Yi Li
- Department of Gastroenterology, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100039, China
| | - Haitao Du
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100039, China
| | - Wenya Zhu
- Department of Geriatrics, The Sixth Medical Center, Chinese PLA General Hospital, 6 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Ru Zhang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100039, China.
| | - Jun Wan
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100039, China.
| |
Collapse
|
4
|
Li Z, He H, Liu J, Gu H, Fu C, Zeb A, Che T, Shen S. Preparation and Vasodilation Mechanism of Angiotensin-I-Converting Enzyme Inhibitory Peptide from Ulva prolifera Protein. Mar Drugs 2024; 22:398. [PMID: 39330279 PMCID: PMC11433523 DOI: 10.3390/md22090398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Ulva prolifera, a type of green algae that can be consumed, was utilized in the production of an angiotensin-I converting enzyme (ACE) inhibitory peptide. The protein from the algae was isolated and subsequently hydrolyzed using a neutral protease. The resulting hydrolysate underwent several processes including Sephadex-G100 filtration chromatography, ultrafiltration, HPLC-Q-TOF-MS analysis, ADMET screening, UV spectrum detection test, molecular docking, and molecular dynamic simulation. Then, the ACE inhibitory peptide named KAF (IC50, 0.63 ± 0.26 µM) was identified. The effectiveness of this peptide in inhibiting ACE can be primarily attributed to two conventional hydrogen bonds. Additionally, it could activate endothelial nitric oxide synthase (eNOS) activity to promote the generation of nitric oxide (NO). Additionally, KAF primarily increased the intracellular calcium (Ca2+) level by acting on L-type Ca2+ channel (LTCC) and the ryanodine receptor (RyR) in the endoplasmic reticulum, and completed the activation of eNOS under the mediation of protein kinase B (Akt) signaling pathway. Our study has confirmed that KAF has the potential to be processed into pharmaceutical candidate functions on vasoconstriction.
Collapse
Affiliation(s)
- Zhiyong Li
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215101, China
| | - Hongyan He
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Jiasi Liu
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Huiyue Gu
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Caiwei Fu
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Aurang Zeb
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Tuanjie Che
- Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou 730030, China
| | - Songdong Shen
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| |
Collapse
|
5
|
Zhao M, Lei J, Deng F, Zhao C, Xu T, Ji B, Fu M, Wang X, Sun M, Zhang M, Gao Q. Gestational Hypoxia Impaired Endothelial Nitric Oxide Synthesis Via miR-155-5p/NADPH Oxidase/Reactive Oxygen Species Axis in Male Offspring Vessels. J Am Heart Assoc 2024; 13:e032079. [PMID: 38240225 PMCID: PMC11056123 DOI: 10.1161/jaha.123.032079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Nitric oxide (NO) is the most important vasodilator secreted by vascular endothelial cells, and its abnormal synthesis is involved in the development of cardiovascular disease. The prenatal period is a critical time for development and largely determines lifelong vascular health in offspring. Given the high incidence and severity of gestational hypoxia in mid-late pregnancy, it is urgent to further explore whether it affects the long-term synthesis of NO in offspring vascular endothelial cells. METHODS AND RESULTS Pregnant Sprague-Dawley rats were housed in a normoxic or hypoxic (10.5% O2) chamber from gestation days 10 to 20. The thoracic aortas of fetal and adult male offspring were isolated for experiments. Gestational hypoxia significantly reduces the NO-dependent vasodilation mediated by acetylcholine in both the fetal and adult offspring thoracic aorta rings. Meanwhile, acetylcholine-induced NO synthesis is impaired in vascular endothelial cells from hypoxic offspring thoracic aortas. We demonstrate that gestational hypoxic offspring exhibit a reduced endothelial NO synthesis capacity, primarily due to increased expression of NADPH oxidase 2 and enhanced reactive oxygen species. Additionally, gestational hypoxic offspring show elevated levels of miR-155-5p in vascular endothelial cells, which is associated with increased expression of NADPH oxidase 2 and reactive oxygen species generation, as well as impaired NO synthesis. CONCLUSIONS The present study is the first to demonstrate that gestational hypoxia impairs endothelial NO synthesis via the miR-155-5p/NADPH oxidase 2/reactive oxygen species axis in offspring vessels. These novel findings indicate that the detrimental effects of gestational hypoxia on fetal vascular function can persist into adulthood, providing new insights into the development of vascular diseases.
Collapse
Affiliation(s)
- Meng Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of ChinaMaternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanShandongChina
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of Obstetrics and GynecologyThe Third People’s Hospital of Bengbu Affiliated to Bengbu Medical CollegeBengbuAnhui ProvinceChina
| | - Jiahui Lei
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fengying Deng
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chenxuan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ting Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bingyu Ji
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mengyu Fu
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of ChinaMaternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanShandongChina
| | - Miao Sun
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of ChinaMaternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanShandongChina
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health CommissionShandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao UniversityJinanShandongChina
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of ChinaMaternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanShandongChina
| | - Qinqin Gao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of ChinaMaternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanShandongChina
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
6
|
Song W, Yuan Y, Tan X, Gu Y, Zeng J, Song W, Xin Z, Fang D, Guan R. Icariside II induces rapid phosphorylation of endothelial nitric oxide synthase via multiple signaling pathways. PeerJ 2022; 10:e14192. [PMID: 36312762 PMCID: PMC9615964 DOI: 10.7717/peerj.14192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
Icariside II, as a favonoid compound derived from epimedium, has been proved to involed in a variety of biological and pharmacological effects such as anti-inflammatory, anti-osteoporosis, anti-oxidation, anti-aging, and anti-cancer but its mechanism is unclear, especially in terms of its effect on post-transcriptional modification of endothelial nitric oxide synthase (eNOS). Phosphorylation of eNOS plays an important role in the synthesis of nitric oxide in endothelial cells, which is closely related to erectile dysfunction, atherosclerosis, Alzheimer's disease, and other diseases. Our study aims to investigate the effect and mechanism of Icariside II on the rapid phosphorylation of eNOS. In this study, human umbilical vein endothelial cells (HUVECs) were stimulated with Icariside II in the presence or absence of multiple inhibitors (1 µM), including LY294002 (PI3K-inhibitor), MK-2206 (AKT-inhibitor), Bisindolylmaleimide X (AMPK-inhibitor), H-89 (CaMKII-inhibitor), KN-62 (PKA-inhibitor), Dorsomorphin (PKC-inhibitor). The proliferation of HUVECs was assessed using cell counting kit-8 (CCK-8). The release of nitric oxide (NO) within HUVECs was detected via fluorescence probe (DAF-FM). Western blot was used to examine the effect of Icariside II on the expression of eNOS, phosphorylation of eNOS, and common signaling pathways proteins. In this study, Icariside II was found to promote the cell proliferation and rapid NO release in HUVECs. The phosphorylation of eNOS-Ser1177 was significantly increased after Icariside II stimulation and reached a peak at 10 min (p < 0.05). Meanwhile, the phosphorylation of eNOS-Thr495 was significantly decreased after 45 min of stimulation (p < 0.05). Following the intervention with multiple inhibitors, it was found that MK-2206 (AKT inhibitor), LY294002 (PI3K inhibitor), KN-62 (AMPK inhibitor), and Bisindolylmaleimide X (PKC inhibitor) could significantly inhibit the phosphorylation of eNOS-Ser1177 caused by Icariside II (p < 0.05), while MK-2206, LY294002, and Bisindolylmaleimide X reversed the alleviated phosphorylation of eNOS-Thr495. We concluded that Icariside can regulate rapid phosphorylation of eNOS- Ser1177 and eNOS-Thr495 via multiple signaling pathways, resulting in the up-regulation of eNOS and the increased release of NO.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiming Yuan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Xiaohui Tan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Yangyang Gu
- Department of Urology, Peking University First Hospital, Beijing, China
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianyu Zeng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weidong Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhongcheng Xin
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Ruili Guan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|
7
|
Lee GH, Lee SY, Zheng C, Pham HT, Kim CY, Kim MY, Han EH, Hwang YP, Jeong HG. Effect of 3-caffeoyl, 4-dihydrocaffeoylquinic acid from Salicornia herbacea on endothelial nitric oxide synthase activation via calcium signaling pathway. Toxicol Res 2022; 38:355-364. [DOI: 10.1007/s43188-022-00121-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
|
8
|
Lee GH, Kim CY, Zheng C, Jin SW, Kim JY, Lee SY, Kim MY, Han EH, Hwang YP, Jeong HG. Rutaecarpine Increases Nitric Oxide Synthesis via eNOS Phosphorylation by TRPV1-Dependent CaMKII and CaMKKβ/AMPK Signaling Pathway in Human Endothelial Cells. Int J Mol Sci 2021; 22:ijms22179407. [PMID: 34502308 PMCID: PMC8431268 DOI: 10.3390/ijms22179407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
Rutaecarpine (RUT) is a bioactive alkaloid isolated from the fruit of Evodia rutaecarpa that exerts a cellular protective effect. However, its protective effects on endothelial cells and its mechanism of action are still unclear. In this study, we demonstrated the effects of RUT on nitric oxide (NO) synthesis via endothelial nitric oxide synthase (eNOS) phosphorylation in endothelial cells and the underlying molecular mechanisms. RUT treatment promoted NO generation by increasing eNOS phosphorylation. Additionally, RUT induced an increase in intracellular Ca2+ concentration and phosphorylation of Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ), AMP-activated protein kinase (AMPK), and Ca2+/calmodulin-dependent kinase II (CaMKII). Inhibition of transient receptor potential vanilloid type 1 (TRPV1) attenuated RUT-induced intracellular Ca2+ concentration and phosphorylation of CaMKII, CaMKKβ, AMPK, and eNOS. Treatment with KN-62 (a CaMKII inhibitor), Compound C (an AMPK inhibitor), and STO-609 (a CaMKKβ inhibitor) suppressed RUT-induced eNOS phosphorylation and NO generation. Interestingly, RUT attenuated the expression of ICAM-1 and VCAM-1 induced by TNF-α and inhibited the inflammation-related NF-κB signaling pathway. Taken together, these results suggest that RUT promotes NO synthesis and eNOS phosphorylation via the Ca2+/CaMKII and CaM/CaMKKβ/AMPK signaling pathways through TRPV1. These findings provide evidence that RUT prevents endothelial dysfunction and benefit cardiovascular health.
Collapse
Affiliation(s)
- Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Chae Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Chuanfeng Zheng
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Ji Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Seung Yeon Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Mi Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Korea;
| | | | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
- Correspondence: ; Tel.: +82-42-821-5936
| |
Collapse
|
9
|
Liu C, Li X, Fu J, Chen K, Liao Q, Wang J, Chen C, Luo H, Jose PA, Yang Y, Yang J, Zeng C. Increased AT 1 receptor expression mediates vasoconstriction leading to hypertension in Snx1 -/- mice. Hypertens Res 2021; 44:906-917. [PMID: 33972750 PMCID: PMC8590203 DOI: 10.1038/s41440-021-00661-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 02/03/2023]
Abstract
Angiotensin II type 1 receptor (AT1R) is a vital therapeutic target for hypertension. Sorting nexin 1 (SNX1) participates in the sorting and trafficking of the renal dopamine D5 receptor, while angiotensin and dopamine are counterregulatory factors in the regulation of blood pressure. The effect of SNX1 on AT1R is not known. We hypothesized that SNX1, through arterial AT1R sorting and trafficking, is involved in blood pressure regulation. CRISPR/Cas9 system-generated SNX1-/- mice showed dramatic elevations in blood pressure compared to their wild-type littermates. The angiotensin II-mediated contractile reactivity of the mesenteric arteries and AT1R expression in the aortas were also increased. Moreover, immunofluorescence and immunoprecipitation analyses revealed that SNX1 and AT1R were colocalized and interacted in the aortas of wild-type mice. In vitro studies revealed that AT1R protein levels and downstream calcium signaling were upregulated in A10 cells treated with SNX1 siRNA. This may have resulted from decreased AT1R protein degradation since the AT1R mRNA levels showed no changes. AT1R protein was less degraded when SNX1 was downregulated, as reflected by a cycloheximide chase assay. Furthermore, proteasomal rather than lysosomal inhibition increased AT1R protein content, and this effect was accompanied by decayed binding of ubiquitin and AT1R after SNX1 knockdown. Confocal microscopy revealed that AT1R colocalized with PSMD6, a proteasomal marker, and the colocalization was reduced after SNX1 knockdown. These findings suggest that SNX1 sorts AT1R for proteasomal degradation and that SNX1 impairment increases arterial AT1R expression, leading to increased vasoconstriction and blood pressure.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingyue Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan, China
| | - Jinjuan Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yongjian Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China.
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan, China.
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China.
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.
| |
Collapse
|
10
|
Liu L, Wang X, Liu K, Kang J, Wang S, Song Y, Zhou K, Yi L, Liu X. Inhibition of inducible nitric oxide synthase improved erectile dysfunction in rats with type 1 diabetes. Andrologia 2021; 53:e14138. [PMID: 34137064 DOI: 10.1111/and.14138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM), which is closely related to microvascular dysfunction, is a risk factor for erectile dysfunction (ED). Furthermore, the upregulation of inducible nitric oxide synthase (iNOS) is associated with systemic vascular dysfunction in rats with diabetes. The purpose of this study was to investigate the role of iNOS in diabetes mellitus erectile dysfunction (DMED). First, we developed a type 1 DM rat model using streptozotocin and selected those that developed DMED. Then, we injected these rats with the 1400W, an iNOS inhibitor, for 10 weeks and subsequently assessed their ED. Lastly, we performed various molecular studies and histopathological analyses of penile tissues collected from these rats after the experiments. Through the histopathological studies, we also found that the treatment restored the ratios of the smooth muscle to collagen fibres, delayed the development of microvascular injury and alleviated the oxidative stress caused by hyperglycaemia. Based on these results, we confirmed that upregulation of iNOS leads to microvascular dysfunction in patients with ED. Overall, we found that inhibition of iNOS displayed beneficial effects in the treatment of ED, suggesting that its mechanism should be further explored.
Collapse
Affiliation(s)
- Li Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiao Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Kang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Jiaqi Kang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yuxuan Song
- Department of Urology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Kechong Zhou
- Department of Urology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Yi
- Department of Urology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Zou D, Li Z, Lv F, Yang Y, Yang C, Song J, Chen Y, Jin Z, Zhou J, Jiang Y, Ma Y, Jing Z, Tang Y, Zhang Y. Pan-Cancer Analysis of NOS3 Identifies Its Expression and Clinical Relevance in Gastric Cancer. Front Oncol 2021; 11:592761. [PMID: 33747912 PMCID: PMC7969995 DOI: 10.3389/fonc.2021.592761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background:NOS3 (endothelial NOS, eNOS) is a member of the nitric oxide synthase (NOS) enzyme family, mainly participating in nitric oxide (NO) generation. NOS3 has been reported to inhibit apoptosis and promote angiogenesis, proliferation, and invasiveness. However, the expression pattern of NOS3 and its diagnostic and prognostic potential has not been investigated in a pan-cancer perspective. Methods: Data from the Genotype-Tissue Expression (GTEx), the Cancer Genome Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE), and the Cancer Therapeutics Response Portal (CTRP) were employed and NOS3 expression was comprehensively analyzed in normal tissues, cancer tissues, and cell lines. Immunohistochemical staining of tissue sections were used to validate the prognostic role of NOS3 in gastric cancer patients. GSVA and GSEA analyses were performed to investigate signaling pathways related to NOS3 expression. Results: In normal tissues, NOS3 was expressed highest in the spleen and lowest in the blood. NOS3 expression was increased in stomach adenocarcinoma (STAD) and significantly associated with poor prognosis of patients. Immunohistochemical staining validated that NOS3 was an independent prognostic factor of gastric cancer. Several canonical cancer-related pathways were found to be correlated with NOS3 expression in STAD. The expression of NOS3 was related to the response to QS-11 and brivinib in STAD. Conclusions:NOS3 was an independent prognostic factor for patients with STAD. Increased expression of NOS3 influenced occurrence and development of STAD through several canonical cancer-related pathways. Drug response analysis reported drugs to suppress NOS3. NOS3 might be a novel target for gastric cancer treatment.
Collapse
Affiliation(s)
- Dan Zou
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Fei Lv
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Yi Yang
- Laboratory Animal Center, China Medical University, Shenyang, China
| | - Chunjiao Yang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Jincheng Song
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China.,Lymphoma and Myeloma Diagnosis and Treatment Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Chen
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Zi Jin
- The First Department of Oncology, Shenyang Fifth People's Hospital, Shenyang, China
| | - Jinpeng Zhou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.,Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanju Ma
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, China
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yu Tang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Lee GH, Park JS, Jin SW, Pham TH, Thai TN, Kim JY, Kim CY, Choi JH, Han EH, Jeong HG. Betulinic Acid Induces eNOS Expression via the AMPK-Dependent KLF2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14523-14530. [PMID: 33232606 DOI: 10.1021/acs.jafc.0c06250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Betulinic acid (BA) is a natural pentacyclic triterpenoid with protective effects against inflammation, metabolic diseases, and cardiovascular diseases. We have previously shown that BA prevents endothelial dysfunction by increasing nitric oxide (NO) synthesis through activating endothelial nitric oxide synthase (eNOS) in human endothelial cells. However, the effect of BA on eNOS expression remains unclear. Thus, the aim of our study was to investigate the intracellular pathways associated with the effect of BA to regulate eNOS expression in human endothelial cells. BA significantly increased eNOS expression in a time- and concentration-dependent manner. Additionally, BA upregulated the expression of the transcription factor KLF2, which is known to regulate eNOS expression. KLF2 silencing in human endothelial cells attenuated the ability of BA to upregulate eNOS. BA also increased levels of intracellular Ca2+, activating CaMKKβ, CaMKIIα, and AMPK. Inhibition of the TRPC calcium channel abolished BA-mediated effects on intracellular Ca2+ levels. Moreover, BA increased the phosphorylation levels of ERK5, HDAC5, and MEF2C. Pretreatment of cells with compound C (AMPK inhibitor), LMK235 (HDAC5 inhibitor), and XMD8-92 (ERK5 inhibitor) attenuated the BA-induced eNOS expression. Collectively, these findings suggest that BA induces eNOS expression by activating the HDAC5/ERK5/KLF2 pathway in endothelial cells. The data presented here provide strong evidence supporting the use of BA to prevent endothelial dysfunction and treat vascular diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Song Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Thi Hoa Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tuyet Ngan Thai
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chae Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
13
|
A complete map of the Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) signaling pathway. J Cell Commun Signal 2020; 15:283-290. [PMID: 33136287 DOI: 10.1007/s12079-020-00592-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine-protein kinase belonging to the Ca2+/calmodulin-dependent protein kinase subfamily. CAMKK2 has an autocatalytic site, which gets exposed when Ca2+/calmodulin (CAM) binds to it. This results in autophosphorylation and complete activation of CAMKK2. The three major known downstream targets of CAMKK2 are 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPKα), calcium/calmodulin-dependent protein kinase 1 (CAMK1) and calcium/calmodulin-dependent protein kinase 4 (CAMK4). Activation of these targets by CAMKK2 is important for the maintenance of different cellular and physiological processes within the cell. CAMKK2 is found to be important in neuronal development, bone remodeling, adipogenesis, and systemic glucose homeostasis, osteoclastgensis and postnatal myogensis. CAMKK2 is reported to be involved in pathologies like Duchenne muscular dystrophy, inflammation, osteoporosis and bone remodeling and is also reported to be overexpressed in prostate cancer, hepatic cancer, ovarian and gastric cancer. CAMKK2 is involved in increased cell proliferation and migration through CAMKK2/AMPK pathway in prostate cancer and activation of AKT in ovarian cancer. Although CAMKK2 is a molecule of great importance, a public resource of the CAMKK2 signaling pathway is currently lacking. Therefore, we carried out detailed data mining and documentation of the signaling events associated with CAMKK2 from published literature and developed an integrated reaction map of CAMKK2 signaling. This resulted in the cataloging of 285 reactions belonging to the CAMKK2 signaling pathway, which includes 33 protein-protein interactions, 74 post-translational modifications, 7 protein translocation events, and 22 activation/inhibition events. Besides, 124 gene regulation events and 25 activator/inhibitors involved in CAMKK2 activation were also cataloged. The CAMKK2 signaling pathway map data is made freely accessible through WikiPathway database ( https://www.wikipathways.org/index.php/Pathway:WP4874 ). We expect that data on a signaling map of CAMKK2 will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on CAMKK2 and its utility in the development of biomarkers and therapeutic targets.
Collapse
|
14
|
Shrikanth CB, Nandini CD. AMPK in microvascular complications of diabetes and the beneficial effects of AMPK activators from plants. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152808. [PMID: 30935723 DOI: 10.1016/j.phymed.2018.12.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Diabetes mellitus is a multifactorial disorder with the risk of micro- and macro-vascular complications. High glucose-induced derangements in metabolic pathways are primarily associated with the initiation and progression of secondary complications namely, diabetic nephropathy, neuropathy, and retinopathy. Adenosine monophosphate-activated protein kinase (AMPK) has emerged as an attractive therapeutic target to treat various metabolic disorders including diabetes mellitus. It is a master metabolic regulator that helps in maintaining cellular energy homeostasis by promoting ATP-generating catabolic pathways and inhibiting ATP-consuming anabolic pathways. Numerous pharmacological and plant-derived bioactive compounds that increase AMP-activated protein kinase activation has shown beneficial effects by mitigating secondary complications namely retinopathy, nephropathy, and neuropathy. PURPOSE The purpose of this review is to highlight current knowledge on the role of AMPK and its activators from plant origin in diabetic microvascular complications. METHODS Search engines such as Google Scholar, PubMed, Science Direct and Web of Science are used to extract papers using relevant key words. Papers mainly focusing on the role of AMPK and AMPK activators from plant origin in diabetic nephropathy, retinopathy, and neuropathy was chosen to be highlighted. RESULTS According to results, decrease in AMPK activation during diabetes play a causative role in the pathogenesis of diabetic microvascular complications. Some of the plant-derived bioactive compounds were beneficial in restoring AMPK activity and ameliorating diabetic microvascular complications. CONCLUSION AMPK activators from plant origin are beneficial in mitigating diabetic microvascular complications. These pieces of evidence will be helpful in the development of AMPK-centric therapies to mitigate diabetic microvascular complications.
Collapse
Affiliation(s)
- C B Shrikanth
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI campus, Mysuru, Karnataka 570 020, India
| | - C D Nandini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI campus, Mysuru, Karnataka 570 020, India.
| |
Collapse
|
15
|
Malekmohammad K, Sewell RD, Rafieian-Kopaei M. Mechanisms of Medicinal Plant Activity on Nitric Oxide (NO) Bioavailability as Prospective Treatments for Atherosclerosis. Curr Pharm Des 2020; 26:2591-2601. [DOI: 10.2174/1381612826666200318152049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Background and objective:
Atherosclerosis is one of the leading causes of human morbidity globally
and reduced bioavailability of vascular nitric oxide (NO) has a critical role in the progression and development of
the atherosclerotic disease. Loss of NO bioavailability, for example via a deficiency of the substrate (L-arginine)
or cofactors for endothelial nitric oxide synthase (eNOS), invariably leads to detrimental vascular effects such as
impaired endothelial function and increased smooth muscle cell proliferation, deficiency of the substrate (Larginine)
or cofactors for eNOS. Various medicinal plants and their bioactive compounds or secondary metabolites
with fewer side effects are potentially implicated in preventing cardiovascular disease by increasing NO
bioavailability, thereby ameliorating endothelial dysfunction. In this review, we describe the most notable medicinal
plants and their bioactive compounds that may be appropriate for enhancing NO bioavailability, and
treatment of atherosclerosis.
Methods:
The material in this article was obtained from noteworthy scientific databases, including Web of Science,
PubMed, Science Direct, Scopus and Google Scholar.
Results:
Medicinal plants and their bioactive compounds influence NO production through diverse mechanisms
including the activation of the nuclear factor kappa B (NF-κB) signaling pathway, activating protein kinase C
(PKC)-α, stimulating protein tyrosine kinase (PTK), reducing the conversion of nitrite to NO via nitrate-nitrite
reduction pathways, induction of eNOS, activating the phosphatidylinositol 3-kinase (PI3K)/serine threonine
protein kinase B (AKT) (PI3K/AKT/eNOS/NO) pathway and decreasing oxidative stress.
Conclusion:
Medicinal plants and/or their constituent bioactive compounds may be considered as safe therapeutic
options for enhancing NO bioavailability and prospective preventative therapy for atherosclerosis.
Collapse
Affiliation(s)
| | - Robert D.E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB. Wales, United Kingdom
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
16
|
Yi R, Peng P, Zhang J, Du M, Lan L, Qian Y, Zhou J, Zhao X. Lactobacillus plantarum CQPC02-Fermented Soybean Milk Improves Loperamide-Induced Constipation in Mice. J Med Food 2019; 22:1208-1221. [PMID: 31621475 DOI: 10.1089/jmf.2019.4467] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study determined the ameliorative effects of the novel microorganism, Lactobacillus plantarum CQPC02 (LP-CQPC02), fermented in soybean milk, on loperamide-induced constipation in Kunming mice. High-performance liquid chromatography revealed that LP-CQPC02-fermented soybean milk (LP-CQPC02-FSM) had six types of soybean isoflavones, whereas Lactobacillus bulgaricus-fermented soybean milk (LB-FSM) and unfermented soybean milk (U-FSM) only had five types of soybean isoflavones. LP-CQPC02-FSM also contained more total and active soybean isoflavones than LB-FSM and U-FSM. Results from mouse experiments showed that the defecation factors (quantity, fecal weight and water content, gastrointestinal transit ability, and time to first black stool) in the LP-CQPC02-FSM-treated mice were better than those in the LB-FSM- and U-FSM-treated mice. The serum and small intestinal tissue experiments showed that soybean milk increased the motilin, gastrin, endothelin, acetylcholinesterase, substance P, vasoactive intestinal peptide, and glutathione levels and decreased the somatostatin, myeloperoxidase, nitric oxide, and malondialdehyde levels compared with the constipated mice in the control group. The LP-CQPC02-FSM also showed better effects than those of LB-FSM and U-FSM. Further results showed that LP-CQPC02-FSM upregulated cuprozinc-superoxide dismutase (Cu/Zn-SOD), manganese superoxide dismutase (Mn-SOD), catalase (CAT), c-Kit, stem cell factor (SCF), glial cell-derived neurotrophic factor (GDNF), neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), and aquaporin-9 (AQP9) and downregulated the expression levels of transient receptor potential cation channel subfamily V member 1 (TRPV1), inducible nitric oxide synthase (iNOS), and aquaporin-3 (AQP3) in the constipated mice. LP-CQPC02-FSM increased the Bacteroides and Akkermansia abundances and decreased the Firmicutes abundance in the feces of the constipated mice and decreased the Firmicutes/Bacteroides ratio. This study confirmed that LP-CQPC02-FSM partially reversed constipation in mice.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Peng Peng
- Department of Gastroenterology, Emergency Medical Center of Chongqing, the Affiliated Central Hospital of Chongqing University, Chongqing, China
| | - Jing Zhang
- Environment and Quality Inspection College, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, China
| | - Lingxia Lan
- College of Food Science, Southwest University, Chongqing, China
| | - Yu Qian
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jie Zhou
- College of Food Science, Southwest University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
17
|
Jin SW, Pham HT, Choi JH, Lee GH, Han EH, Cho YH, Chung YC, Kim YH, Jeong HG. Impressic Acid, a Lupane-Type Triterpenoid from Acanthopanax koreanum, Attenuates TNF-α-Induced Endothelial Dysfunction via Activation of eNOS/NO Pathway. Int J Mol Sci 2019; 20:ijms20225772. [PMID: 31744135 PMCID: PMC6888592 DOI: 10.3390/ijms20225772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is one of the most reported diseases worldwide, and extensive research and trials are focused on the discovery and utilizing for novel therapeutics. Nitric oxide (NO) is produced mainly by endothelial nitric oxide synthase (eNOS) and it plays a key role in regulating vascular function including systemic blood pressure and vascular inflammation in vascular endothelium. In this study hypothesized that Impressic acid (IPA), a component isolated from Acanthopanax koreanum, acts as an enhancer of eNOS activity and NO production. IPA treatment induced eNOS phosphorylation and NO production, which was correlated with eNOS phosphorylation via the activation of JNK1/2, p38 MAPK, AMPK, and CaMKII. In addition, the induction of eNOS phosphorylation by IPA was attenuated by pharmacological inhibitor of MAPKs, AMPK, and CaMKII. Finally, IPA treatment prevented the adhesion of TNF-α-induced monocytes to endothelial cells and suppressed the TNF-α-stimulated ICAM-1 expression via activation of NF-κB, while treatment with L-NAME, the NOS inhibitor, reversed the inhibitory effect of IPA on TNF-α-induced ICAM-1 expression via activation of NF-κB. Taken together, these findings show that IPA protects against TNF-α-induced vascular endothelium dysfunction through attenuation of the NF-κB pathway by activating eNOS/NO pathway in endothelial cells.
Collapse
Affiliation(s)
- Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Hoa Thi Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Korea;
| | - Young Ho Cho
- Department of Pharmaceutics & Biotechnology, College of Medical Engineering, Konyang University, Daejeon 35365, Korea;
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, 52833, Korea;
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
- Correspondence: ; Tel.: +82-42-821-5936
| |
Collapse
|
18
|
Bellampalli SS, Ji Y, Moutal A, Cai S, Wijeratne EMK, Gandini MA, Yu J, Chefdeville A, Dorame A, Chew LA, Madura CL, Luo S, Molnar G, Khanna M, Streicher JM, Zamponi GW, Gunatilaka AAL, Khanna R. Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve injury-associated peripheral sensory neuropathy via block of N- and T-type calcium channels. Pain 2019; 160:117-135. [PMID: 30169422 DOI: 10.1097/j.pain.0000000000001385] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Federal Pain Research Strategy recommended development of nonopioid analgesics as a top priority in its strategic plan to address the significant public health crisis and individual burden of chronic pain faced by >100 million Americans. Motivated by this challenge, a natural product extracts library was screened and identified a plant extract that targets activity of voltage-gated calcium channels. This profile is of interest as a potential treatment for neuropathic pain. The active extract derived from the desert lavender plant native to southwestern United States, when subjected to bioassay-guided fractionation, afforded 3 compounds identified as pentacyclic triterpenoids, betulinic acid (BA), oleanolic acid, and ursolic acid. Betulinic acid inhibited depolarization-evoked calcium influx in dorsal root ganglion (DRG) neurons predominantly through targeting low-voltage-gated (Cav3 or T-type) and CaV2.2 (N-type) calcium channels. Voltage-clamp electrophysiology experiments revealed a reduction of Ca, but not Na, currents in sensory neurons after BA exposure. Betulinic acid inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, BA did not engage human mu, delta, or kappa opioid receptors. Intrathecal administration of BA reversed mechanical allodynia in rat models of chemotherapy-induced peripheral neuropathy and HIV-associated peripheral sensory neuropathy as well as a mouse model of partial sciatic nerve ligation without effects on locomotion. The broad-spectrum biological and medicinal properties reported, including anti-HIV and anticancer activities of BA and its derivatives, position this plant-derived small molecule natural product as a potential nonopioid therapy for management of chronic pain.
Collapse
Affiliation(s)
- Shreya S Bellampalli
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Yingshi Ji
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - E M Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Maria A Gandini
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lindsey A Chew
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Cynthia L Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States.,Department of Neuroscience Graduate Interdisciplinary Program, College of Medicine, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
19
|
Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori MR, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los MJ, Mokarram P, Madrakian T, Ghavami S. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv 2019; 38:107409. [PMID: 31220568 DOI: 10.1016/j.biotechadv.2019.06.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Betulin (B) and Betulinic acid (BA) are natural pentacyclic lupane-structure triterpenoids which possess a wide range of pharmacological activities. Recent evidence indicates that B and BA have several properties useful for the treatment of metabolic disorders, infectious diseases, cardiovascular disorders, and neurological disorders. In the current review, we discuss B and BA structures and derivatives and then comprehensively explain their pharmacological effects in relation to various diseases. We also explain antiviral, antibacterial and anti-cancer effects of B and BA. Finally, we discuss the delivery methods, in which these compounds most effectively target different systems.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanaz Dastghaib
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Forough Khadem
- Department of Immunology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Hamid Behrouj
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Mahdi Ghamsari
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Andrzej Hudecki
- Institue of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Science, Zahedan, Iran
| | - Marek J Los
- Biotechnology Center, Silesian University of Technology, ul Bolesława Krzywoustego 8, Gliwice, Poland; Linkocare Life Sciences AB, Teknikringen 10, Plan 3, 583 30 Linköping, Sweden
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
20
|
Sun Z, Xu H. Ryanodine Receptors for Drugs and Insecticides: An Overview. Mini Rev Med Chem 2018; 19:22-33. [DOI: 10.2174/1389557518666180330112908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/27/2017] [Accepted: 02/12/2018] [Indexed: 11/22/2022]
Abstract
Ryanodine receptors (RyRs) are calcium channels located on the endo(sarco)plasmic reticulum
of muscle cells and neurons. They regulate the release of stored intracellular calcium and play a
critical role in muscle contraction. The N-terminal part of these receptors accounts for roughly 80%
and contains the binding sites for diverse RyRs modulators. The C-terminal domain contains the
transmembrane region. This review summarizes the current knowledge about the molecular biology of
insect RyRs, chemicals targeting mammal or insect RyRs, and the reasons for mammal RyR-related
diseases and diamides resistances. It may lay the foundation for effective management of mammal
RyR-related diseases and diamides resistances.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
21
|
Kenchegowda D, Legesse B, Hritzo B, Olsen C, Aghdam S, Kaur A, Culp W, Derrien-Colemyn A, Severson G, Moroni M. Selective Insulin-like Growth Factor Resistance Associated with Heart Hemorrhages and Poor Prognosis in a Novel Preclinical Model of the Hematopoietic Acute Radiation Syndrome. Radiat Res 2018; 190:164-175. [PMID: 29809108 PMCID: PMC6118398 DOI: 10.1667/rr14993.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although bone marrow aplasia has been considered for the past decades as the major contributor of radiation-induced blood disorders, cytopenias alone are insufficient to explain differences in the prevalence of bleeding. In this study, the minipig was used as a novel preclinical model of hematopoietic acute radiation syndrome to assess if factors other than platelet counts correlated with bleeding and survival. We sought to determine whether radiation affected the insulin-like growth factor-1 (IGF-1) pathway, a growth hormone with cardiovascular and radioprotective features. Gottingen and Sinclair minipigs were exposed to ionizing radiation at hematopoietic doses. The smaller Gottingen minipig strain was more sensitive to radiation; differences in IGF-1 levels were minimal, suggesting that increased sensitivity could depend on weak response to the hormone. Radiation caused IGF-1 selective resistance by inhibiting the anti-inflammatory anti-oxidative stress IRS/PI3K/Akt but not the pro-inflammatory MAPK kinase pathway, shifting IGF-1 signaling towards a pro-oxidant, pro-inflammatory environment. Selective IGF-1 resistance associated with hemorrhages in the heart, poor prognosis, increase in C-reactive protein and NADPH oxidase 2, uncoupling of endothelial nitric oxide synthase, inhibition of nitric oxide (NO) synthesis and imbalance between the vasodilator NO and the vasoconstrictor endothelin-1 molecules. Selective IGF-1 resistance is a novel mechanism of radiation injury, associated with a vicious cycle amplifying reactive oxygen species-induced damage, inflammation and endothelial dysfunction. In the presence of thrombocytopenia, selective inhibition of IGF-1 cardioprotective function may contribute to the development of hemostatic disorders. This finding may be particularly relevant for individuals with low IGF-1 activity, such as the elderly or those with cardiometabolic dysfunctions.
Collapse
Affiliation(s)
- Doreswamy Kenchegowda
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Betre Legesse
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Bernadette Hritzo
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Cara Olsen
- Biostatistics Consulting Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Saeed Aghdam
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Amandeep Kaur
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - William Culp
- Office of the Vice President for Research, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Grant Severson
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Maria Moroni
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| |
Collapse
|
22
|
Luna-Vázquez FJ, Ibarra-Alvarado C, Camacho-Corona MDR, Rojas-Molina A, Rojas-Molina JI, García A, Bah M. Vasodilator Activity of Compounds Isolated from Plants Used in Mexican Traditional Medicine. Molecules 2018; 23:molecules23061474. [PMID: 29912156 PMCID: PMC6100030 DOI: 10.3390/molecules23061474] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
Arterial hypertension is one of the main risk factors in the development of cardiovascular diseases. Therefore, it is important to look for new drugs to treat hypertension. In this study, we carried out the screening of 19 compounds (triterpenes, diterpenes, sesquiterpenes, lignans, and flavonoids) isolated from 10 plants used in Mexican traditional medicine to determine whether they elicited vascular smooth muscle relaxation and, therefore, could represent novel anti-hypertension drug candidates. The vasorelaxant activity of these compounds was evaluated on the isolated rat aorta assay and the results obtained from this evaluation showed that three compounds induced a significant vasodilatory effect: meso-dihydroguaiaretic acid [half maximal effective concentration (EC50), 49.9 ± 11.2 µM; maximum effect (Emax), 99.8 ± 2.7%]; corosolic acid (EC50, 108.9 ± 6.7 µM; Emax, 96.4 ± 4.2%); and 5,8,4′-trihydroxy-3,7-dimethoxyflavone (EC50, 122.3 ± 7.6 µM; Emax, 99.5 ± 5.4%). Subsequently, involvement of the NO/cyclic guanosine monophosphate (cGMP) and H2S/ATP-sensitive potassium channel (KATP) pathways on the vasodilator activity of these compounds was assessed. The results derived from this analysis showed that the activation of both pathways contributes to the vasorelaxant effect of corosolic acid. On the other hand, the vasodilator effect of meso-dihydroguaiaretic acid and 5,8,4′-trihydroxy-3,7-dimethoxyflavone, partly involves stimulation of the NO/cGMP pathway. However, these compounds also showed an important endothelium-independent vasorelaxant effect, whose mechanism of action remains to be clarified. This study indicates that meso-dihydroguaiaretic acid, corosolic acid, and 5,8,4′-trihydroxy-3,7-dimethoxyflavone could be used as lead compounds for the synthesis of new derivatives with a higher potency to be developed as drugs for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Francisco J Luna-Vázquez
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, C.P. 76010 Querétaro, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, C.P. 76010 Querétaro, Mexico.
| | - María Del Rayo Camacho-Corona
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66451 Nuevo León, Mexico.
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, C.P. 76010 Querétaro, Mexico.
| | - J Isela Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, C.P. 76010 Querétaro, Mexico.
| | - Abraham García
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66451 Nuevo León, Mexico.
| | - Moustapha Bah
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, C.P. 76010 Querétaro, Mexico.
| |
Collapse
|
23
|
Li C, Zhang C, Zhou H, Feng Y, Tang F, Hoi MPM, He C, Ma D, Zhao C, Lee SMY. Inhibitory Effects of Betulinic Acid on LPS-Induced Neuroinflammation Involve M2 Microglial Polarization via CaMKKβ-Dependent AMPK Activation. Front Mol Neurosci 2018; 11:98. [PMID: 29666569 PMCID: PMC5891622 DOI: 10.3389/fnmol.2018.00098] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
In response to the microenvironment, microglia may polarize into either an M1 pro-inflammatory phenotype, exacerbating neurotoxicity, or an M2 anti-inflammatory phenotype, conferring neuroprotection. Betulinic acid (BA) is a naturally pentacyclic triterpenoid with considerable anti-inflammatory properties. Here, we aim to investigate the potential effects of BA on microglial phenotype polarization and to reveal the underlying mechanisms of action. First, we confirmed that BA promoted M2 polarization and inhibited M1 polarization in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Then, we demonstrated that the effect of BA on microglial polarization was dependent on AMP-activated protein kinase (AMPK) activation, as evidenced by the fact that both AMPK inhibitor compound C and AMPK siRNA abolished the M2 polarization promoted by BA. Moreover, we found that calmodulin-dependent protein kinase kinase β (CaMKKβ), but not liver kinase B1, was the upstream kinase required for BA-mediated AMPK activation and microglial M2 polarization, via the use of both the CaMKKβ inhibitor STO-609 and CaMKKβ siRNA. Finally, BA enhanced AMPK phosphorylation and promoted M2 microglial polarization in the cerebral cortex of LPS-injected mice brains, which was attenuated by pre-administration of the AMPK inhibitor. This study demonstrated that BA promoted M2 polarization of microglia, thus conferring anti-neuroinflammatory effects via CaMKKβ-dependent AMPK activation.
Collapse
Affiliation(s)
- Chuwen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Chao Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hefeng Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yu Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Fan Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Maggie P M Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Dan Ma
- Department of Clinical Neurosciences, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Chao Zhao
- Department of Clinical Neurosciences, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
24
|
Yan M, Hou M, Liu J, Zhang S, Liu B, Wu X, Liu G. Regulation of iNOS-Derived ROS Generation by HSP90 and Cav-1 in Porcine Reproductive and Respiratory Syndrome Virus-Infected Swine Lung Injury. Inflammation 2018; 40:1236-1244. [PMID: 28493081 DOI: 10.1007/s10753-017-0566-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the lungs, endothelial nitric oxide synthase (eNOS) is usually expressed in endothelial cells and inducible nitric oxide synthase (iNOS) is mainly expressed in alveolar macrophages and epithelial cells. Both eNOS and iNOS are involved in lung inflammation. While they play several roles in lung inflammation formation and resolution, their expression and activity are also regulated by inflammatory factors. Their expression relationship in virus infection-induced lung injury is not well addressed. In this report, we analyzed expression of both eNOS and iNOS, the production of nitric oxide (NO) and reactive oxygen species (ROS), and expression of their associated regulatory proteins, heat shock protein 90 (HSP90) and caveolin-1 (Cav-1), in a swine lung injury model induced by porcine reproductive and respiratory syndrome virus (PRRSV) infection. The combination of upregulation of iNOS and downregulation of eNOS was observed in both natural and experimental PRRSV-infected lungs, while the combination is much enhanced in natural infected lungs. While NO production is much reduced in both infections, ROS was enhanced only in natural infected lungs. Moreover, HSP90 is increased in both natural and experimental infection and less Cav-1 expressed was observed only in the natural PRRSV-infected lungs. Therefore, the increased ROS generation is likely due to the increased iNOS and its unbalanced regulation by HSP90 and Cav-1, and it also likely causes higher endothelial dysfunction in clinical PRRSV-infected lungs.
Collapse
Affiliation(s)
- Meiping Yan
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Make Hou
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jie Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Songlin Zhang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, Shandong Province, People's Republic of China
| | - Bang Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China. .,Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| | - Xiaoxiong Wu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Guoquan Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China. .,Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
25
|
Pang KL, Vijayaraghavan K, Sayed BA, Seyed MA. Betulinic acid‑induced expression of nicotinamide adenine dinucleotide phosphate‑diaphorase in the immune organs of mice: A possible role of nitric oxide in immunomodulation. Mol Med Rep 2018; 17:3035-3041. [PMID: 29257292 PMCID: PMC5783524 DOI: 10.3892/mmr.2017.8262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/30/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to investigate the effects of betulinic acid (BetA) on the expression and distribution pattern of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH‑d), an indirect indicator of nitric oxide (NO) synthase in the thymus and spleen of mice. Mice were randomly assigned to four main groups (n=48 per group): Experimental group (BetA), positive control group (goniothalamin), vehicle control group (dimethyl sulfoxide) and control group (without vehicle). Each group was further divided into three equal subgroups according to the treatment length (4, 8 and 12 days). BetA treatment induced the expression of NADPH‑d activity in the thymus and spleen without any significant changes in the morphology of the organs. Furthermore, the expression pattern of NADPH‑d in BetA‑treated animals was significantly increased compared with that in the control animals. NADPH‑d expression in the thymus and spleen suggests that NO signaling may be a potential mechanism underlying the BetA‑induced immunomodulation in these organs. These findings are of direct clinical relevance and may contribute to the further development of BetA as a therapeutic drug.
Collapse
Affiliation(s)
- Kai Le Pang
- Faculty of Pharmacy, Universiti, Kebangsaan Malaysia (UKM), The National University of Malaysia, Kuala Lumpur 50300, Malaysia
| | | | - Badr Al Sayed
- Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | |
Collapse
|
26
|
Natural modulators of nonalcoholic fatty liver disease: Mode of action analysis and in silico ADME-Tox prediction. Toxicol Appl Pharmacol 2017; 337:45-66. [DOI: 10.1016/j.taap.2017.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
|
27
|
Estrogen Receptor Signaling and the PI3K/Akt Pathway Are Involved in Betulinic Acid-Induced eNOS Activation. Molecules 2016; 21:molecules21080973. [PMID: 27463705 PMCID: PMC6273205 DOI: 10.3390/molecules21080973] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 11/16/2022] Open
Abstract
Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid with anti-inflammatory, antiviral and anti-cancer properties. Beneficial cardiovascular effects such as increased nitric oxide (NO) production through enhancement of endothelial NO synthase (eNOS) activity and upregulation of eNOS expression have been demonstrated for this compound. In the present study, immortalized human EA.hy 926 endothelial cells were incubated for up to 1 h with 1–100 µM BA and with the phosphatidylinositol-3-kinase (PI3K) inhibitors LY294002 and wortmannin, or the estrogen receptor (ER) antagonist ICI 182,780. Phosphorylation status of eNOS and total eNOS protein were analyzed by Western blotting using a serine 1177 phosphosite-specific antibody. Bioactive NO production was assessed by determination of cGMP content in rat lung fibroblasts (RFL-6) reporter cells. Short-term incubation of EA.hy 926 cells with BA resulted in eNOS phosphorylation at the serine 1177 residue in a concentration- and time-dependent manner with a half-maximal effective concentration of 0.57 µM. This was associated with an enhanced production of NO. BA-induced eNOS phosphorylation and NO production was completely blocked by pretreatment with ICI 182,780, and was attenuated by pretreatment with the PI3K inhibitors wortmannin and LY294002. These results indicate that fast non-genomic effects of ER with downstream signaling through the PI3K/Akt pathway and consecutive eNOS phosphorylation at serine 1177 are involved in BA-induced eNOS activation.
Collapse
|
28
|
Silva FSG, Oliveira PJ, Duarte MF. Oleanolic, Ursolic, and Betulinic Acids as Food Supplements or Pharmaceutical Agents for Type 2 Diabetes: Promise or Illusion? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2991-3008. [PMID: 27012451 DOI: 10.1021/acs.jafc.5b06021] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oleanolic (OA), ursolic (UA), and betulinic (BA) acids are three triterpenic acids (TAs) with potential effects for treatment of type 2 diabetes (T2DM). Mechanistic studies showed that these TAs act as hypoglycemic and antiobesity agents mainly through (i) reducing the absorption of glucose; (ii) decreasing endogenous glucose production; (iii) increasing insulin sensitivity; (iv) improving lipid homeostasis; and (v) promoting body weight regulation. Besides these promising beneficial effects, it is believed that OA, UA, and BA protect against diabetes-related comorbidities due to their antiatherogenic, anti-inflammatory, and antioxidant properties. We also highlight the protective effect of OA, UA, and BA against oxidative damage, which may be very relevant for the treatment and/or prevention of T2DM. In the present review, we provide an integrative description of the antidiabetic properties of OA, UA, and BA, evaluating the potential use of these TAs as food supplements or pharmaceutical agents to prevent and/or treat T2DM.
Collapse
Affiliation(s)
- Filomena S G Silva
- Centro de Biotecnologia Agrı́cola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja) , Apartado 6158, 7801-908 Beja, Portugal
| | - Paulo J Oliveira
- CNC, Center for Neuroscience and Cellular Biology, UC-Biotech Building, Biocant Park, University of Coimbra , 3060-107 Cantanhede, Portugal
| | - Maria F Duarte
- Centro de Biotecnologia Agrı́cola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja) , Apartado 6158, 7801-908 Beja, Portugal
| |
Collapse
|