1
|
Manolopoulou Ε, Spyros A. Olive Fruit Phenolic Profiling Using High Resolution-Magic Angle Spinning (HR-MAS) Solid-State NMR Spectroscopy. Methods Mol Biol 2025; 2891:277-284. [PMID: 39812989 DOI: 10.1007/978-1-0716-4334-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
High Resolution-Magic Angle Spinning (HR-MAS) solid-state NMR spectroscopy is finding increasing application in the analysis of solid foods, bypassing the need for complicated solvent extraction procedures. In the present protocol, we report a simple analytical approach based on HR-MAS NMR spectroscopy for the phenolic profiling of olive fruits, flesh, or skin. This approach allows the facile characterization of phenolic compounds in olive fruits cultivated for extra-virgin olive oil production as a function of maturation and variety, in addition to processing technology for table olives.
Collapse
Affiliation(s)
| | - Apostolos Spyros
- NMR Laboratory, Chemistry Department, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
2
|
Cohen CG, Mazer BD, Jean-Claude BJ. Molecular Profiling of Peanut under Raw, Roasting, and Autoclaving Conditions Using High-Resolution Magic Angle Spinning and Solution 1H NMR Spectroscopy. Molecules 2023; 29:162. [PMID: 38202743 PMCID: PMC10780471 DOI: 10.3390/molecules29010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Higher rates of peanut allergy have been observed in countries that commonly roast peanuts prior to consumption. Despite the importance of understanding the role of thermal processing in allergy and on peanut composition, studies toward generating signatures that identify molecular contents following processing are scant. Here, we identified spectral signatures to track changes and differences in the molecular composition of peanuts under raw, roasted, and high-pressure and high-temperature autoclaved conditions. We analyzed both the solid flesh of the seed and solutions derived from soaking peanuts using High-Resolution Magic Angle Spinning (HR-MAS) and solution 1H Nuclear Magnetic Resonance (NMR) spectroscopy, respectively. The NMR spectra of intact peanuts revealed triglycerides as the dominant species, assigned on the basis of multiplets at 4.1 and 4.3 ppm, and corresponding defatted flours revealed the presence of sugars. Sucrose assigned based on a doublet at 5.4 ppm (anomeric proton), and triglycerides were the most abundant small molecules observed, with little variation between conditions. Soaked peanut solutions were devoid of lipids, and their resulting spectra matched the profiles of defatted peanuts. Spectral signatures resulting from autoclaving differed strikingly between those from raw and roasted peanuts, with considerable line-broadening in regions corresponding to proteins and amino-acid side chains, from 0.5 to 2.0 ppm and 6.5 to 8.5 ppm. Taken together, by using complementary NMR methods to obtain a fingerprint of the molecular components in peanuts, we demonstrated that autoclaving led to a distinct composition, likely resulting from the hydrolytic cleavage of proteins, the most important molecule of the allergic reaction.
Collapse
Affiliation(s)
- Casey G. Cohen
- The Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Bruce D. Mazer
- The Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Bertrand J. Jean-Claude
- The Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
3
|
Yang Y, Fan B, Mu Y, Li Y, Tong L, Wang L, Liu L, Li M, Sun P, Sun J, Wang F. A comparative metabolomics study of polyphenols in highland barley (Hordeum vulgare L.) grains with different colors. Food Res Int 2023; 174:113672. [PMID: 37981367 DOI: 10.1016/j.foodres.2023.113672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
Highland barley (HB) grains are gaining increasing popularity owing to their high nutritional merits. However, only limited information is available on the metabolic profiles of HB grains polyphenols, especially the difference of polyphenols in different colors of HB. In this study, we determined the metabolic profiles of black, blue, and white HB grains via an ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based metabolomics. A total of 402 metabolites were identified, among which 198, 62, and 189 metabolites displayed different accumulation patterns in the three comparison groups (WHB vs. BKHB, WHB vs. BEHB, BEHB vs. BKHB), respectively. In particular, flavonoids and phenolic acids contents displayed considerable differences among the three HB cultivars. The phenolics content of black HB was relatively high. Additionally, "Flavonoid biosynthesis" and "flavone and flavonol biosynthesis" were the significantly enriched pathways. In conclusion, this study provides comprehensive insights into the adequate utilization and development of novel HB-based functional foods.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yuwen Mu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Minmin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Peipei Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jing Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
4
|
Cheng B, Shi S, Pan K, Nie J, Xing J, Wang X, Li L, Tang J, Liu J, Cao C, Jiang Y. Untargeted metabolomics based on UHPLC-Q-Exactive-MS reveals metabolite and taste quality differences between Koshihikari rice from China and Japan. Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
5
|
Ahmad F, Nadeem H. Mass Spectroscopy as an Analytical Tool to Harness the Production of Secondary Plant Metabolites: The Way Forward for Drug Discovery. Methods Mol Biol 2023; 2575:77-103. [PMID: 36301472 DOI: 10.1007/978-1-0716-2716-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The molecular map of diverse biological molecules linked with structure, function, signaling, and regulation within a cell can be elucidated using an analytically demanding omic approach. The latest trend of using "metabolomics" technologies has explained the natural phenomenon of opening a new avenue to understand and enhance bioactive compounds' production. Examination of sequenced plant genomes has revealed that a considerable portion of these encodes genes of secondary metabolism. In addition to genetic and molecular tools developed in the current era, the ever-increasing knowledge about plant metabolism's biochemistry has initiated an approach for wisely designed, more productive genetic engineering of plant secondary metabolism for improved defense systems and enhanced biosynthesis of beneficial metabolites. Secondary plant metabolites are natural products synthesized by plants that are not directly involved with their average growth and development but play a vital role in plant defense mechanisms. Plant secondary metabolites are classified into four major classes: terpenoids, phenolic compounds, alkaloids, and sulfur-containing compounds. More than 200,000 secondary metabolites are synthesized by plants having a unique and complex structure. Secondary plant metabolites are well characterized and quantified by omics approaches and therefore used by humans in different sectors such as agriculture, pharmaceuticals, chemical industries, and biofuel. The aim is to establish metabolomics as a comprehensive and dynamic model of diverse biological molecules for biomarkers and drug discovery. In this chapter, we aim to illustrate the role of metabolomic technology, precisely liquid chromatography-mass spectrometry, capillary electrophoresis mass spectrometry, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy, specifically as a research tool in the production and identification of novel bioactive compounds for drug discovery and to obtain a unified insight of secondary metabolism in plants.
Collapse
Affiliation(s)
- Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Hera Nadeem
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
6
|
Volatile fingerprints and biomarkers of Chinese fragrant and non-fragrant japonica rice before and after cooking obtained by untargeted GC/MS-based metabolomics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Kikuchi J, Yamada S. The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science. RSC Adv 2021; 11:30426-30447. [PMID: 35480260 PMCID: PMC9041152 DOI: 10.1039/d1ra03008f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
The environment, from microbial ecosystems to recycled resources, fluctuates dynamically due to many physical, chemical and biological factors, the profile of which reflects changes in overall state, such as environmental illness caused by a collapse of homeostasis. To evaluate and predict environmental health in terms of systemic homeostasis and resource balance, a comprehensive understanding of these factors requires an approach based on the "exposome paradigm", namely the totality of exposure to all substances. Furthermore, in considering sustainable development to meet global population growth, it is important to gain an understanding of both the circulation of biological resources and waste recycling in human society. From this perspective, natural environment, agriculture, aquaculture, wastewater treatment in industry, biomass degradation and biodegradable materials design are at the forefront of current research. In this respect, nuclear magnetic resonance (NMR) offers tremendous advantages in the analysis of samples of molecular complexity, such as crude bio-extracts, intact cells and tissues, fibres, foods, feeds, fertilizers and environmental samples. Here we outline examples to promote an understanding of recent applications of solution-state, solid-state, time-domain NMR and magnetic resonance imaging (MRI) to the complex evaluation of organisms, materials and the environment. We also describe useful databases and informatics tools, as well as machine learning techniques for NMR analysis, demonstrating that NMR data science can be used to evaluate the exposome in both the natural environment and human society towards a sustainable future.
Collapse
Affiliation(s)
- Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Shunji Yamada
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Prediction Science Laboratory, RIKEN Cluster for Pioneering Research 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
- Data Assimilation Research Team, RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
8
|
Augustijn D, de Groot HJM, Alia A. HR-MAS NMR Applications in Plant Metabolomics. Molecules 2021; 26:molecules26040931. [PMID: 33578691 PMCID: PMC7916392 DOI: 10.3390/molecules26040931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolomics is used to reduce the complexity of plants and to understand the underlying pathways of the plant phenotype. The metabolic profile of plants can be obtained by mass spectrometry or liquid-state NMR. The extraction of metabolites from the sample is necessary for both techniques to obtain the metabolic profile. This extraction step can be eliminated by making use of high-resolution magic angle spinning (HR-MAS) NMR. In this review, an HR-MAS NMR-based workflow is described in more detail, including used pulse sequences in metabolomics. The pre-processing steps of one-dimensional HR-MAS NMR spectra are presented, including spectral alignment, baseline correction, bucketing, normalisation and scaling procedures. We also highlight some of the models which can be used to perform multivariate analysis on the HR-MAS NMR spectra. Finally, applications of HR-MAS NMR in plant metabolomics are described and show that HR-MAS NMR is a powerful tool for plant metabolomics studies.
Collapse
Affiliation(s)
- Dieuwertje Augustijn
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands;
- Correspondence: (D.A.); (A.A.)
| | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands;
| | - A. Alia
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands;
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16–17, D-04107 Leipzig, Germany
- Correspondence: (D.A.); (A.A.)
| |
Collapse
|
9
|
He C, Zhang HY, Zhang YX, Fu P, You LL, Xiao WB, Wang ZH, Song HY, Huang YJ, Liao JL. Cytosine methylations in the promoter regions of genes involved in the cellular oxidation equilibrium pathways affect rice heat tolerance. BMC Genomics 2020; 21:560. [PMID: 32799794 PMCID: PMC7430847 DOI: 10.1186/s12864-020-06975-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 08/06/2020] [Indexed: 11/15/2022] Open
Abstract
Background High temperatures, particularly at night, decrease rice yield and quality. As high nighttime temperatures (HNTs) become increasingly frequent due to climate change, it is imperative to develop rice crops that tolerate HNTs. DNA methylation may represent a potential avenue for HNT-tolerant rice strain development, as this mechanism regulates gene activity and cellular phenotype in response to adverse environmental conditions without changing the nucleotide sequence. Results After HNT exposure, the methylation patterns of cytosines in the CHH context differed noticeably between two coisogenic rice strains with significantly different levels in heat tolerance. Methylation differences between strains were primarily observed on successive cytosines in the promoter or downstream regions of transcription factors and transposon elements. In contrast to the heat-sensitive rice strain, the regions 358–359 bp and 2–60 bp downstream of two basal transcriptional factors (TFIID subunit 11 and mediator of RNA polymerase II transcription subunit 31, respectively) were fully demethylated in the heat-tolerant strain after HNT exposure. In the heat-tolerant strain, HNTs reversed the methylation patterns of successive cytosines in the promoter regions of various genes involved in abscisic acid (ABA)-related reactive oxygen species (ROS) equilibrium pathways, including the pentatricopeptide repeat domain gene PPR (LOC_Os07g28900) and the homeobox domain gene homeobox (LOC_Os01g19694). Indeed, PRR expression was inhibited in heat-sensitive rice strains, and the methylation rates of the cytosines in the promoter region of PRR were greater in heat-sensitive strains as compared to heat-tolerant strains. Conclusions After HNT exposure, cytosines in the CHH context were more likely than cytosines in other contexts to be methylated differently between the heat-sensitive and heat-tolerant rice strains. Methylation in the promoter regions of the genes associated with ABA-related oxidation and ROS scavenging improved heat tolerance in rice. Our results help to clarify the molecular mechanisms underlying rice heat tolerance.
Collapse
Affiliation(s)
- Chao He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Hong-Yu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Yong-Xin Zhang
- South Zhejiang Key Laboratory of Crop Breeding, Institute of Crop Research, Wenzhou Academy of Agricultural Sciences, Wenzhou, 325006, China
| | - Pei Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Li-Li You
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Wen-Bo Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Zhao-Hai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Hai-Yan Song
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China
| | - Ying-Jin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China. .,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China.
| | - Jiang-Lin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang, 330045, China. .,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China.
| |
Collapse
|
10
|
Rana N, Rahim MS, Kaur G, Bansal R, Kumawat S, Roy J, Deshmukh R, Sonah H, Sharma TR. Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (Oryza sativa L.). Crit Rev Food Sci Nutr 2019; 60:3304-3320. [DOI: 10.1080/10408398.2019.1685454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | | | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
11
|
Jensen HM, Bertram HC. The magic angle view to food: magic-angle spinning (MAS) NMR spectroscopy in food science. Metabolomics 2019; 15:44. [PMID: 30868337 DOI: 10.1007/s11306-019-1504-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/04/2019] [Indexed: 01/16/2023]
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy has been used in food science and nutritional studies for decades and is one of the major analytical platforms in metabolomics. Many foods are solid or at least semi-solid, which denotes that the molecular motions are restricted as opposed to in pure liquids. While the majority of NMR spectroscopy is performed on liquid samples and a solid material gives rise to constraints in terms of many chemical analyses, the magic angle thrillingly enables the application of NMR spectroscopy also on semi-solid and solid materials. This paper attempts to review how magic-angle spinning (MAS) NMR is used from 'farm-to-fork' in food science.
Collapse
Affiliation(s)
- Henrik Max Jensen
- DuPont Nutrition Biosciences ApS, Edwin Rahrsvej 38, 8220, Brabrand, Denmark
| | | |
Collapse
|
12
|
Du H, Huo Y, Liu H, Kamal GM, Yang J, Zeng Y, Zhao S, Liu Y. Fast nutritional characterization of different pigmented rice grains using a combination of NMR and decision tree analysis. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2018.1545800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hongying Du
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Yinqiang Huo
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, P.R. China
| | - Huili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Ghulam Mustafa Kamal
- Department of Chemistry, Khawaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Pakistan
| | - Jiaren Yang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Yongchao Zeng
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Siming Zhao
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Youming Liu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
13
|
Lei G, Zhang HY, Wang ZH, Wei LX, Fu P, Song JB, Fu DH, Huang YJ, Liao JL. High Nighttime Temperature Induces Antioxidant Molecule Perturbations in Heat-Sensitive and Heat-Tolerant Coisogenic Rice ( Oryza sativa) Strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12131-12140. [PMID: 30362740 DOI: 10.1021/acs.jafc.8b04425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Global warming-associated increases in temperature, particularly at nighttime, are detrimental to rice yield and quality. Metabolomic profiling was used to examine and compare the short-term extreme high nighttime temperature-induced molecular perturbations in rice ( Oryza sativa) coisogenic strains with contrasting heat-tolerances at the first stage of seed ripening. Compared to the heat-sensitive strain, antioxidant molecules were higher in abundance in the heat-tolerant strain, whereas the abundances of molecules involved in photosynthesis, nucleotide catabolism, and the S-adenosylmethionine (SAM) cycle varied only slightly. Thus, we proposed that the high abundance of antioxidant molecules in the heat-tolerant strain alleviated cellular oxidative stress, which protected photosynthesis, nucleotide catabolism, and the SAM cycle, leading to good grain filling.
Collapse
Affiliation(s)
- Gang Lei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University) , Ministry of Education of China , Nanchang 330045 , Jiangxi Province , China
| | - Hong-Yu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University) , Ministry of Education of China , Nanchang 330045 , Jiangxi Province , China
| | - Zhao-Hai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University) , Ministry of Education of China , Nanchang 330045 , Jiangxi Province , China
| | - Ling-Xia Wei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University) , Ministry of Education of China , Nanchang 330045 , Jiangxi Province , China
| | - Pei Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University) , Ministry of Education of China , Nanchang 330045 , Jiangxi Province , China
| | - Jian-Bo Song
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University) , Ministry of Education of China , Nanchang 330045 , Jiangxi Province , China
| | - Dong-Hui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University) , Ministry of Education of China , Nanchang 330045 , Jiangxi Province , China
| | - Ying-Jin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University) , Ministry of Education of China , Nanchang 330045 , Jiangxi Province , China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China , Changsha 410128 , Hunan Province , China
| | - Jiang-Lin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University) , Ministry of Education of China , Nanchang 330045 , Jiangxi Province , China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China , Changsha 410128 , Hunan Province , China
| |
Collapse
|
14
|
Metabotyping of rice (Oryza sativa L.) for understanding its intrinsic physiology and potential eating quality. Food Res Int 2018; 111:20-30. [DOI: 10.1016/j.foodres.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022]
|
15
|
Kikuchi J, Ito K, Date Y. Environmental metabolomics with data science for investigating ecosystem homeostasis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 104:56-88. [PMID: 29405981 DOI: 10.1016/j.pnmrs.2017.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 05/08/2023]
Abstract
A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches.
Collapse
Affiliation(s)
- Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan.
| | - Kengo Ito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Date
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
16
|
Zahra Z, Waseem N, Zahra R, Lee H, Badshah MA, Mehmood A, Choi HK, Arshad M. Growth and Metabolic Responses of Rice (Oryza sativa L.) Cultivated in Phosphorus-Deficient Soil Amended with TiO 2 Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5598-5606. [PMID: 28650653 DOI: 10.1021/acs.jafc.7b01843] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plants have the natural ability to withstand stress conditions through metabolic adjustments. The present study aimed at investigating the effects of titanium dioxide nanoparticles (TiO2 NPs) application (0, 25, 50, 150, 250, 500, and 750 mg kg-1) in phosphorus-deficient soil in terms of growth responses, P contents, and metabolic alterations in rice. TiO2 NPs application increased shoot length up to 14.5%. Phosphorus contents in rice roots, shoots, and grains were increased by 2.6-, 2.4-, and 1.3-fold, respectively, at 750 mg kg-1 of TiO2 NPs. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics revealed increased levels of amino acids, palmitic acid, and glycerol content in grains resulting from plants grown in 750 mg kg-1 TiO2 NPs-treated soil. Furthermore, no translocation of TiO2 NPs from the treated soil to rice grains was detected by inductively coupled plasma-optical emission spectrometry (ICP-OES), which suggests no risk of TiO2 NPs intake via grain consumption. The observed data indicates the strong relationship among NPs application, P contents, and metabolic alterations.
Collapse
Affiliation(s)
- Zahra Zahra
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology , Sector H-12, Islamabad 44000, Pakistan
| | - Naima Waseem
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology , Sector H-12, Islamabad 44000, Pakistan
| | - Rubab Zahra
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology , Sector H-12, Islamabad 44000, Pakistan
| | - Hwanhui Lee
- College of Pharmacy, Chung-Ang University , Seoul 06974, Republic of Korea
| | - Mohsin Ali Badshah
- School of Mechanical Engineering, Chung-Ang University , Seoul 06974, Republic of Korea
| | - Arshad Mehmood
- National Institute of Laser and Optronics , Nilore, Islamabad 45650, Pakistan
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University , Seoul 06974, Republic of Korea
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology , Sector H-12, Islamabad 44000, Pakistan
| |
Collapse
|
17
|
Huo Y, Kamal GM, Wang J, Liu H, Zhang G, Hu Z, Anwar F, Du H. 1 H NMR-based metabolomics for discrimination of rice from different geographical origins of China. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
- Department of Chemistry, University of Washington, Seattle, Washington 98109, United States
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| |
Collapse
|
19
|
Metabolomics, a Powerful Tool for Agricultural Research. Int J Mol Sci 2016; 17:ijms17111871. [PMID: 27869667 PMCID: PMC5133871 DOI: 10.3390/ijms17111871] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022] Open
Abstract
Metabolomics, which is based mainly on nuclear magnetic resonance (NMR), gas-chromatography (GC) or liquid-chromatography (LC) coupled to mass spectrometry (MS) analytical technologies to systematically acquire the qualitative and quantitative information of low-molecular-mass endogenous metabolites, provides a direct snapshot of the physiological condition in biological samples. As complements to transcriptomics and proteomics, it has played pivotal roles in agricultural and food science research. In this review, we discuss the capacities of NMR, GC/LC-MS in the acquisition of plant metabolome, and address the potential promise and diverse applications of metabolomics, particularly lipidomics, to investigate the responses of Arabidopsis thaliana, a primary plant model for agricultural research, to environmental stressors including heat, freezing, drought, and salinity.
Collapse
|