1
|
Li Y, Liu Z, Li G, Yin X, Guo C, Jiang Y, Hu X, Yi J. Inactivated mechanisms of high pressure processing combined with mild temperature on pectin methylesterase and its inhibitor. Food Chem 2025; 484:144477. [PMID: 40300406 DOI: 10.1016/j.foodchem.2025.144477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/26/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
High pressure processing (HPP) of orange juice faces storage issues due to refrigeration need and cloud loss caused by pectin methylesterase (PME). Our previous research indicated that HPP conjunction with pectin methylesterase inhibitor (PMEI) enhanced juice stability, but not fully inactivated PME. This study explored the effectiveness of HPP with mild temperature treatments to fully inactivate PME and sterilize microorganisms in juice, using experimental analysis and molecular dynamics simulation. The findings revealed that PME activity was reduced by 94 % at 600 MPa and 60 °C, with completely inactivating at 80 °C. Conversely, PMEI exhibited resistance to pressure and temperature. Following processes at 600 MPa and above 60 °C, the tail-end helix structure of PME destabilized, with α-helices converting to β-sheets and disrupting hydrogen bonds within molecular chain. Conversely, the structure of PMEI was stable. Additionally, the combination of HPP and temperature treatment enhanced the binding affinity between PME and PMEI.
Collapse
Affiliation(s)
- Yantong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhuyin Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Guijing Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Xinyi Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China.
| |
Collapse
|
2
|
Lutta A, Liu Q, Pedersen GK, Dong M, Grohganz H, Nielsen LH, Schmidt ST. Microfluidic fabrication of pectin-coated liposomes for drug delivery. Drug Deliv Transl Res 2025:10.1007/s13346-025-01812-0. [PMID: 39987264 DOI: 10.1007/s13346-025-01812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2025] [Indexed: 02/24/2025]
Abstract
Polymer coating of nanoparticulate drug delivery systems may enhance the efficacy of oral delivery. Cationic liposomes were coated with pectin biopolymers using microfluidics, with systematic variation of process parameters to optimize pectin-coated liposome fabrication. A pectin/liposome weight ratio of 0.7 and a microfluidic flow rate ratio of 2:1 pectin:liposome were found to be optimal. The resulting formulations displayed particle sizes at least threefold the size of uncoated liposomes, while the surface charge shifted to a highly negative value, indicating full pectin coating of the particles. Further microscopic characterization of the pectin-coated liposomes revealed that the pectins formed a polymeric network within which the liposomes were dispersed or attached. Stability studies revealed that pectin-coated liposomes remained stable during storage, with no displacement of the coating. We determined that microfluidics is a robust method for preparing pectin-coated liposomes, despite the structural differences between the pectins, geometry of the microchip used, and pectin/liposome concentration. Ultimately, the use of microfluidics in formulation development could be highly beneficial, as the process parameters can be easily modified and the process is easily scalable and inexpensive. Additionally, pectins can offer protective properties to the liposomes particularly during oral drug delivery.
Collapse
Affiliation(s)
- Anitta Lutta
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800, Kgs. Lyngby, Denmark
| | - Qian Liu
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Gabriel Kristian Pedersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Line Hagner Nielsen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800, Kgs. Lyngby, Denmark
| | - Signe Tandrup Schmidt
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| |
Collapse
|
3
|
Zhang QH, Tan XT, Li ZB, Chen YQ, Yang ZY, Xin GR, He CT. De-Methyl Esterification Modification of Root Pectin Mediates Cd Accumulation of Lactuca sativa. PLANT, CELL & ENVIRONMENT 2025; 48:1735-1748. [PMID: 39491538 DOI: 10.1111/pce.15240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Cadmium (Cd) contamination in agricultural soil brings severe health risks through the dietary intake of Cd-polluted crops. The comprehensive role of pectin in lowering Cd accumulation is investigated through low Cd accumulated (L) and high Cd accumulated (H) cultivars of L. sativa. The significantly different Cd contents in the edible parts of two L. sativa cultivars are accomplished by different Cd transportations. The pectin is the dominant responsive cell wall component according to significantly increased uronic acid contents and the differential Cd absorption between unmodified and modified cell wall. The chemical structure characterization revealed the decreased methyl esterification in pectin under Cd treatment compared with control. Significantly brighter LM19 relative fluorescence density and 40.82% decreased methanol in the root pectin of L cultivar under Cd treatment (p < 0.05) supported that the de-methyl esterification of root pectin is more significant in L cultivar than in H cultivar. The pectin de-methyl esterification of L cultivar is achieved by the upregulation of pectin esterases and the downregulation of pectin esterase inhibitors under Cd treatments, which has facilitated the higher Cd-binding of pectin. Our findings provide deep insight into the differential Cd accumulation of L. sativa cultivars and contribute to the understanding the pollutant behaviors in plants.
Collapse
Affiliation(s)
- Qian-Hui Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Xuan-Tong Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Zhen-Bang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Yi-Qi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Zhong-Yi Yang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Guo-Rong Xin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Chun-Tao He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| |
Collapse
|
4
|
Shen J, Huang W, You Y, Zhan J. Controlling strategies of methanol generation in fermented fruit wine: Pathways, advances, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70048. [PMID: 39495577 DOI: 10.1111/1541-4337.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
Methanol is widely existed in fermented fruit wines (FFWs), and the concentration is excessive at times due to inappropriate fermentation conditions. Methanol is neurotoxic, and its metabolites of formaldehyde and formic acid can cause organic lesions and central respiratory system disorders. FFWs with unspecified methanol limits are often produced with reference to grape wine standards (250/400 mg/L). To clarify the causes of methanol production in FFWs and minimize the methanol content, this study summarizes the current process methods commonly applied for methanol reduction in FFWs and proposes novel potential controlling strategies from the perspective of raw materials (pectin, pectinase, and yeast), which are mainly the low esterification modification and removal of pectin, passivation of the pectinase activity, and the gene editing of yeast to target the secretion of pectinases and modulation of the glycine metabolic pathway. The modified raw materials combined with optimized fermentation processes will hopefully be able to improve the current situation of high methanol content in FFWs. Methanol detection technologies have been outlined and combined with machine learning that will potentially guide the production of low-methanol FFWs and the setting of methanol limits for specific FFW.
Collapse
Affiliation(s)
- Ju Shen
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Li Y, Zhang W, Jiang Y, Devahastin S, Hu X, Song Z, Yi J. Inactivation mechanisms on pectin methylesterase by high pressure processing combined with its recombinant inhibitor. Food Chem 2024; 446:138806. [PMID: 38402767 DOI: 10.1016/j.foodchem.2024.138806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
High pressure processing (HPP) juice often experiences cloud loss during storage, caused by the activity of pectin methylesterase (PME). The combination of HPP with natural pectin methylesterase inhibitor (PMEI) could improve juice stability. However, extracting natural PMEI is challenging. Gene recombination technology offers a solution by efficiently expressing recombinant PMEI from Escherichia coli and Pichia pastoris. Experimental and molecular dynamics simulation were conducted to investigate changes in activity, structure, and interaction of PME and recombinant PMEI during HPP. The results showed PME retained high residual activity, while PMEI demonstrated superior pressure resistance. Under HPP, PMEI's structure remained stable, while the N-terminus of PME's α-helix became unstable. Additionally, the helix at the junction with the PME/PMEI complex changed, thereby affecting its binding. Furthermore, PMEI competed with pectin for active sites on PME, elucidating. The potential mechanism of PME inactivation through the synergistic effects of HPP and PMEI.
Collapse
Affiliation(s)
- Yantong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China
| | - Wanzhen Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China
| | - Sakamon Devahastin
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok 10140, Thailand
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., 653100 Yuxi, Yunnan, China; Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, 653100 Yuxi, Yunnan, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China; Yunnan Maoduoli Group Food Co., Ltd., 653100 Yuxi, Yunnan, China.
| |
Collapse
|
6
|
Saberi Riseh R, Gholizadeh Vazvani M, Taheri A, Kennedy JF. Pectin-associated immune responses in plant-microbe interactions: A review. Int J Biol Macromol 2024; 273:132790. [PMID: 38823736 DOI: 10.1016/j.ijbiomac.2024.132790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
This review explores the role of pectin, a complex polysaccharide found in the plant cell wall, in mediating immune responses during interactions between plants and microbes. The objectives of this study were to investigate the molecular mechanisms underlying pectin-mediated immune responses and to understand how these interactions shape plant-microbe communication. Pectin acts as a signaling molecule, triggering immune responses such as the production of antimicrobial compounds, reinforcement of the cell wall, and activation of defense-related genes. Pectin functions as a target for pathogen-derived enzymes, enabling successful colonization by certain microbial species. The document discusses the complexity of pectin-based immune signaling networks and their modulation by various factors, including pathogen effectors and host proteins. It also emphasizes the importance of understanding the crosstalk between pectin-mediated immunity and other defense pathways to develop strategies for enhancing plant resistance against diseases. The insights gained from this study have implications for the development of innovative approaches to enhance crop protection and disease management in agriculture. Further investigations into the components and mechanisms involved in pectin-mediated immunity will pave the way for future advancements in plant-microbe interaction research.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Abdolhossein Taheri
- Department of Plant Protection, Faculty of Plant Production, University of agricultural Sciences and natural resources of Gorgan, Iran.
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
7
|
Kamel H, Geitmann A. Strength in numbers: An isoform variety of homogalacturonan modifying enzymes may contribute to pollen tube fitness. PLANT PHYSIOLOGY 2023; 194:67-80. [PMID: 37819032 DOI: 10.1093/plphys/kiad544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Pectin is a major component of the cell wall in land plants. It plays crucial roles in cell wall assembly, cell growth, shaping, and signaling. The relative abundance of pectin in the cell wall is particularly high in rapidly growing organ regions and cell types. Homogalacturonan (HG), a polymer of 1,4-linked α-D-galacturonic acid, is a major pectin constituent in growing and dividing plant cells. In pollen tubes, an extremely rapidly growing cell type, HG is secreted at and inserted into the apical cell wall and is subject to further modification in muro by HG modifying enzymes (HGMEs). These enzymes, including pectin esterases and depolymerases, have multiple isoforms, some of which are specifically expressed in pollen. Given the importance of pectin chemistry for the fitness of pollen tubes, it is of interest to interrogate the potentially crucial roles these isoforms play in pollen germination and elongation. It is hypothesized that different HGME isoforms, through their action on apoplastic HG, may generate differential methylation and acetylation patterns endowing HG polysaccharides with specific, spatially and temporally varying properties that lead to a fine-tuned pattern of cell wall modification. In addition, these isoforms may be differentially activated and/or inhibited depending on the local conditions that may vary at subcellular resolution. In this Update we review the different HGME isoforms identified in recent years in Arabidopsis thaliana and postulate that the multiplicity of these isoforms may allow for specialized substrate recognition and conditional activation, leading to a sophisticated regulation scheme exemplified in the process that governs the dynamic properties of the cell wall in pollen tube growth.
Collapse
Affiliation(s)
- Hiba Kamel
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
8
|
Jobert F, Yadav S, Robert S. Auxin as an architect of the pectin matrix. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6933-6949. [PMID: 37166384 PMCID: PMC10690733 DOI: 10.1093/jxb/erad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Auxin is a versatile plant growth regulator that triggers multiple signalling pathways at different spatial and temporal resolutions. A plant cell is surrounded by the cell wall, a complex and dynamic network of polysaccharides. The cell wall needs to be rigid to provide mechanical support and protection and highly flexible to allow cell growth and shape acquisition. The modification of the pectin components, among other processes, is a mechanism by which auxin activity alters the mechanical properties of the cell wall. Auxin signalling precisely controls the transcriptional output of several genes encoding pectin remodelling enzymes, their local activity, pectin deposition, and modulation in different developmental contexts. This review examines the mechanism of auxin activity in regulating pectin chemistry at organ, cellular, and subcellular levels across diverse plant species. Moreover, we ask questions that remain to be addressed to fully understand the interplay between auxin and pectin in plant growth and development.
Collapse
Affiliation(s)
- François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- CRRBM, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Sandeep Yadav
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| |
Collapse
|
9
|
Zeindl R, Franzmann AL, Fernández-Quintero ML, Seidler CA, Hoerschinger VJ, Liedl KR, Tollinger M. Structural Basis of the Immunological Cross-Reactivity between Kiwi and Birch Pollen. Foods 2023; 12:3939. [PMID: 37959058 PMCID: PMC10649968 DOI: 10.3390/foods12213939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Allergies related to kiwi consumption have become a growing health concern, with their prevalence on the rise. Many of these allergic reactions are attributed to cross-reactivity, particularly with the major allergen found in birch pollen. This cross-reactivity is associated with proteins belonging to the pathogenesis-related class 10 (PR-10) protein family. In our study, we determined the three-dimensional structures of the two PR-10 proteins in gold and green kiwi fruits, Act c 8 and Act d 8, using nuclear magnetic resonance (NMR) spectroscopy. The structures of both kiwi proteins closely resemble the major birch pollen allergen, Bet v 1, providing a molecular explanation for the observed immunological cross-reactivity between kiwi and birch pollen. Compared to Act d 11, however, a kiwi allergen that shares the same architecture as PR-10 proteins, structural differences are apparent. Moreover, despite both Act c 8 and Act d 8 containing multiple cysteine residues, no disulfide bridges are present within their structures. Instead, all the cysteines are accessible on the protein's surface and exposed to the surrounding solvent, where they are available for reactions with components of the natural food matrix. This structural characteristic sets Act c 8 and Act d 8 apart from other kiwi proteins with a high cysteine content. Furthermore, we demonstrate that pyrogallol, the most abundant phenolic compound found in kiwi, binds into the internal cavities of these two proteins, albeit with low affinity. Our research offers a foundation for further studies aimed at understanding allergic reactions associated with this fruit and exploring how interactions with the natural food matrix might be employed to enhance food safety.
Collapse
Affiliation(s)
- Ricarda Zeindl
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (R.Z.); (A.L.F.)
| | - Annika L. Franzmann
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (R.Z.); (A.L.F.)
| | - Monica L. Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.L.F.-Q.); (C.A.S.); (K.R.L.)
| | - Clarissa A. Seidler
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.L.F.-Q.); (C.A.S.); (K.R.L.)
| | - Valentin J. Hoerschinger
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.L.F.-Q.); (C.A.S.); (K.R.L.)
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.L.F.-Q.); (C.A.S.); (K.R.L.)
| | - Martin Tollinger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (R.Z.); (A.L.F.)
| |
Collapse
|
10
|
Zhou Y, Li R, Wang S, Ding Z, Zhou Q, Liu J, Wang Y, Yao Y, Hu X, Guo J. Overexpression of MePMEI1 in Arabidopsis enhances Pb tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:996981. [PMID: 36186034 PMCID: PMC9523724 DOI: 10.3389/fpls.2022.996981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Pb is one of the most ubiquitously distributed heavy metal pollutants in soils and has serious negative effects on plant growth, food safety, and public health. Pectin methylesterase inhibitors (PMEIs) play a pivotal role in regulating the integrity of plant cell walls; however, the molecular basis by which PMEIs promote plant resistance to abiotic stress remains poorly understood. In this study, we identified a novel PMEI gene, MePMEI1, from Manihot esculenta, and determined its role in plant resistance to Pb stress. The expression of MePMEI1 was remarkably upregulated in the roots, stems, and leaves of cassava plants following exposure to Pb stress. An analysis of subcellular localization revealed that the MePMEI1 protein was localized in the cell wall. MePMEI1 inhibited commercial orange peel pectin methyltransferase (PME), and the expression of MePMEI1 in Arabidopsis decreased the PME activity, indicating that MePMEI1 can inhibit PME activity in the cell wall. Additionally, the overexpression of MePMEI1 in Arabidopsis reduced oxidative damage and induced the thickening of cell walls, thus contributing to Pb tolerance. Altogether, the study reports a novel mechanism by which the MePMEI1 gene, which encodes the PMEI protein in cassava, plays an essential role in promoting tolerance to Pb toxicity by regulating the thickness of cell walls. These results provide a theoretical basis for the MePMEI1-mediated plant breeding for increasing heavy metal tolerance and provide insights into controlling Pb pollution in soils through phytoremediation in future studies.
Collapse
Affiliation(s)
- Yangjiao Zhou
- School of Life Sciences, Hainan University, Haikou, China
| | - Ruimei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Shijia Wang
- School of Life Sciences, Hainan University, Haikou, China
| | - Zhongping Ding
- School of Life Sciences, Hainan University, Haikou, China
| | - Qin Zhou
- School of Life Sciences, Hainan University, Haikou, China
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Yajia Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Xinwen Hu
- School of Life Sciences, Hainan University, Haikou, China
| | - Jianchun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| |
Collapse
|
11
|
Zhang L, Liu J, Cheng J, Sun Q, Zhang Y, Liu J, Li H, Zhang Z, Wang P, Cai C, Chu Z, Zhang X, Yuan Y, Shi Y, Cai Y. lncRNA7 and lncRNA2 modulate cell wall defense genes to regulate cotton resistance to Verticillium wilt. PLANT PHYSIOLOGY 2022; 189:264-284. [PMID: 35134243 PMCID: PMC9070856 DOI: 10.1093/plphys/kiac041] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/26/2021] [Indexed: 05/13/2023]
Abstract
In plants, long noncoding RNAs (lncRNAs) regulate disease resistance against fungi and other pathogens. However, the specific mechanism behind this regulation remains unclear. In this study, we identified disease resistance-related lncRNAs as well as their regulating genes and assessed their functions by infection of cotton (Gossypium) chromosome segment substitution lines with Verticillium dahliae. Our results demonstrated that lncRNA7 and its regulating gene Pectin methylesterase inhibitor 13 (GbPMEI13) positively regulated disease resistance via the silencing approach, while ectopic overexpression of GbPMEI13 in Arabidopsis (Arabidopsis thaliana) promoted growth and enhanced resistance to V. dahliae. In contrast, lncRNA2 and its regulating gene Polygalacturonase 12 (GbPG12) negatively regulated resistance to V. dahliae. We further found that fungal disease-related agents, including the pectin-derived oligogalacturonide (OG), could downregulate the expression of lncRNA2 and GbPG12, leading to pectin accumulation. Conversely, OG upregulated the expression of lncRNA7, which encodes a plant peptide phytosulfokine (PSK-α), which was confirmed by lncRNA7 overexpression and Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS) experiments. We showed that PSK-α promoted 3-Indoleacetic acid (IAA) accumulation and activated GbPMEI13 expression through Auxin Response Factor 5. Since it is an inhibitor of pectin methylesterase (PME), GbPMEI13 promotes pectin methylation and therefore increases the resistance to V. dahliae. Consistently, we also demonstrated that GbPMEI13 inhibits the mycelial growth and spore germination of V. dahliae in vitro. In this study, we demonstrated that lncRNA7, lncRNA2, and their regulating genes modulate cell wall defense against V. dahliae via auxin-mediated signaling, providing a strategy for cotton breeding.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
- College of life science and agricultural engineering, Nanyang Normal
University, Nanyang 473000, China
| | - Jinlei Liu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Jieru Cheng
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Quan Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, College of
Bioinformation, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China
| | - Yu Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Jinggao Liu
- Southern Plains Agricultural Research Center, Agricultural Research
Service, USDA, College Station, Texas 77845, USA
| | - Huimin Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Ping Wang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Chaowei Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Zongyan Chu
- Kaifeng Academy of Agriculture and Forestry, Kaifeng 475000,
China
| | - Xiao Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and
Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research,
Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and
Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research,
Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| |
Collapse
|
12
|
Coculo D, Lionetti V. The Plant Invertase/Pectin Methylesterase Inhibitor Superfamily. FRONTIERS IN PLANT SCIENCE 2022; 13:863892. [PMID: 35401607 PMCID: PMC8990755 DOI: 10.3389/fpls.2022.863892] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Invertases (INVs) and pectin methylesterases (PMEs) are essential enzymes coordinating carbohydrate metabolism, stress responses, and sugar signaling. INVs catalyzes the cleavage of sucrose into glucose and fructose, exerting a pivotal role in sucrose metabolism, cellulose biosynthesis, nitrogen uptake, reactive oxygen species scavenging as well as osmotic stress adaptation. PMEs exert a dynamic control of pectin methylesterification to manage cell adhesion, cell wall porosity, and elasticity, as well as perception and signaling of stresses. INV and PME activities can be regulated by specific proteinaceous inhibitors, named INV inhibitors (INVIs) and PME Inhibitors (PMEIs). Despite targeting different enzymes, INVIs and PMEIs belong to the same large protein family named "Plant Invertase/Pectin Methylesterase Inhibitor Superfamily." INVIs and PMEIs, while showing a low aa sequence identity, they share several structural properties. The two inhibitors showed mainly alpha-helices in their secondary structure and both form a non-covalent 1:1 complex with their enzymatic counterpart. Some PMEI members are organized in a gene cluster with specific PMEs. Although the most important physiological information was obtained in Arabidopsis thaliana, there are now several characterized INVI/PMEIs in different plant species. This review provides an integrated and updated overview of this fascinating superfamily, from the specific activity of characterized isoforms to their specific functions in plant physiology. We also highlight INVI/PMEIs as biotechnological tools to control different aspects of plant growth and defense. Some isoforms are discussed in view of their potential applications to improve industrial processes. A review of the nomenclature of some isoforms is carried out to eliminate confusion about the identity and the names of some INVI/PMEI member. Open questions, shortcoming, and opportunities for future research are also presented.
Collapse
Affiliation(s)
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
13
|
Bakshi G, Ananthanarayan L. Isolation, purification, and characterization of pectin methylesterase inhibitor and polygalacturonase inhibitor protein from Indian lemon (Citrus limon L.). PHYTOCHEMISTRY 2021; 189:112802. [PMID: 34153568 DOI: 10.1016/j.phytochem.2021.112802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
Proteins acting as powerful inhibitors of plant pectin methylesterase and polygalacturonase were isolated from whole lemon fruits (Citrus limon L.). Pectin methylesterase inhibitor (PMEI) and polygalacturonase inhibitor protein (PGIP) were purified using DEAE Sepharose column, resulting in fold purity of 89.13 and 81.16 and having a molecular mass of 35 and 38 kDa, respectively as estimated using SDS-PAGE and MALDI-TOF mass spectroscopy. The optimum pH of purified PMEI and PGIP was pH 6 and pH 4.5 while the inhibitors showed good stability in the pH range of 5-8 and 3.5 to 5.5, respectively. Both the inhibitors from C. limon demonstrated an optimum temperature of 55 °C. Thermal inactivation data suggested that purified PGIP was more heat stable than PMEI. The inhibition kinetics of PMEI and PGIP towards C. limon PME and C. limon PG was of a non-competitive type. Both PMEI and PGIP obeyed first-order inactivation kinetics. The PMEI and PGIP exhibited different extent of inhibition towards PME and PG from other fruit sources analyzed in this study. As these inhibitors inhibit PME and PG from other plant sources they can be used in fruit-based products to control undesirable endogenous enzyme activities as an alternative to thermal processing.
Collapse
Affiliation(s)
- Gayatri Bakshi
- Food Engineering and Technology Department, Institute of Chemical Technology Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Laxmi Ananthanarayan
- Food Engineering and Technology Department, Institute of Chemical Technology Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
14
|
Shin Y, Chane A, Jung M, Lee Y. Recent Advances in Understanding the Roles of Pectin as an Active Participant in Plant Signaling Networks. PLANTS (BASEL, SWITZERLAND) 2021; 10:1712. [PMID: 34451757 PMCID: PMC8399534 DOI: 10.3390/plants10081712] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023]
Abstract
Pectin is an abundant cell wall polysaccharide with essential roles in various biological processes. The structural diversity of pectins, along with the numerous combinations of the enzymes responsible for pectin biosynthesis and modification, plays key roles in ensuring the specificity and plasticity of cell wall remodeling in different cell types and under different environmental conditions. This review focuses on recent progress in understanding various aspects of pectin, from its biosynthetic and modification processes to its biological roles in different cell types. In particular, we describe recent findings that cell wall modifications serve not only as final outputs of internally determined pathways, but also as key components of intercellular communication, with pectin as a major contributor to this process. The comprehensive view of the diverse roles of pectin presented here provides an important basis for understanding how cell wall-enclosed plant cells develop, differentiate, and interact.
Collapse
Affiliation(s)
- Yesol Shin
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
| | - Andrea Chane
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
| | - Minjung Jung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Kan J, Hui Y, Lin X, Liu Y, Jin C. Postharvest ultraviolet‐C treatment of peach fruit: Changes in transcriptome profile focusing on genes involved in softening and senescence. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan Kan
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Yaoyao Hui
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Xianpei Lin
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Ying Liu
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Changhai Jin
- College of Food Science and Engineering Yangzhou University Yangzhou China
| |
Collapse
|
16
|
Yang YJ, Lin W, Singh RP, Xu Q, Chen Z, Yuan Y, Zou P, Li Y, Zhang C. Genomic, Transcriptomic and Enzymatic Insight into Lignocellulolytic System of a Plant Pathogen Dickeya sp. WS52 to Digest Sweet Pepper and Tomato Stalk. Biomolecules 2019; 9:biom9120753. [PMID: 31756942 PMCID: PMC6995524 DOI: 10.3390/biom9120753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Dickeya sp., a plant pathogen, causing soft rot with strong pectin degradation capacity was taken for the comprehensive analysis of its corresponding biomass degradative system, which has not been analyzed yet. Whole genome sequence analysis of the isolated soft-rotten plant pathogen Dickeya sp. WS52, revealed various coding genes which involved in vegetable stalk degradation-related properties. A total of 122 genes were found to be encoded for putative carbohydrate-active enzymes (CAZy) in Dickeya sp. WS52. The number of pectin degradation-related genes, was higher than that of cellulolytic bacteria as well as other Dickeya spp. strains. The CAZy in Dickeya sp.WS52 contains a complete repertoire of enzymes required for hemicellulose degradation, especially pectinases. In addition, WS52 strain possessed plenty of genes encoding potential ligninolytic relevant enzymes, such as multicopper oxidase, catalase/hydroperoxidase, glutathione S-transferase, and quinone oxidoreductase. Transcriptome analysis revealed that parts of genes encoding lignocellulolytic enzymes were significantly upregulated in the presence of minimal salt medium with vegetable stalks. However, most of the genes were related to lignocellulolytic enzymes, especially pectate lyases and were downregulated due to the slow growth and downregulated secretion systems. The assay of lignocellulolytic enzymes including CMCase and pectinase activities were identified to be more active in vegetable stalk relative to MSM + glucose. However, compared with nutrient LB medium, it needed sufficient nutrient to promote growth and to improve the secretion system. Further identification of enzyme activities of Dickeya sp.WS52 by HPLC confirmed that monosaccharides were produced during degradation of tomato stalk. This identified degradative system is valuable for the application in the lignocellulosic bioenergy industry and animal production.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
| | - Wei Lin
- Tobacco Research Institute of Nanping, Nanping, Fujian 353000, China; (W.L.); (Q.X.); (Z.C.)
| | - Raghvendra Pratap Singh
- Department of Research & Development, Biotechnology, Uttaranchal University, Dehradun 248007, India
- Correspondence: (R.P.S.); (C.Z.)
| | - Qian Xu
- Tobacco Research Institute of Nanping, Nanping, Fujian 353000, China; (W.L.); (Q.X.); (Z.C.)
| | - Zhihou Chen
- Tobacco Research Institute of Nanping, Nanping, Fujian 353000, China; (W.L.); (Q.X.); (Z.C.)
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
| | - Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
- Correspondence: (R.P.S.); (C.Z.)
| |
Collapse
|
17
|
Wang ST, Feng YJ, Lai YJ, Su NW. Complex Tannins Isolated from Jelly Fig Achenes Affect Pectin Gelation through Non-Specific Inhibitory Effect on Pectin Methylesterase. Molecules 2019; 24:E1601. [PMID: 31018540 PMCID: PMC6515263 DOI: 10.3390/molecules24081601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/02/2022] Open
Abstract
Jelly fig (Ficus awkeotsang Makino) is used to prepare drinks and desserts in Asia, owing to the gelling capability of its pectin via endogenous pectin methylesterase (PE) catalyzation. Meanwhile, substances with PE inhibitory activity (SPEI) in jelly fig achenes (JFA) residue were noticed to be able to impede the gelation. In this study, we characterized and isolated SPEI from JFA by a series of PE inhibition-guided isolations. Crude aqueous extract of JFA residue was mixed with acetone, and 90% acetone-soluble matter was further fractionated by Diaion HP-20 chromatography. The retained fraction with dominant PE inhibitory activity was collected from 100% methanol eluate. Results from high-performance liquid chromatography mass spectrometry (HPLC/MS) and hydrolysis-induced chromogenic transition revealed the SPEI as complex tannins. Total tannins content was determined in each isolated fraction, and was closely related to PE inhibitory activity. In addition, SPEI in this study could inhibit activities of digestive enzymes in vitro and may, therefore, be assumed to act as non-specific protein binding agent.
Collapse
Affiliation(s)
- Shang-Ta Wang
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - You-Jiang Feng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Ying-Jang Lai
- Department of Food Science, National Quemoy University, No. 1, University Road, Jinning Township, Kinmen County 892, Taiwan.
| | - Nan-Wei Su
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
18
|
Lu L, Ji L, Ma Q, Yang M, Li S, Tang Q, Qiao L, Li F, Guo Q, Wang C. Depression of Fungal Polygalacturonase Activity in Solanum lycopersicum Contributes to Antagonistic Yeast-Mediated Fruit Immunity to Botrytis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3293-3304. [PMID: 30785743 DOI: 10.1021/acs.jafc.9b00031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The acquisition of susceptibility to necrotrophy over the course of ripening is one of the critical factors limiting shelf life. In this study, phytopathology and molecular biology were employed to explore the roles of pectinase in fruit susceptibility and ripening. Solanum lycopersicum fruit softened dramatically from entirely green to 50% red, which was accompanied by a continuously high expressed SlPG2 gene. The necrotrophic fungus Botrytis cinerea further activated the expression of SlPGs and SlPMEs to accelerate cell wall disassembly, while most of the polygalacturonase inhibitor proteins encoding genes expression were postponed in ripe fruit following the pathogen attack. Pectin induced the antagonistic yeast to secrete pectinolytic enzymes to increase fruit resistance against gray mold. The activities of pathogenic pectinase of B. cinerea were correspondingly depressed in the pectin-inducible yeast enzyme elicited ripe fruit. These data suggest that pectinase is a molecular target for regulation of disease resistance during fruit ripening.
Collapse
Affiliation(s)
- Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Lifeng Ji
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Qingqing Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Mingguan Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Shuhua Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Qiong Tang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang University , Hangzhou 310058 , China
| | - Liping Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Fengjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| |
Collapse
|
19
|
The Multifaceted Role of Pectin Methylesterase Inhibitors (PMEIs). Int J Mol Sci 2018; 19:ijms19102878. [PMID: 30248977 PMCID: PMC6213510 DOI: 10.3390/ijms19102878] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/30/2023] Open
Abstract
Plant cell walls are complex and dynamic structures that play important roles in growth and development, as well as in response to stresses. Pectin is a major polysaccharide of cell walls rich in galacturonic acid (GalA). Homogalacturonan (HG) is considered the most abundant pectic polymer in plant cell walls and is partially methylesterified at the C6 atom of galacturonic acid. Its degree (and pattern) of methylation (DM) has been shown to affect biomechanical properties of the cell wall by making pectin susceptible for enzymatic de-polymerization and enabling gel formation. Pectin methylesterases (PMEs) catalyze the removal of methyl-groups from the HG backbone and their activity is modulated by a family of proteinaceous inhibitors known as pectin methylesterase inhibitors (PMEIs). As such, the interplay between PME and PMEI can be considered as a determinant of cell adhesion, cell wall porosity and elasticity, as well as a source of signaling molecules released upon cell wall stress. This review aims to highlight recent updates in our understanding of the PMEI gene family, their regulation and structure, interaction with PMEs, as well as their function in response to stress and during development.
Collapse
|
20
|
Pectin methylesterase inhibitor (PMEI) family can be related to male sterility in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Genet Genomics 2017; 293:343-357. [DOI: 10.1007/s00438-017-1391-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
|
21
|
Sénéchal F, Habrylo O, Hocq L, Domon JM, Marcelo P, Lefebvre V, Pelloux J, Mercadante D. Structural and dynamical characterization of the pH-dependence of the pectin methylesterase-pectin methylesterase inhibitor complex. J Biol Chem 2017; 292:21538-21547. [PMID: 29109147 DOI: 10.1074/jbc.ra117.000197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
Pectin methylesterases (PMEs) catalyze the demethylesterification of pectin, one of the main polysaccharides in the plant cell wall, and are of critical importance in plant development. PME activity generates highly negatively charged pectin and mutates the physiochemical properties of the plant cell wall such that remodeling of the plant cell can occur. PMEs are therefore tightly regulated by proteinaceous inhibitors (PMEIs), some of which become active upon changes in cellular pH. Nevertheless, a detailed picture of how this pH-dependent inhibition of PME occurs at the molecular level is missing. Herein, using an interdisciplinary approach that included homology modeling, MD simulations, and biophysical and biochemical characterizations, we investigated the molecular basis of PME3 inhibition by PMEI7 in Arabidopsis thaliana Our complementary approach uncovered how changes in the protonation of amino acids at the complex interface shift the network of interacting residues between intermolecular and intramolecular. These shifts ultimately regulate the stability of the PME3-PMEI7 complex and the inhibition of the PME as a function of the pH. These findings suggest a general model of how pH-dependent proteinaceous inhibitors function. Moreover, they enhance our understanding of how PMEs may be regulated by pH and provide new insights into how this regulation may control the physical properties and structure of the plant cell wall.
Collapse
Affiliation(s)
- Fabien Sénéchal
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Olivier Habrylo
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Ludivine Hocq
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Jean-Marc Domon
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Paulo Marcelo
- the Plateforme ICAP, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Valérie Lefebvre
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Jérôme Pelloux
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France,
| | - Davide Mercadante
- the Heidelberg Institute for Theoretical Studies, Heidelberg-HITS, 16920 Heidelberg, Germany, and .,the IWR-Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Giangrieco I, Proietti S, Moscatello S, Tuppo L, Battistelli A, La Cara F, Tamburrini M, Famiani F, Ciardiello MA. Influence of Geographical Location of Orchards on Green Kiwifruit Bioactive Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9172-9179. [PMID: 27933987 DOI: 10.1021/acs.jafc.6b03930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Italy is one of the world's major kiwifruit producers and exporters with orchards located in different areas from the north to the south of the peninsula. This study sought to investigate for the first time the possible influence of the geographical location of kiwifruit orchards on some fruit components, selected because of their involvement in beneficial or negative effects on human health. The fruits harvested in 16 Italian areas were analyzed, and the results obtained show that the observed variations of the relative amounts of total proteins, kiwellin, the major allergen actinidin, ascorbate, polyphenols, and superoxide dismutase (SOD)-like activity seem not to be related to the geographical location of the orchards. In contrast, the high concentration of the nutraceutical peptide kissper seems to have some relationship with the cultivation area. In fact, its amount is much higher in the fruits from the Lazio region, thus providing added value to these kiwifruits.
Collapse
Affiliation(s)
- Ivana Giangrieco
- Istituto di Bioscienze e Biorisorse, CNR , Via Pietro Castellino 111, I-80131 Napoli, Italy
| | - Simona Proietti
- Istituto di Biologia Agro-ambientale e Forestale, CNR , V.le Marconi 2, I-05010 Porano, Italy
| | - Stefano Moscatello
- Istituto di Biologia Agro-ambientale e Forestale, CNR , V.le Marconi 2, I-05010 Porano, Italy
| | - Lisa Tuppo
- Istituto di Bioscienze e Biorisorse, CNR , Via Pietro Castellino 111, I-80131 Napoli, Italy
| | - Alberto Battistelli
- Istituto di Biologia Agro-ambientale e Forestale, CNR , V.le Marconi 2, I-05010 Porano, Italy
| | - Francesco La Cara
- Istituto di Biologia Agro-ambientale e Forestale, CNR , Via Pietro Castellino 111, I-80131 Napoli, Italy
| | - Maurizio Tamburrini
- Istituto di Bioscienze e Biorisorse, CNR , Via Pietro Castellino 111, I-80131 Napoli, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia , Via Borgo XX Giugno 74, I-06121 Perugia, Italy
| | | |
Collapse
|