1
|
Les F, Galiffa V, Cásedas G, Moliner C, Maggi F, López V, Gómez-Rincón C. Essential Oils of Two Subspecies of Satureja montana L. against Gastrointestinal Parasite Anisakis simplex and Acetylcholinesterase Inhibition. Molecules 2024; 29:4640. [PMID: 39407570 PMCID: PMC11477606 DOI: 10.3390/molecules29194640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
The increasing presence of Anisakis spp. in fish is having significant implications for public health due to a rise in cases of anisakiasis. Given this situation, there is a critical need to develop new strategies to fight this parasite. Satureja montana L., commonly known as savory, is a plant recognized in folk medicine for its therapeutic activity, such as being antispasmodic and digestive, among other properties. The aim of this study was to assess the nematicide activity against A. simplex larvae of the essential oil from two varieties of S. montana (subsp. montana (SMM) and variegata (SMV)). The essential oils were obtained via hydro-distillation of the flowering aerial parts. In vitro assays demonstrated the complete inactivation of anisakis larvae after 24 h when exposed to both essential oils, along with a significant reduction in their penetration capacity. Moreover, both essential oils showed an inhibitory effect on acetylcholinesterase (AChE). No differences between the subspecies were observed in any of the assays. Hence, the nematicidal activity of essential oils could be attributed to their capacity to inhibit AChE. These findings suggest the potential of S. montana essential oil for therapeutic and food industry applications.
Collapse
Affiliation(s)
- Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Spain; (G.C.); (C.M.); (V.L.); (C.G.-R.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Veronica Galiffa
- Chemistry Interdiscplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy; (V.G.); (F.M.)
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Spain; (G.C.); (C.M.); (V.L.); (C.G.-R.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Cristina Moliner
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Spain; (G.C.); (C.M.); (V.L.); (C.G.-R.)
| | - Filippo Maggi
- Chemistry Interdiscplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy; (V.G.); (F.M.)
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Spain; (G.C.); (C.M.); (V.L.); (C.G.-R.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Carlota Gómez-Rincón
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Spain; (G.C.); (C.M.); (V.L.); (C.G.-R.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
2
|
Oliveira-Fernandes J, Oliveira-Pinto PR, Mariz-Ponte N, Sousa RMOF, Santos C. Satureja montana and Mentha pulegium essential oils' antimicrobial properties against Pseudomonas syringae pv. actinidiae and elicitor potential through the modulation of kiwifruit hormonal defenses. Microbiol Res 2023; 277:127490. [PMID: 37722185 DOI: 10.1016/j.micres.2023.127490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is responsible for the kiwifruit bacterial canker, the most severe disease of Actinidia spp. The use in agriculture of antibiotics and cooper-based compounds is increasingly being restricted, demanding for new sustainable alternatives to current agrochemicals. We aimed to characterize the anti-Psa potential of essential oils (EOs) of Mentha pulegium and Satureja montana and investigate if they elicit the plant-host hormonal defenses. The EOs were characterized through gas-chromatography with flame ionization detector (GC-FID) and mass spectrometry (MS). Pulegone (78.6%) and carvacrol (43.5%) were the major constituents of M. pulegium and S. montana EO, respectively. Only S. montana EO showed relevant anti-Psa activity in vitro. To evaluate if the EOs also elicited host defenses, in vitro shoots were treated with 2 mg shoot-1 of EO-solution and subsequently inoculated with Psa three days later. Shoots were analyzed 10 min, three days (and 10 min after Psa-inoculation), four and ten days after EO application. The up/down regulation of RNA-transcripts for hormone biosynthesis, Psa biofilm production and virulence genes were quantified by real-time quantitative PCR (RT-qPCR). Phytohormones were quantified by High-Performance Liquid Chromatography (HPLC). S. montana EO showed the most promising results as a defense elicitor, increasing 6-benzylaminopurine (BAP) by 131.07% and reducing indole-3-acetic acid (IAA) levels by 49.19%. Decreases of salicylic acid (SA), and gibberellic acid 3 (GA3) levels by 32.55% and 33.09% respectively and an increase of abscisic acid (ABA) by 85.03%, in M. pulegium EO-treated shoots, revealed some protective post-infection effect. This is the most comprehensive research on the Psa's impact on phytohormones. It also unveils the protective influence of prior EO exposure, clarifying the plant hormonal response to subsequent infections. The results reinforce the hypothesis that carvacrol-rich S. montana EO can be a suitable disease control agent against Psa infection. Its dual action against pathogens and elicitation of host plant defenses make it a promising candidate for incorporation into environmentally friendly disease management approaches. Nonetheless, to fully leverage these promising results, further research is imperative to elucidate the EO mode of action and evaluate the long-term efficacy of this approach.
Collapse
Affiliation(s)
- Juliana Oliveira-Fernandes
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Paulo R Oliveira-Pinto
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Nuno Mariz-Ponte
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal; CIBIO-InBIO, Campus de Vairão, Universidade do Porto, Rua Padre Armando Quintas, Vairão, Portugal
| | - Rose M O F Sousa
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; GreenUPorto/Inov4Agro, Faculty of Sciences, University of Porto, Rua Campo Alegre, Porto, Portugal; CITAB/Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Machado AM, Lopes V, Barata AM, Póvoa O, Farinha N, Figueiredo AC. Chemical Variability of the Essential Oils from Two Portuguese Apiaceae: Coriandrum sativum L. and Foeniculum vulgare Mill. PLANTS (BASEL, SWITZERLAND) 2023; 12:2749. [PMID: 37514362 PMCID: PMC10384636 DOI: 10.3390/plants12142749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Coriandrum sativum L. and Foeniculum vulgare Mill. are two aromatic and medicinal Apiaceae species commonly grown in Portugal, whose essential oils (EOs) are used in the food, pharmaceutical, and cosmetics industries. The present study evaluated EOs isolated from the fruits and vegetative aerial parts (VAPs) of 11 samples of Coriandrum sativum L. and from the fruits of 19 samples of Foeniculum vulgare Mill. The plant material was grown in experimental fields, after collection from several regions of mainland Portugal. The EOs were isolated by hydrodistillation and analyzed by gas chromatography and gas chromatography-mass spectrometry. The coriander EOs analysis evidenced two main clusters, with the first containing the fruits' EOs dominated by linalool (60-73%), γ-terpinene, and α-pinene and the second with the VAPs' EOs, which showed 2-trans-decenal (37-63%) and n-decanal (13-30%) as the main compounds. The fennel EOs analysis revealed two well correlated clusters, the first dominated by estragole (34-76%) and fenchone (16-30%) and the other dominated by trans-anethole (37-56%) and fenchone (14-34%). The present data suggest coriander EOs' chemical descriptors as linalool for the fruits' EOs and 2-trans-decenal with n-decanal for the VAPs' EOs. For the fennel fruit EOs, the putative descriptors were trans-anethole and estragole, with variable fenchone content. The gathered data reinforce the relevance of clarifying variability of these species' EOs, particularly when considering aromatic and medicinal plants with such a wide range of applications.
Collapse
Affiliation(s)
- Alexandra M Machado
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa (FCUL), Biotecnologia Vegetal, DBV, C2, Campo Grande, 1749-016 Lisboa, Portugal
| | - Violeta Lopes
- Banco Português de Germoplasma Vegetal (BPGV), Instituto Nacional de Investigação Agrária e Veterinária, Quinta de S. José, S. Pedro de Merelim, 4700-859 Braga, Portugal
| | - Ana Maria Barata
- Banco Português de Germoplasma Vegetal (BPGV), Instituto Nacional de Investigação Agrária e Veterinária, Quinta de S. José, S. Pedro de Merelim, 4700-859 Braga, Portugal
| | - Orlanda Póvoa
- VALORIZA-Centro de Investigação para a Valorização de Recursos Endógenos, Instituto Politécnico de Portalegre, Praça do Município 11, 7300-110 Portalegre, Portugal
- Instituto Politécnico de Portalegre, Praça do Município 11, 7300-110 Portalegre, Portugal
| | - Noémia Farinha
- Instituto Politécnico de Portalegre, Praça do Município 11, 7300-110 Portalegre, Portugal
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa (FCUL), Biotecnologia Vegetal, DBV, C2, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
4
|
Bailén M, Illescas C, Quijada M, Martínez-Díaz RA, Ochoa E, Gómez-Muñoz MT, Navarro-Rocha J, González-Coloma A. Anti-Trypanosomatidae Activity of Essential Oils and Their Main Components from Selected Medicinal Plants. Molecules 2023; 28:1467. [PMID: 36771132 PMCID: PMC9920086 DOI: 10.3390/molecules28031467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Kinetoplastida is a group of flagellated protozoa characterized by the presence of a kinetoplast, a structure which is part of a large mitochondria and contains DNA. Parasites of this group include genera such as Leishmania, that cause disease in humans and animals, and Phytomonas, that are capable of infecting plants. Due to the lack of treatments, the low efficacy, or the high toxicity of the employed therapeutic agents there is a need to seek potential alternative treatments. In the present work, the antiparasitic activity on Leishmania infantum and Phytomonas davidi of 23 essential oils (EOs) from plants of the Lamiaceae and Asteraceae families, extracted by hydrodistillation (HD) at laboratory scale and steam distillation (SD) in a pilot plant, were evaluated. The chemical compositions of the EOs were determined by gas chromatography-mass spectrometry. Additionally, the cytotoxic activity on mammalian cells of the major components from the most active EOs was evaluated, and their anti-Phytomonas and anti-Leishmania effects analyzed. L. infantum was more sensitive to the EOs than P. davidi. The EOs with the best anti-kinetoplastid activity were S. montana, T. vulgaris, M. suaveolens, and L. luisieri. Steam distillation increased the linalyl acetate, β-caryophyllene, and trans-α-necrodyl acetate contents of the EOs, and decreased the amount of borneol and 1,8 cineol. The major active components of the EOs were tested, with thymol being the strongest anti-Phytomonas compound followed by carvacrol. Our study identified potential treatments against kinetoplastids.
Collapse
Affiliation(s)
- María Bailén
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Illescas
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mónica Quijada
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Alberto Martínez-Díaz
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eneko Ochoa
- Research and Development Division, AleoVitro, 48160 Derio, Spain
| | - María Teresa Gómez-Muñoz
- Department of Animal Health, Faculty of Veterinary Sciences, University Complutense of Madrid, 28040 Madrid, Spain
| | - Juliana Navarro-Rocha
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Unidad de Recursos Forestales, 50059 Zaragoza, Spain
| | | |
Collapse
|
5
|
Mwamula AO, Kabir MF, Lee D. A Review of the Potency of Plant Extracts and Compounds from Key Families as an Alternative to Synthetic Nematicides: History, Efficacy, and Current Developments. THE PLANT PATHOLOGY JOURNAL 2022; 38:53-77. [PMID: 35385913 PMCID: PMC9343895 DOI: 10.5423/ppj.rw.12.2021.0179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 06/02/2023]
Abstract
The global nematicides market is expected to continue growing. With an increasing demand for synthetic chemical-free organic foods, botanical nematicides are taking the lead as replacements. Consequently, in the recent years, there have been vigorous efforts towards identification of the active secondary metabolites from various plants. These include mostly glucosinolates and their hydrolysis products such as isothiocyanates; flavonoids, alkaloids, limonoids, quassinoids, saponins, and the more recently probed essential oils, among others. And despite their overwhelming potential, variabilities in quality, efficacy, potency and composition continue to persist, and commercialization of new botanical nematicides is still lagging. Herein, we have reviewed the history of botanical nematicides and regional progresses, the potency of the identified phytochemicals from the key important plant families, and deciphered some of the impediments involved in standardization of the active compounds in addition to the concerns over the safety of the purified compounds to non-target microbial communities.
Collapse
Affiliation(s)
- Abraham Okki Mwamula
- Department of Ecological Science, Kyungpook National University, Sangju 37224, Korea
- Department of Plant Protection and Quarantine, Graduate School of Plant Protection and Quarantine, Kyungpook National University, Daegu 41566, Korea
| | - Md. Faisal Kabir
- Agriculture and Natural Resources, Research and Knowledge Management Division, DM WATCH, Dhaka-1216, Bangladesh
| | - DongWoon Lee
- Department of Ecological Science, Kyungpook National University, Sangju 37224, Korea
- Department of Plant Protection and Quarantine, Graduate School of Plant Protection and Quarantine, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
6
|
Kassam R, Yadav J, Chawla G, Kundu A, Hada A, Jaiswal N, Bollinedi H, Kamil D, Devi P, Rao U. Identification, Characterization, and Evaluation of Nematophagous Fungal Species of Arthrobotrys and Tolypocladium for the Management of Meloidogyne incognita. Front Microbiol 2021; 12:790223. [PMID: 34956156 PMCID: PMC8702965 DOI: 10.3389/fmicb.2021.790223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Root-knot nematodes belonging to the genus Meloidogyne are agriculturally important pests, and biocontrol strategies offer safer alternatives for their management. In the present study, two fungal species from Indian soils were identified as Arthrobotrys thaumasia and Tolypocladium cylindrosporum based on morphological characteristics and further confirmed using molecular markers. In vitro evaluation of A. thaumasia against M. incognita and Caenorhabditis elegans showed 82 and 73% parasitism, respectively, whereas T. cylindrosporum gave 65.2 and 57.7% parasitism, respectively. Similarly, culture filtrates of A. thaumasia caused 57.7 and 53.7% mortality of M. incognita and C. elegans, respectively, whereas T. cylindrosporum caused higher mortality of 87.3 and 64%, respectively. Besides, greenhouse evaluation of both fungi against M. incognita infecting tomato significantly reduced nematode disease burden reflecting parasitic success measured as the total number of galls, egg masses, eggs per egg mass, and derived nematode multiplication factor. Application of A. thaumasia and T. cylindrosporum reduced nematode multiplication factor by 80 and 95%, respectively, compared with control. General metabolite profiling of tested fungi using gas chromatography–mass spectrometry and ultra-performance liquid chromatography–quadrupole/time of flight mass spectrometry reported for the first time here showed presence of various volatile and non-volatile compounds with nematicidal activity, viz., trimethyl-heptadiene, methyl-hexadecanol, dodecadienal, decane, terpendole E, dodecane, acetamido-6-anthraquinone, and hexadecanol. Also, other compounds such as undecane, dibutyl-disulfide, octadecenal, paganin, talathermophilin, dactylarin, tolypyridone A, tolypyridone B, pyridoxatin, and destruxin were identified, reported in the literature to possess antibacterial, antifungal, and insecticidal properties. This is the first report of the occurrence of both fungi from India and pioneer demonstration of T. cylindrosporum for root-knot nematode management.
Collapse
Affiliation(s)
- Rami Kassam
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Yadav
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gautam Chawla
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nisha Jaiswal
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Haritha Bollinedi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prameela Devi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Uma Rao, ; orcid.org/0000-0002-1233-2921
| |
Collapse
|
7
|
Faria JMS, Barbosa P, Vieira P, Vicente CSL, Figueiredo AC, Mota M. Phytochemicals as Biopesticides against the Pinewood Nematode Bursaphelenchus xylophilus: A Review on Essential Oils and Their Volatiles. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122614. [PMID: 34961085 PMCID: PMC8706428 DOI: 10.3390/plants10122614] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 05/03/2023]
Abstract
The impacts of a rapidly changing environment together with the growth in global trade activities has promoted new plant pest pandemic events in forest ecosystems. The pinewood nematode (PWN), Bursaphelenchus xylophilus, causes strong worldwide economic and ecological impacts. Direct control is performed through trunk injection of powerful nematicides, however many of these (hemi)synthetic compounds have raised ecological and human health concerns for affecting non-target species and accumulating in food products. As sustainable alternatives, essential oils (EOs) have shown very promising results. In this work, available literature on the direct activity of EOs against PWN is reviewed, as a contribution to advance the search for safer and greener biopesticides to be used in sustainable PWD pest management strategies. For the first time, important parameters concerning the bioassays performed, the PWNs bioassayed, and the EOs used are summarized and comparatively analyzed. Ultimately, an overview of the chemical composition of the most active EOs allowed to uncover preliminary guidelines for anti-PWN EO efficiency. The analysis of important information on the volatile phytochemicals composing nematicidal EOs provides a solid basis to engineer sustainable biopesticides capable of controlling the PWN under an integrated pest management framework and contributes to improved forest health.
Collapse
Affiliation(s)
- Jorge M. S. Faria
- INIAV, I.P., National Institute for Agrarian and Veterinarian Research, Quinta do Marquês, 2780-159 Oeiras, Portugal;
- NemaLab-MED, Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (P.B.); (M.M.)
- Correspondence:
| | - Pedro Barbosa
- NemaLab-MED, Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (P.B.); (M.M.)
| | - Paulo Vieira
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Cláudia S. L. Vicente
- INIAV, I.P., National Institute for Agrarian and Veterinarian Research, Quinta do Marquês, 2780-159 Oeiras, Portugal;
- NemaLab-MED, Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (P.B.); (M.M.)
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Centro de Biotecnologia Vegetal (CBV), Faculdade de Ciências da Universidade de Lisboa, DBV, C2, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Manuel Mota
- NemaLab-MED, Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (P.B.); (M.M.)
- Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554 Évora, Portugal
| |
Collapse
|
8
|
Nahar L, El-Seedi HR, Khalifa SAM, Mohammadhosseini M, Sarker SD. Ruta Essential Oils: Composition and Bioactivities. Molecules 2021; 26:4766. [PMID: 34443352 PMCID: PMC8400350 DOI: 10.3390/molecules26164766] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Ruta L. is a typical genus of the citrus family, Rutaceae Juss. and comprises ca. 40 different species, mainly distributed in the Mediterranean region. Ruta species have long been used in traditional medicines as an abortifacient and emmenagogue and for the treatment of lung diseases and microbial infections. The genus Ruta is rich in essential oils, which predominantly contain aliphatic ketones, e.g., 2-undecanone and 2-nonanone, but lack any significant amounts of terpenes. Three Ruta species, Ruta chalepensis L., Ruta graveolens L., and Ruta montana L., have been extensively studied for the composition of their essential oils and several bioactivities, revealing their potential medicinal and agrochemical applications. This review provides a systematic evaluation and critical appraisal of publications available in the literature on the composition and bioactivities of the essential oils obtained from Ruta species and includes a brief outlook of the potential applications of nanotechnology and chitosan-based products of Ruta essential oils.
Collapse
Affiliation(s)
- Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Hesham R. El-Seedi
- Biomedical Centre (BMC), Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden;
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Majid Mohammadhosseini
- Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran;
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
9
|
Ebadollahi A, Jalali Sendi J, Ziaee M, Krutmuang P. Acaricidal, Insecticidal, and Nematicidal Efficiency of Essential Oils Isolated from the Satureja Genus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116050. [PMID: 34199797 PMCID: PMC8200103 DOI: 10.3390/ijerph18116050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The overuse of synthetic pesticides in plant protection strategies has resulted in numerous side effects, including environmental contamination, food staff residues, and a threat to non-target organisms. Several studies have been performed to assess the pesticidal effects of plant-derived essential oils and their components, as partially safe and effective agents, on economically important pests. The essential oils isolated from Satureja species are being used in medicinal, cosmetic, and food industries. Their great potential in pest management is promising, which is related to high amounts of terpenes presented in this genus. This review is focused on the acute and chronic acaricidal, insecticidal, and nematicidal effects of Satureja essential oil and their main components. The effects of eighteen Satureja species are documented, considering lethality, repellency, developmental inhibitory, and adverse effects on the feeding, life cycle, oviposition, and egg hatching. Further, the biochemical impairment, including impairments in esterases, acetylcholinesterase, and cytochrome P450 monooxygenases functions, are also considered. Finally, encapsulation and emulsification methods, based on controlled-release techniques, are suggested to overcome the low persistence and water solubility restrictions of these biopesticides. The present review offers Satureja essential oils and their major components as valuable alternatives to synthetic pesticides in the future of pest management.
Collapse
Affiliation(s)
- Asgar Ebadollahi
- Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-36514, Iran
- Correspondence: (A.E.); (P.K.)
| | - Jalal Jalali Sendi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 41635-1314, Iran;
| | - Masumeh Ziaee
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran;
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (A.E.); (P.K.)
| |
Collapse
|
10
|
Coimbra AT, Ferreira S, Duarte AP. Genus Ruta: A natural source of high value products with biological and pharmacological properties. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113076. [PMID: 32534112 DOI: 10.1016/j.jep.2020.113076] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ruta genus is constituted by ten species, of which the most commonly described are R. chalepensis and R. graveolens. Ruta plants are perennial shrubs belonging to the family Rutaceae, which are traditionally used in folk medicine, since ancient times mostly for the treatment of various ailments of the womb. AIM OF THE STUDY To provide a review of the different uses of Ruta species in traditional medicine, as well as, on their multifactorial biological and pharmacological properties. MATERIAL AND METHODS A search of the literature on genus Ruta and Ruta species was performed using various scientific databases and search engines and the information of articles were reviewed and compiled. RESULTS Different parts of the plants belonging to Ruta genus are used in folk medicine to treat a wide range of different diseases. The principal use of these is in gynaecological field, but the treatment of pain, fever, nausea, inflammation, infections, nervous disorders, among others, are also described. These plants have been used to fertility regulation, as anti-fertility agent, to control menstrual flux and bleedings, as abortifacient and as contraceptive. The phytochemical composition of these plants consists mainly in essential oil (EO), but phenolic compounds were also reported, like coumarins and flavonoids, as well as alkaloids. Ruta species products like extracts and EOs have shown broad pharmacological activities, such as antimicrobial and antifungal activities, as well as, antiviral and antiparasitic. Moreover, Ruta plants products present antioxidant, neuroprotective, anti-inflammatory, anti-cancer and anti-diabetic activities and demonstrated contraceptive and abortifacient effects. These plants were also tested to be used for non-therapeutic approaches, as bio-insecticides in the control of different insect pests showing to be able to reduce infestation. CONCLUSIONS Ruta species could be a potential source of natural products with biological activities. Ruta extracts, essential oils and isolated compounds have shown a diverse potential for use in the treatment of different diseases, as well as, for pests control, contributing to the valorisation of these plants. Nonetheless, this review indicates that more studies are needed to demonstrate the full potential of Ruta species, and to further explore the toxicology and safety of these plants.
Collapse
Affiliation(s)
- Alexandra T Coimbra
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Susana Ferreira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Ana Paula Duarte
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|