1
|
Xie D, Zhang R, Huang J, Fei Z, Wang L, Zhao J, Si J, Jin P. Efficient production, structural characterization and bioactivity of an extracellular polysaccharide from Grifola frondosa endophytic Burkholderia sp. Int J Biol Macromol 2025; 309:143090. [PMID: 40222514 DOI: 10.1016/j.ijbiomac.2025.143090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/18/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Endophytic bacteria Burkholderia sp. (GFB) was firstly identified and isolated from Grifola frondosa. An exopolysaccharide (GFB-MP) of GFB strain was obtained following fermentation optimization, resulting in a maximum yield of 11.36 g/L in 5 L fed-batch fermentation. GFB-MP (MW 432.05 kDa) comprised mainly galactose, glucose, and mannose with a ratio of 39.52:14.22:46.26, indicating a mannose-enriched polysaccharide. Methylation and NMR analysis revealed that GFB-MP consisted of the main chain that was repeat units →4)-α-D-Glcp-(1 → bonded →6)-β-D-Galp-1 → repeat units and three O-6-linked branched chains. Antibacterial activity suggested that GFB-MP can effectively inhibit food pathogen bacteria Listeria and Escherichia coli with inhibition ratios of 73.4 % and 81.6 %, respectively. In addition, GFB-MP exhibited remarkable growth-promoting activity on probiotics with >50 % increments of cell growth. This study demonstrates that GFB-MP has the potential for health-beneficial food. Knowledge of endophyte polysaccharides in G. frondosa is important to understand their physiological activities and symbiotic interactions.
Collapse
Affiliation(s)
- Dongchao Xie
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Ruixue Zhang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Jiajun Huang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Zuqi Fei
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Lu Wang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Jinsong Zhao
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Jinping Si
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Peng Jin
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China.
| |
Collapse
|
2
|
Asbury RE, Saville BA. Manno-oligosaccharides as a promising antimicrobial strategy: pathogen inhibition and synergistic effects with antibiotics. Front Microbiol 2025; 16:1529081. [PMID: 40196030 PMCID: PMC11973258 DOI: 10.3389/fmicb.2025.1529081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/21/2025] [Indexed: 04/09/2025] Open
Abstract
Infections caused by pathogenic bacteria pose a significant health challenge to humans and animals, especially given the rising incidence of antimicrobial resistance. Addressing this challenge has resulted in initiatives seeking alternatives to traditional antibiotics. Manno-oligosaccharides (MOS) exhibit pathogen-binding properties, due to their ability to prevent bacterial adhesion to epithelial cells, such as those within the urinary tract and intestinal epithelium. This suggests that MOS could offer a promising alternative to antibiotics. In this study, we explore the ability of various β-MOS products to inhibit the growth of Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, and Streptococcus mutans, in addition to their ability to render antibiotics more effective. Inhibition profiles were distinct for each bacterial strain and differed according to β-MOS structure. Antibiotics were significantly potentiated by MOS in some cases, such as ceftazidime against K. pneumoniae. This research shows the role of carbohydrate structure in the anti-bacterial properties of non-digestible oligosaccharides such as MOS and positions MOS as a promising strategy in the treatment of bacterial infections.
Collapse
Affiliation(s)
- Rachel E. Asbury
- Bioprocess and Enzyme Technology Lab, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- College of Dietitians of Ontario, Toronto, ON, Canada
| | - Bradley A. Saville
- Bioprocess and Enzyme Technology Lab, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Chen YJ, Sui X, Wang Y, Zhao ZH, Han TH, Liu YJ, Zhang JN, Zhou P, Yang K, Ye ZH. Preparation, structural characterization, biological activity, and nutritional applications of oligosaccharides. Food Chem X 2024; 22:101289. [PMID: 38544933 PMCID: PMC10966145 DOI: 10.1016/j.fochx.2024.101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Oligosaccharides are low-molecular-weight carbohydrates between monosaccharides and polysaccharides. They can be extracted directly from natural products by physicochemical methods or obtained by chemical synthesis or enzymatic reaction. Oligosaccharides have important physicochemical and physiological properties. Their research and production involve many disciplines such as medicine, chemical industry, and biology. Functional oligosaccharides, as an excellent functional food base, can be used as dietary fibrer and prebiotics to enrich the diet; improve the microecology of the gut; exert antitumour, anti-inflammatory, antioxidant, and lipid-lowering properties. Therefore, the industrial applications of oligosaccharides have increased rapidly in the past few years. It has great prospects in the field of food and medicinal chemistry. This review summarized the preparation, structural features and biological activities of oligosaccharides, with particular emphasis on the application of functional oligosaccharides in the food industry and human nutritional health. It aims to inform further research and development of oligosaccharides and food chemistry.
Collapse
Affiliation(s)
- Ya-jing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xin Sui
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yue Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yi-jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jia-ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing 100191, China
| | - Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Zhi-hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Murillo-Franco SL, Galvis-Nieto JD, Orrego CE. Mannooligosaccharide production from açaí seeds by enzymatic hydrolysis: optimization through response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33540-2. [PMID: 38865045 DOI: 10.1007/s11356-024-33540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/28/2024] [Indexed: 06/13/2024]
Abstract
Recognized for its bioactive compounds, açaí has become a functional food, but it has a low pulp yield, and the seeds are the main waste. This study investigates the potential of açaí seeds (Euterpe oleracea Mart.) to produce mannooligosaccharides (MOS) through enzymatic hydrolysis. Using response surface methodology (RSM), the research optimizes MOS extraction while minimizing mannose production and reducing processing time, achieving MOS production of about 10 g/L, a value within the range of similar investigations. The RSM quadratic models establish correlations between MOS production (M2-M5) and enzymatic hydrolysis conditions, with R2 values ranging from 0.6136 to 0.9031. These models are used to emphasize MOS performance (M2-M5) while reducing mannose production, which also promotes profitability by reducing time. Experimental validation agrees with model predictions, highlighting optimal conditions near 40 °C, intermediate enzyme loading, and basic pH that effectively promotes MOS generation on mannose within an accelerated processing time frame. With predictions of experimental results within a margin of error of < 9%, the validity of the models was acceptable. This research contributes to the advancement of the understanding of the enzymatic hydrolysis of açaí seeds, which is a step toward the sustainable use of resources with a focus on process engineering aspects.
Collapse
Affiliation(s)
- Sarha Lucia Murillo-Franco
- Departamento de Ingeniería Química, Instituto de Biotecnología y Agroindustria, Universidad Nacional de Colombia, 170003, Manizales, Caldas, Colombia
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, 14800-900, Brazil
| | - Juan David Galvis-Nieto
- Departamento de Ingeniería Química, Instituto de Biotecnología y Agroindustria, Universidad Nacional de Colombia, 170003, Manizales, Caldas, Colombia
| | - Carlos E Orrego
- Departamento de Física y Química, Instituto de Biotecnologia y Agroindustria, Universidad Nacional de Colombia, 170003, Manizales, Caldas, Colombia.
| |
Collapse
|
5
|
Pason P, Tachaapaikoon C, Suyama W, Waeonukul R, Shao R, Wongwattanakul M, Limpaiboon T, Chonanant C, Ngernyuang N. Anticancer and anti-angiogenic activities of mannooligosaccharides extracted from coconut meal on colorectal carcinoma cells in vitro. Toxicol Rep 2024; 12:82-90. [PMID: 38259721 PMCID: PMC10801218 DOI: 10.1016/j.toxrep.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common malignancies, though there are no effective therapeutic regimens at present. This study aimed to investigate the inhibitory effects of mannooligosaccharides extracted from coconut meal (CMOSs) on the proliferation and migration of human colorectal cancer HCT116 cells in vitro. The results showed that CMOSs exhibited significant inhibitory activity against HCT116 cell proliferation in a concentration-dependent manner with less cytotoxic effects on the Vero normal cells. CMOSs displayed the ability to increase the activation of caspase-8, -9, and -3/7, as well as the generation of reactive oxygen species (ROS). Moreover, CMOSs suppressed HCT116 cell migration in vitro. Interestingly, treatment of human microvascular endothelial cells (HMVECs) with CMOSs resulted in the inhibition of cell proliferation, cell migration, and capillary-like tube formation, suggesting its anti-vascular angiogenesis. In summary, the results of this study indicate that CMOSs could be a valuable therapeutic candidate for CRC treatment.
Collapse
Affiliation(s)
- Patthra Pason
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Waralee Suyama
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rong Shao
- Shanghai Key Laboratory for Gallbladder Cancer-Related Gastroenterological Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200089, China
| | - Molin Wongwattanakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chirapond Chonanant
- Department of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi 20131, Thailand
| | - Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
6
|
Rana M, Jassal S, Yadav R, Sharma A, Puri N, Mazumder K, Gupta N. Functional β-mannooligosaccharides: Sources, enzymatic production and application as prebiotics. Crit Rev Food Sci Nutr 2023; 64:10221-10238. [PMID: 37335120 DOI: 10.1080/10408398.2023.2222165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
One of the emerging non-digestible oligosaccharide prebiotics is β-mannooligosaccharides (β-MOS). β-MOS are β-mannan derived oligosaccharides, they are selectively fermented by gut microbiota, promoting the growth of beneficial microorganisms (probiotics), whereas the growth of enteric pathogens remains unaffected or gets inhibited in their presence, along with production of metabolites such as short-chain fatty acids. β-MOS also exhibit several other bioactive properties and health-promoting effects. Production of β-MOS using the enzymes such as β-mannanases is the most effective and eco-friendly approach. For the application of β-MOS on a large scale, their production needs to be standardized using low-cost substrates, efficient enzymes and optimization of the production conditions. Moreover, for their application, detailed in-vivo and clinical studies are required. For this, a thorough information of various studies in this regard is needed. The current review provides a comprehensive account of the enzymatic production of β-MOS along with an evaluation of their prebiotic and other bioactive properties. Their characterization, structural-functional relationship and in-vivo studies have also been summarized. Research gaps and future prospects have also been discussed, which will help in conducting further research for the commercialization of β-MOS as prebiotics, functional food ingredients and therapeutic agents.
Collapse
Affiliation(s)
- Monika Rana
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sunena Jassal
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Richa Yadav
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Anupama Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Puri
- Department of Industrial Microbiology, Guru Nanak Khalsa College, Yamunanagar, Haryana, India
| | - Koushik Mazumder
- Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
7
|
Zheng F, Basit A, Wang J, Zhuang H, Chen J, Zhang J. Biochemical analyses of a novel acidophilic GH5 β-mannanase from Trichoderma asperellum ND-1 and its application in mannooligosaccharides production from galactomannans. Front Microbiol 2023; 14:1191553. [PMID: 37362936 PMCID: PMC10288326 DOI: 10.3389/fmicb.2023.1191553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, an acidophilic GH5 β-mannanase (TaMan5) from Trichoderma asperellum ND-1 was efficiently expressed in Pichia pastoris (a 2.0-fold increase, 67.5 ± 1.95 U/mL). TaMan5 displayed the highest specificity toward locust bean gum (Km = 1.34 mg/mL, Vmax = 749.14 μmol/min/mg) at pH 4.0 and 65°C. Furthermore, TaMan5 displayed remarkable tolerance to acidic environments, retaining over 80% of its original activity at pH 3.0-5.0. The activity of TaMan5 was remarkably decreased by Cu2+, Mn2+, and SDS, while Fe2+/Fe3+ improved the enzyme activity. A thin-layer chromatography (TLC) analysis of the action model showed that TaMan5 could rapidly degrade mannan/MOS into mannobiose without mannose via hydrolysis action as well as transglycosylation. Site-directed mutagenesis results suggested that Glu205, Glu313, and Asp357 of TaMan5 are crucial catalytic residues, with Asp152 playing an auxiliary function. Additionally, TaMan5 and commercial α-galactosidase displayed a remarkable synergistic effect on the degradation of galactomannans. This study provided a novel β-mannanase with ideal characteristics and can be considered a potential candidate for the production of bioactive polysaccharide mannobiose.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Huan Zhuang
- Department of ENT and Head and Neck Surgery, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
8
|
Panwar D, Shubhashini A, Kapoor M. Complex alpha and beta mannan foraging by the human gut bacteria. Biotechnol Adv 2023; 66:108166. [PMID: 37121556 DOI: 10.1016/j.biotechadv.2023.108166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The human gut microbiota (HGM), a community of trillions of microbes, underscores its contribution by impacting many facets of host health and disease. In the HGM, Bacteroidota and Bacillota represent dominant bacterial phyla, which mainly rely on the glycans recalcitrant to host digestion to meet their energy requirements. Accordingly, the impact of dietary and host-derived glycans in the assembly and operation of these dominant microbial communities continues to be an area of active research. Among various glycans, mannans represent an integral component of the human diet. Apart from their health effects, the diverse and complex mannan structures bears molecular signatures that alter the expression of specific gene clusters in selected Bacteroidota and Bacillota species. Both the phyla possess variable and sophisticated loci of mannan recognition proteins, hydrolytic enzymes, transporters, and other metabolic proteins to sense, capture and utilize mannans as an energy source. The current review summarizes mannan structural diversity, and strategies adopted by select species of the HGM bacteria to forage mannans by focusing primarily on glycoside hydrolases and their effects on host health and metabolism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India
| | - A Shubhashini
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India.
| |
Collapse
|
9
|
Yang S, Wu C, Yan Q, Li X, Jiang Z. Nondigestible Functional Oligosaccharides: Enzymatic Production and Food Applications for Intestinal Health. Annu Rev Food Sci Technol 2023; 14:297-322. [PMID: 36972156 DOI: 10.1146/annurev-food-052720-114503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nondigestible functional oligosaccharides are of particular interest in recent years because of their unique prebiotic activities, technological characteristics, and physiological effects. Among different types of strategies for the production of nondigestible functional oligosaccharides, enzymatic methods are preferred owing to the predictability and controllability of the structure and composition of the reaction products. Nondigestible functional oligosaccharides have been proved to show excellent prebiotic effects as well as other benefits to intestinal health. They have exhibited great application potential as functional food ingredients for various food products with improved quality and physicochemical characteristics. This article reviews the research progress on the enzymatic production of several typical nondigestible functional oligosaccharides in the food industry, including galacto-oligosaccharides, xylo-oligosaccharides, manno-oligosaccharides, chito-oligosaccharides, and human milk oligosaccharides. Moreover, their physicochemical properties and prebiotic activities are discussed as well as their contributions to intestinal health and applications in foods.
Collapse
Affiliation(s)
- Shaoqing Yang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Chenxuan Wu
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| |
Collapse
|
10
|
Yan S, Duan B, Liu C, Liu G, Kang L, Sun L, Yi L, Zhang Z, Liu Z, Yuan S. Heterologous Expression, Purification and Characterization of an Alkalic Thermophilic β-Mannanase CcMan5C from Coprinopsis cinerea. J Fungi (Basel) 2023; 9:jof9030378. [PMID: 36983546 PMCID: PMC10056200 DOI: 10.3390/jof9030378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
A endo-1,4-β-mannanase (CcMan5C) gene was cloned from Coprinopsis cinerea and heterologously expressed in Pichia pastoris, and the recombinant enzyme was purified by Ni-affinity chromatography and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). CcMan5C hydrolyzed only locust bean gum galactomannan (LBG) but not α-mannan from S. cerevisiae or Avicel cellulose, oat spelt xylan, or laminarin from Laminaria digitata. CcMan5C exhibited distinctive catalytic features that were different from previously reported β-mannanases. (1) CcMan5C is the first reported fungal β-mannase with an optimal alkalic pH of 8.0-9.0 for hydrolytic activity under assay conditions. (2) CcMan5C is the first reported alkalic fungal β-mannase with an optimal temperature of 70 °C for hydrolytic activity under assay conditions. (3) The organic solvents methanol, ethanol, isopropanol, and acetone at concentrations of 10% or 20% did not inhibit CcMan5C activity, while 10% or 20% isopropanol and acetone even enhanced CcMan5C activity by 9.20-34.98%. Furthermore, CcMan5C tolerated detergents such as Tween 20 and Triton X-100, and its activity was even enhanced to 26.2-45.6% by 1% or 10% Tween 20 and Triton X-100. (4) CcMan5C solution or lyophilized CcMan5C exhibited unchanged activity and even increasing activity after being stored at -20 °C or -80 °C for 12 months and retained above 50% activity after being stored at 4 °C for 12 months. These features make CcMan5C a suitable candidate for the detergent industry and paper and pulp industry.
Collapse
Affiliation(s)
- Songling Yan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Baiyun Duan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Cuicui Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Guiyou Liu
- School of Life Science and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Liqin Kang
- School of Life Science and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Lei Sun
- School of Life Science and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Lin Yi
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
11
|
Magengelele M, Malgas S, Pletschke BI. Bioconversion of spent coffee grounds to prebiotic mannooligosaccharides - an example of biocatalysis in biorefinery. RSC Adv 2023; 13:3773-3780. [PMID: 36756573 PMCID: PMC9890647 DOI: 10.1039/d2ra07605e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Spent coffee ground (SCG), an agro-industrial waste, have a high content of polysaccharides such as mannan, making it ideal for utilisation for the production of nutraceutical oligosaccharides. Recently, there has been growing interest in the production of mannooligosaccharides (MOS) for health promotion in humans and animals. MOS are reported to exhibit various bioactive properties, including prebiotic and antioxidant activity. In this study, SCG was Vivinal pretreated using NaOH, characterized and hydrolysed using a Bacillus sp. derived endo-β-1,4-mannanase, Man26A, for MOS production. Structural analyses using Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were conducted to assess the efficacy of the pretreatment. Lignin removal by the pretreatment from SCG was clearly shown by TGA. FT-IR, on the other hand, showed the presence of α-linked d-galactopyranoside (812 cm-1) and β-linked d-mannopyranoside residues (817 cm-1) in both SCG samples, signifying the presence of mannan. Hydrolysis of pretreated SCG by Man26A produced mannobiose and mannotriose as the main MOS products. The effect of simulated gastric conditions on the MOS was investigated and showed this product to be suitable for oral administration. Finally, the prebiotic effect of the MOS on the growth of selected beneficial bacteria was investigated in vitro; showing that it enhanced Lactobacillus bulgaricus, Bacillus subtilis and Streptococcus thermophilus growth. These findings suggest that SCG is a viable source for the production of MOS which can be orally administered as prebiotics for effecting luxuriant growth of probiotic bacteria in the host's digestive tract, leading to a good health status.
Collapse
Affiliation(s)
- Mihle Magengelele
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University Makhanda (Grahamstown) 6140 Eastern Cape South Africa
| | - Samkelo Malgas
- Department of Biochemistry, Genetics and Microbiology, University of PretoriaHatfield 0002GautengSouth Africa
| | - Brett I. Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes UniversityMakhanda (Grahamstown) 6140Eastern CapeSouth Africa
| |
Collapse
|
12
|
Characteristics and bioactive properties of agro-waste and yeast derived manno-oligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Li YX, Hua XH, Yan QJ, Jin Y, Jiang ZQ. One-Pot Three-Enzyme System for Production of a Novel Prebiotic Mannosyl-β-(1 → 4)-Fructose Using a d-Mannose Isomerase from Xanthomonas phaseoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12117-12127. [PMID: 36121717 DOI: 10.1021/acs.jafc.2c04649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present supply of prebiotics is entirely inadequate to meet their demand. To produce novel prebiotics, a d-mannose isomerase (XpMIaseA) from Xanthomonas phaseoli was first produced in Komagataella phaffii (Pichia pastoris). XpMIaseA shared the highest amino acid sequence identity (58.0%) with the enzyme from Marinomonas mediterranea. Efficient secretory production of XpMIaseA (282.0 U mL-1) was achieved using high cell density fermentation. The optimal conditions of XpMIaseA were pH 7.5 and 55 °C. It showed a broad substrate specificity, which isomerized d-mannose, d-talose, mannobiose, epilactose, and mannotriose. XpMIaseA was employed to construct a one-pot three-enzyme system for the production of mannosyl-β-(1 → 4)-fructose (MF) using mannan (5%, w/v) as the substrate. The equilibrium yield of MF was 58.2%. In in vitro fermentations, MF significantly stimulated (≤3.2-fold) the growth of 12 among 15 tested Bifidobacterium and Lactobacillus strains compared with fructo-oligosaccharides. Thus, the novel d-mannose isomerase provides a one-pot bioconversion strategy for efficiently producing novel prebiotics.
Collapse
Affiliation(s)
- Yan-Xiao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Xiao-Han Hua
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Qiao-Juan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yan Jin
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Zheng-Qiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| |
Collapse
|
14
|
Mary PR, Monica P, Kapoor M. Insights into β-manno-oligosaccharide uptake and metabolism in Bifidobacterium adolescentis DSMZ 20083 from whole-genome microarray analysis. Microbiol Res 2022; 266:127215. [DOI: 10.1016/j.micres.2022.127215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
|
15
|
Jiang K, Wang D, Su L, Liu X, Yue Q, Li B, Li K, Zhang S, Zhao L. Structural characteristics of locust bean gum hydrolysate and its alleviating effect on dextran sulfate sodium-induced colitis. Front Microbiol 2022; 13:985725. [PMID: 36033869 PMCID: PMC9399726 DOI: 10.3389/fmicb.2022.985725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory lesion of the colon from various causes. As current therapeutic drugs have adverse effects on patients with UC, there is a growing demand for alternative medicines from natural and functional foods. Locust bean gum, as a dietary fiber, has a variety of physiological effects. Methods In the present study, locust bean gum hydrolysate (LBGH) was obtained from the acid hydrolysis of locust bean gum. The structure of LBGH was characterized by thin-layer chromatography and high performance liquid chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry (MS)/MS analysis. And we investigated the therapeutic effect of LBGH on a mouse model of dextran sulfate sodium (DSS)-induced colitis. Results It was observed that the LBGH consisted of a mixture of monosaccharides and oligosaccharides with a degree of polymerization (DP) 2–7. LBGH treatment dramatically alleviated colonic pathological damage, suppressed the overproduction of pro-inflammatory factors and the activation of nuclear factor κB (NF-κB), increased the mRNA expression of tight junction proteins, and increased the abundance of probiotics such as Lactobacillus and Bifidobacterium in the gut. Conclusion There is a correlation between these mitigating effects on inflammation and the treatment of LBGH. Therefore, LBGH has tremendous potential in the treatment of colitis.
Collapse
Affiliation(s)
- Kangjia Jiang
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Duo Wang
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Le Su
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xinli Liu
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Baojun Li
- Shandong Zhuoran Biotechnology Co., Ltd., Jinan, China
| | - Kunlun Li
- Shandong Zhuoran Biotechnology Co., Ltd., Jinan, China
| | - Song Zhang
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- *Correspondence: Song Zhang,
| | - Lin Zhao
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
- Lin Zhao,
| |
Collapse
|
16
|
Shubhashini A, Prabha N, Monica P, Chaudhari SR, Kapoor M. Short-chain β-manno-oligosaccharides from copra meal: structural characterization, prebiotic potential and anti-glycation activity. Food Funct 2022; 13:4086-4100. [PMID: 35315851 DOI: 10.1039/d2fo00013j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Size-exclusion chromatography, HR-ESI-MS and FT-IR of copra meal hydrolyzed by ManB-1601 showed the presence of oligosaccharides (CM-β-MOS) having a degree of polymerisation (DP) between 2 and 4. Thermal decomposition studies of the purified CM-β-MOS (DP 2, 3 and 4) showed mass loss at high temperatures (135.8 °C to 600 °C). DP2, DP3 and DP4 CM-β-MOS were adjudged as un-substituted Manβ-4Man, Manβ-4Manβ-4Man and Manβ-4Manβ-4Manβ-4Man, respectively, using NMR (1H and 13C) studies. During fermentation, purified CM-β-MOS supported the growth of Lactobacillus sp. and inhibited enteropathogens (Escherichia coli, Listeria monocytogenes and Salmonella typhi). Acetate was the predominant short-chain fatty acid produced by Lactobacillus sp. RT-PCR studies of L. plantarum WCFS1 fed with CM-β-MOS showed up-regulation (up to 6.7-fold) of the cellobiose utilization operon (pts23C and pbg6) and oligo-sucrose utilization loci (pts1BCA and agl2). Biochemical (free amino groups, carbonyl and fructosamine content), fluorescence (AGEs-specific and intrinsic) and molecular docking studies suggested the anti-glycation potential of CM-β-MOS.
Collapse
Affiliation(s)
- A Shubhashini
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru-570 020, India.
| | - Neelam Prabha
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru-570 020, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P Monica
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru-570 020, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachin Rama Chaudhari
- Department of Spices and Flavour Sciences, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mukesh Kapoor
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru-570 020, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Monica P, Mutturi S, Kapoor M. Truncation of C-terminal amino acids of GH26 endo-mannanase (ManB-1601) affects biochemical properties and stability against anionic surfactants. Enzyme Microb Technol 2022; 157:110031. [DOI: 10.1016/j.enzmictec.2022.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
|
18
|
Efficient and green production of manno-oligosaccharides from Gleditsia microphylla galactomannans using CO2 and solid acid in subcritical water. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Passos AAC, Lovera M, Bastos MDSR, Maciel JDS, Sombra VG, Braga RC, Monteiro Moreira ACDO, Moreira RDA. Low‐viscosity dietary fiber production by enzymatic hydrolysis of galactomannan from
Caesalpinia pulcherrima
seeds: Optimization and physicochemical characterization. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Mighay Lovera
- Instituto de Biología Experimental, Facultad de Ciencias Universidad Central de Venezuela Caracas Venezuela
| | | | - Jeanny da Silva Maciel
- Department of Organic and Inorganic Chemistry Federal University of Ceará Fortaleza Brazil
| | | | - Renata Chastinet Braga
- Federal Institute of Education, Science and Technology of Ceará Limoeiro do Norte Brazil
| | | | | |
Collapse
|
20
|
Hlalukana N, Magengelele M, Malgas S, Pletschke BI. Enzymatic Conversion of Mannan-Rich Plant Waste Biomass into Prebiotic Mannooligosaccharides. Foods 2021; 10:2010. [PMID: 34574120 PMCID: PMC8468410 DOI: 10.3390/foods10092010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 01/16/2023] Open
Abstract
A growing demand in novel food products for well-being and preventative medicine has attracted global attention on nutraceutical prebiotics. Various plant agro-processes produce large amounts of residual biomass considered "wastes", which can potentially be used to produce nutraceutical prebiotics, such as manno-oligosaccharides (MOS). MOS can be produced from the degradation of mannan. Mannan has a main backbone consisting of β-1,4-linked mannose residues (which may be interspersed by glucose residues) with galactose substituents. Endo-β-1,4-mannanases cleave the mannan backbone at cleavage sites determined by the substitution pattern and thus give rise to different MOS products. These MOS products serve as prebiotics to stimulate various types of intestinal bacteria and cause them to produce fermentation products in different parts of the gastrointestinal tract which benefit the host. This article reviews recent advances in understanding the exploitation of plant residual biomass via the enzymatic production and characterization of MOS, and the influence of MOS on beneficial gut microbiota and their biological effects (i.e., immune modulation and lipidemic effects) as observed on human and animal health.
Collapse
Affiliation(s)
| | | | - Samkelo Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (N.H.); (M.M.); (B.I.P.)
| | | |
Collapse
|
21
|
Wongsiridetchai C, Jonjaroen V, Sawangwan T, Charoenrat T, Chantorn S. Evaluation of prebiotic mannooligosaccharides obtained from spent coffee grounds for nutraceutical application. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Liu Z, Cao L, Fu X, Liang Q, Sun H, Mou H. A multi-functional genetic manipulation system and its use in high-level expression of a β-mannanase mutant with high specific activity in Pichia pastoris. Microb Biotechnol 2021; 14:1525-1538. [PMID: 33942496 PMCID: PMC8313266 DOI: 10.1111/1751-7915.13812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022] Open
Abstract
To further extend the practical application of a thermostable and acidic resistance β-mannanase (ManAK) in animal feed additives, an effective strategy that combined directed evolution and metabolic engineering was developed. Four positive mutants (P191M, P194E, S199G and S268Q) with enhanced specific activity (25.5%-60.9%) were obtained. The S199G mutant exhibited 56.7% enhancement of specific activity at 37°C and good thermostability, and this was selected for high-level expression in P. pastoris X33. A multi-functional and scarless genetic manipulation system was proposed and functionally verified (gene deletion, substitution/insertion and point mutation). This was then subjected to Rox1p (an oxygen related transcription regulator) deletion and Vitreoscilla haemoglobin (VHb) co-expression for high enzyme productivity in P. pastoris X33VIIManAKS199G . An excellent strain, named X33VIIManAKS199G ∆rox1::VHb, was achieved by combining these two factors, and then the maximum enzymatic activity was further increased to 3753 U ml-1 , which was nearly twice as much as the maximum production of ManAK in P. pastoris. This work provides a systematic and effective method to improve the enzymatic yield of β-mannanase, promotes the application of ManAK in feed additives, and also demonstrated that a scarless genetic manipulation tool is useful in P. pastoris.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Linyuan Cao
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Xiaodan Fu
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Qingping Liang
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Han Sun
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Haijin Mou
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| |
Collapse
|
23
|
Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02678-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Purification of a Thermostable β-mannanase from Paenibacillus Thiaminolyticus - characterization and its Potential Use as a Detergent Additive. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endo-1, 4- β- D-mannanase (EC 3.2.1.78) is a glycoside hydrolase involved in random cleavage of β-1, 4- D-manno-pyranosyl linkages within mannans and heteromannans and generates branched and linear oligosaccharides. A β-mannanase was purified from a thermotolerant bacterium Paenibacillus thiaminolyticus isolated from a soil sample. Enzyme was purified to homogeneity with specific activity of 8812 U/mg protein. Sodium dodecyl sulfate (SDS) and native poly-acryl amide gel electrophoresis indicated that the purified mannanase is a monomeric protein with a molecular mass of 38 kDa. The purified enzyme was found to be maximally active at temperature and pH of 60°C and 7.0, respectively. It was stable at 55°C for 24 h and maintained more than 50 % activity up to 3 h at 60°C. The enzyme was very stable in the pH range of 5.0-9.0. Purified β-mannanase demonstrated high stability after 1 h of pre-incubation with most of the tested organic solvents. Enzyme retained significant stability in the presence of various detergent additives, commercially available detergents and dish washing liquids. The high compatibility and substantial stability in the presence of nonionic detergents and dishwashing liquids confirmed its utility as an additive to dish washing liquids and laundry detergents. Enzyme exhibited efficacious de-staining of heteromannan based stains of chocolate ice cream and salad dressing in the wash performance test for detergent application. It also exhibited anti-soil redeposition effect on cotton swatches treated with tennis court clay and heteromannans.
Collapse
|
25
|
Wang NN, Liu J, Li YX, Ma JW, Yan QJ, Jiang ZQ. High-level expression of a glycoside hydrolase family 26 β-mannanase from Aspergillus niger in Pichia pastoris for production of partially hydrolysed fenugreek gum. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Zhang R, Li XY, Cen XL, Gao QH, Zhang M, Li KY, Wu Q, Mu YL, Tang XH, Zhou JP, Huang ZX. Enzymatic preparation of manno-oligosaccharides from locust bean gum and palm kernel cake, and investigations into its prebiotic activity. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
27
|
Jana UK, Suryawanshi RK, Prajapati BP, Kango N. Prebiotic mannooligosaccharides: Synthesis, characterization and bioactive properties. Food Chem 2020; 342:128328. [PMID: 33257024 DOI: 10.1016/j.foodchem.2020.128328] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Functional oligosaccharides are non-digestible food ingredients that confer numerous health benefits. Among these, mannooligosaccharides (MOS) are emerging prebiotics that have characteristic potential bio-active properties. Microbial mannanases can be used to break down mannan rich agro-residues to yield MOS. Various applications of MOS as health promoting functional food ingredient may open up newer opportunities in food and feed industry. Enzymatic hydrolysis is the widely preferred method over chemical hydrolysis for MOS production. Presently, commercial MOS is being derived from yeast cell wall mannan and is widely used as prebiotic in feed supplements for poultry and aquaculture. Apart from stimulating the growth of probiotic microflora, MOS impart anticancer and immunomodulatory effects by inducing different gene markers in colon cells. This review summarizes recent developments and future prospects of enzymatic synthesis of MOS from various mannans, their structural characteristics and their potential health benefits.
Collapse
Affiliation(s)
- Uttam Kumar Jana
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| | - Rahul Kumar Suryawanshi
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| | - Bhanu Pratap Prajapati
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| |
Collapse
|
28
|
Chen X, Wang X, Liu Y, Zhang R, Zhang L, Zhan R, Wang S, Wang K. Biochemical analyses of a novel thermostable GH5 endo β-1,4-mannanase with minor β-1,4-glucosidic cleavage activity from Bacillus sp. KW1 and its synergism with a commercial α-galactosidase on galactomannan hydrolysis. Int J Biol Macromol 2020; 166:778-788. [PMID: 33144255 DOI: 10.1016/j.ijbiomac.2020.10.235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/07/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022]
Abstract
A novel GH5 endo-1,4-β-mannanase (BaMan5A) was identified from Bacillus sp. KW1, it shares the highest sequence identity (86%) with another characterized Bacillus endo-1,4-β-mannanase. The recombinant BaMan5A displayed maximum activity at pH 7.0 and 70 °C, it was stable at a broad pH range (pH 3.5-11.0) after 12-h incubation at 25 °C, and exhibited good thermostability, retaining about 100% and 85% activity after incubating at 60 °C for 12 h and 65 °C for 8 h, respectively. The results of polysaccharide hydrolysis revealed that the enzyme can only hydrolyze mannan substrates, including carob galactomannan, konjac glucomannan, 1,4-β-D-mannan, locust bean gum, and guar gum, yielding mannose, mannobiose, mannotriose, and some other oligosaccharides. The best substrate was carob galactomannan, the corresponding specific activity and Km value were 10,886 μmol/min/μmol and 3.31 mg/mL, respectively. Interestingly, BaMan5A was capable to hydrolyze both manno-oligosaccharides and cello-oligosaccharides, including mannotetraose, mannopentaose, mannohexaose, cellopentaose and cellohexaose. Furthermore, BaMan5A acted synergistically with a commercial α-galactosidase (CbAgal) on galactomannan depolymerization, a best synergy degree of 1.58 was achieved after optimizing enzyme ratios. This study not only expands the diversity of Bacillus GH5 β-mannanase, but also discloses the potential of BaMan5A in industrial application.
Collapse
Affiliation(s)
- Xi Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, PR China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, PR China
| | - Xinhai Wang
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, PR China
| | - Yun Liu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, PR China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, PR China
| | - Ruiqin Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, PR China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, PR China
| | - Liang Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, PR China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, PR China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, PR China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, PR China
| | - Sidi Wang
- College of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Kui Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, PR China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, PR China.
| |
Collapse
|
29
|
Novel lysozyme–mannooligosaccharide conjugate with improved antimicrobial activity: preparation and characterization. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00499-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Kumar Suryawanshi R, Kango N. Production of mannooligosaccharides from various mannans and evaluation of their prebiotic potential. Food Chem 2020; 334:127428. [PMID: 32688173 DOI: 10.1016/j.foodchem.2020.127428] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Aspergillus quadrilineatus endo-β-mannanase effectively degraded konjac glucomannan (66.09% w/v), copra meal (38.99% w/v) and locust bean galactomannan (20.94% w/v). High performance liquid chromatography (HPLC) analysis of KG hydrolysate indicated its mannooligosaccharides (MOS) content (656.38 mg/g) with high amounts of DP 5 oligosaccharide. Multi-scale characterization of mannan hydrolysate was done using FTIR and 13C NMR which revealed α and β form of galactose or glucose in MOS, respectively. CM and LBG hydrolysates (1 mg/mL) have shown cytotoxic effect and reduced cell viability of Caco-2 cells by 45% and 62%, respectively. MOS DP (1-4) derived from LBG supported better Lactobacilli biofilm formation as compared to KG hydrolysate containing high DP MOS (5-7). Lactobacilli effectively fermented MOS to generate acetate and propionate as main short chain fatty acids. Lactobacilli produced leucine, isoleucine and valine as branched chain amino acids when grown on LBG hydrolysate.
Collapse
Affiliation(s)
- Rahul Kumar Suryawanshi
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India.
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
31
|
Panwar D, Kapoor M. Transcriptional analysis of galactomannooligosaccharides utilization by Lactobacillus plantarum WCFS1. Food Microbiol 2020; 86:103336. [DOI: 10.1016/j.fm.2019.103336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
|
32
|
Blibech M, Farhat-Khemakhem A, Kriaa M, Aslouj R, Boukhris I, Alghamdi OA, Chouayekh H. Optimization of β-mannanase production by Bacillus subtilis US191 using economical agricultural substrates. Biotechnol Prog 2020; 36:e2989. [PMID: 32134202 DOI: 10.1002/btpr.2989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
The Bacillus subtilis US191 strain producing highly thermostable β-mannanase was previously selected as potential probiotic candidate for application as feed supplement in poultry industry. Initially, the level of extracellular β-mannanase production by this strain was 1.48 U ml-1 . To improve this enzyme titer, the present study was undertaken to optimize the fermentation conditions through experimental designs and valorization of agro-industrial byproducts. Using the Plackett-Burman design, in submerged fermentation, a set of 14 culture variables was evaluated in terms of their effects on β-mannanase production. Locust bean gum (LBG), soymeal, temperature, and inoculum size were subsequently optimized by response surface methodology using Box-Behnken design. Under optimized conditions (1 g L-1 LBG, 8 g L-1 soymeal, temperature of 30°C and inoculum size of 1010 CFU ml-1 ), a 2.59-fold enhancement in β-mannanase titer was achieved. Next, to decrease the enzyme production cost, the effect of partial substitution of LBG (1 g L-1 ) by agro-industrial byproducts was investigated, and a Taguchi design was applied. This allowed the attaining of a β-mannanase production level of 8.75 U ml-1 in presence of 0.25 g L-1 LBG, 5 g L-1 of coffee residue powder, 5 g L-1 of date seeds powder, and 5 g L-1 of prickly pear seeds powder as mannans sources. Overall, a 5.91-fold improvement in β-mannanase production by B. subtilis US191 was achieved.
Collapse
Affiliation(s)
- Monia Blibech
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Ameny Farhat-Khemakhem
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Mouna Kriaa
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Rania Aslouj
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Ines Boukhris
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Othman A Alghamdi
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Hichem Chouayekh
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Sfax, Tunisia.,Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Properties of hydrolyzed guar gum fermented in vitro with pig fecal inocula and its favorable impacts on microbiota. Carbohydr Polym 2020; 237:116116. [PMID: 32241396 DOI: 10.1016/j.carbpol.2020.116116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/12/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
In order to identify an appropriate substitute for antibiotic use in livestock production, this study investigates the fermentation of guar gum and its low molecular weight hydrolyzed derivatives (GMLP-1, 1-10 kDa; GMLP-2, < 1 kDa) in pig fecal cultures and the associated effects on the intestinal microbiota. Both the non-hydrolyzed guar gum and GMLP were quickly utilized by fecal microbiota. GMLP-2 showed the most rapid SCFA-producing activity and produced higher concentrations of lactate, acetate, and propionate. However, GMLP-1 showed the highest yield of total SCFAs and butyrate. Both the guar gum and GMLP groups improved the abundance of Clostridium sensu stricto 1 and Bifidobacterium, but the most significant enhancement was observed with GMLP-1. This study showed that by associating with its chemical structure, GMLP-1 can be utilized to direct a targeted promotion of the intestinal microbiota and may offer the most favorable effects in livestock production.
Collapse
|
34
|
Preparation, characterization, and prebiotic activity of manno-oligosaccharides produced from cassia gum by a glycoside hydrolase family 134 β-mannanase. Food Chem 2020; 309:125709. [DOI: 10.1016/j.foodchem.2019.125709] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
|
35
|
Jana UK, Kango N. Characteristics and bioactive properties of mannooligosaccharides derived from agro-waste mannans. Int J Biol Macromol 2020; 149:931-940. [PMID: 32014482 DOI: 10.1016/j.ijbiomac.2020.01.304] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Mannooligosaccharides (MOS) were derived using Aspergillus oryzae β-mannanase (ManAo) from different mannan-rich agro-wastes, palm kernel cake (PKC), guar gum and copra meal (CM). Guar gum (GG) released higher amount of MOS (56.31% w/w) from which purification of mannobiose (0.68 mg) and mannotriose (1.26 mg) was demonstrated using size-exclusion chromatography. FTIR analysis of mannan hydrolysates showed characteristic peaks in 1200-900 cm-1 region indicating the presence of MOS. 1H &13C NMR spectra showed presence of anomeric sugar forms of MOS in different mannan hydrolysates. MOS from locust bean gum and guar gum had both α- and β-anomers while PKC and CM had only α-anomer. Growth promotional activities of different MOS were demonstrated using two probiotic Lactobacilli. Besides, enzymatically derived MOS also showed metal (Fe2+) chelating and anti-oxidant activities, wherein best anti-glycating agent was evaluated as MOS from PKC. PKC derived MOS showed highest cytotoxicity (74.19%) against human colon adenocarcinoma cell line (Caco-2). This study demonstrated the prebiotic potential of agro-waste derived MOS and possibility of their utilization as a functional food ingredient.
Collapse
Affiliation(s)
- Uttam Kumar Jana
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India.
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India.
| |
Collapse
|
36
|
Liu Z, Ning C, Yuan M, Yang S, Wei X, Xiao M, Fu X, Zhu C, Mou H. High-level expression of a thermophilic and acidophilic β-mannanase from Aspergillus kawachii IFO 4308 with significant potential in mannooligosaccharide preparation. BIORESOURCE TECHNOLOGY 2020; 295:122257. [PMID: 31648129 DOI: 10.1016/j.biortech.2019.122257] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
An engineered thermophilic and acidophilic β-mannanase (ManAK) from Aspergillus kawachii IFO 4308 was highly expressed in Pichia pastoris. Through high cell density fermentation, the maximum yield reached 11,600 U/mL and 15.5 g/L, which is higher than most extreme β-mannanases. The recombinant ManAK was thermostable with a temperature optimum of 80 °C, and acid tolerant with a pH optimum of 2.0. ManAK could efficiently degrade locust bean gum, konjac gum, and guar gum into small molecular mannooligosaccharide (<2000 Da), even at high initial substrate concentration (10%), and displayed different Mw distributions in their end products. Docking analysis demonstrated that the catalytic pocket of ManAK could only accommodate a galactopyranosyl residue in subsite -1, which might be responsible for the distinct hydrolysis product compositions from locust bean gum and guar gum. These superior properties of ManAK strongly facilitate mannooligosaccharide preparation and application in food and feed area.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Chen Ning
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mingxue Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Suxiao Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xinyi Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China.
| |
Collapse
|
37
|
Panwar D, Shubhashini A, Chaudhari SR, Prashanth KVH, Kapoor M. GH36 α-galactosidase from Lactobacillus plantarum WCFS1 synthesize Gal-α-1,6 linked prebiotic α-galactooligosaccharide by transglycosylation. Int J Biol Macromol 2019; 144:334-342. [PMID: 31816385 DOI: 10.1016/j.ijbiomac.2019.12.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
α-Galactosidases are potent industrial glycoside hydrolases which are relatively less explored for their transglycosylation potential, especially from Lactobacillus genera. A GH36 α-galactosidase from Lactobacillus plantarum WCFS1 was cloned and over expressed in Hi-control Escherichia coli BL21(DE3). Ni-NTA affinity gel chromatography resulted in purified α-galactosidase (LpαG; specific activity 3077.35 U mg-1) having a monomeric weight of ~80 kDa with 29.3% yield. Size exclusion chromatography of LpαG showed native molecular mass of ~240.5 kDa. LpαG displayed optimum activity at pH 6 and 37 °C. The Km,Vmax and kcat/Km of LpαG towards pNPαGal were found to be 0.93 mM and 714.3 μmol ml-1 min-1 and 12,075 s-1 mM-1, respectively. LpαG displayed maximum transglycosylation activity towards melibiose substrate (as both donor and acceptor) and synthesized majorly a trisaccharide with 0.26 mg ml-1 yield. Nuclear magnetic resonance (NMR) characterization revealed that trisaccharide consist of only single species of α-linked galactooligosaccharide (manninotriose; α-d-Galp-(1 → 6)-α-d-Galp-(1 → 6)-d-Glcp) with α-(1 → 6) regioselectivity. Manninotriose displayed prebiotic property by supporting the growth of probiotic L. plantarum WCFS1 and Bifidobacteria adolescentis DSM 20083.
Collapse
Affiliation(s)
- Deepesh Panwar
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India
| | - A Shubhashini
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Sachin Rama Chaudhari
- Department of Spices and Flavour Sciences, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India
| | - K V Harish Prashanth
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India
| | - Mukesh Kapoor
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India.
| |
Collapse
|
38
|
Mary PR, Prashanth KH, Vasu P, Kapoor M. Structural diversity and prebiotic potential of short chain β-manno-oligosaccharides generated from guar gum by endo-β-mannanase (ManB-1601). Carbohydr Res 2019; 486:107822. [DOI: 10.1016/j.carres.2019.107822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/01/2019] [Accepted: 09/18/2019] [Indexed: 12/28/2022]
|
39
|
Panwar D, A S, Kapoor M. Enhanced survival of
Lactobacillus
sp. in β‐manno‐oligosaccharides‐enriched low‐fat ice cream under simulated gastrointestinal stress. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Deepesh Panwar
- Department of Protein Chemistry and Technology CSIR‐Central Food Technological Research Institute Mysuru India
- Academy of Scientific and Innovative Research (AcSIR), CSIR‐ Human Resource Development Centre (CSIR‐HRDC) Campus Ghaziabad India
| | - Shubhashini A
- Department of Protein Chemistry and Technology CSIR‐Central Food Technological Research Institute Mysuru India
| | - Mukesh Kapoor
- Department of Protein Chemistry and Technology CSIR‐Central Food Technological Research Institute Mysuru India
- Academy of Scientific and Innovative Research (AcSIR), CSIR‐ Human Resource Development Centre (CSIR‐HRDC) Campus Ghaziabad India
| |
Collapse
|
40
|
Kaira GS, Kapoor M. How substrate subsites in GH26 endo-mannanase contribute towards mannan binding. Biochem Biophys Res Commun 2019; 510:358-363. [DOI: 10.1016/j.bbrc.2019.01.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 01/05/2023]
|
41
|
Jana UK, Suryawanshi RK, Prajapati BP, Soni H, Kango N. Production optimization and characterization of mannooligosaccharide generating β-mannanase from Aspergillus oryzae. BIORESOURCE TECHNOLOGY 2018; 268:308-314. [PMID: 30092484 DOI: 10.1016/j.biortech.2018.07.143] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
A multi-tolerant β-mannanase (ManAo) was produced by Aspergillus oryzae on copra meal, a low-cost agro waste. Under statistically optimized conditions, 4.3-fold increase in β-mannanase production (434 U/gds) was obtained. Purified ManAo had MW ∼34 kDa and specific activity of 335.85 U/mg with optimum activity at 60 °C and at pH 5.0. Activity of ManAo was enhanced by most metal ions and modulators while maximum enhancement was noticed with Ag+ and Triton X-100. Km and Vmax were 2.7 mg/mL and 1388.8 µmol/min/mg for locust bean gum while the enzyme showed lower affinity towards konjac gum (8.8 mg/mL, 555.5 µmol/min/mg). Evaluation of various thermodynamic parameters indicated high-efficiency of the ManAo with activation energy 12.42 KJ/mol and 23.31 KJ/mol towards LBG and konjac gum, respectively. End product analysis of β-mannanase action by fluorescence assisted carbohydrate electrophoresis (FACE) revealed the generation of sugars from DP 1-4 with some higher DP MOS from different mannans.
Collapse
Affiliation(s)
- Uttam Kumar Jana
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Rahul Kumar Suryawanshi
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Bhanu Pratap Prajapati
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Hemant Soni
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| |
Collapse
|
42
|
Li YX, Yi P, Wang NN, Liu J, Liu XQ, Yan QJ, Jiang ZQ. High level expression of β-mannanase ( Rm Man5A) in Pichia pastoris for partially hydrolyzed guar gum production. Int J Biol Macromol 2017; 105:1171-1179. [DOI: 10.1016/j.ijbiomac.2017.07.150] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 01/04/2023]
|
43
|
Panwar D, Kaira GS, Kapoor M. Cross-linked enzyme aggregates (CLEAs) and magnetic nanocomposite grafted CLEAs of GH26 endo-β-1,4-mannanase: Improved activity, stability and reusability. Int J Biol Macromol 2017; 105:1289-1299. [PMID: 28768184 DOI: 10.1016/j.ijbiomac.2017.07.154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 01/09/2023]
Abstract
A comparative study on immobilization of recombinant endo-β-1,4-mannanase (ManB-1601), using cross-linked aggregated form (MB-C) and novel chitosan magnetic nanocomposites of MB-C (MB-Mag-C) was carried out. FT-IR and Raman spectroscopy were used to confirm the surface modifications while, scanning electron and atomic force microscopy were performed to demonstrate the surface topology and magnetic nature of MB-C and MB-Mag-C. Among MB-C and MB-Mag-C, the former showed better activity and stability in broad range of pH, thermo-stability and kinetic parameters while, the latter showed higher temperature optima and solvent stability. MB-C and MB-Mag-C when compared with free enzyme showed up to 73.2% higher activity (pH 4-9), up to 95.6% higher stability (pH 3-10, 9h incubation at room temperature), up to 15°C higher optimal temperature, higher stability (up to 83%) in the presence of solvents and up to 1.62-fold higher deactivation energy (Ed). Immobilized enzymes were able to repeatedly hydrolyze locust bean gum till 12 cycles and generated predominantly di-, tri- and tetra- species of β-manno-oligosaccharides.
Collapse
Affiliation(s)
- Deepesh Panwar
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru 570 020, India
| | - Gaurav Singh Kaira
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru 570 020, India.
| |
Collapse
|