1
|
Bao Y, Chen J, Han X, He Y, Yang T, Shi X, Chen J, Gu L, Wang S, Xie L, Wang H, Wang L. Calbindin 2 as a Novel Biomarker and Therapeutic Target for Abdominal Aortic Aneurysm: Integrative Analysis of Human Proteomes and Genetics. J Am Heart Assoc 2025; 14:e039195. [PMID: 40314374 DOI: 10.1161/jaha.124.039195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a clinical life-threatening issue. No pharmacological treatments are currently approved for the prevention and treatment of AAA. Therefore, identifying novel biomarkers and therapeutic targets is crucial for improving AAA management and outcomes. METHODS To identify plasma proteins with potential causal effects on AAA, we integrated genetic evidence from proteome-wide Mendelian randomization, genetic correlation, and colocalization analysis. The role of identified proteins in AAA was further explored through the phenome-wide association study and mediation analysis. Multiomics data analysis, including bulk RNA sequencing, single-cell/single-nucleus RNA sequencing, and spatial transcriptomics, was employed to characterize the expression patterns of these proteins. Experimental validation was performed using an AAA model in apolipoprotein E-deficient mice infused with angiotensin II. Druggability analysis was conducted to identify drug candidates, which were tested in preclinical mouse models. RESULTS CALB2 (calbindin 2) was identified as having a causal effect on AAA and may influence the progression of AAA through the regulation of lipid metabolism. Multiomics analysis revealed that CALB2 is predominantly expressed in the mesothelial cells of adipose tissues. Inhibition of CALB2 in an AAA mouse model alleviated AAA progression. Druggability analysis identified lenalidomide and genistein as potential therapeutic candidates, and experiments confirmed their efficacy in preventing AAA development. CONCLUSIONS This study identifies CALB2 as being associated with an increased risk of AAA and suggests that i might be a novel biomarker and therapeutic molecule for AAA management. Lenalidomide and genistein hold promising potential as treatments for patients with AAA.
Collapse
Affiliation(s)
- Yulin Bao
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Jiayi Chen
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Xudong Han
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Ye He
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Tongtong Yang
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Xinying Shi
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Jiawen Chen
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Lingfeng Gu
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Sibo Wang
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine Nanjing Medical University Nanjing Jiangsu China
| | - Hao Wang
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| | - Liansheng Wang
- Department of Cardiology The First Affiliated Hospital with Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
2
|
Neshatbini Tehrani A, Hatami B, Daftari G, Hekmatdoost A, Yari Z, Salehpour A, Hosseini SA, Helli B. The effect of soy isoflavones supplementation on metabolic status in patients with non-alcoholic fatty liver disease: a randomized placebo controlled clinical trial. BMC Public Health 2024; 24:1362. [PMID: 38773414 PMCID: PMC11107053 DOI: 10.1186/s12889-024-18812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) accounts as a crucial health concern with a huge burden on health and economic systems. The aim of this study is to evaluate the effect of soy isoflavones supplementation on metabolic status in patients with NAFLD. METHODS In this randomized clinical trial, 50 patients with NAFLD were randomly allocated to either soy isoflavone or placebo groups for 12 weeks. The soy isoflavone group took 100 mg/d soy isoflavone and the placebo group took the similar tablets containing starch. Anthropometric indices, blood lipids, glycemic parameters and blood pressure were measured at the beginning and at the end of the study. RESULTS At the end of week 12 the level of serum triglyceride (TG), low density lipoprotein (LDL) and total cholesterol (TC) was significantly decreased only in soy isoflavone group compared to baseline (P < 0.05). Although waist circumference (WC) decreased significantly in both groups after 12 weeks of intervention (P < 0.05), hip circumference (HC) decreased significantly only in soy isoflavone group (P = 0.001). No significant changes observed regarding high density lipoprotein (HDL) and blood pressure in both groups. At the end of the study, serum glucose level was significantly decreased in the placebo group compared to baseline (P = 0.047). No significant changes demonstrated in the soy isoflavone group in regard to glycemic parameters (P > 0.05). CONCLUSIONS This study revealed that soy isoflavones could significantly reduce TG, LDL TC, WC and HC in NAFLD patients. TRIAL REGISTRATION The Ethics committee of Ahvaz Jundishapur University of Medical Sciences approved the protocol of the present clinical research (IR.AJUMS.REC.1401.155). The study was in accordance with the Declaration of Helsinki. This study's registered number and date are IRCT20220801055597N1 and 20.09.2022, respectively at https://fa.irct.ir .
Collapse
Affiliation(s)
- Asal Neshatbini Tehrani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan Boulevard, Ahvaz, 78531-67465, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Daftari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Salehpour
- School of Public Health, Occupational Health Research Center, Iran Universityof Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Hosseini
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan Boulevard, Ahvaz, 78531-67465, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bizhan Helli
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan Boulevard, Ahvaz, 78531-67465, Iran.
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Anuranjana P, Beegum F, K.P D, George KT, Viswanatha G, Nayak PG, Kanwal A, Kishore A, Shenoy RR, Nandakumar K. Mechanisms Behind the Pharmacological Application of Biochanin-A: A review. F1000Res 2023; 12:107. [PMID: 38106650 PMCID: PMC10725524 DOI: 10.12688/f1000research.126059.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
This review was aimed at summarizing the cellular and molecular mechanisms behind the various pharmacological actions of biochanin-A. Many studies have been reported claiming its application in cancers, metabolic disorders, airway hyperresponsiveness, cardiac disorders, neurological disorders, etc. With regard to hormone-dependent cancers like breast, prostate, and other malignancies like pancreatic, colon, lung, osteosarcoma, glioma that has limited treatment options, biochanin-A revealed agreeable results in arresting cancer development. Biochanin-A has also shown therapeutic benefits when administered for neurological disorders, diabetes, hyperlipidaemia, and other chronic diseases/disorders. Isoflavones are considered phenomenal due to their high efficiency in modifying the physiological functions of the human body. Biochanin-A is one among the prominent isoflavones found in soy (glycine max), red clover (Trifolium pratense), and alfalfa sprouts, etc., with proven potency in modulating vital cellular mechanisms in various diseases. It has been popular for ages among menopausal women in controlling symptoms. In view of the multi-targeted functions of biochanin-A, it is essential to summarize it's mechanism of action in various disorders. The safety and efficacy of biochanin-A needs to be established in clinical trials involving human subjects. Biochanin-A might be able to modify various systems of the human body like the cardiovascular system, CNS, respiratory system, etc. It has shown a remarkable effect on hormonal cancers and other cancers. Many types of research on biochanin-A, particularly in breast, lung, colon, prostate, and pancreatic cancers, have shown a positive impact. Through modulating oxidative stress, SIRT-1 expression, PPAR gamma receptors, and other multiple mechanisms biochanin-A produces anti-diabetic action. The diverse molecular mechanistic pathways involved in the pharmacological ability of biochanin-A indicate that it is a very promising molecule and can play a major impact in modifying several physiological functions.
Collapse
Affiliation(s)
- P.V. Anuranjana
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya K.P
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | - Pawan G. Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rekha R. Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K. Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
4
|
Wang L, Li X, Gao F, Liu Y, Lang S, Wang C. Effects of pretreatment with a combination of ultrasound and γ-aminobutyric acid on polyphenol metabolites and metabolic pathways in mung bean sprouts. Front Nutr 2023; 9:1081351. [PMID: 36704798 PMCID: PMC9873385 DOI: 10.3389/fnut.2022.1081351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background Polyphenols play an important role in human nutrition, therefore, how to improve its content with innovative approach is important, and understanding the metabolic pathys is necessary. Mung beans are rich in polyphenols, which made them have physiological functions such as hypoglycemia, antioxidant, and hypotension. However, the content of polyphenols in natural mung bean is relatively low, and it needs to be increased. The methods of increasing polyphenol content in grains and beans by enrichment include physical stress, such as ultrasonic stress, hypoxia stress and ultraviolet radiation, and single exogenous substance stress, such as exogenous amino acids, exogenous sugars. But, the enrichment of polyphenols using exogenous substances in combination with physical stress is less applied. Therefore, this study innovated the use of exogenous γ-aminobutyric acid (GABA) combined with ultrasonic stress to enrich mung bean sprouts polyphenols and enhance their content. The metabolic pathways of the enrichment process were also analyzed to provide a reference for studies related to the enrichment of polyphenols. Methods Mung bean seeds were pretreated with a combination of ultrasound and GABA under different conditions. Single-factor test and response surface methodology were used for optimizing pretreatment conditions of mung bean. Effects of combined pretreatments on the polyphenols content and antioxidant activity of sprouted mung beans were investigated. Additionally, metabolites were identified, and metabolic pathways were analyzed using non-targeted metabolomics techniques. Results Optimal conditions of mung bean pretreatment were found to be 370 W for ultrasound power, 40 min for ultrasonication time, 10 mmol/L for GABA concentration, and 8 h for the soaking duration. Under these conditions, the predicted polyphenol content was found to be 4.52 mg GAE/g DW. The pretreatment of mung beans with a combination of ultrasound and exogenous GABA resulted in mung bean sprouts with enhanced polyphenol content and antioxidant activity compared to mung beans germinated without pretreatment. A significant increase in the content of six polyphenols [Genistein, (-)-Epigallocatechin, Epicatechin, Nobiletin, Naringenin, Biochanin A] in the pretreated and germinated mung beans was found, and six metabolic pathways (flavonoid biosynthesis, isoflavones biosynthesis, biosynthesis of phenylpropanoids, anthocyanin biosynthesis, biosynthesis of secondary metabolites, and metabolic pathways) were significantly activated. Conclusion The obtained results suggest that a combination of ultrasound and exogenous GABA treatment can be used to produce mung bean sprouts with enriched polyphenols content and enhanced antioxidant activity.
Collapse
Affiliation(s)
- Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China,Daqing Center of Inspection and Testing for Agricultural Products and Processed Products Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, China,Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China,*Correspondence: Lidong Wang,
| | - Xiaoqiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fei Gao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuangjing Lang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China,Changyuan Wang,
| |
Collapse
|
5
|
Liu Y, Liu C, Kou X, Wang Y, Yu Y, Zhen N, Jiang J, Zhaxi P, Xue Z. Synergistic Hypolipidemic Effects and Mechanisms of Phytochemicals: A Review. Foods 2022; 11:2774. [PMID: 36140902 PMCID: PMC9497508 DOI: 10.3390/foods11182774] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia, a chronic disorder of abnormal lipid metabolism, can induce obesity, diabetes, and cardiovascular and cerebrovascular diseases such as coronary heart disease, atherosclerosis, and hypertension. Increasing evidence indicates that phytochemicals may serve as a promising strategy for the prevention and management of hyperlipidemia and its complications. At the same time, the concept of synergistic hypolipidemic and its application in the food industry is rapidly increasing as a practical approach to preserve and improve the health-promoting effects of functional ingredients. The current review focuses on the effects of single phytochemicals on hyperlipidemia and its mechanisms. Due to the complexity of the lipid metabolism regulatory network, the synergistic regulation of different metabolic pathways or targets may be more effective than single pathways or targets in the treatment of hyperlipidemia. This review summarizes for the first time the synergistic hypolipidemic effects of different combinations of phytochemicals such as combinations of the same category of phytochemicals and combinations of different categories of phytochemicals. In addition, based on the different metabolic pathways or targets involved in synergistic effects, the possible mechanisms of synergistic hypolipidemic effects of the phytochemical combination are illustrated in this review. Hence, this review provides clues to boost more phytochemical synergistic hypolipidemic research and provides a theoretical basis for the development of phytochemicals with synergistic effects on hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Chunlong Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Dynamiker Biotechnology (Tianjin) Co., Ltd., Tianjin 300450, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yumeng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ni Zhen
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Jingyu Jiang
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Puba Zhaxi
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Błaszczuk A, Barańska A, Kanadys W, Malm M, Jach ME, Religioni U, Wróbel R, Herda J, Polz-Dacewicz M. Role of Phytoestrogen-Rich Bioactive Substances ( Linum usitatissimum L., Glycine max L., Trifolium pratense L.) in Cardiovascular Disease Prevention in Postmenopausal Women: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:2467. [PMID: 35745197 PMCID: PMC9228013 DOI: 10.3390/nu14122467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this report was to determine the impact of flaxseed, soy and red clover, and their bioactive substances on the lipid profile in postmenopausal women in cardiovascular diseases prevention. We used the following databases: MEDLINE (PubMed), EMBASE and the Cochrane Library. Meta-analysis indicates that the intake of flaxseed by postmenopausal women is associated with a statistically significant reduction in total cholesterol (TC) levels (weighted-mean difference (WMD) = -0.26; 95% confidence interval (95% CI): -0.38 to -0.13; p = 0.0001), low-density lipoprotein cholesterol (LDL-C) levels (WMD = -0.19; 95% CI: -0.30 to -0.08; p = 0.0006), and high-density lipoprotein cholesterol (HDL-C) levels (WMD = -0.06; 95% CI: -0.11 to -0.01; p = 0.0150). The effect of soy protein on the lipid profile showed a significant decrease in TC levels: WMD = -0.15; 95% CI: -0.25-0.05; p = 0.0048, LDL-C levels: WMD = -0.15; 95% CI: -0.25-0.05; p = 0.0067, as well as a significant increase in HDL-C levels: WMD = 0.05; 95% CI: 0.02-0.08; p = 0.0034. Changes in the lipid profile showed a significant reduction in TC levels after the use of red clover (WMD = -0.11; 95% CI: -0.18--0.04; p = 0.0017) and a significant increase in HDL-C levels (WMD = 0.04; 95% CI: 0.01 to 0.07; p = 0.0165). This meta-analysis provides evidence that consuming flaxseed, soy and red clover can have a beneficial effect on lipids in postmenopausal women and suggest a favorable effect in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Agata Błaszczuk
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| | - Agnieszka Barańska
- Department of Medical Informatics and Statistics with e-Health Lab, Medical University of Lublin, 20-090 Lublin, Poland;
| | | | - Maria Malm
- Department of Medical Informatics and Statistics with e-Health Lab, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, Faculty of Science and Health, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| | - Urszula Religioni
- School of Public Health, Centre of Postgraduate Medical Education of Warsaw, 01-826 Warsaw, Poland;
| | - Rafał Wróbel
- Department of Developmental Dentistry, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Jolanta Herda
- Department of Public Health, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| |
Collapse
|
7
|
Yangzom P, Amruthanand S, Sharma M, Mahajan S, Lingaraju MC, Parida S, Sahoo M, Kumar D, Singh TU. Subacute 28 days oral toxicity study of kaempferol and biochanin-A in the mouse model. J Biochem Mol Toxicol 2022; 36:e23090. [PMID: 35502512 DOI: 10.1002/jbt.23090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
The present study was undertaken to investigate the safety of kaempferol (KEM) and biochanin-A (BCA) following subacute exposure in mice. KEM and BCA were administered in three different doses by oral administration for 28 days. Evaluation of general toxicity parameters by examining the clinical signs, body weight, organ weights, haematological, biochemical, oxidative stress parameters, and histopathology was done. Administration of KEM and BCA for 28 days did not show any clinical signs of toxicity, nor any treatment-related changes in body weight and organ weights in comparison to control. The haematological parameters such as red blood cell, white blood cell, platelets count, haemoglobin (Hb) level, haematocrit, mean corpuscular haemoglobin concentration, red cell distribution width, and platelet distribution width did not show any change in the treated groups and control. Furthermore, different biochemical parameters like markers of the liver (alanine aminotransferase and aspartate aminotransferase), kidney (creatinine and urea), and heart (creatinine kinase-myocardial band and lactate dehydrogenase) injury along with other biochemical parameters showed nonsignificant differences between treated groups and control. Results of oxidative stress parameters in treated groups showed insignificant variations with control. The level of antioxidant enzymes such as superoxide dismutase and catalase were markedly increased in the treated groups; however, these were nonsignificant in comparison to control. In histopathology, evaluation of all vital organs, such as liver, kidney, heart, and lungs, did not show any morphological abnormalities and lesions in treated groups and control. The present study suggests that KEM and BCA have no adverse effects on the general physiology in mice.
Collapse
Affiliation(s)
- Padma Yangzom
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - S Amruthanand
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Meemansha Sharma
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Sumit Mahajan
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Madhu Cholenahalli Lingaraju
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
8
|
Oza MJ, Kulkarni YA. Biochanin A Attenuates Cardiomyopathy in Type 2 Diabetic Rats by Increasing SIRT1 Expression and Reducing Oxidative Stress. Chem Biodivers 2022; 19:e202100591. [PMID: 35119190 DOI: 10.1002/cbdv.202100591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
Diabetic cardiomyopathy is one of the major complications in type 2 diabetes associated with myocardial structure abnormality and major cause of morbidity in type 2 diabetic patients. Biochanin A is a methylated isoflavone present in flowering tops of Trifolium pratense reported for anti-inflammatory, anti-oxidant, anti-infective, anti-cancer and anti-diabetic activity. The study was designed to assess the efficacy of Biochanin A in type 2 diabetic cardiomyopathy. Type 2 diabetes was induced in rats feeding high fat diet for two weeks and administration of single low dose of streptozotocin. Biochanin A was administered for 16 weeks orally once in a day (10, 20 and 40 mg/kg of body weight). Various parameters such as blood glucose, cardiac markers, oxidative stress and hemodynamic parameters, immunohistochemical, histopathological investigation and SIRT1 expression were measured at the end of the study. Biochanin A treatment resulted into reduction in plasma concentration of cardiac markers along with reduction in hyperglycemia, hyperlipidemia and oxidative stress in cardiac tissue. Biochanin A treated animals also demonstrated improvement in hemodynamic parameters. Diabetic animals treated with different doses of Biochanin A shown increased SIRT1 expression in cardiac tissue, and also confirmed reduced cardiac hypertrophy and cardiac protection in histopathological study. Outcome of the study indicates that Biochanin A is the potential candidate to control hyperglycemia, oxidative stress and improve SIRT1 expression in cardiac tissue. Biochanin A might be considered as potential candidate to control progression of cardiomyopathy in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Manisha J Oza
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.,SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
9
|
Ramachandran V, V IK, Hr KK, Tiwari R, Tiwari G. Biochanin-A: A Bioactive Natural Product with Versatile Therapeutic Perspectives. Curr Drug Res Rev 2022; 14:225-238. [PMID: 35579127 DOI: 10.2174/2589977514666220509201804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Biochanin-A (5,7 dihydroxy 4 methoxy isoflavone) is a phytochemical phytoestrogen that is highly effective against various diseases. Biochanin-A is a nutritional and dietary isoflavonoid naturally present in red clover, chickpea, soybeans and other herbs. Biochanin- A possesses numerous biological activities. OBJECTIVE The study focused on collective data of therapeutic activities of Biochanin-A. METHODS According to the literature, biochanin-A revealed a range of activities starting from chemoprevention, by hindering cell growth, activation of tumor cell death, hampering metastasis, angiogenic action, cell cycle regulation, neuroprotection, by controlling microglial activation, balancing antioxidants, elevating the neurochemicals, suppressing BACE-1, NADPH oxidase hindrance to inflammation, by mitigating the MAPK and NF- κB, discharge of inflammatory markers, upregulating the PPAR-γ, improving the function of heme oxygenase-1, erythroid 2 nuclear factors, detoxifying the oxygen radicals and stimulating the superoxide dismutase action, and controlling its production of transcription factors. Against pathogens, biochanin-A acts by dephosphorylating tyrosine kinase proteins, obstructing gram-negative bacteria, suppressing the development of cytokines from viruses, and improving the action of a neuraminidase cleavage of caspase-3, and acts as an efflux pump inhibitor. In metabolic disorders, biochanin-A acts by encouraging transcriptional initiation and inhibition, activating estrogen receptors, and increasing the activity of differentiation, autophagy, inflammation, and blood glucose metabolism. CONCLUSION Therefore, biochanin-A could be used as a therapeutic drug for various pathological conditions and treatments in human beings.
Collapse
Affiliation(s)
- Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Inba Kumar V
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kiran Kumar Hr
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ruchi Tiwari
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur 208020, India
| | - Gaurav Tiwari
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur 208020, India
| |
Collapse
|
10
|
Wang Q, Wang L, Abdullah ., Tian W, Song M, Cao Y, Xiao J. Co-delivery of EGCG and Lycopene via a Pickering Double Emulsion induced Synergistic Hypolipidemic Effect. Food Funct 2022; 13:3419-3430. [DOI: 10.1039/d2fo00169a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of “synergy” and its applications has rapidly increased in the food industry as a practical strategy to preserve and improve health-promoting effects of the functional ingredients. In this...
Collapse
|
11
|
The Hypolipidemic Effect of Dalbergia odorifera T. C. Chen Leaf Extract on Hyperlipidemic Rats and Its Mechanism Investigation Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3155266. [PMID: 34987591 PMCID: PMC8723852 DOI: 10.1155/2021/3155266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022]
Abstract
Objective The aim of this study was to explore the hypolipidemic effect and mechanism of Dalbergia odorifera T. C. Chen leaf extract. Methods The hypolipidemic effect of D. odorifera leaf extract was investigated using a hyperlipidemic rat model. Then, its mechanism was predicted using network pharmacology methods and verified using western blotting. Results Compared with the levels in the model group, the serum levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) decreased significantly, whereas the serum level of high-density lipoprotein cholesterol (HDL-C) increased dramatically after treatment with the extract. The degrees of hepatocyte steatosis and inflammatory infiltration were markedly attenuated in vivo. Then, its hyperlipidemic mechanism was predicted using network pharmacology-based analysis. Thirty-five key targets, including sterol regulatory element-binding protein cleavage-activating protein (SCAP), sterol regulatory element-binding protein-2 (SREBP-2), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), low-density lipoprotein receptor (LDLR), and ten signaling pathways, were associated with hyperlipidemia. Finally, it was verified that the extract downregulated the protein levels of SCAP, SREBP-2, and HMGCR, and upregulated protein levels of LDLR. Conclusion These findings provided additional evidence of the hypolipidemic effect of D. odorifera leaf extract.
Collapse
|
12
|
Wang J, Li Y, Li A, Liu RH, Gao X, Li D, Kou X, Xue Z. Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. Food Res Int 2021; 150:110790. [PMID: 34865805 DOI: 10.1016/j.foodres.2021.110790] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/08/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022]
Abstract
Chickpea (Cicer arietinum L.), an annual plant of the Fabaceae family, is mainly grown in temperate and semiarid regions. Its biological activity and beneficial contribution to human health have been scientifically confirmed as an essential source of nutritional components. The objective of this review was to summarize and update latest available scientific data and information, on bioactive components in chickpea, bio-activities, and molecular mechanisms, which has mainly focused on the detection of relevant biochemical indicators, the regulation of signaling pathways, essential genes and proteins. The studies have shown that chickpea have significant multifunctional activities, which are closely related to the functionally active small molecule peptides and phytochemicals of chickpea. Significantly, numerous studies have only addressed the functional activity and mechanisms of single active components of chickpea, however, overlooking the synergy and antagonism between chickpea components, changes of functional active components in different processing methods, as well as the active form of the substances after human digestion and metabolism. Additionally, due to limitations in research methods and techniques, the structure of most functional active substances have not been determined, which makes it difficult to conduct interaction mechanism studies. Consequently, the significant bio-activity of the functional components of chickpea, synergistic and antagonistic effects and activity differences between bioactive components should be further studied.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Yonghui Li
- Cardiovascular Department, Tianjin Fourth Center Hospital, Tianjin 300140, China.
| | - Ang Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Rui Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| | - Xin Gao
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Dan Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| |
Collapse
|
13
|
Ruiz-Hurtado PA, Garduño-Siciliano L, Domínguez-Verano P, Balderas-Cordero D, Gorgua-Jiménez G, Canales-Álvarez O, Canales-Martínez MM, Rodríguez-Monroy MA. Propolis and Its Gastroprotective Effects on NSAID-Induced Gastric Ulcer Disease: A Systematic Review. Nutrients 2021; 13:nu13093169. [PMID: 34579045 PMCID: PMC8466107 DOI: 10.3390/nu13093169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric ulcer disease induced by the consumption of NSAIDs is a major public health problem. The therapy used for its treatment causes adverse effects in the patient. Propolis is a natural product that has been used for the treatments of different diseases around the world. Nevertheless, there is little information about the activity of propolis in gastric ulcers caused by treatment with NSAIDs. Therefore, this review evaluates and compares the gastroprotective potential of propolis and its function against NSAID-induced gastric ulcers, for which a systematic search was carried out in the PubMed and ScienceDirect databases. The main criteria were articles that report the gastroprotective activity of propolis against the damage produced by NSAIDs in the gastric mucosa. Gastroprotection was related to the antioxidant, antisecretory, and cytoprotective effects, as well as the phenolic compounds present in the chemical composition of propolis. However, most of the studies used different doses of NSAIDs and propolis and evaluated different parameters. Propolis has proven to be a good alternative for the treatment of gastric ulcer disease. However, future studies should be carried out to identify the compounds responsible for these effects and to determine their potential use in people.
Collapse
Affiliation(s)
- Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Leticia Garduño-Siciliano
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
| | - Pilar Domínguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Daniela Balderas-Cordero
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Gustavo Gorgua-Jiménez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Octavio Canales-Álvarez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - María Margarita Canales-Martínez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico;
| | - Marco Aurelio Rodríguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Correspondence: ; Tel.: +52-5545-205-185
| |
Collapse
|
14
|
Barańska A, Błaszczuk A, Polz-Dacewicz M, Kanadys W, Malm M, Janiszewska M, Jędrych M. Effects of Soy Isoflavones on Glycemic Control and Lipid Profile in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 13:nu13061886. [PMID: 34072748 PMCID: PMC8229139 DOI: 10.3390/nu13061886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
The aim of the report was to investigate the impact of soy protein and isoflavones on glucose homeostasis and lipid profile in type 2 diabetes. The studies used in this report were identified by searching through the MEDLINE and EMBASE databases (up to 2020). Meta-regression and subgroup analyses were performed to explore the influence of covariates on net glycemic control and lipid changes. Weighted mean differences and 95% confidence intervals (CI) were calculated by using random-effect models. Changes in the lipid profile showed statistically significant decreases in total cholesterol and LDL-C concentrations: ‒0.21 mmol/L; 95% CI, ‒0.33 to ‒0.09; p = 0.0008 and ‒0.20 mmol/L; 95% CI, ‒0.28 to ‒0.12; p < 0.0001, respectively, as well as in HDL-C (−0.02 mmol/L; 95% CI, −0.05 to 0.01; p = 0.2008 and triacylglycerols (−0.19 mmol/L; 95% CI, −0.48 to 0.09; p = 0.1884). At the same time, a meta-analysis of the included studies revealed statistically insignificant reduction in fasting glucose, insulin, HbA1c, and HOMA-IR (changes in glucose metabolism) after consumption of soy isoflavones. The observed ability of both extracted isoflavone and soy protein with isoflavones to modulate the lipid profile suggests benefits in preventing cardiovascular events in diabetic subjects. Further multicenter studies based on larger and longer duration studies are necessary to determine their beneficial effect on glucose and lipid metabolism.
Collapse
Affiliation(s)
- Agnieszka Barańska
- Department of Medical Informatics and Statistics with E-Learning Lab, Medical University of Lublin, 20-090 Lublin, Poland; (M.M.); (M.J.); (M.J.)
- Correspondence:
| | - Agata Błaszczuk
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| | | | - Maria Malm
- Department of Medical Informatics and Statistics with E-Learning Lab, Medical University of Lublin, 20-090 Lublin, Poland; (M.M.); (M.J.); (M.J.)
| | - Mariola Janiszewska
- Department of Medical Informatics and Statistics with E-Learning Lab, Medical University of Lublin, 20-090 Lublin, Poland; (M.M.); (M.J.); (M.J.)
| | - Marian Jędrych
- Department of Medical Informatics and Statistics with E-Learning Lab, Medical University of Lublin, 20-090 Lublin, Poland; (M.M.); (M.J.); (M.J.)
| |
Collapse
|
15
|
Li L, Duan Z, Bai D, Lu F, Hao J, Zhu T, Li D. Design, synthesis and lipid-lowering activities of penipyridone derivatives. Bioorg Med Chem 2021; 40:116192. [PMID: 33965838 DOI: 10.1016/j.bmc.2021.116192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023]
Abstract
On the basis of our earlier discovered natural product penipyridone G with potential lipid-lowering utility, 35 penipyridone derivatives were designed, synthesized and characterized. Based on the oleic acid-induced HepG2 cell lipid accumulation model, compounds 12c, 14, 15f, 15k, 15o, 15p and 16f showed potent lipid-lowering activities among the synthetic compounds at 10 μM. In particular, compounds 4, 15k, 15o showed significant activities on inhibiting lipid accumulation in insulin resistant HepG2 cells, and these three compounds were safe and non-toxic within the concentration range of 400 μM. In comparison, 15o possessed the best lipid-lowering activity. Compared with the vehicle group, the triglyceride inhibition rate of 15o was about 30.2%, and the total cholesterol inhibition rate was about 14.8% at 20 μM, which was equipotent to Simvastatin. Our research indicates that 15o may serve as a promising lead compound for the development of hypolipidemic drugs.
Collapse
Affiliation(s)
- Liping Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhongwei Duan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Donghui Bai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Fang Lu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Deihai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China.
| |
Collapse
|
16
|
Xue Z, Gao X, Yu W, Zhang Q, Song W, Li S, Zheng X, Kou X. Biochanin A alleviates oxidative damage caused by the urban particulate matter. Food Funct 2021; 12:1958-1972. [PMID: 33496707 DOI: 10.1039/d0fo02582h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urban particulate matter (UPM), an air pollutant-absorbing toxic substance, can access alveoli, leading to pulmonary diseases. Studies have shown that the water-soluble components of UPM (WS-UPM), containing main toxic substances, can induce oxidative damage in lung cells. In this study, the UPM particle size and composition were detected via instrumental analysis. The isoflavones (biochanin A (BCA), formononetin and daidzein) from chickpeas possess biological antioxidant properties. The present study aimed to investigate the mechanism of the oxidative damage induced by WS-UPM, and the protective role of isoflavones in human alveolar basal epithelial cells. The antioxidant activity of BCA, formononetin and daidzein was investigated through the total reduction capacity, diphenylpicrylhydrazine radical (DPPH), superoxide radical, and hydroxyl radical scavenging capacity detection. We also established cell models in vitro to further explore the BCA-protective mechanism. BCA presented a significant protection, and increased the levels of antioxidant makers including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). The effects were also reflected as the reduction of malondialdehyde (MDA) and nitric oxide (NO). Moreover, results obtained from RT-PCR and western blot techniques revealed that MEK5/ERK5 played an indispensable role in regulating the antioxidant effect of BCA, alleviating WS-UPM-induced lung injury. Furthermore, BCA mitigated WS-UPM-exposed damage through upregulating the Nrf2 signaling pathway to enhance the antioxidase expression downstream of Nrf2. In summary, our findings indicated that the WS-UPM-induced pulmonary disease was involved in oxidative stress and the MEK5/ERK5-Nrf2 signaling pathway, and BCA regulated the WS-UPM-induced lung damage via upregulation of the MEK5/ERK5-Nrf2 pathway.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xin Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Qian Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Weichen Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Shihao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xu Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
17
|
Soltani S, Boozari M, Cicero AFG, Jamialahmadi T, Sahebkar A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother Res 2021; 35:2854-2878. [PMID: 33464676 DOI: 10.1002/ptr.6991] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/19/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
High-density lipoprotein cholesterol (HDL) is the major promoter of reverse cholesterol transport and efflux of excess cellular cholesterol. The functions of HDL, such as cholesterol efflux, are associated with cardiovascular disease rather than HDL levels. We have reviewed the evidence base on the major classes of phytochemicals, including polyphenols, alkaloids, carotenoids, phytosterols, and fatty acids, and their effects on macrophage cholesterol efflux and its major pathways. Phytochemicals show the potential to improve the efficiency of each of these pathways. The findings are mainly in preclinical studies, and more clinical research is warranted in this area to develop novel clinical applications.
Collapse
Affiliation(s)
- Saba Soltani
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arrigo F G Cicero
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
18
|
Fan Y, Yan LT, Yao Z, Xiong GY. Biochanin A Regulates Cholesterol Metabolism Further Delays the Progression of Nonalcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2021; 14:3161-3172. [PMID: 34276221 PMCID: PMC8277457 DOI: 10.2147/dmso.s315471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To discover the possible target of biochanin A (BCA) in the lipid metabolism pathway and further explore its mechanism to nonalcoholic fatty liver disease (NAFLD). METHODS We adopted a high-fat and high-glucose diet for 12 weeks to build the NAFLD rat model, which was then treated with different proportions of BCA for 4 weeks. General condition, body weight, Lee index, and liver index were then evaluated. Furthermore, blood lipid level and insulin resistance (IR) were detected. Moreover, hematoxylin and eosin and oil red O staining were used to observe the pathological changes in the liver. Finally, Western blotting was used to detect the protein expression levels of CYP7A1, HMGCR, LDLR, PPAR-α, PPAR-γ, and SREBP-1c in the liver. RESULTS The vital signs of rats in each group were stable. The treatment with BCA effectively reduced Lee index and liver index (F = 104.781, P < 0.05); however, the weight was not effected in each group. Additionally, BCA effectively reduced the related lipid metabolism indexes of NAFLD, such as total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), blood glucose, insulin, IR (F =12.463 (TC), 6.909 [TG], and 15.3 effected 75 [LDL], P < 0.05), and increased HDL (F = 11.580, P < 0.05). We observed that BCA could significantly improve steatosis and inflammatory cell infiltration in liver slices. Furthermore, BCA significantly increased the CYP7A1, LDLR, and PPAR-α protein expression in the liver and downregulated the HMGCR, SREBP-1c, and PPAR-γ protein expression. CONCLUSION BCA could delay the liver damage of NAFLD induced by a high-fat diet, regulate the blood lipid level, and improve the expression of lipid metabolism-related genes in rats.
Collapse
Affiliation(s)
- Yan Fan
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, People’s Republic of China
| | - Long-Teng Yan
- Key Laboratory of Microcosmic Syndrome Differentiation, School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, People’s Republic of China
| | - Zheng Yao
- Key Laboratory of Microcosmic Syndrome Differentiation, School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, People’s Republic of China
- Correspondence: Zheng Yao; Guang-Yi Xiong Key Laboratory of Microcosmic Syndrome Differentiation, School of Basic Medicine, Yunnan University of Chinese Medicine, No. 1076, Yuhua Road, Chenggong District, Kunming, Yunnan, 650500, People’s Republic of ChinaTel/Fax +86 189 0871 9365 Email ;
| | - Guang-Yi Xiong
- Key Laboratory of Microcosmic Syndrome Differentiation, School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, People’s Republic of China
| |
Collapse
|
19
|
Zhang S, Niu Y, Yang Z, Zhang Y, Guo Q, Yang Y, Zhou X, Ding Y, Liu C. Biochanin A alleviates gingival inflammation and alveolar bone loss in rats with experimental periodontitis. Exp Ther Med 2020; 20:251. [PMID: 33178349 PMCID: PMC7654219 DOI: 10.3892/etm.2020.9381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/20/2020] [Indexed: 02/05/2023] Open
Abstract
Biochanin A (BA) is an organic compound produced by Trifolium pretense and Arachis hypogaea with anti-inflammatory and antioxidative effects. The aim of the current study was to evaluate the effects of BA on gingival inflammation and alveolar bone destruction in rats with experimental periodontitis. Experimental rats (n=25) were distributed equally into five groups: i) Healthy control (control) group; ii) experimental periodontitis (ligation) group; and iii) and ligation plus low, medium and high dose of BA (12.5, 25 and 50 mg/kg/day, respectively) groups. A nylon ligature was inserted around rats' maxillary molars for 14 days to trigger the experimental periodontitis. BA was intravenous injected once daily for 4 weeks. After that, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), reactive oxygen species (ROS) and osteocalcin (OCN) levels were determined in gingival and/or serum samples using ELISA or reverse transcription-quantitative PCR. Alveolar bone volume was assessed via hematoxylin and eosin staining and micro-computed tomography. Osteoclasts were identified by tartrate-resistant acid phosphatase staining, and the level of the nuclear factor erythroid-2 related factor 2 (Nrf2) was also detected by immunohistochemical staining. BA treatment groups showed alleviated alveolar bone resorption compared with the ligation group. Moreover, BA treatment significantly inhibited IL-1β, TNF-α, ROS levels, and reduced leukocyte acid phosphatase-positive cells, as well as increased OCN and Nrf2 levels compared with the ligation group. BA had beneficial effects on experimental periodontitis of rats. BA treatment inhibited inflammation, regulated unbalanced oxidative stress response and ameliorated the alveolar bone loss.
Collapse
Affiliation(s)
- Shengdan Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhuo Yang
- General Stomatology Clinic, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Yuwei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Ding
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chengcheng Liu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
20
|
Biochanin A Mitigates Atherosclerosis by Inhibiting Lipid Accumulation and Inflammatory Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8965047. [PMID: 33959213 PMCID: PMC8074550 DOI: 10.1155/2020/8965047] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/13/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022]
Abstract
Biochanin A (BCA), a dietary isoflavone extracted from red clover and cabbage, has been shown to antagonize hypertension and myocardial ischemia/reperfusion injury. However, very little is known about its role in atherogenesis. The aim of this study was to observe the effects of BCA on atherosclerosis and explore the underlying mechanisms. Our results showed that administration of BCA promoted reverse cholesterol transport (RCT), improved plasma lipid profile, and decreased serum proinflammatory cytokine levels and atherosclerotic lesion area in apoE-/- mice fed a Western diet. In THP-1 macrophage-derived foam cells, treatment with BCA upregulated ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG1 expression and facilitated subsequent cholesterol efflux and diminished intracellular cholesterol contents by activating the peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα) and PPARγ/heme oxygenase 1 (HO-1) pathways. BCA also activated these two signaling pathways to inhibit the secretion of proinflammatory cytokines. Taken together, these findings suggest that BCA is protective against atherosclerosis by inhibiting lipid accumulation and inflammatory response through the PPARγ/LXRα and PPARγ/HO-1 pathways. BCA may be an attractive drug for the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
|
21
|
de Mendonça MAA, Ribeiro ARS, de Lima AK, Bezerra GB, Pinheiro MS, de Albuquerque-Júnior RLC, Gomes MZ, Padilha FF, Thomazzi SM, Novellino E, Santini A, Severino P, B. Souto E, Cardoso JC. Red Propolis and Its Dyslipidemic Regulator Formononetin: Evaluation of Antioxidant Activity and Gastroprotective Effects in Rat Model of Gastric Ulcer. Nutrients 2020; 12:nu12102951. [PMID: 32993069 PMCID: PMC7600383 DOI: 10.3390/nu12102951] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Propolis has various pharmacological properties of clinical interest, and is also considered a functional food. In particular, hydroalcoholic extracts of red propolis (HERP), together with its isoflavonoid formononetin, have recognized antioxidant and anti-inflammatory properties, with known added value against dyslipidemia. In this study, we report the gastroprotective effects of HERP (50–500 mg/kg, p.o.) and formononetin (10 mg/kg, p.o.) in ethanol and non-steroidal anti-inflammatory drug-induced models of rat ulcer. The volume, pH, and total acidity were the evaluated gastric secretion parameters using the pylorus ligature model, together with the assessment of gastric mucus contents. The anti-Helicobacter pylori activities of HERP were evaluated using the agar-well diffusion method. In our experiments, HERP (250 and 500 mg/kg) and formononetin (10 mg/kg) reduced (p < 0.001) total lesion areas in the ethanol-induced rat ulcer model, and reduced (p < 0.05) ulcer indices in the indomethacin-induced rat ulcer model. Administration of HERP and formononetin to pylorus ligature models significantly decreased (p < 0.01) gastric secretion volumes and increased (p < 0.05) mucus production. We have also shown the antioxidant and anti-Helicobacter pylori activities of HERP. The obtained results indicate that HERP and formononetin are gastroprotective in acute ulcer models, suggesting a prominent role of formononetin in the effects of HERP.
Collapse
Affiliation(s)
- Marcio A. A. de Mendonça
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Ana R. S. Ribeiro
- Departament of Physiology, Federal University of Sergipe, Av. Marechal Rondon, Cidade Universitária, São Cristóvão CEP 49100-000, Sergipe, Brazil; (A.R.S.R.); (S.M.T.)
| | - Adriana K. de Lima
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Gislaine B. Bezerra
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Malone S. Pinheiro
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Ricardo L. C. de Albuquerque-Júnior
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
| | - Margarete Z. Gomes
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
| | - Francine F. Padilha
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
| | - Sara M. Thomazzi
- Departament of Physiology, Federal University of Sergipe, Av. Marechal Rondon, Cidade Universitária, São Cristóvão CEP 49100-000, Sergipe, Brazil; (A.R.S.R.); (S.M.T.)
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- Correspondence: (A.S.); (E.B.S.); (J.C.C.); Tel.: +39-81-253-9317 (A.S.); +351-239-488-400 (E.B.S.); +55-79-3218-2190 (J.C.C.)
| | - Patricia Severino
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.S.); (E.B.S.); (J.C.C.); Tel.: +39-81-253-9317 (A.S.); +351-239-488-400 (E.B.S.); +55-79-3218-2190 (J.C.C.)
| | - Juliana C. Cardoso
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
- Correspondence: (A.S.); (E.B.S.); (J.C.C.); Tel.: +39-81-253-9317 (A.S.); +351-239-488-400 (E.B.S.); +55-79-3218-2190 (J.C.C.)
| |
Collapse
|
22
|
Sarfraz A, Javeed M, Shah MA, Hussain G, Shafiq N, Sarfraz I, Riaz A, Sadiqa A, Zara R, Zafar S, Kanwal L, Sarker SD, Rasul A. Biochanin A: A novel bioactive multifunctional compound from nature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137907. [PMID: 32208265 DOI: 10.1016/j.scitotenv.2020.137907] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Natural products (NPs) will continue to serve humans as matchless source of novel drug leads and an inspiration for the synthesis of non-natural drugs. As our scientific understanding of 'nature' is rapidly expanding, it would be worthwhile to illuminate the pharmacological distinctions of NPs to the scientific community and the public. Flavonoids have long fascinated scientists with their remarkable structural diversity as well as biological functions. Consequently, this review aims to shed light on the sources and pharmacological significance of a dietary isoflavone, biochanin A, which has been recently emerged as a multitargeted and multifunctional guardian of human health. Biochanin A possesses anti-inflammatory, anticancer, neuroprotective, antioxidant, anti-microbial, and hepatoprotective properties. It combats cancer development by inducing apoptosis, inhibition of metastasis and arresting cell cycle via targeting several deregulated signaling pathways of cancer. It fights inflammation by blocking the expression and activity of pro-inflammatory cytokines via modulation of NF-κB and MAPKs. Biochanin A acts as a neuroprotective agent by inhibiting microglial activation and apoptosis of neurons. As biochanin A has potential to modulate several biological networks, thus, it can be anticipated that this therapeutically potent compound might serve as a novel lead for drug development in the near future.
Collapse
Affiliation(s)
- Ayesha Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Maria Javeed
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Nusrat Shafiq
- Department of Chemistry, Government College Woman University Faisalabad (GCWUF), 38000 Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ayesha Sadiqa
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rabia Zara
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Saba Zafar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Lubna Kanwal
- Institute of Pure and Applied Zoology, University of Okara, Okara, Pakistan
| | - Satyajit D Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England, UK
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| |
Collapse
|
23
|
Xue Z, Wang J, Yu W, Li D, Zhang Y, Wan F, Kou X. Biochanin A protects against PM 2.5-induced acute pulmonary cell injury by interacting with the target protein MEK5. Food Funct 2019; 10:7188-7203. [PMID: 31608342 DOI: 10.1039/c9fo01382b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epidemiological studies have shown that exposure to ambient fine particulate matter (PM2.5) is associated with an increased risk for cardiopulmonary diseases. The MEK5/ERK5 and NF-κB signaling pathways are closely related to the regulation of acute pulmonary cell injury (APCI) and may play an important role in the underlying pathophysiological mechanisms. Related studies have shown that Biochanin A (BCA) effectively interferes with APCI, but the underlying mechanism through which this occurs is not fully understood. Previously, based on proteomic and bioinformatic research, we found the indispensable role of MEK5 in mediating remission effects of BCA against PM2.5-induced lung toxicity. Therefore, using A549 adenocarcinoma human alveolar basal epithelial cells (A549 cells), we combined western blot and qRT-PCR to study the protective signaling pathways induced by BCA, indicating that MEK5/ERK5 and NF-κB are both involved in mediating APCI in response to PM2.5, and MEK5/ERK5 positively activated NF-κB and its downstream cellular regulatory factors. BCA significantly suppressed PM2.5-induced upregulation of MEK5/ERK5 expression and phosphorylation and activation of NF-κB. Furthermore, due to the specificity of the MEK5/ERK5 protein structure, the binding sites and binding patterns of BCA and MEK5 were analyzed using molecular docking correlation techniques, which showed that there are stable hydrogen bonds between BCA and the PB1 domain of MEK5 as well as its kinase domain. BCA forms a stable complex with MEK5, which has potential effects on MEKK2/3-MEK5-ERK5 ternary interactions, p62/αPKC-mediated NF-κB regulation, and inhibition of MEK5 target protein phosphorylation. Therefore, our study suggests that MEK5 is an important regulator of intracellular signaling of APCI in response to PM2.5 exposure. BCA may exert anti-APCI activity by targeting MEK5 to inhibit activation of the MEK5/ERK5/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Wancong Yu
- Tianjin Academy of Agricultural Science, 300381, Tianjin, China
| | - Dan Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Yixia Zhang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Fang Wan
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| |
Collapse
|
24
|
Yu C, Zhang P, Lou L, Wang Y. Perspectives Regarding the Role of Biochanin A in Humans. Front Pharmacol 2019; 10:793. [PMID: 31354500 PMCID: PMC6639423 DOI: 10.3389/fphar.2019.00793] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
Biochanin A (BCA) is an isoflavone mainly found in red clover with poor solubility and oral absorption that is known to have various effects, including anti-inflammatory, estrogen-like, and glucose and lipid metabolism modulatory activity, as well as cancer preventive, neuroprotective, and drug interaction effects. BCA is already commercially available and is among the main ingredients in many types of supplements used to alleviate postmenopausal symptoms in women. The activity of BCA has not been adequately evaluated in humans. However, the results of many in vitro and in vivo studies investigating the potential health benefits of BCA are available, and the complex mechanisms by which BCA modulates transcription, apoptosis, metabolism, and immune responses have been revealed. Many efforts have been exerted to improve the poor bioavailability of BCA, and very promising results have been reported. This review focuses on the major effects of BCA and its possible molecular targets, potential uses, and limitations in health maintenance and treatment.
Collapse
Affiliation(s)
- Chen Yu
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lixin Lou
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
25
|
Liang F, Cao W, Huang Y, Fang Y, Cheng Y, Pan S, Xu X. Isoflavone biochanin A, a novel nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element activator, protects against oxidative damage in HepG2 cells. Biofactors 2019; 45:563-574. [PMID: 31131946 DOI: 10.1002/biof.1514] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/13/2019] [Accepted: 04/27/2019] [Indexed: 01/29/2023]
Abstract
Isoflavones are one group of the major flavonoids and possess multiple biological activities due to their antioxidant properties. However, a clear antioxidant mechanism of dietary isoflavones is still remained to be answered. In this study, the effects of isoflavones on the nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element (ARE) signaling pathway and the underlying molecular mechanisms were investigated. Results showed that isoflavones are potential Nrf2-ARE activators while their activities were structure dependent. Biochanin A (BCA), an O-methylated isoflavone with low direct antioxidant activity, can effectively protect HepG2 cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage via activation of the Nrf2 signaling, and thereby the induction of downstream cytoprotective enzymes including NAD(P)H quinone oxidoreductase-1, heme oxygenasae-1, and glutamate-cysteine ligase catalytic subunit. A molecular docking study revealed that BCA could directly bind into the pocket of Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1), a cytoplasmic suppressor of Nrf2, to facilitate Nrf2 activation. The upstream mitogen-activated protein kinase (MAPK) pathways were also involved in the activation of Nrf2 signaling. These findings indicate that the protective actions of dietary isoflavones against oxidative damage may be at least partly due to their ability to enhance the intracellular antioxidant response system by modulating the Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Fuqiang Liang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| | - Weiwei Cao
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| | - Yuting Huang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| | - Yajing Fang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| | - Yuxin Cheng
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| |
Collapse
|
26
|
Li YR, Li GH, Zhou MX, Xiang L, Ren DM, Lou HX, Wang XN, Shen T. Discovery of natural flavonoids as activators of Nrf2-mediated defense system: Structure-activity relationship and inhibition of intracellular oxidative insults. Bioorg Med Chem 2018; 26:5140-5150. [PMID: 30227999 DOI: 10.1016/j.bmc.2018.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Continuous overproduction of reactive oxygen species (ROS), termed as oxidative stress, plays a crucial role in the onset and progression of many human diseases. Activation of nuclear transcription factor erythroid 2-related factor (Nrf2) by small molecules could eliminate ROS, and thus block the pathogenesis of oxidative stress-induced diseases. In this study, a natural flavonoid library was established and tested for their potential Nrf2 inducing effects. Based on QR inducing effect of flavonoids, their structure-activity relationship (SAR) on Nrf2 induction was summarized, and twenty flavonoids were firstly identified to be potential activators of Nrf2-mediated defensive response. Then, 7-O-methylbiochanin A (7-MBA) was further investigated for its capability on the Nrf2 activation and prevention against oxidative insults in human lung epithelial cells. Further studies indicated that 7-MBA activated Nrf2 signaling pathway and protected human lung epithelial Beas-2B cells against sodium arsenite [As(III)]-induced cytotoxicity in an Nrf2-dependent manner. Activation of Nrf2 by 7-MBA upregulated intracellular antioxidant capacity, which was produced by enhancement of Nrf2 stabilization, blockage of Nrf2 ubiquitination, as well as Nrf2 phosphorylation by mitogen-activated protein kinase (MAPK), protein kinase C (PKC), protein kinase R-like endoplasmic reticulum kinase (PERK), and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Taken together, 7-MBA is a novel isoflavone-type Nrf2 activator displaying potential preventive effect against oxidative damages in human lung epithelial cells.
Collapse
Affiliation(s)
- Yan-Ru Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Guo-Hui Li
- Department of Pharmacy, Jinan Maternity and Child Care Hospital, Jinan, PR China
| | - Ming-Xing Zhou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Lan Xiang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China.
| |
Collapse
|
27
|
|
28
|
Renoprotective effect of the isoflavonoid biochanin A against cisplatin induced acute kidney injury in mice: Effect on inflammatory burden and p53 apoptosis. Int Immunopharmacol 2018; 61:8-19. [DOI: 10.1016/j.intimp.2018.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 12/26/2022]
|