1
|
Wang Y, Tan Z, Wei H, Zhang N, Wang L, Yang Y, Liu W, Zhu L. Protein Engineering of Tagatose 4-Epimerase for D-Tagatose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12353-12363. [PMID: 40350604 DOI: 10.1021/acs.jafc.5c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
D-Tagatose, a promising sugar substitute with various functional properties and commercial applications, can be enzymatically converted from D-fructose by tagatose 4-epimerase. The development of an efficient tagatose 4-epimerase that catalyzes the conversion of D-fructose into D-tagatose is essential to make the production technology of D-tagatose applicable. In this study, tagatose 4-epimerase from Thermotogae (TsT4Ease) was engineered through semi-rational design and directed evolution, resulting in a 2.8-fold improvement in catalytic activity compared to the wild type (WT). The production of D-tagatose reached 42 g/L in 2 h. Crystal structure analysis determined the structural features with a common (α/β)8-TIM barrel and a Zn2+-binding architecture at the active center. Subsequent molecular dynamics (MD) simulations revealed that the substitutions improved substrate binding energy and stabilized the active pocket. This study offers new insights into the structure-function relationship of TsT4Ease and provides a candidate tagatose 4-epimerase.
Collapse
Affiliation(s)
- Yuxin Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
| | - Zijian Tan
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongli Wei
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Nan Zhang
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Lifei Wang
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
| | - Yifan Yang
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
| | - Weidong Liu
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Leilei Zhu
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
2
|
Nakakita SI, Hirabayashi J. Transforming monosaccharides: Recent advances in rare sugar production and future exploration. BBA ADVANCES 2025; 7:100143. [PMID: 39926187 PMCID: PMC11803239 DOI: 10.1016/j.bbadva.2025.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Rare sugars are defined as monosaccharides and their derivatives that do not exist in nature at all or that exist in extremely limited amounts despite being theoretically possible. At present, no comprehensive dogma has been presented regarding how and why these rare sugars have deviated from the naturally selected monosaccharides. In this minireview, we adopt a hypothesis on the origin and evolution of elementary hexoses, previously presented by one of the authors (Hirabayashi, Q Rev Biol, 1996, 71:365-380). In this scenario, monosaccharides, which constitute various kinds of glycans in nature, are assumed to have been generated by formose reactions on the prebiotic Earth (chemical evolution era). Among them, the most stable hexoses, i.e., fructose, glucose, and mannose remained accumulated. After the birth of life, the "chemical origin" saccharides thus survived were transformed into a variety of "bricolage products", which include galactose and other recognition saccharides like fucose and sialic acid through the invention of diverse metabolic pathways (biological evolution era). The remaining monosaccharides that have deviated from this scenario are considered rare sugars. If we can produce rare sugars as we wish, it is expected that various more useful biomaterials will be created by using them as raw materials. Thanks to the pioneering research of the Izumori group in the 1990's, and to a few other investigations by other groups, almost all monosaccharides including l-sugars can now be produced by combining both chemical and enzymatic approaches. After briefly giving an overview of the origin of elementary hexoses and the current state of the rare sugar production, we will look ahead to the next generation of monosaccharide research which also targets glycosides including disaccharides.
Collapse
Affiliation(s)
- Shin-ichi Nakakita
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- International Institute of Rare Sugar Research and Education, Kagawa University, Saiwai, Takamatsu, Kagawa 760-8521 Japan
| | - Jun Hirabayashi
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- Institute for Glyco-core Research, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-0814, Japan
| |
Collapse
|
3
|
Ma D, Qiu L, Wang X, Li L, Peng S, Liao Y, Li K. L-arabinose isomerase from Lactobacillus fermentum C6: Enzymatic characteristics and its recombinant Bacillus subtilis whole cells achieving a significantly increased production of D-tagatose. Int J Biol Macromol 2024; 278:134753. [PMID: 39147336 DOI: 10.1016/j.ijbiomac.2024.134753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
L-arabinose isomerase (L-AI) is a functional enzyme for the isomerizing of D-galactose to produce D-tagatose. In this study, L-AI-C6-encoding gene from the probiotic Lactobacillus fermentum C6 was cloned and expressed in Bacillus subtilis WB600 for investigating enzymatic characteristics and bioconverting D-tagatose by means of whole-cell catalysis. Results showed that the engineered B. subtilis WB600-pMA5-LAI achieved a maximum specific activity of L-AI-C6 (232.65 ± 15.54 U/mg protein) under cultivation in LB medium at 28 °C for 40 h. The recombinant L-AI-C6 was purified, and enzymatic characteristics test showed its optimum reaction temperature and pH at 60 °C and 8.0, respectively. In addition, L-AI-C6 exhibited good stability within the pH range of 5.5-9.0. By using B. subtilis WB600-pMA5-LAI cells as whole-cell catalyst, the highest D-tagatose yield reached 42.91 ± 0.28 % with D-galactose as substrate, which was 2.41 times that of L. fermentum C6 (17.79 ± 0.11 %). This suggested that the cloning and heterologous expression of L-AI-C6 was an effective strategy for improving D-tagatose conversion by whole-cell catalysis. In brief, the present study demonstrated that the reaction temperature, pH, and stability of L-AI-C6 from L. fermentum C6 meet the demands of industrial application, and the constructed B. subtilis WB600-pMA5-LAI shows promising potential for the whole-cell biotransformation of D-tagatose.
Collapse
Affiliation(s)
- Donglin Ma
- College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China.
| | - Lu Qiu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaofang Wang
- Agriculture Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Lilang Li
- College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shuaiying Peng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yan Liao
- College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China.
| | - Kuntai Li
- College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Lu C, Chen Z, Ravikumar Y, Zhang G, Tang X, Zhang Y, Zhao M, Sun W, Qi X. Improving Catalytic Efficiency of L-Arabinose Isomerase from Lactobacillus plantarum CY6 towards D-Galactose by Molecular Modification. Foods 2024; 13:1727. [PMID: 38890956 PMCID: PMC11172353 DOI: 10.3390/foods13111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
L-Arabinose isomerase (L-AI) has been commonly used as an efficient biocatalyst to produce D-tagatose via the isomerization of D-galactose. However, it remains a significant challenge to efficiently synthesize D-tagatose using the native (wild type) L-AI at an industrial scale. Hence, it is extremely urgent to redesign L-AI to improve its catalytic efficiency towards D-galactose, and herein a structure-based molecular modification of Lactobacillus plantarum CY6 L-AI (LpAI) was performed. Among the engineered LpAI, both F118M and F279I mutants showed an increased D-galactose isomerization activity. Particularly, the specific activity of double mutant F118M/F279I towards D-galactose was increased by 210.1% compared to that of the wild type LpAI (WT). Besides the catalytic activity, the substrate preference of F118M/F279I was also largely changed from L-arabinose to D-galactose. In the enzymatic production of D-tagatose, the yield and conversion ratio of F118M/F279I were increased by 81.2% and 79.6%, respectively, compared to that of WT. Furthermore, the D-tagatose production of whole cells expressing F118M/F279I displayed about 2-fold higher than that of WT cell. These results revealed that the designed site-directed mutagenesis is useful for improving the catalytic efficiency of LpAI towards D-galactose.
Collapse
Affiliation(s)
- Chengyu Lu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, China
| |
Collapse
|
5
|
Ma W, Li F, Li L, Li B, Niu K, Liu Q, Han L, Han L, Fang X. Production of D -tagatose, bioethanol, and microbial protein from the dairy industry by-product whey powder using an integrated bioprocess. Biotechnol J 2024; 19:e2300415. [PMID: 38375553 DOI: 10.1002/biot.202300415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
We designed and constructed a green and sustainable bioprocess to efficiently coproduce D -tagatose, bioethanol, and microbial protein from whey powder. First, a one-pot biosynthesis process involving lactose hydrolysis and D -galactose redox reactions for D -tagatose production was established in vitro via a three-enzyme cascade. Second, a nicotinamide adenine dinucleotide phosphate-dependent galactitol dehydrogenase mutant, D36A/I37R, based on the nicotinamide adenine dinucleotide-dependent polyol dehydrogenase from Paracoccus denitrificans was created through rational design and screening. Moreover, an NADPH recycling module was created in the oxidoreductive pathway, and the tagatose yield increased by 3.35-fold compared with that achieved through the pathway without the cofactor cycle. The reaction process was accelerated using an enzyme assembly with a glycine-serine linker, and the tagatose production rate was 9.28-fold higher than the initial yield. Finally, Saccharomyces cerevisiae was introduced into the reaction solution, and 266.5 g of D -tagatose, 162.6 g of bioethanol, and 215.4 g of dry yeast (including 38% protein) were obtained from 1 kg of whey powder (including 810 g lactose). This study provides a promising sustainable process for functional food (D -tagatose) production. Moreover, this process fully utilized whey powder, demonstrating good atom economy.
Collapse
Affiliation(s)
- Wei Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Fengyi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Longyue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Bin Li
- Shandong Henglu Biotechnology Co., Ltd., Jinan, Shandong, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qinghua Liu
- Shandong Henglu Biotechnology Co., Ltd., Jinan, Shandong, China
| | - Laichuang Han
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lijuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
- Rongcheng Huihai Chuangda Biotechnology Co., Ltd., Weihai, Shandong, China
| |
Collapse
|
6
|
Joo Y, Sung JY, Shin SM, Park SJ, Kim KS, Park KD, Kim SB, Lee DW. A Retro-Aldol Reaction Prompted the Evolvability of a Phosphotransferase System for the Utilization of a Rare Sugar. Microbiol Spectr 2023; 11:e0366022. [PMID: 36786576 PMCID: PMC10101011 DOI: 10.1128/spectrum.03660-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The evolution of the bacterial phosphotransferase system (PTS) linked to glycolysis is dependent on the availability of naturally occurring sugars. Although bacteria exhibit sugar specificities based on carbon catabolite repression, the acquisition and evolvability of the cellular sugar preference under conditions that are suboptimal for growth (e.g., environments rich in a rare sugar) are poorly understood. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. We detected a minimal set of adaptive mutations in the d-fructose-specific PTS to render E. coli capable of d-tagatose utilization. These E. coli mutant strains lost the tight regulation of both the d-fructose and N-acetyl-galactosamine PTS following deletions in the binding site of the catabolite repressor/activator protein (Cra) upstream from the fruBKA operon and in the agaR gene, encoding the N-acetylgalactosamine (GalNAc) repressor, respectively. Acquired d-tagatose catabolic pathways then underwent fine-tuned adaptation via an additional mutation in 1-phosphofructose kinase to adjust metabolic fluxes. We determined the evolutionary trajectory at the molecular level, providing insights into the mechanism by which enteric bacteria evolved a substrate preference for the rare sugar d-tagatose. Furthermore, the engineered E. coli mutant strain could serve as an in vivo high-throughput screening platform for engineering non-phosphosugar isomerases to produce rare sugars. IMPORTANCE Microorganisms generate energy through glycolysis, which might have preceded a rapid burst of evolution, including the evolution of cellular respiration in the primordial biosphere. However, little is known about the evolvability of cellular sugar preferences. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. Consequently, we identified mutational hot spots and determined the evolutionary trajectory at the molecular level. This provided insights into the mechanism by which enteric bacteria evolved substrate preferences for various sugars, accounting for the widespread occurrence of these taxa. Furthermore, the adaptive laboratory evolution-induced cellular chassis could serve as an in vivo high-throughput screening platform for engineering tailor-made non-phosphorylated sugar isomerases to produce low-calorigenic rare sugars showing antidiabetic, antihyperglycemic, and antitumor activities.
Collapse
Affiliation(s)
- Yunhye Joo
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Yoon Sung
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sun-Mi Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Jun Park
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Kyoung Su Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, Seoul, Republic of Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Zhang S, Xu Z, Ma M, Zhao G, Chang R, Si H, Dai M. A novel Lactococcus lactis l-arabinose isomerase for d-tagatose production from lactose. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Chen Q, Xu W, Wu H, Guang C, Zhang W, Mu W. An overview of D-galactose utilization through microbial fermentation and enzyme-catalyzed conversion. Appl Microbiol Biotechnol 2021; 105:7161-7170. [PMID: 34515844 DOI: 10.1007/s00253-021-11568-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/05/2023]
Abstract
D-Galactose is an abundant carbohydrate monomer in nature and widely exists in macroalgae, plants, and dairy wastes. D-Galactose is useful as a raw material for biomass fuel production or low-calorie sweetener production, attracting increased attention. This article summarizes the studies on biotechnological processes for galactose utilization. Two main research directions of microbial fermentation and enzyme-catalyzed conversion from galactose-rich biomass are extensively reviewed. The review provides the recent discoveries for biofuel production from macroalgae, including the innovative methods in the pretreatment process and technological development in the fermentation process. As modern people pay more attention to health, enzyme technologies for low-calorie sweetener production are more urgently needed. D-Tagatose is a promising low-calorie alternative to sugar. We discuss the recent studies on characterization and genetic modification of L-arabinose isomerase to improve the bioconversion of D-galactose to D-tagatose. In addition, the trends and critical challenges in both research directions are outlined at the end. KEY POINTS: • The value and significance of galactose utilization are highlighted. • Biofuel production from galactose-rich biomass is accomplished by fermentation. • L-arabinose isomerase is a tool for bioconversion of D-galactose to D-tagatose.
Collapse
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
10
|
Biotechnological production of d-tagatose from lactose using metabolically engineering Lactiplantibacillus plantarum. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Jayaraman AB, Kandasamy T, Venkataraman D, S M. Rational design of Shewanella sp. l-arabinose isomerase for d-galactose isomerase activity under mesophilic conditions. Enzyme Microb Technol 2021; 147:109796. [PMID: 33992411 DOI: 10.1016/j.enzmictec.2021.109796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
d-Tagatose, a potential low calorific substitute for sucrose, can be produced by bioconversion of d-galactose catalysed by l-arabinose isomerase. l-Arabinose isomerase from Shewanella sp. ANA-3 is unique for its ability to catalyse bioconversion reactions under mesophilic conditions. However, d-galactose not being a natural substrate for l-arabinose isomerase is catalysed at a slower rate. We attempted to increase the biocatalytic efficiency of Shewanella sp. l-arabinose isomerase by rational design to enhance galactose isomerisation activity. In silico molecular docking, analysis has revealed that F279 is sterically hindering the binding of d-galactose at the C6 position. Substitution of bulky Phe residue with smaller hydrophilic residues such as Asn and Thr increased the galactose isomerase activity by 86 % and 12 % respectively. At mesophilic conditions, F279N mutant catalysed the bioconversion of d-galactose more efficiently than l-arabinose, indicating a shift in substrate preference.
Collapse
Affiliation(s)
- Arun Baskaran Jayaraman
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Thirukumaran Kandasamy
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | | | | |
Collapse
|
12
|
A Three-Step Process for the Bioconversion of Whey Permeate into a Glucose-Free D-Tagatose Syrup. Catalysts 2020. [DOI: 10.3390/catal10060647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have developed a sustainable three-stage process for the revaluation of cheese whey permeate into D-tagatose, a rare sugar with functional properties used as sweetener. The experimental conditions (pH, temperature, cofactors, etc.) for each step were independently optimized. In the first step, concentrated whey containing 180–200 g/L of lactose was fully hydrolyzed by β-galactosidase from Bifidobacterium bifidum (Saphera®) in 3 h at 45 °C. Secondly, glucose was selectively removed by treatment with Pichia pastoris cells for 3 h at 30 °C. The best results were obtained with 350 mg of cells (previously grown for 16 h) per mL of solution. Finally, L-arabinose isomerase US100 from Bacillus stearothermophilus was employed to isomerize D-galactose into D-tagatose at pH 7.5 and 65 °C, in presence of 0.5 mM MnSO4. After 7 h, the concentration of D-tagatose was approximately 30 g/L (33.3% yield, referred to the initial D-galactose present in whey). The proposed integrated process takes place under mild conditions (neutral pH, moderate temperatures) in a short time (13 h), yielding a glucose-free syrup containing D-tagatose and galactose in a ratio 1:2 (w/w).
Collapse
|
13
|
Bober JR, Nair NU. Galactose to tagatose isomerization at moderate temperatures with high conversion and productivity. Nat Commun 2019; 10:4548. [PMID: 31591402 PMCID: PMC6779876 DOI: 10.1038/s41467-019-12497-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
There are many industrially-relevant enzymes that while active, are severely limited by thermodynamic, kinetic, or stability issues (isomerases, lyases, transglycosidases). In this work, we study Lactobacillus sakeil-arabinose isomerase (LsLAI) for d-galactose to d-tagatose isomerization—that is limited by all three reaction parameters. The enzyme demonstrates low catalytic efficiency, low thermostability at temperatures > 40 °C, and equilibrium conversion < 50%. After exploring several strategies to overcome these limitations, we show that encapsulating LsLAI in gram-positive Lactobacillus plantarum that is chemically permeabilized enables reactions at high rates, high conversions, and elevated temperatures. In a batch process, this system enables ~ 50% conversion in 4 h starting with 300 mM galactose (an average productivity of 37 mM h−1), and 85% conversion in 48 h. We suggest that such an approach may be invaluable for other enzymatic processes that are similarly kinetically-, thermodynamically-, and/or stability-limited. Production of tagatose, a sugar substitute, by isomerization of galactose suffers from unfavorable enzymatic kinetics, low enzyme stability, and low equilibrium constant. Here, the authors simultaneously overcome these limitations by encapsulating l-arabinose isomerase in permeabilized Lactobacillus plantarum.
Collapse
Affiliation(s)
- Josef R Bober
- Department of Chemical and Biological Engineering, Tuts University, Medford, MA, 02155, USA
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tuts University, Medford, MA, 02155, USA.
| |
Collapse
|
14
|
Xiao Y, Chen Q, Guang C, Zhang W, Mu W. An overview on biological production of functional lactose derivatives. Appl Microbiol Biotechnol 2019; 103:3683-3691. [DOI: 10.1007/s00253-019-09755-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/30/2022]
|
15
|
Zheng Z, Xie J, Liu P, Li X, Ouyang J. Elegant and Efficient Biotransformation for Dual Production of d-Tagatose and Bioethanol from Cheese Whey Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:829-835. [PMID: 30638366 DOI: 10.1021/acs.jafc.8b05150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, the dual production of valuable d-tagatose and bioethanol from lactose and cheese whey powder is presented. First, a one-pot biosynthesis involving lactose hydrolysis and d-galactose isomerization for d-tagatose production was established using crude enzymes of recombinant Escherichia coli with l-arabinose isomerase (L-AI) at 50 °C. Compared to the current enzymatic system, only L-AI was overexpressed, because of the unexpectedly thermotolerant β-galactosidase in E. coli BL21(DE3). Moreover, this high temperature rendered the d-glucose catabolism of E. coli inactive, while retaining all fermentable sugars for bioethanol fermentation. Thereafter, the mixed sugar syrup was fermented by Saccharomyces cerevisiae NL22. A total of 23.5 g/L d-tagatose and 26.9 g/L bioethanol was achieved from cheese whey powder containing 100 g/L lactose. This bioprocess not only provides an efficient method for the functionalization of byproduct whey, but also offsets the high production cost of d-tagatose and bioethanol.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
| | - Jiaxiao Xie
- College of Forestry , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
| | - Peng Liu
- College of Forestry , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
| | - Xin Li
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
| |
Collapse
|
16
|
Xu W, Zhang W, Zhang T, Jiang B, Mu W. l -arabinose isomerases: Characteristics, modification, and application. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Guerrero-Wyss M, Durán Agüero S, Angarita Dávila L. D-Tagatose Is a Promising Sweetener to Control Glycaemia: A New Functional Food. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8718053. [PMID: 29546070 PMCID: PMC5818958 DOI: 10.1155/2018/8718053] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/09/2017] [Accepted: 12/13/2017] [Indexed: 11/17/2022]
Abstract
The objective of the current research was to review and update evidence on the dietary effect of the consumption of tagatose in type 2 diabetes, as well as to elucidate the current approach that exists on its production and biotechnological utility in functional food for diabetics. Articles published before July 1, 2017, were included in the databases PubMed, EBSCO, Google Scholar, and Scielo, including the terms "Tagatose", "Sweeteners", "Diabetes Mellitus type 2", "Sweeteners", "D-Tag". D-Tagatose (D-tag) is an isomer of fructose which is approximately 90% sweeter than sucrose. Preliminary studies in animals and preclinical studies showed that D-tag decreased glucose levels, which generated great interest in the scientific community. Recent studies indicate that tagatose has low glycemic index, a potent hypoglycemic effect, and eventually could be associated with important benefits for the treatment of obesity. The authors concluded that D-tag is promising as a sweetener without major adverse effects observed in these clinical studies.
Collapse
Affiliation(s)
- Marion Guerrero-Wyss
- Escuela de Nutrición, Facultad Ciencias De La Salud, Universidad San Sebastián, Santiago, Chile
| | - Samuel Durán Agüero
- Escuela de Nutrición, Facultad Ciencias De La Salud, Universidad San Sebastián, Santiago, Chile
| | - Lisse Angarita Dávila
- Carrera de Nutrición, Facultad de Medicina, Universidad Andres Bello, Sede Concepción, Talcahuano, Chile
| |
Collapse
|