1
|
He Z, Wang Y, Fu Y, Qin X, Lan W, Shi D, Tang Y, Yu F, Li Y. Potential impacts of polyethylene microplastics and heavy metals on Bidens pilosa L. growth: Shifts in root-associated endophyte microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137698. [PMID: 40020290 DOI: 10.1016/j.jhazmat.2025.137698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
This study investigates the impact of polyethylene (PE) microplastics of varying particle sizes and concentrations on the growth of Bidens pilosa L. and its root-associated microbial communities in cadmium (Cd) and lead (Pb) co-contaminated soil. PE microplastics had a significant impact on plant growth. Notably, at the P05-10 level, root length, root weight, and total biomass exhibited the greatest reductions by 48.9 %, 44.1 %, and 45.2 %, respectively. Furthermore, PE microplastics reduced photosynthetic pigment levels and promoted the accumulation of reactive oxygen species, as indicated by a 264.8 % and 57.2 % increase in H2O2 content in roots and leaves. High-throughput sequencing revealed substantial alterations in the composition of bacterial and fungal communities, with stress-resilient taxa such as Actinobacteria, Verrucomicrobiota, and Rhizophagus exhibiting increased relative abundance. Correlation analyses indicated that variations in soil pH and enzymatic activity influenced microbial community structure, which in turn affected plant physiological responses. Functional predictions using PICRUSt2 and BugBase suggested enhanced oxidative stress tolerance, increased secondary metabolite biosynthesis, and a higher prevalence of stress-resistant phenotypes under conditions of elevated PE concentrations and smaller particle sizes. Overall, this study provides novel insights into the potential effects of microplastics on Bidens pilosa L., particularly in its role as a hyperaccumulator, highlighting its capacity for heavy metal uptake under microplastic exposure.
Collapse
Affiliation(s)
- Ziang He
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yanxue Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yiyun Fu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Xiaoxiao Qin
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Wei Lan
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Dongyi Shi
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yingxuan Tang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China.
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China.
| |
Collapse
|
2
|
Deng G, Lu F, Li S, Long Y, Wu J, Guo X, Li C, Song Z, Foda MF, Ding F, Han H. A two-in-one molybdenum disulfide-chitosan nanoparticles system for activating plant defense mechanisms and reactive oxygen species to treat Citrus Huanglongbing. Int J Biol Macromol 2024:135528. [PMID: 39278448 DOI: 10.1016/j.ijbiomac.2024.135528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Citrus Huanglongbing (HLB) poses an enormous challenge to Citrus cultivation worldwide, necessitating groundbreaking interventions beyond conventional pharmaceutical methods. In this study, we propose molybdenum disulfide-chitosan nanoparticles (MoS2-CS NPs) through electrostatic adsorption, preserving the plant-beneficial properties of molybdenum disulfide (MoS2), while enhancing its antibacterial effectiveness through chitosan modification. MoS2-CS NPs exhibited significant antibacterial efficacy against RM1021, and the closest relatives to Candidatus Liberibacter asiaticus (CLas), Erwinia carotovora, and Xanthomonas citri achieved survival rates of 7.40 % ± 1.74 %, 8.94 % ± 1.40 %, and 6.41 % ± 0.56 %, respectively. In vivo results showed, CLas survival rate of 10.42 % ± 3.51 %. Furthermore, treatment with MoS2-CS NPs resulted in an increase in chlorophyll and carotenoid content. Concomitantly, a significant reduction in malondialdehyde (MDA), soluble sugar, hydrogen peroxide (H2O2), and starch contents was also observed. Mechanistically, MoS2-CS NPs enhanced the activity of antioxidant-related enzymes by upregulating the expression of antioxidant genes, thereby galvanizing the antioxidant system to alleviate oxidative stress. Collectively, this dual functionality-combining direct antibacterial action with the activation of plant defense mechanisms-marks a promising strategy for managing Citrus Huanglongbing and suggests potential agricultural applications for MoS2-based antibacterial treatments.
Collapse
Affiliation(s)
- Guiyun Deng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Feifan Lu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuojun Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, 200031, China
| | - Yuying Long
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianghong Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaofeng Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunyin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhiyong Song
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mohamed F Foda
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Paulraj S, Raman K, Kim KS, Ulagan MP. Vermiculture-based molybdenum oxide nanoparticles synthesis, optimization, characterization and its impact on seed germination and seedling characteristics in green gram (Vigna radiata). PLANT NANO BIOLOGY 2024; 8:100074. [DOI: 10.1016/j.plana.2024.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
4
|
Lin H, Buerki-Thurnherr T, Kaur J, Wick P, Pelin M, Tubaro A, Carniel FC, Tretiach M, Flahaut E, Iglesias D, Vázquez E, Cellot G, Ballerini L, Castagnola V, Benfenati F, Armirotti A, Sallustrau A, Taran F, Keck M, Bussy C, Vranic S, Kostarelos K, Connolly M, Navas JM, Mouchet F, Gauthier L, Baker J, Suarez-Merino B, Kanerva T, Prato M, Fadeel B, Bianco A. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS NANO 2024; 18:6038-6094. [PMID: 38350010 PMCID: PMC10906101 DOI: 10.1021/acsnano.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Tina Buerki-Thurnherr
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Jasreen Kaur
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Peter Wick
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Mauro Tretiach
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
Université de Toulouse, CNRS, INPT,
UPS, 31062 Toulouse CEDEX 9, France
| | - Daniel Iglesias
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Giada Cellot
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Valentina Castagnola
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabio Benfenati
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, 16163 Genoa, Italy
| | - Antoine Sallustrau
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Sandra Vranic
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - Florence Mouchet
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Laury Gauthier
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - James Baker
- TEMAS Solutions GmbH, 5212 Hausen, Switzerland
| | | | - Tomi Kanerva
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bengt Fadeel
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Alberto Bianco
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
5
|
Santos J, Barreto A, Fernandes C, Silva ARR, Cardoso DN, Pinto E, Daniel-da-Silva AL, Maria VL. A Comprehensive Ecotoxicity Study of Molybdenum Disulfide Nanosheets versus Bulk form in Soil Organisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3163. [PMID: 38133059 PMCID: PMC10745638 DOI: 10.3390/nano13243163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The increasing use of molybdenum disulfide (MoS2) nanoparticles (NPs) raises concerns regarding their accumulation in soil ecosystems, with limited studies on their impact on soil organisms. Study aim: To unravel the effects of MoS2 nanosheets (two-dimensional (2D) MoS2 NPs) and bulk MoS2 (156, 313, 625, 1250, 2500 mg/kg) on Enchytraeus crypticus and Folsomia candida. The organisms' survival and avoidance behavior remained unaffected by both forms, while reproduction and DNA integrity were impacted. For E. crypticus, the individual endpoint reproduction was more sensitive, increasing at lower concentrations of bulk MoS2 and decreasing at higher ones and at 625 mg/kg of 2D MoS2 NPs. For F. candida, the molecular endpoint DNA integrity was more impacted: 2500 mg/kg of bulk MoS2 induced DNA damage after 2 days, with all concentrations inducing damage by day 7. 2D MoS2 NPs induced DNA damage at 156 and 2500 mg/kg after 2 days, and at 1250 and 2500 mg/kg after 7 days. Despite affecting the same endpoints, bulk MoS2 induced more effects than 2D MoS2 NPs. Indeed, 2D MoS2 NPs only inhibited E. crypticus reproduction at 625 mg/kg and induced fewer (F. candida) or no effects (E. crypticus) on DNA integrity. This study highlights the different responses of terrestrial organisms to 2D MoS2 NPs versus bulk MoS2, reinforcing the importance of risk assessment when considering both forms.
Collapse
Affiliation(s)
- Joana Santos
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Angela Barreto
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cristiana Fernandes
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Rita R. Silva
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo N. Cardoso
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Edgar Pinto
- Department of Environmental Health, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Ana L. Daniel-da-Silva
- Department of Chemistry & Aveiro Institute of Materials (CICECO), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L. Maria
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
He Y, Qian J, Li Y, Wang P, Lu B, Liu Y, Zhang Y, Liu F. Responses of Phragmites communis and its rhizosphere bacteria to different exposure sequences of molybdenum disulfide and levofloxacin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122273. [PMID: 37506800 DOI: 10.1016/j.envpol.2023.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The effect of the molybdenum disulfide (MoS2)/levofloxacin (LVF) co-exposure was explored on Phragmites communis and rhizosphere soil bacterial communities. The sequence of MoS2/LVF exposure and the different MoS2 dosages (10 mg/kg and 100 mg/kg) contributed to different degrees of effect on the plant after 42 days of exposure. The treatment with priority addition of low dosage MoS2 significantly ameliorated P. communis growth, with root length growing up to 532.22 ± 46.29 cm compared to the sole LVF stress (200.04 ± 29.13 cm). Besides, MoS2 served as an alleviator and reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in P. communis under LVF stress, and activated bacteria in rhizosphere soil. These rhizosphere soil microbes assisted in mitigating toxic pollution in the soil and inducing plant resistance to external stress, such as bacteria genera Bacillus, Microbacterium, Flavihumibacter and altererythrobacter. Potential functional profiling of bacterial community indicated the addition of MoS2 contributed to relieve the reduction in functional genes associated with amino acid metabolism and the debilitation of gram_negative and aerobic phenotypic traits caused by LVF stress. This finding reveals the effect of different exposure sequences of MoS2 nanoparticles and antibiotic for plant-soil systems.
Collapse
Affiliation(s)
- Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Yuanyuan Li
- China Machinery International Engineer Design&Research Institute Co.Ltd.(CMIE) East China Regional Center, 2 Zidong Road, Nanjing, 210046, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yuhang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Feng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
7
|
Guirguis A, Yang W, Conlan XA, Kong L, Cahill DM, Wang Y. Boosting Plant Photosynthesis with Carbon Dots: A Critical Review of Performance and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300671. [PMID: 37381636 DOI: 10.1002/smll.202300671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Artificially augmented photosynthesis in nano-bionic plants requires tunable nano-antenna structures with physiochemical and optoelectronic properties, as well as unique light conversion capabilities. The use of nanomaterials to promote light capture across photosystems, primarily by carbon dots, has shown promising results in enhancing photosynthesis through tunable uptake, translocation, and biocompatibility. Carbon dots possess the ability to perform both down and up-light conversions, making them effective light promoters for harnessing solar energy beyond visible light wavelengths.This review presents and discusses the recent progress in fabrication, chemistry, and morphology, as well as other properties such as photoluminescence and energy conversion efficiency of nano-antennas based on carbon dots. The performance of artificially boosted photosynthesis is discussed and then correlated with the conversion properties of carbon dots and how they are applied to plant models. The challenges related to the nanomaterial delivery and the performance evaluation practices in modified photosystems, consideration of the reliability of this approach, and the potential avenues for performance improvements through other types of nano-antennas based on alternative nanomaterials are also critically evaluated. It is anticipated that this review will stimulate more high-quality research in plant nano-bionics and provide avenues to enhance photosynthesis for future agricultural applications.
Collapse
Affiliation(s)
- Albert Guirguis
- School of Life & Environment Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Wenrong Yang
- School of Life & Environment Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Xavier A Conlan
- School of Life & Environment Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - David M Cahill
- School of Life & Environment Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Yichao Wang
- School of Life & Environment Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
8
|
Jamali ZH, Ali S, Qasim M, Song C, Anwar M, Du J, Wang Y. Assessment of molybdenum application on soybean physiological characteristics in maize-soybean intercropping. FRONTIERS IN PLANT SCIENCE 2023; 14:1240146. [PMID: 37841600 PMCID: PMC10570528 DOI: 10.3389/fpls.2023.1240146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023]
Abstract
Soybean is a leguminous crop known for its efficient nitrogen utilization and ease of cultivation. However, its intercropping with maize may lead to severe reduction in its growth and yield due to shading effect of maize. This issue can be resolved by the appropriate application of essential plant nutrient such as molybdenum (Mo). Aim of this study was to assess the effect of Mo application on the morphological and physiological characteristics of soybean intercropped with maize. A two-year field experiment was conducted for this purpose, and Mo was applied in the form of sodium molybdate (Na2MoO4), and four different levels were maintained i.e., 0, 60, 120 and 180 g ha-1. Soybean exhibited varying responses to different levels of molybdenum (Mo) application. Notably, in both sole and intercropped cropping systems, the application of Mo at a rate of 120 g ha-1 demonstrated the highest level of promise compared to other application levels. However, most significant outcomes were pragmatic in soybean-maize intercropping, as application of Mo @ 120 g ha-1 significantly improved soybean growth and yield attributes, including leaf area index (LAI; 434 and 441%), total plant biomass (430 and 461%), transpiration rate (15 and 18%), stomatal conductance (9 and 11%), and yield (15 and 20%) during year 2020 and 2021 respectively, as compared to control treatment. Similarly, Mo @ 120 g ha-1 application resulted in highest total grain yield (626.0 and 725.3 kg ha-1) during 2020 and 2021 respectively, which exceeded the grain yields of other Mo levels under intercropping. Moreover, under Mo application level (120 g ha-1), grain NPK and Mo contents during years 2020 and 2021 were found to be 1.15, 0.22, 0.83 and 68.94 mg kg-1, and 1.27, 0.25, 0.90 and 72.18 mg kg-1 under intercropping system increased the value as compared to control treatment. Findings of current study highlighted the significance of Mo in enhancing soybean growth, yield, and nutrient uptake efficiency in maize-soybean intercropping systems.
Collapse
Affiliation(s)
| | - Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia Ceske Budejovice, Ceske Budejovice, Czechia
| | - Muhammad Qasim
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chun Song
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Anwar
- School of Tropical Agriculture and forestry, Hainan University, Haikou, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Vishakha K, Das S, Ganguli A. The Facile Synthesis of Eco-Friendly Zinc Magnesium Bimetal Nanoparticles and its Application in the Eradication of Xanthomonas oryzae pv. oryzae that Causes Leaf Blight Disease of Rice. Curr Microbiol 2023; 80:340. [PMID: 37712946 DOI: 10.1007/s00284-023-03455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
In this research work, we formulated and successfully assessed the antibacterial capability of zinc magnesium bimetal nanoparticles (ZnMgNPs) against Xanthomonas oryzae pv. oryzae (Xoo), the pathogenic microorganism responsible for causing the destructive leaf blight disease in rice. Successful preparation of ZnMgNPs were determined by UV-vis spectroscopy, EDX (Energy dispersive X-ray), FTIR (Fourier transform infrared) and SEM (Scanning Electron Microscopy). ZnMgNPs had antibacterial efficacy towards Xoo at MIC (minimum inhibitory concentration) 50 µg/ml. ZnMgNPs impeded the formation of biofilm of Xoo by drastically reducing the amount of EPS (extracellular polymeric substances) production and number of sessile cells. The ZnMgNPs also reduced several pathogenic traits of Xoo like motility, xanthomonadin and exoenzymes production. ZnMgNPs target cell membrane of Xoo and also induced oxidative damage as mechanisms of its antibacterial activity. As revealed by an ex-vivo study, ZnMgNPs diminished BLB (bacterial leaf blight) disease symptoms in rice leaves, ZnMgNPs had no effect on rice seed germination, and that following foliar application, the length and biomass of roots and shoots of rice seedling were unaffected, low cytotoxic to A549 cell line showing that ZnMgNPs are non-toxic. However, with ZnMgNPs treatment, the chlorophyll content index (CCI) increased significantly, indicating a good impact on rice physiology. All of these findings suggest that ZnMgNPs could be applied in agriculture to combat the Xoo-caused BLB disease.
Collapse
Affiliation(s)
- Kumari Vishakha
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Shatabdi Das
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
10
|
Chen J, Yin Y, Zhu Y, Song K, Ding W. Favorable physiological and morphological effects of molybdenum nanoparticles on tobacco ( Nicotiana tabacum L.): root irrigation is superior to foliar spraying. FRONTIERS IN PLANT SCIENCE 2023; 14:1220109. [PMID: 37719206 PMCID: PMC10501311 DOI: 10.3389/fpls.2023.1220109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
Introduction Nano fertilizers can provide efficient solutions to the increasing problem of nutrient deficiency caused by low availability. However, the most important prerequisite is to fully understand whether nanomaterials induce phytotoxicity in plants under a variety of different conditions. The mechanisms underlying interactions between molybdenum nanoparticles (Mo NPs) and plants with respect to their uptake and biological effects on crops are still not fully understood. Methods In this study, the impacts of Mo NPs over a range of concentrations (0, 25, and 100 μg/mL) on tobacco (Nicotiana tabacum L.) seedling growth were comparatively evaluated under foliar applications and root irrigation. Results The results indicated that more significant active biological effects were observed with root irrigation application of Mo NPs than with foliar spraying. The agronomic attributes, water content and sugar content of Mo NPs-exposed seedlings were positively affected, and morphologically, Mo NPs induced root cell lignification and more vascular bundles and vessels in tobacco tissues, especially when applied by means of root irrigation. Moreover, the photosynthetic rate was improved by 131.4% for root exposure to 100 μg/mL Mo NPs, mainly due to the increased chlorophyll content and stomatal conductance. A significant concentration-dependent increase in malonaldehyde (MDA) and defensive enzyme activity for the Mo NPs-treated tobacco seedlings were detected compared to the controls. Significantly improved absorption of Mo by exposed tobacco seedlings was confirmed with inductively coupled plasma mass spectrometry (ICP-MS) in tobacco tissues, regardless of application method. However, the accumulation of Mo in roots increased by 13.94 times, when roots were exposed to 100 mg/L Mo NPs, higher than that under treatment with foliar spray. Additionally, Mo NPs activated the expression of several genes related to photosynthesis and aquaporin processes. Discussion The present investigations offer a better understanding of Mo NPs-plant interactions in terrestrial ecosystems and provide a new strategy for the application of Mo NPs as nano fertilizers in crop production.
Collapse
Affiliation(s)
| | | | | | | | - Wei Ding
- Laboratory of Natural Product Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Li M, Zhang P, Guo Z, Cao W, Gao L, Li Y, Tian CF, Chen Q, Shen Y, Ren F, Rui Y, White JC, Lynch I. Molybdenum Nanofertilizer Boosts Biological Nitrogen Fixation and Yield of Soybean through Delaying Nodule Senescence and Nutrition Enhancement. ACS NANO 2023; 17:14761-14774. [PMID: 37498282 PMCID: PMC10416561 DOI: 10.1021/acsnano.3c02783] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Soybean (Glycine max) is a crop of global significance and has low reliance on N fertilizers due to its biological nitrogen fixation (BNF) capacity, which harvests ambient N2 as a critical ecosystem service. BNF can be severely compromised by abiotic stresses. Enhancing BNF is increasingly important not only to alleviate global food insecurity but also to reduce the environmental impact of agriculture by decreasing chemical fertilizer inputs. However, this has proven challenging using current genetic modification or bacterial nodulation methods. Here, we demonstrate that a single application of a low dose (10 mg/kg) of molybdenum disulfide nanoparticles (MoS2 NPs) can enhance soybean BNF and grain yield by 30%, compared with conventional molybdate fertilizer. Unlike molybdate, MoS2 NPs can more sustainably release Mo, which then is effectively incorporated as a cofactor for the synthesis of nitrogenase and molybdenum-based enzymes that subsequently enhance BNF. Sulfur is also released sustainably and incorporated into biomolecule synthesis, particularly in thiol-containing antioxidants. The superior antioxidant enzyme activity of MoS2 NPs, together with the thiol compounds, protect the nodules from reactive oxygen species (ROS) damage, delay nodule aging, and maintain the BNF function for a longer term. The multifunctional nature of MoS2 NPs makes them a highly effective strategy to enhance plant tolerance to abiotic stresses. Given that the physicochemical properties of nanomaterials can be readily modulated, material performance (e.g., ROS capturing capacity) can be further enhanced by several synthesis strategies. This study thus demonstrates that nanotechnology can be an efficient and sustainable approach to enhancing BNF and crop yield under abiotic stress and combating global food insecurity.
Collapse
Affiliation(s)
- Mingshu Li
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Department
of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Peng Zhang
- Department
of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zhiling Guo
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Weidong Cao
- Institute
of Agricultural Resources and Regional Planning, Chinese Academy of
Agricultural Sciences, Beijing 100081, China
| | - Li Gao
- State
Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100193, China
| | - Yuanbo Li
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chang Fu Tian
- State
Key
Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Chen
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yunze Shen
- National
Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Fazheng Ren
- Key
Laboratory of Precision Nutrition and Food Quality, China Agricultural University, Beijing 100083, China
| | - Yukui Rui
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jason C. White
- The
Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Iseult Lynch
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
12
|
Gong B, He E, Xia B, Ying R, Hu P, Chen J, Peijnenburg WJGM, Liu Y, Xu X, Qiu H. Interactions of molybdenum disulfide nanosheets with wheat plants under changing environments: More than meets the eye? CHEMOSPHERE 2023; 331:138736. [PMID: 37088215 DOI: 10.1016/j.chemosphere.2023.138736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Molybdenum disulfide (MoS2) nanosheets are being increasingly employed in various applications. It is therefore imperative to assess their potential environmental implications in a changing world, particularly in the context of global warming. Here, we assessed the effects of MoS2 nanosheets on wheat Triticum aestivum L. under today's typical climatic conditions (22 °C) and future climatic conditions (30 °C), respectively. The results showed that MoS2 nanosheets (10 and 100 Mo mg/L) did not significantly affect wheat plant growth, root morphological traits, and chlorophyll fluorescence, regardless of dose and temperature. However, the metabolic processes were significantly altered in T. aestivum upon exposure to individual MoS2 nanosheets and to a combination of MoS2 nanosheets and future global warming. As a non-specific protective strategy, the wheat plants that were under stress conditions maintained the stability of cell membranes and thus relieved cell injury by accumulating more glycerophospholipids. Warming additionally influenced the nitrogen and carbon pool reallocation in wheat root. MoS2 nanosheets mainly depleted a range of antioxidant metabolites involved in phenylpropanoid biosynthesis and taurine and hypotaurine metabolism, while warming activated vitamin B6 cofactors related to vitamin B6 metabolism. Metabolites involved in glutathione metabolism were uniquely upregulated while most metabolites associated with nucleotide metabolisms were uniquely downregulated in combination-treated wheat. Overall, wheat plants regulated a wide range of growth-related processes, including carbohydrate, amino acids, lipid, vitamins, and nucleotide metabolism, to maintain optimal metabolite pool sizes and eventually global metabolic homeostasis upon different stress conditions. Our findings provide novel insights into MoS2 nanosheets-mediated crop responses under global warming.
Collapse
Affiliation(s)
- Bing Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Xia
- Anhui Academy of Eco-Environmental Science Research, Hefei, 230061, China
| | - Rongrong Ying
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Pengjie Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiugeng Chen
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, 2333CC, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven, 3720BA, the Netherlands
| | - Yang Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xueqing Xu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
13
|
Qian C, Wu J, Wang H, Yang D, Cui J. Metabolomic profiles reveals the dose-dependent effects of rice grain yield and nutritional quality upon exposure zero-valent iron nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163089. [PMID: 37001268 DOI: 10.1016/j.scitotenv.2023.163089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Zero-valent iron nanoparticles (nZVI) were widely used material in environmental remediation, which has attracted increasing concern for their safety. Previous studies have shown that the addition of nZVI could inhibit rice seedling growth. However, the effect of nZVI on the soil-rice system during the entire life cycle was not reported. Furthermore, the effect of nZVI on the quality of rice grain has also not been studied. Therefore, we investigated the effects of rice grain yield and nutritional quality upon exposure nZVI. The results showed that the soil pH value, redox potential and Fe (II) content in the nZVI-treated group were decreased in a dose-dependent manner. Interestingly, 2500 mg/kg nZVI significantly decreased the relative abundance of several functional microbial communities (10.52-73.53 %) associated with carbon and nitrogen cycles in response to plants compared to the control. Meanwhile, the nZVI treatment clearly reduced grain yield (8.71-18.21 %). Furthermore, the content of protein (51.72-57.79 %) and several essential nutrients (Zn, Cu, Mn and Mo) in the nZVI-treated grains was also decreased in a dose-dependent manner. The results of grain metabolomics indicated that nZVI could interfere with the relative expression of lysine and glutathione by regulating the metabolic pathways of antioxidant and protein synthesis in rice.
Collapse
Affiliation(s)
- Cancan Qian
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jian Wu
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haodong Wang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Desong Yang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
14
|
Zou W, Zhao C, Chen J, Wang Y, Jin C, Zhang X. Systematic stress persistence and recovery patterns of rice (Oryza sativa L.) roots in response to molybdenum disulfide nanosheets. CHEMOSPHERE 2023; 321:138166. [PMID: 36804254 DOI: 10.1016/j.chemosphere.2023.138166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The increasing application of engineered nanomaterials (ENMs) unavoidably leads to environmental release and biological exposure. Understanding the potential hazards of ENMs on crops is essential for appropriate utilization and management. Herein, rice seedlings were hydroponically exposed to molybdenum sulfide (MoS2, a typical ENM) nanosheets at 5-20 mg/L for 7 days and then depurated for another 7 days in a fresh culture medium. Exposure to MoS2 triggered irreversible reductions in root length (by 26.3%-69.9%) and tip number (by 22.2%-66.0%). Integration of biochemical assays, transcriptomic and metabolomics found that oxidative stress induced by MoS2 in roots was persistent, whereas the activation of aquaporins, ionic transportation, and energy synthesis was normalized due to the recovery of nutrient uptake. The down-regulated levels of genes and metabolites associated with peroxidases, hemicellulose synthesis, expansins, and auxins caused persistent structural damages (sclerosis and rupture) of root cell walls. Approximately 64.5%-84.8% of internalized MoS2 nanosheets were degraded, and the successive up-regulation of genes encoding cytochrome P450s and glutathione S-transferases reflected the biotransformation and detoxification of MoS2 in the depuration period. These findings provide novel insights into the persistence and recovery of MoS2 phytotoxicity, which will help advance the risk assessment of MoS2 application on environment.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| | - Chenxu Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Jiayi Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Yihan Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
15
|
Yu F, Gu T, Wei J, Tang C, Li S, Chen Y, Su Y, Liu K, Ma J, Liang X, Li Y. CaFe-layered double hydroxide corn straw biochar reduced heavy metal uptake by Brassica campestris L. and Ipomoea aquatic F.: Rhizosphere effects and oxidative stress alleviation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117227. [PMID: 36623389 DOI: 10.1016/j.jenvman.2023.117227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In the present study, CaFe-layered double hydroxide corn straw biochar (CaFe-LDH@CSB) was applied to the rhizosphere soil of both pakchoi (Brassica campestris L. ssp. Chinensis Makino, B. campestris L.) and water spinach (Ipomoea aquatic F., I. aquatic F.) to explore and clarify the potential mechanism by which CaFe-LDH@CSB helps vegetables reduce heavy metal (HM) uptake and alleviate oxidative stress. Pot experiments were conducted with CaFe-LDH@CSB applied at four levels: control (CK), T1 (5 g kg-1), T2 (10 g kg-1) and T3 (20 g kg-1). The results indicated that the application of CaFe-LDH@CSB significantly increased pH and decreased the acid-soluble forms of Cd, Pb, Zn and Cu in the rhizosphere soil of both B. campestris L. and I. aquatic F.; decreases of 39.4%, 18.0%, 10.0% and 33.3% in B. campestris L. and of 26.6%, 49.1%, 13.2% and 36.8% in I. aquatic F., respectively, were observed at the T3 level. Moreover, CaFe-LDH@CSB application reduced HM uptake by B. campestris L. and decreased HM-induced oxidative stress through the regulation of soil physicochemical properties and microbial abundance. For B. campestris L., variations in Sordariomycetes helped alleviate the accumulation of HMs in the aerial part, while GSH and -SH from the nonenzymatic system played an important role in scavenging H2O2 in leaves, thus helping B. campestris L. alleviate HM-induced oxidative stress. For I. aquatica F., variations in Vicinamibacteria and Mortierellomycetes helped alleviate the accumulation of HMs in plants, while GSH and PCs from nonenzymatic systems played an important role in removing ·O2- in leaves, thereby helping I. aquatica F. alleviate HM-induced oxidation stress. Our study indicated that the application of CaFe-LDH@CSB improved the rhizosphere soil environment and rebuilt the soil microbial community, helping B. campestris L. and I. aquatica F. alleviate HM-induced oxidative stress and promoting the growth of both vegetables.
Collapse
Affiliation(s)
- Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Tiantian Gu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Jiayu Wei
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Chijian Tang
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Songying Li
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yuyuan Chen
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yanlan Su
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Life Science, Guangxi Normal University, 541004, Guilin, China
| | - Jiangming Ma
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Life Science, Guangxi Normal University, 541004, Guilin, China
| | - Xin Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
16
|
Yu F, Liang X, Li Y, Su Y, Tang S, Wei J, Liu K, Ma J, Li Y. A modified diatomite additive alleviates cadmium-induced oxidative stress in Bidens pilosa L. by altering soil microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41766-41781. [PMID: 36637652 DOI: 10.1007/s11356-023-25216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
In the present study, a modified silicon adsorbent (MDSA) was used as a passivator, and we explored the mechanism by which the MDSA helps B. pilosa L. alleviate Cd-induced oxidative stress and its effect on the rhizosphere microbial community. Therefore, a field study was conducted, and MDSA was applied at four levels (control (0 mg m-2), A1 (100 mg m-2), A2 (200 mg m-2), and A3 (400 mg m-2)). The application of MDSA significantly increased the soil pH and decreased the acid-soluble Cd content, which decreased by 30.3% with A3 addition. The addition of MDSA increased the relative abundance of Sordariomycetes due to the increased invertase activity and total nitrogen (TN) and total phosphorus (TP) contents, and the increased soil pH led to increased relative abundances of Alphaproteobacteria and Thermoleophilia. Meanwhile, MDSA addition significantly decreased the Cd concentrations in leaves and stems, which decreased by 19.7 to 39.5% in stems and 24.6 to 43.2% in leaves. All MDSA additions significantly decreased the translocation factor (TF) values of Cd, which decreased by 30.5% (A1), 50.9% (A2), and 52.7% (A3). Moreover, peroxidase (POD) from the antioxidant enzyme system and glutathione (GSH) from the nonenzymatic system played vital roles in scavenging reactive oxygen intermediates (ROIs) such as H2O2 and ⋅O2- in leaves, thereby helping B. pilosa L. alleviate Cd-induced oxidative stress and promote plant growth. Hence, our study indicated that MDSA application improved the rhizosphere soil environment, reconstructed the soil microbial community, helped B. pilosa L. alleviate Cd-induced oxidative stress, and promoted plant growth.
Collapse
Affiliation(s)
- Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, China.,College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Xin Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Yanying Li
- College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Yanlan Su
- College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Shuting Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Jiayu Wei
- College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, China.,College of Life Science, Guangxi Normal University, Guilin, 541004, China
| | - Jiangming Ma
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, China.,College of Life Science, Guangxi Normal University, Guilin, 541004, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China. .,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, China. .,College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China.
| |
Collapse
|
17
|
Tian X, Xie H, Li J, Cui L, Yu YL, Li B, Li YF. Nano-WSe 2 Is Absorbable and Transformable by Rice Plants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227826. [PMID: 36431926 PMCID: PMC9694913 DOI: 10.3390/molecules27227826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
As typical transition metal dichalcogenides (TMDC), tungsten selenide (WSe2) nanosheets (nano-WSe2) are widely used in various fields due to their layered structures and highly tunable electronic and magnetic properties, which results in the unwanted release of tungsten (W) and selenium (Se) into the environment. However, the environmental effects of nano-WSe2 in plants are still unclear. Herein, we evaluated the impacts and fate of nano-WSe2 and micro-WSe2 in rice plants (Oryza sativa L.). It was found that both nano-WSe2 and micro-WSe2 did not affect the germination of rice seeds up to 5000 mg/L but nano-WSe2 affected the growth of rice seedlings with shortened root lengths. The uptake and transportation of WSe2 was found to be size-dependent. Moreover, W in WSe2 was oxidized to tungstate while Se was transformed to selenocysteine, selenomethionine, SeIV and SeVI in the roots of rice when exposed to nano-WSe2, suggesting the transformation of nano-WSe2 in rice plants. The exposure to nano-WSe2 brought lipid peroxidative damage to rice seedlings. However, Se in nano-WSe2 did not contribute to the synthesis of glutathione peroxidase (GSH-Px) since the latter did not change when exposed to nano-WSe2. This is the first report on the impacts and fate of nano-WSe2 in rice plants, which has raised environmental safety concerns about the wide application of TMDCs, such as WSe2 nanosheets.
Collapse
Affiliation(s)
- Xue Tian
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Beijing Metallomics Facility, National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxin Xie
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Beijing Metallomics Facility, National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jincheng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Beijing Metallomics Facility, National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Correspondence: (Y.-L.Y.); (Y.-F.L.); Tel.: +86-24-83688944 (Y.-L.Y.); +86-10-88233908 (Y.-F.L.)
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Beijing Metallomics Facility, National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Beijing Metallomics Facility, National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.-L.Y.); (Y.-F.L.); Tel.: +86-24-83688944 (Y.-L.Y.); +86-10-88233908 (Y.-F.L.)
| |
Collapse
|
18
|
Wang C, Liu X, Chen F, Yue L, Cao X, Li J, Cheng B, Wang Z, Xing B. Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119582. [PMID: 35671896 DOI: 10.1016/j.envpol.2022.119582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Selenium engineered nanomaterials (Se ENMs)-enabled agriculture has developed rapidly, however, the roles of surface charge in the bioavailability and enrichment efficiency of Se ENMs are still unknown. Herein, various Se ENMs of homogenous size (40-60 nm) and different surface charges (3.2 ± 0.7, -29.0 ± 0.4, and 45.5 ± 1.3 mV) were prepared to explore the Se content and nutritional quality in Brassica chinensis L. The results demonstrated that soil application of various Se ENMs (0.05 mg kg-1) displayed different bio-availabilities via modulating the secretion of root exudates (e.g., tartaric, malic, and citric acids), microbial community composition (e.g., Flavobacterium, Pseudomonas, Paracoccus, Bacillus and Rhizobium) and root cell wall. Negatively charged Se ENMs (Se (-)) showed the highest Se content in the shoot of B. chinensis (3.7-folds). Se (-) also significantly increased yield (156.9%) and improved nutritional quality (e.g., ascorbic acid, amino acids, flavonoids, fatty acids, and tricarboxylic acid) of B. chinensis. Moreover, after harvest, the Se (-) did not lead to significant change in Se residue in soil, but the amount of Se residue in soil was increased by 5.5% after applying the traditional Se fertilizer (selenite). Therefore, this study provides useful information for producing Se-fortified agricultural products, while minimizing environmental risk.
Collapse
Affiliation(s)
- Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaofei Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jing Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
19
|
Singhal J, Verma S, Kumar S. The physio-chemical properties and applications of 2D nanomaterials in agricultural and environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155669. [PMID: 35523341 DOI: 10.1016/j.scitotenv.2022.155669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 05/27/2023]
Abstract
Global hunger and nutritional deficiency demand the advancement of existing and conventional approaches to food production. The application of nanoenabled strategies in agriculture has opened up new avenues for enhancing crop yield and productivity. Recently, two-dimensional (2D) nanomaterials (NMs) have manifested new possibilities for increasing food production and nutrition. Graphene nanosheets, the 2D form of graphene has been exemplary in enhancing the loading capacity of agro-active ingredients, their target-specific delivery, bioavailability, and controlled release with slow degradation, resulting in the increased shelf-life/active time of the agro-active components. Also, the development of novel formulations/composites of MXenes and Transition Metal Dichalcogenides (TMDs) can foster plant growth, metabolism, crop production, protection and improvement of soil quality. Additionally, the 2D NM-based biosensors can monitor the nutrient levels and other parameters affecting agronomical traits in plants. This review provides an insight into the details of 2D NM synthesis and functionalization methods. Notably, the review highlights the broad-range of 2D NM applications and their suitability in the development of nanotechnology-based agriformulations. The 2D NM-based derivatives have shown immense potential in enhancing the pedologic parameters, crop productivity, pest-protection and nutritional value. Thus, assisting in achieving food and environmental sustainability goals.
Collapse
Affiliation(s)
- Jaya Singhal
- Department of Health Research-Multi-Disciplinary Research Unit, King George's Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Saurabh Verma
- Department of Health Research-Multi-Disciplinary Research Unit, King George's Medical University, Lucknow, Uttar Pradesh 226003, India.
| | - Smita Kumar
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh 226003, India.
| |
Collapse
|
20
|
Photodynamic antibacterial and antibiofilm activity of riboflavin against Xanthomonas oryzae pv oryzae: an ecofriendly strategy to combat bacterial leaf blight (BLB) rice disease. Arch Microbiol 2022; 204:566. [PMID: 35982196 DOI: 10.1007/s00203-022-03183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Abstract
Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv oryzae (Xoo), is one of the most damaging rice diseases, causing severe production losses depending on the rice variety. The purpose of this study was to develop an antibacterial photodynamic treatment (aPDT) using riboflavin for the treatment of BLB disease. Combining light and riboflavin (RF) therapy significantly reduced bacterial planktonic cells compared to RF alone. Photoactivated riboflavin also decreased biofilm biomass by reducing the number of viable sessile cells and the production of extracellular polymeric substances (EPS). Reactive oxygen species (ROS) levels in Xoo cells treated with photoactivated riboflavin were found to be significantly higher than in cells treated with riboflavin and light individually. Malondialdehyde (MDA) increased greatly in photoactivated riboflavin treated cells, indicating that severe oxidative damage was induced. Subsequently, a reduction in lactate dehydrogenase (LDH) activity in photoactivated riboflavin treated Xoo cells indicates that oxidative stress has disrupted the respiratory system, leading to bacterial cell death. In an ex vivo aPDT assay, photoactivated riboflavin successfully eradicated Xoo on the surface of rice leaves. Photoactivated riboflavin had no side effects on rice seed germination in subsequent trials, indicating that it is safe for agricultural applications. Therefore, all these findings suggest that aPDT is a potential alternative management strategy for BLB disease.
Collapse
|
21
|
Oliveira SL, Crusciol CAC, Rodrigues VA, Galeriani TM, Portugal JR, Bossolani JW, Moretti LG, Calonego JC, Cantarella H. Molybdenum Foliar Fertilization Improves Photosynthetic Metabolism and Grain Yields of Field-Grown Soybean and Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:887682. [PMID: 35720532 PMCID: PMC9199428 DOI: 10.3389/fpls.2022.887682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 06/02/2023]
Abstract
Foliar fertilization has been used as a supplemental strategy to plant nutrition especially in crops with high yield potential. Applying nutrients in small doses stimulates photosynthesis and increases yield performance. The aim of this study was to evaluate the efficiency of foliar application of molybdenum (Mo) to soybean and maize. The treatments consisted of the presence (+Mo) and absence (-Mo) of supplementation. Plant nutritional status, nitrate reductase (NR) activity, gas exchange parameters, photosynthetic enzyme activity (Rubisco in soybean and maize and PEPcase in maize), total soluble sugar concentration, leaf protein content, shoot dry matter, shoot nitrogen accumulated, number of grains per plant, mass of 100 grains, and grain yield were evaluated. For soybean and maize, application of Mo increased leaf NR activity, nitrogen and protein content, Rubisco activity, net photosynthesis, and grain yield. These results indicate that foliar fertilization with Mo can efficiently enhance nitrogen metabolism and the plant’s response to carbon fixation, resulting in improved crop yields.
Collapse
Affiliation(s)
- Sirlene Lopes Oliveira
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | | | - Vitor Alves Rodrigues
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Tatiani Mayara Galeriani
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - José Roberto Portugal
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - João William Bossolani
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Luiz Gustavo Moretti
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Juliano Carlos Calonego
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Heitor Cantarella
- Soils and Environmental Resources Center, Agronomic Institute of Campinas (IAC), Campinas, Brazil
| |
Collapse
|
22
|
Zhang H, Wang R, Chen Z, Pu J, Wang J, Zhang H, Yang Y. Nanoscale molybdenum oxide improves plant growth and increases nitrate utilisation in rice (
Oryza sativa
L.). Food Energy Secur 2022. [DOI: 10.1002/fes3.383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Haipeng Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| | - Rui Wang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| | - Zhiqing Chen
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| | - Jialing Pu
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| | - Juanjuan Wang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| | - Yanju Yang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| |
Collapse
|
23
|
Mo Doped WO3 Nanoparticles as Nanopriming Agent for Promoting the Seed Germination and their Effects on Bacterial Growth. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Bai Y, Zhou Y, Gong J. Physiological mechanisms of the tolerance response to manganese stress exhibited by Pinus massoniana, a candidate plant for the phytoremediation of Mn-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45422-45433. [PMID: 33866507 DOI: 10.1007/s11356-021-13912-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Manganese (Mn) pollution in soil, especially around mining areas, is a serious environmental problem worldwide. Generally, plant remediation technology needs to select species with high Mn tolerance, and exploring the Mn tolerance mechanism of tree species with high ecological and economic benefits is of considerable significance for the effective identification and efficient utilization of Mn phytoremediation species. Masson pine (Pinus massoniana) is one of the main afforestation tree species, exhibiting high ecological and economic value in subtropical areas and also a plant with high Mn accumulation. To reveal the mechanisms governing the tolerance of this species for Mn stress, the morphological, physiological, and biochemical responses of seedlings grown in sand cultures under different Mn stress (0.0009~30 mmol·L-1) were analyzed. The results showed that despite the chlorosis of leaves under high Mn stress (30 mmol·L-1), the height of plant seedling, the diameter of ground and the root morphology was not significantly inhibited (p < 0.05), and a high level of Mn accumulated (translocation factor = 1.10). With increasing Mn concentration, malondialdehyde (MDA), soluble protein, and soluble sugar increased, and superoxide dismutase (SOD) and catalase (CAT) increased at first and later decreased. Under Mn stress, net photosynthetic rate, transpiration rate, stomatal conductance, total chlorophyll, chlorophyll a, and carotenoids increased first and subsequently decreased, and intercellular CO2 concentration and chlorophyll b decreased, but chlorophyll fluorescence characteristics did not change significantly. Taken together, these results indicate that Masson pine can tolerate Mn stress by increasing its antioxidant enzyme activity and non-enzyme metabolite content. In addition, Masson pine can maintain photosynthesis by changing its gas exchange parameters, photosynthetic pigment content, and chlorophyll fluorescence, which is another important mechanism for coping with high Mn concentrations in the environment. In conclusion, the above results show that Masson pine can be effectively used for phytoremediation of Mn-contaminated soil.
Collapse
Affiliation(s)
- Yunxing Bai
- Institute for Forest Resources and Environment Research Center of Guizhou Province/Plateau Mountain Forest Cultivation Key Laboratory of Guizhou Province/College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Yunchao Zhou
- Institute for Forest Resources and Environment Research Center of Guizhou Province/Plateau Mountain Forest Cultivation Key Laboratory of Guizhou Province/College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Jiefang Gong
- Institute for Forest Resources and Environment Research Center of Guizhou Province/Plateau Mountain Forest Cultivation Key Laboratory of Guizhou Province/College of Forestry, Guizhou University, Guiyang, 550025, China
- Management Committee of Guizhou Guiyang National Agricultural Science and Technology Zone, Guiyang, 550025, China
| |
Collapse
|
25
|
Bae M, Oh JK, Liu S, Nagabandi N, Yegin Y, DeFlorio W, Cisneros-Zevallos L, Scholar EMA. Nanotoxicity of 2D Molybdenum Disulfide, MoS 2, Nanosheets on Beneficial Soil Bacteria, Bacillus cereus and Pseudomonas aeruginosa. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1453. [PMID: 34072663 PMCID: PMC8229097 DOI: 10.3390/nano11061453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Concerns arising from accidental and occasional releases of novel industrial nanomaterials to the environment and waterbodies are rapidly increasing as the production and utilization levels of nanomaterials increase every day. In particular, two-dimensional nanosheets are one of the most significant emerging classes of nanomaterials used or considered for use in numerous applications and devices. This study deals with the interactions between 2D molybdenum disulfide (MoS2) nanosheets and beneficial soil bacteria. It was found that the log-reduction in the survival of Gram-positive Bacillus cereus was 2.8 (99.83%) and 4.9 (99.9988%) upon exposure to 16.0 mg/mL bulk MoS2 (macroscale) and 2D MoS2 nanosheets (nanoscale), respectively. For the case of Gram-negative Pseudomonas aeruginosa, the log-reduction values in bacterial survival were 1.9 (98.60%) and 5.4 (99.9996%) for the same concentration of bulk MoS2 and MoS2 nanosheets, respectively. Based on these findings, it is important to consider the potential toxicity of MoS2 nanosheets on beneficial soil bacteria responsible for nitrate reduction and nitrogen fixation, soil formation, decomposition of dead and decayed natural materials, and transformation of toxic compounds into nontoxic compounds to adequately assess the environmental impact of 2D nanosheets and nanomaterials.
Collapse
Affiliation(s)
- Michael Bae
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Korea;
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Nirup Nagabandi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Yagmur Yegin
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - William DeFlorio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Luis Cisneros-Zevallos
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA;
- Department of Horticultural Science, Texas A&M University, College Station, TX 77843, USA
| | - Ethan M. A. Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
26
|
Jiang H, Li Y, Jin Q, Yang D, Wu C, Cui J. Physiological and biochemical effects of Ti 3AlC 2 nanosheets on rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145340. [PMID: 33736383 DOI: 10.1016/j.scitotenv.2021.145340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
MAX phase materials are a new type of nanomaterial with wide applications, but the potential effects of MAX phase materials on plants have not been reported. Herein, we selected Ti3AlC2 nanosheets as a typical MAX phase material to investigate its potential impacts on rice (Oryza sativa L.) at 0-1000 μg·mL-1. The foliar application of Ti3AlC2 at 100 and 1000 μg·mL-1 inhibited the growth of rice seedlings by producing excess reactive oxygen species (ROS). Furthermore, foliar spraying of Ti3AlC2 at 100 μg·mL-1 decreased the stomatal aperture (78.6%) and increased the number of trichomes (100%). These responses demonstrated that the application of Ti3AlC2 could interfere with the immune system of plants by changing the structure and function of leaves, disturbing the activities of antioxidant enzymes. According to the above results, we concluded that the toxicity of Ti3AlC2 nanosheets on plants was mainly caused by the release of titanium ions. This study provides a valuable reference for understanding the impact of MAX phase materials on plants.
Collapse
Affiliation(s)
- Hao Jiang
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Yadong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Qian Jin
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Desong Yang
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cailan Wu
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Jianghu Cui
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| |
Collapse
|
27
|
Li Y, Pan X, Xu X, Wu Y, Zhuang J, Zhang X, Zhang H, Lei B, Hu C, Liu Y. Carbon dots as light converter for plant photosynthesis: Augmenting light coverage and quantum yield effect. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124534. [PMID: 33221073 DOI: 10.1016/j.jhazmat.2020.124534] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 05/21/2023]
Abstract
Carbon dots (CDs) with gradient-changed quantum yield (QY) were prepared by regulating the graphitic N and hydroxyl group contents. Then, the QY effect of CDs on plant photosynthesis was studied using chloroplasts and rice plants. After incubation for 2 h in the dark, CDs entered into the chloroplasts and converted ultraviolet radiation to photosynthetically active radiation. By this mechanism, CD1:0.2 (300 μg·mL-1) with a moderate QY of 46.42% significantly increased the photosynthetic activity of chloroplast (200 μg·mL-1) to reduce DCPIP and ferricyanide by 43.77% and 25.45%, respectively. After spraying on rice seedlings, CD1:0.2 (300 μg·mL-1) was evenly distributed in the leaves and resulted in maximum increases in the electron transport rate and photosynthetic efficiency of photosystem II by 29.81% and 29.88%, respectively. Furthermore, CD1:0.2 significantly increased the chlorophyll content and RuBisCO carboxylase activity of rice by 64.53% and 23.39%, respectively. Consequently, significant increases were observed in the growth of CD1:0.2-treated rice, including 18.99%, 64.31%, and 61.79% increases in shoot length, dry weights of shoot and root. These findings contribute to the exploitation of solar energy and agricultural production using CDs in the future.
Collapse
Affiliation(s)
- Yadong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Xiaoqin Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Xiaokai Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Ying Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China.
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China.
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642 China.
| |
Collapse
|
28
|
Dey S, Paul S, Nag A, Banerjee R, Gopal G, Mukherjee A, Kundu R. Iron-pulsing, a novel seed invigoration technique to enhance crop yield in rice: A journey from lab to field aiming towards sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144671. [PMID: 33482554 DOI: 10.1016/j.scitotenv.2020.144671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Bulk fertilizer application is one of the easiest means of improving yield of crops however it comes with several environmental impediments and consumer health menace. In the wake of this situation, sustainable agricultural practices stand as pertinent agronomic tool to increase yield and ensure sufficient food supply from farm to fork. In the present study, efficacy of iron-pulsing in improving the rice yield has been elucidated. This technique involves seed treatment with different concentrations (2.5, 5 and 10 mM) of iron salts (FeCl3 and FeSO4) during germination. FeCl3 or FeSO4 was used to treat the sets and depending on the concentration of the salts, the sets were named as C2.5, C5, C10 and S2.5, S5, S10 (where C and S stands for FeCl3 and FeSO4 respectively and the numbers succeeding them denotes the concentration of salt in mM). Our investigation identified 72 h of treatment as ideal duration for iron-pulsing. At this time point, the seedling emergence attributes and activities of α-amylase and protease increased. The relative water uptake of the seeds also increased through upregulation of aquaporin expression. The treatment efficiently maintained the ROS balance with the aid of antioxidant enzymes and increased the iron content within the treated seeds. After transplantation in field, photosynthetic rate and chlorophyll content enhanced in the treated plants. Finally, the post-harvest agro-morphological traits (represented through panicle morphology, 1000 seed weight, harvest index) and yield showed significant improvement with treatment. Sets C5 and S5 showed optimum efficiency in terms of yield improvement. To our best knowledge, this study is the first report deciphering the efficacy of iron-pulsing as a safe, cost effective and promising technique to escalate the yield of rice crops without incurring an environmental cost. Thus, iron-pulsing is expected to serve as a potential tool to address global food security in years to come.
Collapse
Affiliation(s)
- Swarnali Dey
- Centre of Advance Study, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Subhabrata Paul
- School of Biotechnology, Presidency University (2nd Campus), Kolkata 700156, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Ritesh Banerjee
- Centre of Advance Study, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Geetha Gopal
- Centre for Nano Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Amitava Mukherjee
- Centre for Nano Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Rita Kundu
- Centre of Advance Study, Department of Botany, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
29
|
Tavanti TR, Melo AARD, Moreira LDK, Sanchez DEJ, Silva RDS, Silva RMD, Reis ARD. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:386-396. [PMID: 33556754 DOI: 10.1016/j.plaphy.2021.01.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/26/2021] [Indexed: 05/06/2023]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide at low concentrations act as signaling of several abiotic stresses. Overproduction of hydrogen peroxide causes the oxidation of plant cell lipid phosphate layer promoting senescence and cell death. To mitigate the effect of ROS, plants develop antioxidant defense mechanisms (superoxide dismutase, catalase, guaiacol peroxidase), ascorbate-glutathione cycle enzymes (ASA-GSH) (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase), which have the function of removing and transforming ROS into non-toxic substances to maintain cellular homeostasis. Foliar or soil application of fertilizers containing B, Cu, Fe, Mn, Mo, Ni, Se and Zn at low concentrations has the ability to elicit and activate antioxidative enzymes, non-oxidizing metabolism, as well as sugar metabolism to mitigate damage by oxidative stress. Plants treated with micronutrients show higher tolerance to abiotic stress and better nutritional status. In this review, we summarized results indicating micronutrient actions in order to reduce ROS resulting the increase of photosynthetic capacity of plants for greater crop yield. This meta-analysis provides information on the mechanism of action of micronutrients in combating ROS, which can make plants more tolerant to several types of abiotic stress such as extreme temperatures, salinity, heavy metals and excess light.
Collapse
Affiliation(s)
- Tauan Rimoldi Tavanti
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | | | | | | | - Rafael Dos Santos Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | - Ricardo Messias da Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | - André Rodrigues Dos Reis
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), Rua Domingos da Costa Lopes 780, 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
30
|
Sharma PK, Raghubanshi AS, Shah K. Examining the uptake and bioaccumulation of molybdenum nanoparticles and their effect on antioxidant activities in growing rice seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13439-13453. [PMID: 33184789 DOI: 10.1007/s11356-020-11511-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
The synthesized α-MoO3 and MoS2 NPs had nanosheet and nanoflower-like structures with crystallite size of 21.34 nm and 4.32 nm, respectively. The uptake, bioaccumulation, and impact of these two Mo-NPs were studied in rice (Oryza sativa L) cv. HUR 3022 seedlings exposed to 100, 500, and 1000 ppm concentrations in hydroponics for 10 days in the growth medium. The uptake of α-MoO3 and MoS2 NPs by rice exposed to 100 ppm concentrations of NPs led to the accumulation of 7.32 ppm/4.55 ppm and 1.84 ppm/1.19 ppm in roots/shoots, respectively, as compared to controls. Unlike MoO3, more accumulation of MoS2 in roots reflect less translocation of this NP from roots to shoots. Results suggest tissue-specific distribution of NPs in rice seedlings. The increased growth and elevated protein levels in rice seedlings at 100 ppm concentrations of nanoparticles imply a stimulation in the repair mechanism at low doses indicating hormesis. MoS2 NPs treatments led to increased chlorophyll a levels suggesting it to be non-compromising with photosynthetic process in rice. The high malondialdehyde levels and altered activities of antioxidant enzymes GPX, APX, and CAT in rice seedlings exposed to α-MoO3 or MoS2 NPs indicate oxidative imbalance. Between α-MoO3 and MoS2 NPs, the former shows toxic effects as reflected from the decreased levels of photosynthetic pigments at all concentrations; however, an activation of chloroplast ROS detoxification is evident in the presence of MoS2 NPs. The BCF > 1 for both α-MoO3 and MoS2 NPs and TF of 0.6-2.0 and 0.42-0.65 suggest the latter to be more environmentally safe. In conclusion, a100 ppm MoS2 NPs concentration has low translocation and less accumulation with no significant impact on growth of rice cv. HUR 3022 seedlings and appears to be environmentally safe for future applications.
Collapse
Affiliation(s)
- Prashant K Sharma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Akhilesh S Raghubanshi
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Kavita Shah
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
31
|
Luo SW, Alimujiang A, Balamurugan S, Zheng JW, Wang X, Yang WD, Cui J, Li HY. Physiological and molecular responses in halotolerant Dunaliella salina exposed to molybdenum disulfide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124014. [PMID: 33069998 DOI: 10.1016/j.jhazmat.2020.124014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide nanoparticles (MoS2 NPs) has emerged as the promising nanomaterial with a wide array of applications in the biomedical, industrial and environmental field. However, the potential effect of MoS2 NPs on marine organisms has yet to be reported. In this study, the effect of MoS2 NPs on the physiological index, subcellular morphology, transcriptomic profiles of the marine microalgae Dunaliella salina was investigated for the first time. exhibited "doping-like" effects on marine microalgae; Growth stimulation was 193.55%, and chlorophyll content increased 1.61-fold upon the addition of 50 μg/L MoS2 NPs. Additionally, exposure to MoS2 NPs significantly increased the protein and carbohydrate content by 2.03- and 1.56-fold, respectively. The antioxidant system was activated as well to eliminate the adverse influence of reactive oxygen species (ROS). Transcriptomic analysis revealed that genes involved in porphyrin synthesis, glycolysis/gluconeogenesis, tricarboxylic acid cycle and DNA replication were upregulated upon MoS2 NPs exposure, which supports the mechanistic role of MoS2 NPs in improving cellular growth and photosynthesis. The "doping-like" effects on marine algae suggest that the low concentration of MoS2 NPs might change the rudimentary ecological composition in the ocean.
Collapse
Affiliation(s)
- Shan-Wei Luo
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
32
|
Luo SW, Alimujiang A, Cui J, Chen TT, Balamurugan S, Zheng JW, Wang X, Yang WD, Li HY. Molybdenum disulfide nanoparticles concurrently stimulated biomass and β-carotene accumulation in Dunaliella salina. BIORESOURCE TECHNOLOGY 2021; 320:124391. [PMID: 33220546 DOI: 10.1016/j.biortech.2020.124391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide nanoparticles (MoS2 NPs) hold tremendous properties in wide domain of applications. In this study, the impact of MoS2 NPs was investigated on algal physiological and metabolic properties and a two-stage strategy was acquired to enhance the commercial potential of Dunaliella salina. With 50 µg/L of MoS2 NPs exposure, cellular growth and biomass production were promoted by 1.47- and 1.33-fold than that in control, respectively. MoS2 NPs treated cells were subject to high light intensity for 7 days after 30 days of normal light cultivation, which showed that high light intensity gradually increased β-carotene content by 1.48-fold. Furthermore, analyses of primary metabolites showed that combinatorial approach significantly altered the biochemical composition of D. salina. Together, these findings demonstrated that MoS2 NPs at an optimum concentration combined with high light intensity could be a promising approach to concurrently enhance biomass and β-carotene production in microalgae.
Collapse
Affiliation(s)
- Shan-Wei Luo
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ting-Ting Chen
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | - Jian-Wei Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
33
|
Mittal D, Kaur G, Singh P, Yadav K, Ali SA. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.579954] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the current scenario, it is an urgent requirement to satisfy the nutritional demands of the rapidly growing global population. Using conventional farming, nearly one third of crops get damaged, mainly due to pest infestation, microbial attacks, natural disasters, poor soil quality, and lesser nutrient availability. More innovative technologies are immediately required to overcome these issues. In this regard, nanotechnology has contributed to the agrotechnological revolution that has imminent potential to reform the resilient agricultural system while promising food security. Therefore, nanoparticles are becoming a new-age material to transform modern agricultural practices. The variety of nanoparticle-based formulations, including nano-sized pesticides, herbicides, fungicides, fertilizers, and sensors, have been widely investigated for plant health management and soil improvement. In-depth understanding of plant and nanomaterial interactions opens new avenues toward improving crop practices through increased properties such as disease resistance, crop yield, and nutrient utilization. In this review, we highlight the critical points to address current nanotechnology-based agricultural research that could benefit productivity and food security in future.
Collapse
|
34
|
Halim MA, Rahman MM, Megharaj M, Naidu R. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13497-13529. [PMID: 33170689 DOI: 10.1021/acs.jafc.0c04579] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.
Collapse
Affiliation(s)
- Md Abdul Halim
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
35
|
Preparation and characterization of curcumin functionalized copper nanoparticles and their application enhances disease resistance in chickpea against wilt pathogen. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Li Y, Liu Y, Yang D, Jin Q, Wu C, Cui J. Multifunctional molybdenum disulfide-copper nanocomposite that enhances the antibacterial activity, promotes rice growth and induces rice resistance. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122551. [PMID: 32272326 DOI: 10.1016/j.jhazmat.2020.122551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide sheets loaded with copper nanoparticles (MoS2-CuNPs) was prepared and its antibacterial activity against phytopathogen Xanthomonas oryzae pv. oryzae (Xoo) was investigated in vitro and in vivo for the first time. In a 2 h co-incubation, MoS2-CuNPs exhibited 19.2 times higher antibacterial activity against Xoo cells than a commercial copper bactericide (Kocide 3000). In the detached leaf experiment, the disease severity decreased from 86.25 % to 7.5 % in the MoS2-CuNPs treated rice leaves. The results further demonstrated that foliar application of MoS2-CuNPs could form a protective film and increase the density of trichome on the surface of rice leaves, finally prevent the infection of Xoo cells. This was probably due to the synergistic effect of MoS2-CuNPs. Additionally, foliar application of MoS2-CuNPs (4-32 μg/mL) increased obviously the content of Mo and chlorophyll (up 30.85 %), and then improved the growth of rice seedlings. Furthermore, the obtained MoS2-CuNPs could activate the activities of the antioxidant enzymes in rice, indicating higher resistance of rice under abiotic/biotic stresses. The multifunctional MoS2-CuNPs with superior antibacterial activity provided a promising alternative to the traditional antibacterial agents and had great potential in plant protection.
Collapse
Affiliation(s)
- Yadong Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China; Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingliang Liu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Desong Yang
- College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Qian Jin
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Cailan Wu
- College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jianghu Cui
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| |
Collapse
|
37
|
Sathiyabama M, Muthukumar S. Chitosan guar nanoparticle preparation and its in vitro antimicrobial activity towards phytopathogens of rice. Int J Biol Macromol 2020; 153:297-304. [PMID: 32135260 DOI: 10.1016/j.ijbiomac.2020.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/21/2020] [Accepted: 03/01/2020] [Indexed: 01/09/2023]
Abstract
The aim of the present study was to prepare chitosan guar nanoparticle (CGNP) with high antimicrobial activity to use as a bioprotectant against rice phytopathogens. Nanoparticles were prepared using sodium tripolyphosphate by the ionic gelation method. The physico-chemical properties of nanoparticles were characterized through DLS, FTIR, TEM, SEM, AFM and XRD. The application of CGNP to rice seeds stimulated seed germination and seedling growth. CGNP showed growth inhibition towards rice pathogens P. grisea and X. oryzae under in-vitro condition. Excised rice leaves treated with CGNP and challenged with P. grisea showed no blast disease symptom whereas control leaves showed very high blast disease symptom. The results of this study indicate that CGNP can be used as an antimicrobial agent to control blast, blight disease of rice.
Collapse
Affiliation(s)
- M Sathiyabama
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu 24, India.
| | - S Muthukumar
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu 24, India
| |
Collapse
|
38
|
Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, Xing B, Wang Z, Ji R. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1935-1947. [PMID: 32003987 DOI: 10.1021/acs.jafc.9b06615] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sustainable agriculture is a key component of the effort to meet the increased food demand of a rapidly increasing global population. Nano-biotechnology is a promising tool for sustainable agriculture. However, rather than acting as nanocarriers, some nanoparticles (NPs) with unique physiochemical properties inherently enhance plant growth and stress tolerance. This biological role of nanoparticles depends on their physiochemical properties, application method (foliar delivery, hydroponics, soil), and the applied concentration. Here we review the effects of the different types, properties, and concentrations of nanoparticles on plant growth and on various abiotic (salinity, drought, heat, high light, and heavy metals) and biotic (pathogens and herbivores) stresses. The ability of nanoparticles to stimulate plant growth by positive effects on seed germination, root or shoot growth, and biomass or grain yield is also considered. The information presented herein will allow researchers within and outside the nano-biotechnology field to better select the appropriate nanoparticles as starting materials in agricultural applications. Ultimately, a shift from testing/utilizing existing nanoparticles to designing specific nanoparticles based on agriculture needs will facilitate the use of nanotechnology in sustainable agriculture.
Collapse
Affiliation(s)
- Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Li Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Aodi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Huiling Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Min Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Honghong Wu
- College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- College of Agronomy and Biotechnology , China Agricultural University , Beijing 100193 , China
| | - Baoshan Xing
- Stockbridge School of Agriculture , University of Massachusetts , Amherst 01003 , Massachusetts , United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering , Jiangnan University , Wuxi 214122 , China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
39
|
Yu F, Wang X, Yao Y, Lin J, Huang Y, Xie D, Liu K, Li Y. Manganese accumulation and plant physiology behavior of Camellia oleifera in response to different levels of potassium fertilization. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1075-1084. [PMID: 32064892 DOI: 10.1080/15226514.2020.1726871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of potassium (K) fertilization (KCl, analytically pure; 0, 60, 200, and 400 mg kg-1) on the growth and Mn accumulation of Camellia oleifera in two types of Mn-contaminated soils were investigated. The potential mechanisms underlying the impacts of K fertilization were explored. C. oleifera accumulated high amounts of Mn in both soil conditions. The addition of K fertilizer decreased the soil pH and promoted Mn accumulation in C. oleifera. However, the plant biomass decreased significantly under the high level of K fertilization (400 mg kg-1), and the oxidative stress was stimulated under Mn contamination. But an appropriate concentration of K fertilizer (200 mg kg-1) was necessary for the formation of photosynthesis pigments, nonenzymatic antioxidants and antioxidant enzymes, metabolic processes, and nutrient uptake. Furthermore, when plants supplemented with a low level of K fertilization (200 mg kg-1), the catalase activity in C. oleifera leaves was enhanced to alleviate oxidative stress and protect the plant from Mn contamination. Our study demonstrated that 200 mg kg-1 of K fertilizer has the potential to further enhance the efficiency of Mn phytoremediation by C. oleifera.
Collapse
Affiliation(s)
- Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
- Key Laboratory of Karst Ecology and Environment Change of Guangxi Department of Education, Guangxi Normal University, Guilin, China
- College of Environment and Resource, Guangxi Normal University, Guilin, China
| | - Xueru Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Yawei Yao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Jiamin Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Yuanyuan Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Dongyu Xie
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
- Key Laboratory of Karst Ecology and Environment Change of Guangxi Department of Education, Guangxi Normal University, Guilin, China
- College of Environment and Resource, Guangxi Normal University, Guilin, China
| |
Collapse
|
40
|
Li Y, Liu K, Zhu J, Jiang Y, Huang Y, Zhou Z, Chen C, Yu F. Manganese accumulation and plant physiology behavior of Camellia oleifera in response to different levels of nitrogen fertilization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109603. [PMID: 31473561 DOI: 10.1016/j.ecoenv.2019.109603] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 05/28/2023]
Abstract
Manganese (Mn) pollution in soil, especially around the mining areas, is a severe problem in China. Seeking for effective remediation methods for Mn-contaminated soil is therefore urgent and necessary. Camellia oleifera (C. oleifera) is one of the world's four major woody oil plants, which is widely cultivated in subtropical acidic soils for oil production and has become an important economic and ecological resource in Guangxi Province. Nitrogen (N) is one of the most common limiting factors for plant growth and development in soils. We carried out this study to evaluate the effects of different N fertilization levels (0, 100, 300 and 500 mg kg-1) on the morphological and physiological characteristics of C. oleifera in two soils with different Mn-contamination degrees. The results indicate that N fertilization affected the plant growth and the content of photosynthetic pigments, while C. oleifera accumulated great amounts of Mn in both soils. However, the plant biomass reduced significantly at the high-level N fertilization (≥300 mg kg-1), and the oxidative stress was stimulated under Mn contamination. As a comparison, the plant biomass remained unaffected at the low-level N fertilization (100 mg kg-1), and the ascorbate peroxidase (APX) activity in C. oleifera leaves were enhanced to alleviate the oxidative stress and therefore protecting the plant from Mn contamination. Meanwhile, plants supplemented with a low-level of N fertilizer (100 mg kg-1) had appropriate antioxidant enzyme and nonenzymatic antioxidant activities, which indicates that this was favorable growth conditions for C. oleifera. Thus, the recommended N fertilization level for maintaining plant biomass and increasing Mn accumulation in plant is 100 mg kg-1 N; at which level the efficiency of Mn phytoremediation by C. oleifera can be further enhanced.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Key Laboratory of Karst Ecology and Environment Change of Guangxi Department of Education, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resource, Guangxi Normal University, 541004, Guilin, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Life Science, Guangxi Normal University, 541004, Guilin, China
| | - Jing Zhu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Key Laboratory of Karst Ecology and Environment Change of Guangxi Department of Education, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resource, Guangxi Normal University, 541004, Guilin, China
| | - Yongrong Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yuanyuan Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China
| | - Zhenming Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Key Laboratory of Karst Ecology and Environment Change of Guangxi Department of Education, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resource, Guangxi Normal University, 541004, Guilin, China
| | - Chaoshu Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Key Laboratory of Karst Ecology and Environment Change of Guangxi Department of Education, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resource, Guangxi Normal University, 541004, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Key Laboratory of Karst Ecology and Environment Change of Guangxi Department of Education, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resource, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
41
|
Banerjee A, Tripathi DK, Roychoudhury A. Hydrogen sulphide trapeze: Environmental stress amelioration and phytohormone crosstalk. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:46-53. [PMID: 30172852 DOI: 10.1016/j.plaphy.2018.08.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen sulphide (H2S) is recognized as the third endogenous gasotransmitter in plants after nitric oxide (NO) and carbon monoxide (CO). Though initially visualized as a toxic gaseous molecule, recent studies have illustrated its diverse role in regulating plant growth and developmental physiology. H2S is also a potent inducer of osmolytes and cellular antioxidants of enzymatic and non-enzymatic origins. It interacts with the Ca2+ and NO signaling pathways. Exogenous fumigation of H2S or application of the H2S donor, sodium hydrosulphide (NaHS) has been found to be beneficial in the amelioration of multiple abiotic stresses like salinity, drought, temperature, hypoxia and heavy metal toxicity. H2S also protects stress-sensitive proteins via persulphidation of cysteine residues, prone to reactive oxygen species (ROS)-mediated oxidation. It is well established that plants are highly dependent on phytohormone signaling during any physiological process. By virtue of the diversity of the H2S-mediated signaling network, interactions and crosstalks of this gasotransmitter with the plant hormones are evident. This article presents a detailed summary regarding the role of H2S in oxidative and environmental stress tolerance; and furthermore illustrates the reported interactions with crucial hormones like abscisic acid, auxins, gibberellic acid, ethylene and salicylic acid under physiologically differing circumstances.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | | | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
42
|
Agarwal V, Chatterjee K. Recent advances in the field of transition metal dichalcogenides for biomedical applications. NANOSCALE 2018; 10:16365-16397. [PMID: 30151537 DOI: 10.1039/c8nr04284e] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanosheets of transition metal dichalcogenide (TMDs), the graphene-like two-dimensional (2D) materials, exhibit a unique combination of properties and have attracted enormous research interest for a wide range of applications including catalysis, functional electronics, solid lubrication, photovoltaics, energy materials and most recently in biomedical applications. Their potential for use in biosensors, drug delivery, multimodal imaging, antimicrobial agents and tissue engineering is being actively studied. However, the commercial translation of exfoliated TMDs has been limited due to the low aqueous solubility, non-uniformity, lack of control over the layer thickness, and the long-term colloidal stability of the exfoliated material. There is wide interest in the synthesis and exfoliation of TMDs resulting in the reporting of increasing numbers of new methods and their biomedical applications. The unique physicochemical characteristics of the TMD nanosheets have been exploited to tether them with biological payload to achieve selective localized delivery in vivo. The large surface-to-volume ratio, good cytocompatibility, ease of surface modification, tunable bandgap, strong spin-orbit coupling, and high optical and thermal conversion efficiency of TMD nanosheets make them favorable over traditional nanomaterials for biomedical research. Moreover, the presence of abundant active edge sites on the 2D TMDs makes them suitable for catalytic activities, while the large surface area and the interspace between layers are particularly conducive to ion or small molecule intercalation, making them useful for energy storage applications with rapid redox reaction capabilities. One of the major limitations of the exfoliated TMDs has been their limited colloidal stability in aqueous media. In this review, we summarize the recent advances in the exfoliation and synthesis of single-layered TMDs, their biomedical efficacy in terms of cytotoxicity, combinatorial therapy and diagnostic imaging, as well as antimicrobial activity. We highlight the current challenges in the field and propose strategies for the future.
Collapse
Affiliation(s)
- Vipul Agarwal
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | | |
Collapse
|