1
|
Boselli MF, Ghosh I, Intini N, Fattalini M, Puglisi A, König B, Benaglia M. Visible-Light Photoredox Catalytic Direct N-(Het)Arylation of Lactams. Chemistry 2025; 31:e202404385. [PMID: 39907313 DOI: 10.1002/chem.202404385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Lactam rings are essential structural motifs in organic chemistry, widely present in natural products and clinically important drugs, such as antibiotics and antiepileptics. Existing methods for synthesizing N-functionalized lactams often require harsh conditions, toxic reagents, or complex catalytic systems. Here, we report a mild and efficient photochemical approach for generating N-centered radicals, enabling straightforward N-heteroarylation of lactams. This versatile method enables the synthesis of a range of N-(het)arylated lactams and is effective even in aqueous media, facilitating the functionalization of biomolecules. Furthermore, the photochemical reaction is easily scalable under continuous flow conditions, making it highly suitable for large-scale applications.
Collapse
Affiliation(s)
- Monica Fiorenza Boselli
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano, Italy
| | - Indrajit Ghosh
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93053, Regensburg, Germany
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VSB- Technical University of Ostrava, 70800, Ostrava-Poruba, Czech Republic
| | - Niccolò Intini
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano, Italy
| | - Marco Fattalini
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano, Italy
| | - Alessandra Puglisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano, Italy
| | - Burkhard König
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93053, Regensburg, Germany
| | - Maurizio Benaglia
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano, Italy
| |
Collapse
|
2
|
Zimmermann T, Feng J, Fischer S, de Campos LJ, Pinheiro FR, Sotriffer C, Conda-Sheridan M, Decker M. Structural Optimization of Covalent Inhibitors for Deubiquitinase ChlaDUB1 of Chlamydia trachomatis as Antibiotic Agents. J Med Chem 2025; 68:5400-5425. [PMID: 40020077 DOI: 10.1021/acs.jmedchem.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The cysteine protease ChlaDUB1 has proven to be a promising new target for antichlamydial therapy. This deubiquitinase manipulates protein homeostasis of the infected human host cell, concealing the chlamydial infection. In this study, we optimized a previously identified scaffold of covalently acting ChlaDUB1 inhibitors using a combination of docking, synthesis and in vitro enzymatic screening. This led to a reduction of the inhibitor size while simultaneously improving activity at ChlaDUB1 to 1 μM and enhancing the rate of target inhibition. We identified a hitherto unobserved inhibition mechanism at ChlaDUB1 and narrowed it down to a particular substitution pattern by chemical derivatization. Finally, both antichlamydial activity and cytotoxicity of the lead compounds were determined. Hereby, we present comprehensive structure-activity relationships and detailed kinetic studies that identified a small molecule lead compound for specific antichlamydial therapy, which showed drastically lowered cytotoxicity compared to previously described compounds.
Collapse
Affiliation(s)
- Thomas Zimmermann
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Jiachen Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Simon Fischer
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Luana Janaína de Campos
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Felipe Ramos Pinheiro
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Christoph Sotriffer
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
3
|
Singh A, Bhutani C, Khanna P, Talwar S, Singh SK, Khanna L. Recent report on indoles as a privileged anti-viral scaffold in drug discovery. Eur J Med Chem 2025; 281:117017. [PMID: 39509946 DOI: 10.1016/j.ejmech.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
In recent years, viral infections such as COVID-19, Zika virus, Nipah virus, Ebola, Influenza, Monkeypox, and Dengue have substantially impacted global health. These outbreaks have led to heightened global health initiatives and collaborative efforts to address and mitigate these significant threats effectively. Thus, developing antiviral treatments and research in this field has become highly important. Heterocycles, particularly indole motifs, have been a valuable resource in drug discovery, as they can be used as treatments or inspire the synthesis of new potent candidates. Indole-containing drugs, such as enfuvirtide (T-20), arbidol, and delavirdine, have demonstrated significant efficacy in treating viral diseases. This review aims to comprehensively assess the latest research and developments in novel indoles as potential scaffolds for antiviral activity. We have compiled detailed information about indoles as potential antivirals by conducting a thorough literature survey from the past ten years. The review includes discussions on synthetic protocols, inhibitory concentrations, SAR study, and computational study. This review shall identify new antiviral indoles that may help to combat new viral threats in the future.
Collapse
Affiliation(s)
- Asmita Singh
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India
| | - Charu Bhutani
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India; Synthesis & In-Silico Drug Design Laboratory, Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110 019, India
| | - Pankaj Khanna
- Synthesis & In-Silico Drug Design Laboratory, Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110 019, India
| | - Sangeeta Talwar
- Department of Chemistry, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Sandeep Kumar Singh
- Jindal Global Business School, O.P. Jindal Global University, Sonipat 131001, India
| | - Leena Khanna
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
4
|
Zhang BQ, Li FP, An JX, Ma L, Jin YR, Zhang ZJ, Qin LL, Wang DT, Jing CX, Chen GS, Mou GL, Liu YQ. Design, synthesis and antimicrobial activity of novel berberine derivatives. PEST MANAGEMENT SCIENCE 2024; 80:6344-6355. [PMID: 39136433 DOI: 10.1002/ps.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 11/09/2024]
Abstract
BACKGROUND The threats to the safety of humans and the environment and the resistance of agricultural chemicals to plant pathogenic fungi and bacteria highlight an urgent need to find safe and efficient alternatives to chemical fungicides and bactericides. In this study, a series of Berberine (BBR) derivatives were designed, synthesized and evaluated for in vitro and in vivo antimicrobial activity against plant pathogenic fungi and bacteria. RESULTS Bioassay results indicated that compounds A11, A14, A20, A21, A22, A25, A26, E1, E2, E3, Z1 and Z2 showed high inhibitory activity against Sclerotinia sclerotiorum and Botrytis cinerea. Especially, A25 showed a broad spectrum and the highest antifungal activity among these compounds. Its EC50 value against Botrytis cinerea was 1.34 μg mL-1. Compound E6 possessed high inhibitory activity against Xanthomonas oryzae and Xanthomonas Campestris, with MIC90 values of 3.12 μg mL-1 and 1.56 μg mL-1. A Topomer CoMFA model was generated for 3D-QSAR studies based on anti-B. cinerea effects, with high predictive accuracy, showed that the addition of an appropriate substituent group at the para-position of benzyl of BBR derivatives could effectively improve the anti-B. cinerea activity. In addition, compound A25 could significantly inhibit the spore germination of Botrytis cinerea at low concentration, and compound F4 exhibited remarkable curative and protective efficiencies on rice bacterial leaf blight. CONCLUSION This study indicates that the BBR derivatives are hopeful for further exploration as the lead compound with novel antimicrobial agents. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Fu-Ping Li
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Li Ma
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Ya-Rui Jin
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Lu-Lu Qin
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Deng-Tuo Wang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Cheng-Xin Jing
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Gui-Sha Chen
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Guo-Liang Mou
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Zhou LM, Yang JF, Li HH, Chen W, Li YW, Zhu XL, Yang GF. Discovery of Novel Oxathiapiprolin Derivatives as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17649-17657. [PMID: 39047266 DOI: 10.1021/acs.jafc.4c03971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Oxathiapiprolin (OXA), which targets the oxysterol-binding protein (OSBP), is an outstanding piperidinyl thiazole isoxazoline (PTI) fungicide that can be used to control oomycetes diseases. In this study, starting from the structure of OXA, a series of novel OSBP inhibitors were designed and synthesized by introducing an indole moiety to replace the pyrazole in OXA. Finally, compound b24 was found to exhibit the highest control effect (82%) against cucumber downy mildew (CDM) in the greenhouse at a very low dosage of 0.069 mg/L, which was comparable to that of OXA (88%). Furthermore, it showed better activity against potato late blight (PLB) than other derivatives of indole. The computational results showed that the R-conformation of b24 should be the dominant conformation binding to PcOSBP. The results of the present work indicate that the 3-fluorine-indole ring is a favorable fragment to increasing the electronic energy when binding with PcOSBP. Furthermore, compound b24 could be used as a lead compound for the discovery of new OSBP inhibitors.
Collapse
Affiliation(s)
- Li-Ming Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jing-Fang Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Hong-Hao Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yi-Wen Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
6
|
Tai G, Zhang Q, He J, Li X, Gan X. Ferulic Acid Dimers as Potential Antiviral Agents by Inhibiting TMV Self-Assembly. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14610-14619. [PMID: 38896477 DOI: 10.1021/acs.jafc.4c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A series of ferulic acid dimers were designed, synthesized, and evaluated for anti-TMV activity. Biological assays demonstrated that compounds A6, E3, and E5 displayed excellent inactivating against tobacco mosaic virus (TMV) with EC50 values of 62.8, 94.4, and 85.2 μg mL-1, respectively, which were superior to that of ningnanmycin (108.1 μg mL-1). Microscale thermophoresis indicated that compounds A6, E3, and E5 showed strong binding capacity to TMV coat protein with binding affinity values of 1.862, 3.439, and 2.926 μM, respectively. Molecular docking and molecular dynamics simulation revealed that compound A6 could firmly bind to the TMV coat protein through hydrogen and hydrophobic bonds. Transmission electron microscopy and self-assembly experiments indicated that compound A6 obviously destroyed the integrity of the TMV particles and blocked the virus from infecting the host. This study revealed that A6 can be used as a promising leading structure for the development of antiviral agents by inhibiting TMV self-assembly.
Collapse
Affiliation(s)
- Gangyin Tai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jiangqin He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
7
|
Huang H, Tang J, Dang K, Tang J, Li E, Fan L, Ye M, Wu G, Su F. Design and synthesis of bis(indolyl)-hydrazide-hydrazone derivatives and their antifungal activities against plant pathogen fungi. Nat Prod Res 2024:1-6. [PMID: 38940256 DOI: 10.1080/14786419.2024.2371994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
A series of bis(indolyl)-hydrazide-hydrazone derivatives were synthesised, and their structures were characterised using 1H-NMR and HRMS. The antifungal activity of the prepared compounds was evaluated against Pyricularia oryzae Cav., Colletotrichum -gloeosporioides Penz., Botrytis cinerea Pers.: Fr. and Rhizoctonia solani Kühn using the mycelial growth rate method. The preliminary bioassays revealed that most of the synthesised compounds exhibited antifungal activity against the four tested fungi and displayed a remarkable inhibitory effect on the mycelium growth of R. solani. In particular, compounds 3b, 3c, and 3k demonstrated significant antifungal activity against R. solani, with EC50 values of 26.42, 20.74, and 22.41 μM, respectively, outperforming the positive control shenqinmycin (47.18 μM) and carvacrol (49.13 μM).
Collapse
Affiliation(s)
- Haowei Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jinrui Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Kunrong Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jiayue Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Enxian Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Liming Fan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Fawu Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
Huang Y, Peng X, Chen J, Shu L, Zhang M, Jin J, Jin Z, Chi YR. Discovery of Novel Chiral Indole Derivatives Containing the Oxazoline Moiety as Potential Antiviral Agents for Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6979-6987. [PMID: 38520352 DOI: 10.1021/acs.jafc.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Potato virus Y (PVY) is an important plant virus that has spread worldwide, causing significant economic losses. To search for novel structures as potent antiviral agents, a series of chiral indole derivatives containing oxazoline moieties were designed and synthesized and their anti-PVY activities were evaluated. Biological activity tests demonstrated that many chiral compounds exhibited promising anti-PVY activities and that their absolute configurations exhibited obvious distinctions in antiviral bioactivities. Notably, compound (S)-4v displayed excellent curative and protective efficacy against PVY, with EC50 values of 328.6 and 256.1 μg/mL, respectively, which were superior to those of commercial virucide ningnanmycin (NNM, 437.4 and 397.4 μg/mL, respectively). The preliminary antiviral mechanism was investigated to determine the difference in antiviral activity between the two enantiomers of 4v chiral compounds. Molecular docking indicated a stronger binding affinity between the coating proteins of PVY (PVY-CP) and (S)-4v (-6.5 kcal/mol) compared to (R)-4v (-6.2 kcal/mol). Additionally, compound (S)-4v can increase the chlorophyll content and defense-related enzyme activities more effectively than its enantiomer. Therefore, this study provides an important basis for the development of chiral indole derivatives containing oxazoline moieties as novel agricultural chemicals.
Collapse
Affiliation(s)
- Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Xiaolin Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jinli Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
9
|
Ahmad N, Xu Y, Zang F, Li D, Liu Z. The evolutionary trajectories of specialized metabolites towards antiviral defense system in plants. MOLECULAR HORTICULTURE 2024; 4:2. [PMID: 38212862 PMCID: PMC10785382 DOI: 10.1186/s43897-023-00078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Viral infections in plants pose major challenges to agriculture and global food security in the twenty-first century. Plants have evolved a diverse range of specialized metabolites (PSMs) for defenses against pathogens. Although, PSMs-mediated plant-microorganism interactions have been widely discovered, these are mainly confined to plant-bacteria or plant-fungal interactions. PSM-mediated plant-virus interaction, however, is more complicated often due to the additional involvement of virus spreading vectors. Here, we review the major classes of PSMs and their emerging roles involved in antiviral resistances. In addition, evolutionary scenarios for PSM-mediated interactions between plant, virus and virus-transmitting vectors are presented. These advancements in comprehending the biochemical language of PSMs during plant-virus interactions not only lay the foundation for understanding potential co-evolution across life kingdoms, but also open a gateway to the fundamental principles of biological control strategies and beyond.
Collapse
Affiliation(s)
- Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Faheng Zang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dapeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences (CEPMS), Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Barzkar N, Sukhikh S, Babich O. Study of marine microorganism metabolites: new resources for bioactive natural products. Front Microbiol 2024; 14:1285902. [PMID: 38260902 PMCID: PMC10800913 DOI: 10.3389/fmicb.2023.1285902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
The marine environment has remained a source of novel biological molecules with diversified applications. The ecological and biological diversity, along with a unique physical environment, have provided the evolutionary advantage to the plant, animals and microbial species thriving in the marine ecosystem. In light of the fact that marine microorganisms frequently interact symbiotically or mutualistically with higher species including corals, fish, sponges, and algae, this paper intends to examine the potential of marine microorganisms as a niche for marine bacteria. This review aims to analyze and summarize modern literature data on the biotechnological potential of marine fungi and bacteria as producers of a wide range of practically valuable products (surfactants, glyco-and lipopeptides, exopolysaccharides, enzymes, and metabolites with different biological activities: antimicrobial, antitumor, and cytotoxic). Hence, the study on bioactive secondary metabolites from marine microorganisms is the need of the hour. The scientific novelty of the study lies in the fact that for the first time, the data on new resources for obtaining biologically active natural products - metabolites of marine bacteria and fungi - were generalized. The review investigates the various kinds of natural products derived from marine microorganisms, specifically focusing on marine bacteria and fungi as a valuable source for new natural products. It provides a summary of the data regarding the antibacterial, antimalarial, anticarcinogenic, antibiofilm, and anti-inflammatory effects demonstrated by marine microorganisms. There is currently a great need for scientific and applied research on bioactive secondary metabolites of marine microorganisms from the standpoint of human and animal health.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Agro-Industrial Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Stanislav Sukhikh
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Babich
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
11
|
Li Z, Yang B, Ding Y, Zhou X, Fang Z, Liu S, Yang J, Yang S. Discovery of phosphonate derivatives containing different substituted 1,2,3-triazole motif as promising tobacco mosaic virus (TMV) helicase inhibitors for controlling plant viral diseases. PEST MANAGEMENT SCIENCE 2023; 79:3979-3992. [PMID: 37271938 DOI: 10.1002/ps.7592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The discovery and identification of targets is of far-reaching significance for developing novel pesticide candidates and increasing the probability of success. To explore and identify highly effective tobacco mosaic virus (TMV) helicase-targeted lead structures, a series of novel phosphonate derivatives containing a 1,2,3-triazole motif were rationally engineered and their antiviral activity was assessed. RESULTS Bioassay results showed that the optimized B17 exhibited more potent curative activity (EC50 = 271.5 μg mL-1 ) against TMV in vivo, which was superior to that of commercial Ribavirin (EC50 = 689.3 μg mL-1 ). B17 presented a stronger binding capacity through binding analysis with helicase, affording a corresponding value of 12.7 μM. Enzyme activity assay showed B17 exhibited excellent inhibitory activity on TMV helicase (39.2% at 300 μM). Furthermore, molecular docking simulations demonstrated that B17 displayed strong hydrogen-bond interactions (2.1, 2.1, 2.2, and 3.2 Å) with Ala-33, Gly-10, Gly-8, and Glu-217 of TMV helicase. Encouragingly, transmission electron microscopy analysis revealed that B17 could remarkably disrupt surface morphology and inhibit TMV proliferation. Additionally, these compounds also displayed potential anti-CMV (cucumber mosaic virus) and antipathogens (Xanthomonas oryzae pv. oryzae and Xanthomonas axonopodis pv. citri) by expanding their applications in agriculture. CONCLUSION Current research demonstrated that B17 could be considered as a potential antiviral agent alternative though targeting TMV helicase. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenxing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Binxin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Zimian Fang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - ShuaiShuai Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Jie Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Pecoraro C, Terrana F, Panzeca G, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Nortopsentins as Leads from Marine Organisms for Anticancer and Anti-Inflammatory Agent Development. Molecules 2023; 28:6450. [PMID: 37764226 PMCID: PMC10537790 DOI: 10.3390/molecules28186450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The marine environment is an excellent source of molecules that have a wide structural diversity and a variety of biological activities. Many marine natural products (MNPs) have been established as leads for anticancer drug discovery. Most of these compounds are alkaloids, including several chemical subclasses. In this review, we focus on the bis-indolyl alkaloid Nortopsentins and their derivatives with antiproliferative properties. Nortopsentins A-C were found to exhibit in vitro cytotoxicity against the P388 murine leukaemia cell line. Their structural manipulation provided a wide range of derivatives with significant anti-tumour activity against human cell lines derived from different cancer types (bladder, colon, gastric, CNS, liver, lung, breast, melanoma, ovarian, pancreatic, prostate, pleural mesothelioma, renal, sarcoma, and uterus). In vivo assays on animal models also proved that Nortopsentins and related bis-indolyl compounds have potent anti-inflammatory activity. These remarks set the foundation for future investigations into the development of new Nortopsentin derivatives as new anticancer and anti-inflammatory agents.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Francesca Terrana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Giovanna Panzeca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme, PI, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| |
Collapse
|
13
|
Cooreman K, De Spiegeleer B, Van Poucke C, Vanavermaete D, Delbare D, Wynendaele E, De Witte B. Emerging pharmaceutical therapies of Ascidian-derived natural products and derivatives. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104254. [PMID: 37648122 DOI: 10.1016/j.etap.2023.104254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
In a growing multidrug-resistant environment, the identification of potential new drug candidates with an acceptable safety profile is a substantial crux in pharmaceutical discovery. This review discusses several aspects and properties of approved marine natural products derived from ascidian sources (phylum Chordata, subphylum Tunicata) and/or their deduced analogues including their biosynthetic origin, (bio)chemical preclinical assessments and known efficacy-safety profiles, clinical status in trials, but also translational developments, opportunities and final conclusions. The review also describes the preclinical assessments of a large number of other ascidian compounds that have not been involved in clinical trials yet. Finally, the emerging research on the connectivity of the ascidian hosts and their independent or obligate symbiotic guests is discussed. The review covers the latest information on the topic of ascidian-derived marine natural products over the last two decades including 2022, with the majority of publications published in the last decade.
Collapse
Affiliation(s)
- Kris Cooreman
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Bart De Spiegeleer
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Christof Van Poucke
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - David Vanavermaete
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Daan Delbare
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Evelien Wynendaele
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Bavo De Witte
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium.
| |
Collapse
|
14
|
Yang BX, Li ZX, Liu SS, Yang J, Wang PY, Liu HW, Zhou X, Liu LW, Wu ZB, Yang S. Novel cinnamic acid derivatives as a versatile tool for developing agrochemicals for controlling plant virus and bacterial diseases by enhancing plant defense responses. PEST MANAGEMENT SCIENCE 2023; 79:2556-2570. [PMID: 36864774 DOI: 10.1002/ps.7433] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Plant pathogens have led to large yield and quality losses in crops worldwide. The discovery and study of novel agrochemical alternatives based on the chemical modification of bioactive natural products is a highly efficient approach. Here, two series of novel cinnamic acid derivatives incorporating diverse building blocks with alternative linking patterns were designed and synthesized to identify their antiviral capacity and antibacterial activity. RESULTS The bioassay results demonstrated that most cinnamic acid derivatives had excellent antiviral competence toward tobacco mosaic virus (TMV) in vivo, especially compound A5 (median effective concentration [EC50 ] = 287.7 μg mL-1 ), which had a notable protective effect against TMV when compared with the commercial virucide ribavirin (EC50 = 622.0 μg mL-1 ). In addition, compound A17 had a protective efficiency of 84.3% at 200 μg mL-1 against Xac in plants. Given these outstanding results, the engineered title compounds could be regarded as promising leads for controlling plant virus and bacterial diseases. Preliminary mechanistic studies suggest that compound A5 could enhance the host's defense responses by increasing the activity of defense enzymes and upregulating defense genes, thereby suppressing phytopathogen invasion. CONCLUSION This research lays a foundation for the practical application of cinnamic acid derivatives containing diverse building blocks with alternative linking patterns in pesticide exploration. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bin-Xin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhen-Xing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Shuai-Shuai Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jie Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Pei-Yi Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Bing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Jin J, Shen T, Shu L, Huang Y, Deng Y, Li B, Jin Z, Li X, Wu J. Recent Achievements in Antiviral Agent Development for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1291-1309. [PMID: 36625507 DOI: 10.1021/acs.jafc.2c07315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
16
|
Discovery of Hyrtinadine A and Its Derivatives as Novel Antiviral and Anti-Phytopathogenic-Fungus Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238439. [PMID: 36500532 PMCID: PMC9738573 DOI: 10.3390/molecules27238439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Plant diseases caused by viruses and fungi have a serious impact on the quality and yield of crops, endangering food security. The use of new, green, and efficient pesticides is an important strategy to increase crop output and deal with the food crisis. Ideally, the best pesticide innovation strategy is to find and use active compounds from natural products. Here, we took the marine natural product hyrtinadine A as the lead compound, and designed, synthesized, and systematically investigated a series of its derivatives for their antiviral and antifungal activities. Compound 8a was found to have excellent antiviral activity against the tobacco mosaic virus (TMV) (inactivation inhibitory effect of 55%/500 μg/mL and 19%/100 μg/mL, curative inhibitory effect of 52%/500 μg/mL and 22%/100 μg/mL, and protection inhibitory effect of 57%/500 μg/mL and 26%/100 μg/mL) and emerged as a novel antiviral candidate. These compound derivatives displayed broad-spectrum fungicidal activities against 14 kinds of phytopathogenic fungi at 50 μg/mL and the antifungal activities of compounds 5c, 5g, 6a, and 6e against Rhizoctonia cerealis are higher than that of the commercial fungicide chlorothalonil. Therefore, this study could lay a foundation for the application of hyrtinadine A derivatives in plant protection.
Collapse
|
17
|
Sharma S, Utreja D. Synthesis and antiviral activity of diverse heterocyclic scaffolds. Chem Biol Drug Des 2022; 100:870-920. [PMID: 34551197 DOI: 10.1111/cbdd.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic moieties form a major part of organic chemistry as they are widely distributed in nature and have wide scale practical applications ranging from extensive clinical use to diverse fields such as medicine, agriculture, photochemistry, biocidal formulations, and polymer science. By virtue of their therapeutic properties, they could be employed in combating many infectious diseases. Among the common infectious diseases, viral infections are of great public health importance worldwide. Thus, there is an urgent need for the discovery and development of antiviral drugs and clinical methods to prevent various viral infections so as to increase the life expectancy. This review presents the comprehensive overview of the synthesis and antiviral activity of different heterocyclic compounds 2015 onwards, which aids in present knowledge and helps the researchers and other stakeholders to explore their field.
Collapse
Affiliation(s)
- Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Divya Utreja
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
18
|
Ni W, Wang L, Song H, Liu Y, Wang Q. Synthesis and Evaluation of 11-Butyl Matrine Derivatives as Potential Anti-Virus Agents. Molecules 2022; 27:7563. [PMID: 36364389 PMCID: PMC9658933 DOI: 10.3390/molecules27217563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Matrine derivatives were reported to have various biological activities, especially the ester, amide or sulfonamide derivatives of matrine deriving from the hydroxyl or carboxyl group at the end of the branch chain after the D ring of matrine is opened. In this work, to investigate whether moving away all functional groups from the C-11 branch chain could have an impact on the bioactivities, such as anti-tobacco mosaic virus (TMV), insecticidal and fungicidal activities, a variety of N-substituted-11-butyl matrine derivatives were synthesized. The obtained bioassay result showed that most N-substituted-11-butyl matrine derivatives had obviously enhanced anti-TMV activity compared with matrine, especially many compounds had good inhibitory activity close to that of commercialized virucide Ningnanmycin (inhibition rate 55.4, 57.8 ± 1.4, 55.3 ± 0.5 and 60.3 ± 1.2% at 500 μg/mL; 26.1, 29.7 ± 0.2, 24.2 ± 1.0 and 27.0 ± 0.3% at 100 μg/mL, for the in vitro activity, in vivo inactivation, curative and protection activities, respectively). Notably, N-benzoyl (7), N-benzyl (16), and N-cyclohexylmethyl-11-butyl (19) matrine derivatives had higher anti-TMV activity than Ningnanmycin at both 500 and 100 μg/mL for the four test modes, showing high potential as anti-TMV agent. Furthermore, some compounds also showed good fungicidal activity or insecticidal activity.
Collapse
Affiliation(s)
| | | | | | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Zhang H, Wang Z, Yao H, Jiang L, Tong J. Intramammary infusion of matrine-chitosan hydrogels for treating subclinical bovine mastitis -effects on milk microbiome and metabolites. Front Microbiol 2022; 13:950231. [PMID: 36204605 PMCID: PMC9530655 DOI: 10.3389/fmicb.2022.950231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bovine metabolism undergoes significant changes during subclinical mastitis, but the relevant molecular mechanisms have not been elucidated. In this study we investigated the changes in milk microbiota and metabolites after intramammary infusion of matrine-chitosan hydrogels (MCHs) in cows with subclinical mastitis. Methods Infusions were continued for 7 days, and milk samples were collected on days 1 and 7 for microbiome analysis by 16S rRNA gene sequencing and metabolite profiling by liquid chromatography-mass spectrometry. Results MCHs significantly decreased the somatic cell count on day 7 compared to day 1, and the Simpson index indicated that microbial diversity was significantly lower on day 7. The relative abundance of Aerococcus, Corynebacterium_1, Staphylococcus and Firmicutes was significantly decreased on day 7, while Proteobacteria increased. In the milk samples, we identified 74 differentially expressed metabolites. The MCHs infusion group had the most significantly upregulated metabolites including sphingolipids, glycerophospholipids, flavonoids and fatty acyls. The mammary gland metabolic pathways identified after MCHs treatment were consistent with the known antimicrobial and anti-inflammatory properties of matrine that are associated with glycerophospholipid metabolism and the sphingolipid metabolic signaling pathways. Conclusion These insights into the immunoregulatory mechanisms and the corresponding biological responses to matrine demonstrate its potential activity in mitigating the harmful effects of bovine mastitis.
Collapse
Affiliation(s)
| | | | | | - Linshu Jiang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jinjin Tong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
20
|
Chen J, Luo X, Chen Y, Wang Y, Peng J, Xing Z. Recent Research Progress: Discovery of Anti-Plant Virus Agents Based on Natural Scaffold. Front Chem 2022; 10:926202. [PMID: 35711962 PMCID: PMC9196591 DOI: 10.3389/fchem.2022.926202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Plant virus diseases, also known as “plant cancers”, cause serious harm to the agriculture of the world and huge economic losses every year. Antiviral agents are one of the most effective ways to control plant virus diseases. Ningnanmycin is currently the most successful anti-plant virus agent, but its field control effect is not ideal due to its instability. In recent years, great progress has been made in the research and development of antiviral agents, the mainstream research direction is to obtain antiviral agents or lead compounds based on structural modification of natural products. However, no antiviral agent has been able to completely inhibit plant viruses. Therefore, the development of highly effective antiviral agents still faces enormous challenges. Therefore, we reviewed the recent research progress of anti-plant virus agents based on natural products in the past decade, and discussed their structure-activity relationship (SAR) and mechanism of action. It is hoped that this review can provide new inspiration for the discovery and mechanism of action of novel antiviral agents.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Jixiang Chen,
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ju Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhifu Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
21
|
Zhao L, Hu D, Wu Z, Wei C, Wu S, Song B. Coumarin Derivatives Containing Sulfonamide and Dithioacetal Moieties: Design, Synthesis, Antiviral Activity, and Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5773-5783. [PMID: 35532345 DOI: 10.1021/acs.jafc.2c00672] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cucumber mosaic virus (CMV) is currently a known plant virus with the most hosts, broadest distribution, and economic hazard. To develop new antiviral drugs against this serious virus, a new range of coumarin derivatives containing sulfonamide and dithioacetal structures were designed and synthesized, and their anti-CMV activities were detected by the half-leaf dead spot method. The results of the biological activity assay showed that most of the compounds exhibited outstanding anti-CMV activity. Especially, compound C23 displayed the optimal in vivo anti-CMV activity, with an EC50 value of 128 μg/mL, which was remarkably better than that of COS (781 μg/mL) and ningnanmycin (436 μg/mL). Excitingly, we found that compound C23 could be a promising plant activator that significantly increased defense-related enzyme activities and the tobacco chlorophyll content. Furthermore, compound C23 enhanced defense responses against viral infection by inducing the abscisic acid (ABA) pathway in tobacco. This work established a basis for multifunction pesticide discovery involving mechanism of action study and structure optimization.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zengxue Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chunle Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shang Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
22
|
Rani M, Utreja D, Sharma S. Role of Indole Derivatives in Agrochemistry: Synthesis and Future Insights. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220426103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Heterocycles constitute a wider class of organic compounds which contribute significantly in every facet of pure and applied chemistry. Indole, one of the bicyclic heterocyclic compounds containing nitrogen atom, witnessed unparalleled biological activity such as antiviral, antibacterial, anticancer, anti-depressant and antifungal activities. Different biological activities exhibited by indole derivatives provide the impulsion to explore its activity against anti-phytopathogenic microbes to save the plants from pests and disease, as food security will once again become a rigid demand. This review mainly focuses on various methods related to the synthesis of indole derivatives and its role in agriculture.
Collapse
Affiliation(s)
- Manisha Rani
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Shivali Sharma
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| |
Collapse
|
23
|
Wang Y, Mu Y, Hu X, Zhang C, Gao Y, Ma Z, Feng J, Liu X, Lei P. Indole/Tetrahydroquinoline as Renewable Natural Resource-Inspired Scaffolds in the Devising and Preparation of Potential Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4582-4590. [PMID: 35385275 DOI: 10.1021/acs.jafc.1c07879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a continuous effort toward developing novel and highly efficient agrochemicals for integrated management of crop pathogens, two series of oxime ester derivatives from indole and tetrahydroquinoline natural scaffolds were prepared. Guided by the preliminary inhibition rates against ubiquitous and representative fungi, the antifungal profile of the target compounds against Valsa mali was intensively and extensively studied. The tetrahydroquinoline-based derivatives 12a-12r exerted a promising inhibition effect, especially against V. mali. The remarkable compounds 12p (R = 4-OCF3) and 12r (R = 4-OBn) with EC50 values of 0.81 and 0.47 μg/mL, respectively, have a far more prominent activity than commercial fungicide trifloxystrobin. The biochemistry and physiology responses of V. mali after treatment with target compound 12p was examined, and the fruit body production, hyphae morphology, and organelles were profoundly affected. Moreover, the curative effects of compound 12p on apple detached branches and leaves were 57.69 and 64.84% at 100 μg/mL, respectively, which were even superior to that of trifloxystrobin. Meanwhile, the three-dimensional quantitative structure-activity relationship model [comparative molecular field analysis (CoMFA): q2 = 0.823, r2 = 0.924, F = 189.781, and standard error of estimation (SEE) = 0.138 and comparative molecular similarity index analysis (CoMSIA): q2 = 0.795, r2 = 0.904, F = 145.644, and SEE = 0.156] indicated that the antifungal activity of target compounds was facilitated by crucial structural factors, which would render inspiration for further design and discovery of novel fungicidal candidates.
Collapse
Affiliation(s)
- Yujia Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yali Mu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiatong Hu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caixia Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Lei
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
24
|
Frejat FOA, Cao Y, Wang L, Zhai H, Abdelazeem AH, Gomaa HAM, Youssif BGM, Wu C. New 1,2,4-oxadiazole/pyrrolidine hybrids as topoisomerase IV and DNA gyrase inhibitors with promising antibacterial activity. Arch Pharm (Weinheim) 2022; 355:e2100516. [PMID: 35363388 DOI: 10.1002/ardp.202100516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
A series of hybridized pyrrolidine compounds with a 1,2,4-oxadiazole moiety were synthesized to develop effective molecules against the enzymes DNA gyrase and topoisomerase IV (Topo IV). Compounds 8-20 were developed based on a previously disclosed series of compounds from our lab, but with small structural modifications in the hopes of increasing the compounds' biological activity. In comparison to novobiocin, with IC50 = 170 nM, the findings of the DNA gyrase inhibitory assay revealed that compounds 16 and 17 were the most potent of all synthesized derivatives, with IC50 values of 180 and 210 nM, respectively. Compound 17 had the strongest inhibitory effect against Escherichia coli Topo IV of all the synthesized compounds, with an IC50 value of 13 µM, which was comparable to novobiocin (IC50 = 11 µM). Therefore, hybrids 16 and 17 appeared to be potential dual-target inhibitors. In the minimal inhibitory concentration (MIC) assays, compound 17 outperformed ciprofloxacin against E. coli, with an MIC of 55 ng/ml, compared to 60 ng/ml for ciprofloxacin. Finally, the docking study, along with the in vitro experiments, supports our promising approach to effectively develop potent leads for further optimization as dual DNA gyrase and Topo IV inhibitors.
Collapse
Affiliation(s)
- Firas O A Frejat
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Yaquan Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Lihong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Hongjin Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Pharmacy Department, College of Pharmacy, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| |
Collapse
|
25
|
Dong J, Gao W, Li K, Hong Z, Tang L, Han L, Wang Z, Fan Z. Design, Synthesis, and Biological Evaluation of Novel Psoralen-Based 1,3,4-Oxadiazoles as Potent Fungicide Candidates Targeting Pyruvate Kinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3435-3446. [PMID: 35271258 DOI: 10.1021/acs.jafc.1c07911] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pyruvate kinase (PK) has been considered as a promising fungicide target discovered in our previous studies. Natural compounds are important sources for discovery and development of new pesticides. To continue our ongoing studies on the discovery of novel PK-targeted fungicides, a series of novel psoralen derivatives including a 1,3,4-oxadiazole moiety were designed by a computer-aided pesticide molecular design method, synthesized, and evaluated for their fungicidal activity. The bioassay results indicated that compounds 11d, 11e, 11g, 11i, and 12a showed excellent in vitro fungicidal activity against Botrytis cinerea with EC50 values of 4.8, 3.3, 6.3, 5.4, and 3.9 μg/mL, respectively. They were more active than the corresponding positive control YZK-C22 [3-(4-methyl-1,2,3-thiadiazol-5-yl)-6-(trichloromethyl)-[1,2,4]-triazolo-[3,4-b][1,3,4]-thiadiazole] (with an EC50 value of 13.4 μg/mL). Compounds 11g and 11i displayed promising in vivo fungicidal activity against B. cinerea with 80 and 70% inhibition at a concentration of 200 μg/mL, respectively. They possessed much higher fungicidal activity than the positive control psoralen and comparable activity with the positive control pyrisoxazole. Enzymatic assays indicated that 11i showed good BcPK inhibition with an IC50 value of 39.6 μmol/L, comparable to the positive control YZK-C22 (32.4 μmol/L). Molecular docking provided a possible binding mode of 11i in the BcPK active site. Our studies suggested that the psoralen-based 1,3,4-oxadiazole 11i could be used as a new fungicidal lead targeting PK for further structural optimization.
Collapse
Affiliation(s)
- Jingyue Dong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zeyu Hong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lijun Han
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Zhihong Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
26
|
Frejat FOA, Cao Y, Zhai H, Abdel-Aziz SA, Gomaa HA, Youssif BG, Wu C. Novel 1,2,4-oxadiazole/pyrrolidine hybrids as DNA gyrase and topoisomerase IV inhibitors with potential antibacterial activity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
27
|
Natural-product-based pesticides: Semisynthesis, structural elucidation, and evaluation of new cholesterol-matrine conjugates as pesticidal agents. Bioorg Med Chem Lett 2021; 50:128350. [PMID: 34478839 DOI: 10.1016/j.bmcl.2021.128350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022]
Abstract
To develop new potential pesticide candidates from low value-added natural bioactive products, a series of new cholesterol-matrine conjugates (I(a-e)-IV(a-e)) were prepared from two lead compounds cholesterol and matrine. Against Mythimna separata Walker, compound IVa exhibited 3.0 and 2.6 folds promising insecticidal activity of cholesterol and matrine, respectively; against Aphis citricola Van der Goot, compound IVd showed 4.3 and 2.2 folds potent aphicidal activity of their precursors; notably, it also showed good control effects in the greenhouse; against Plutella xylostella Linnaeus at a dose of 20 μg/nymph, compound IIIe exhibited 2.8 and 2.0 folds oral toxicity of cholesterol and matrine, respectively. Compounds IIIe, IVd and IVe can be used as the leads for further structural optimization as the insecticidal and aphicidal agents.
Collapse
|
28
|
Wang T, Li L, Zhou Y, Lu A, Li H, Chen J, Duan Z, Wang Q. Structural Simplification of Marine Natural Products: Discovery of Hamacanthin Derivatives Containing Indole and Piperazinone as Novel Antiviral and Anti-phytopathogenic-fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10093-10103. [PMID: 34450009 DOI: 10.1021/acs.jafc.1c04098] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increasing severity of plant diseases and the emergence of pathogen resistance, there is an urgent need for the development of new efficient and environment-friendly pesticides. Marine natural product (MNP) resources are rich and diverse. Structural simplification based on MNPs is an important strategy to find novel pesticide candidates. In this work, the marine natural product 6″-debromohamacanthin A (1a) was efficiently prepared and selected as the parent structure. A series of hamacanthin derivatives were designed, synthesized, and studied on the antiviral and antifungal activities. Most of these compounds displayed higher antiviral activities than ribavirin. The antiviral activities of compounds 1a and 13e-13h are similar to or higher than that of ningnanmycin (perhaps the most efficient anti-plant-virus agent). Compound 13h was selected for further antiviral mechanism research via transmission electron microscopy, molecular docking, and fluorescence titration. The results showed that compound 13h could bind to TMV CP and interfere with the assembly process of TMV CP and RNA. In addition, these hamacanthin derivatives also exhibited broad-spectrum inhibitory effects against eight common agricultural pathogens. Compounds 1a, 12b, and 12f with excellent fungicidal activities can be considered as new fungicidal candidates for further research. These results provide a basis for the application of hamacanthin alkaloids in crop protection.
Collapse
Affiliation(s)
- Tienan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Lin Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanan Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hongyan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jianxin Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhongyu Duan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Rosic NN. Recent advances in the discovery of novel marine natural products and mycosporine-like amino acid UV-absorbing compounds. Appl Microbiol Biotechnol 2021; 105:7053-7067. [PMID: 34480237 PMCID: PMC8416575 DOI: 10.1007/s00253-021-11467-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/27/2022]
Abstract
Abstract Bioactive compounds from marine environments represent a rich source of bioproducts for potential use in medicine and biotechnology. To discover and identify novel marine natural products (MNPs), evaluating diverse biological activities is critical. Increased sensitivity and specificity of omics technologies, especially next-generation high-throughput sequencing combined with liquid chromatography-mass spectrometry and nuclear magnetic resonance, are speeding up the discovery of novel bioactive compounds. Mycosporine-like amino acids (MAAs) isolated from many marine microorganisms are among highly promising MNPs characterized by ultraviolet radiation (UV) absorbing capacities and are recognized as a potential source of ecologically friendly sunscreens. MAAs absorb damaging UV radiation with maximum absorption in the range of 310–360 nm, including both UVA and UVB ranges. MAAs are also characterized by other biological activities such as anti-oxidant, anti-cancer, and anti-inflammatory activities. The application of modern omics approaches promoted some recent developments in our understanding of MAAs’ functional significance and diversity. This review will summarize the various modern tools that could be applied during the identification and characterization of MNPs, including MAAs, to further their innovative applications. Key points • New omics technologies are speeding up the discovery of novel bio-products • The vast diversity of bioactive capacities of marine natural products described • Marine microorganisms as a source of environmentally friendly sunscreens
Collapse
Affiliation(s)
- Nedeljka N Rosic
- Faculty of Health, Southern Cross University, Southern Cross Drive, Gold Coast, QLD, 4225, Australia. .,Marine Ecology Research Centre, Southern Cross University, Military Rd, East Lismore, Lismore, NSW, 2480, Australia.
| |
Collapse
|
30
|
Long ZQ, Yang LL, Zhang JR, Liu ST, Wang PY, Zhu JJ, Shao WB, Liu LW, Yang S. Fabrication of Versatile Pyrazole Hydrazide Derivatives Bearing a 1,3,4-Oxadiazole Core as Multipurpose Agricultural Chemicals against Plant Fungal, Oomycete, and Bacterial Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8380-8393. [PMID: 34296859 DOI: 10.1021/acs.jafc.1c02460] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing multipurpose agricultural chemicals is appealing in crop protection, thus eventually realizing the reduction and efficient usage of pesticides. Herein, an array of versatile pyrazole hydrazide derivatives bearing a 1,3,4-oxadiazole core were initially synthesized and biologically evaluated the antifungal, antioomycetes, and antibacterial activities. In addition, the pyrazole ring was replaced by the correlative pyrrole, thiazole, and indole scaffolds to extend the molecular diversity. The results showed that most of these hybrid compounds were empowered with multifunctional bioactivities, which are exemplified by compounds a1-a6, b1-b3, b7, b10, b13, and b18. For the antifungal activity, the minimal EC50 values could afford 0.47 (a2), 1.05 (a2), 0.65 (a1), and 1.32 μg/mL (b3) against the corresponding fungi Gibberella zeae (G. z.), Fusarium oxysporum, Botryosphaeria dothidea, and Rhizoctonia solani. In vivo pot experiments against corn scab (caused by G. z.) revealed that the compound a2 was effective with protective and curative activities of 90.2 and 86.3% at 200 μg/mL, which was comparable to those of fungicides boscalid and fluopyram. Further molecular docking study and enzymatic activity analysis (IC50 = 3.21 μM, a2) indicated that target compounds were promising succinate dehydrogenase inhibitors. Additionally, compounds b2 and a4 yielded superior anti-oomycete and antibacterial activities toward Phytophora infestins and Xanthomonas oryzae pv. oryzae with EC50 values of 2.92 and 8.43 μg/mL, respectively. In vivo trials against rice bacterial blight provided the control efficiency within 51.2-55.3% (a4) at 200 μg/mL, which were better than that of bismerthiazol. Given their multipurpose characteristics, these structures should be positively explored as agricultural chemicals.
Collapse
Affiliation(s)
- Zhou-Qing Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lin-Li Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jun-Rong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shi-Tao Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jian-Jun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
31
|
Syahputra G, Gustini N, Bustanussalam B, Hapsari Y, Sari M, Ardiansyah A, Bayu A, Putra MY. Molecular docking of secondary metabolites from Indonesian marine and terrestrial organisms targeting SARS-CoV-2 ACE-2, M pro, and PL pro receptors. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e68432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With the uncontrolled spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), development and distribution of antiviral drugs and vaccines have gained tremendous importance. This study focused on two viral proteases namely main protease (Mpro) and papain-like protease (PLpro) and human angiotensin-converting enzyme (ACE-2) to identify which of these are essential for viral replication. We screened 102 secondary metabolites against SARS-CoV-2 isolated from 36 terrestrial plants and 36 marine organisms from Indonesian biodiversity. These organisms are typically presumed to have antiviral effects, and some of them have been used as an immunomodulatory activity in traditional medicine. For the molecular docking procedure to obtain Gibbs free energy value (∆G), toxicity, ADME and Lipinski, AutoDock Vina was used. In this study, five secondary metabolites, namely corilagin, dieckol, phlorofucofuroeckol A, proanthocyanidins, and isovitexin, were found to inhibit ACE-2, Mpro, and PLpro receptors in SARS-CoV-2, with a high affinity to the same sites of ptilidepsin, remdesivir, and chloroquine as the control molecules. This study was delimited to molecular docking without any validation by simulations concerned with molecular dynamics. The interactions with two viral proteases and human ACE-2 may play a key role in developing antiviral drugs for five active compounds. In future, we intend to investigate antiviral drugs and the mechanisms of action by in vitro study.
Collapse
|
32
|
Guo S, He F, Song B, Wu J. Future direction of agrochemical development for plant disease in China. Food Energy Secur 2021. [DOI: 10.1002/fes3.293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| | - Feng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| |
Collapse
|
33
|
Song C, Yang J, Zhang M, Ding G, Jia C, Qin J, Guo L. Marine Natural Products: The Important Resource of Biological Insecticide. Chem Biodivers 2021; 18:e2001020. [PMID: 33855815 DOI: 10.1002/cbdv.202001020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Due to the unique environmental conditions and vast territory, marine habitat breeds more abundant biological resources than terrestrial environment. Massive marine biological species provide valuable resources for obtaining a large number of natural products with diverse structure and excellent activity. In recent years, new breakthroughs have been made in the application of marine natural products in drug development. In addition, the use of marine natural products to develop insecticides and other pesticide products has also been widely concerned. Targeting marine plants, animals, and microorganisms, we have collected information on marine natural products with insecticidal activity for nearly decade, including alkaloids, terpenes, flavonoids and phenols fatty acids, peptides, and proteins, et al. In addition, some active crude extracts are also included. This review describes the insecticidal activities of marine natural products and their broad applications for future research in agriculture and health.
Collapse
Affiliation(s)
- Chenggang Song
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Jian Yang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100193, P. R. China
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Gang Ding
- Institute of Medicinal Plant Department, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P. R. China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100193, P. R. China
| |
Collapse
|
34
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
35
|
Li X, Zhao H, Chen X. Screening of Marine Bioactive Antimicrobial Compounds for Plant Pathogens. Mar Drugs 2021; 19:69. [PMID: 33525648 PMCID: PMC7912171 DOI: 10.3390/md19020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Plant diseases have been threatening food production. Controlling plant pathogens has become an important strategy to ensure food security. Although chemical control is an effective disease control strategy, its application is limited by many problems, such as environmental impact and pathogen resistance. In order to overcome these problems, it is necessary to develop more chemical reagents with new functional mechanisms. Due to their special living environment, marine organisms have produced a variety of bioactive compounds with novel structures, which have the potential to develop new fungicides. In the past two decades, screening marine bioactive compounds to inhibit plant pathogens has been a hot topic. In this review, we summarize the screening methods of marine active substances from plant pathogens, the identification of marine active substances from different sources, and the structure and antibacterial mechanism of marine active natural products. Finally, the application prospect of marine bioactive substances in plant disease control was prospected.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
36
|
Wang W, Zhang S, Wang J, Wu F, Wang T, Xu G. Bioactivity-Guided Synthesis Accelerates the Discovery of 3-(Iso)quinolinyl-4-chromenones as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:491-500. [PMID: 33382606 DOI: 10.1021/acs.jafc.0c06700] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fungal infections could cause tremendous decreases in crop yield and quality. Natural products, including flavonoids and (iso)quinolines, have always been an important source for lead discovery in medicinal and agricultural chemistry. To promote the discovery and development of new fungicides, a series of 3-(iso)quinolinyl-4-chromenone derivatives was designed and synthesized by the active substructure splicing principle and evaluated for their antifungal activities. The lead optimization was guided by bioactivity. The bioassay data revealed that the 3-quinolinyl-4-chromenone 13 showed significant in vitro activities against S. sclerotiorum, V. mali, and B. cinerea with EC50 values of 3.65, 2.61, and 2.32 mg/L, respectively. The 3-isoquinolinyl-4-chromenone 25 exhibited excellent in vitro activity against S. sclerotiorum with an EC50 value of 1.94 mg/L, close to that of commercial fungicide chlorothalonil (EC50 = 1.57 mg/L) but lower than that of boscalid (EC50 = 0.67 mg/L). For V. mali and B. cinerea, 3-isoquinolinyl-4-chromenone 25 (EC50 = 1.56, 1.54 mg/L) showed significantly higher activities than chlorothalonil (EC50 = 11.24, 2.92 mg/L). In addition, in vivo experiments proved that compounds 13 and 25 have excellent protective fungicidal activities with inhibitory rates of 88.24 and 94.12%, respectively, against B. cinerea at 50 mg/L, while the positive controls chlorothalonil and boscalid showed inhibitory rates of 76.47 and 97.06%, respectively. Physiological and biochemical studies showed that the primary action of mechanism of compounds 13 and 25 on S. sclerotiorum and B. cinerea may involve changing mycelial morphology and increasing cell membrane permeability. In addition, compound 13 may also affect the respiratory metabolism of B. cinerea. This study revealed that compounds 13 and 25 could be promising candidates for the development of novel fungicides in crop protection.
Collapse
Affiliation(s)
- Wei Wang
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi, China
| | - Shan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Jianhua Wang
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi, China
| | - Furan Wu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Gong Xu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Yangling, 712100 Shaanxi, China
| |
Collapse
|
37
|
Yang S, Wang T, Zhou Y, Shi L, Lu A, Wang Z. Discovery of Cysteine and Its Derivatives as Novel Antiviral and Antifungal Agents. Molecules 2021; 26:E383. [PMID: 33450940 PMCID: PMC7828423 DOI: 10.3390/molecules26020383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022] Open
Abstract
Based on the structure of the natural product cysteine, a series of thiazolidine-4-carboxylic acids were designed and synthesized. All target compounds bearing thiazolidine-4-carboxylic acid were characterized by 1H-NMR, 13C-NMR, and HRMS techniques. The antiviral and antifungal activities of cysteine and its derivatives were evaluated in vitro and in vivo. The results of anti-TMV activity revealed that all compounds exhibited moderate to excellent activities against tobacco mosaic virus (TMV) at the concentration of 500 μg/mL. The compounds cysteine (1), 3-4, 7, 10, 13, 20, 23, and 24 displayed higher anti-TMV activities than the commercial plant virucide ribavirin (inhibitory rate: 40, 40, and 38% at 500 μg/mL for inactivation, curative, and protection activity in vivo, respectively), especially compound 3 (inhibitory rate: 51%, 47%, and 49% at 500 μg/mL for inactivation, curative, and protection activity in vivo, respectively) with excellent antiviral activity emerged as a new antiviral candidate. Antiviral mechanism research by TEM exhibited that compound 3 could inhibit virus assembly by aggregated the 20S protein disk. Molecular docking results revealed that compound 3 with higher antiviral activities than that of compound 24 did show stronger interaction with TMV CP. Further fungicidal activity tests against 14 kinds of phytopathogenic fungi revealed that these cysteine derivatives displayed broad-spectrum fungicidal activities. Compound 16 exhibited higher antifungal activities against Cercospora arachidicola Hori and Alternaria solani than commercial fungicides carbendazim and chlorothalonil, which emerged as a new candidate for fungicidal research.
Collapse
Affiliation(s)
- Shan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Tienan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Yanan Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Li Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
38
|
Kamel MM, Abdel-Hameid MK, El-Nassan HB, El-Khouly EA. Synthesis and Cytotoxic Activity of Novel Mono- and Bis-Indole Derivatives: Analogues of Marine Alkaloid Nortopsentin. Med Chem 2021; 17:779-789. [PMID: 32386499 DOI: 10.2174/1573406416666200509235305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The oceans cover more than 70% of the earth's surface, which represents over 95% of the biosphere. Therefore, oceans provide a wealth of marine invertebrates, especially sponges, ascidians, bryozoans and molluscs that produce structurally unique bioactive metabolites such as alkaloids. The bioactive scaffolds of marine alkaloids exhibit cytotoxic activities against human cancer cell lines. OBJECTIVE To prepare analogues of the marine alkaloid nortopsentin [having 2,4-bis(3'- indolyl)imidazole scaffold] as cytotoxic agents via structural modification of the core imidazole ring and one of the side indole rings. METHODS Four series of nortopsentin analogues were synthesized in which the imidazole ring was replaced by pyrazole, pyrido[2,3-d]pyrimidinone and pyridine rings. Furthermore, one of the side indole rings was replaced by substituted phenyl moiety. The target compounds were tested for their in vitro cytotoxic activity against HCT-116 cell-line and the most potent compound was subjected to further investigation on its effect on HCT-116 cell cycle progression. RESULTS The cytotoxic screening of the synthesized compounds revealed that bis-indolylpyridinedicarbonitriles 8a-d exhibited the most potent cytotoxic activity with IC50=2.6-8.8 μM. Compound 8c was further tested by flow cytometry analysis to explore its effect on HCT-116 cell cycle progression that, in turn, indicated its anti-proliferative effect. CONCLUSION Marine-derived bis-indole alkaloids (nortopsentins) have emerged as a new class of indole-based antitumor agents. The design of new analogues involved several modifications in order to obtain more selective and potent cytotoxic agents. Indole derivatives bearing a pyridine core displayed more potent cytotoxic activity than those containing pyrido[2,3-d]pyrimidin-4(1H)-one moiety.
Collapse
Affiliation(s)
- Mona Monir Kamel
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | - Hala Bakr El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Eman Adel El-Khouly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
39
|
Mekhemer IA, Gaber AAM, Aly MMM. Production of Amidinyl Radicals via UV-Vis-Light Promoted Reduction of N-Arylthiophene-2-carboxamidoximes and Application to the Preparation of Some New N-Arylthiophene-2-carboxamidines. ACS OMEGA 2020; 5:28712-28721. [PMID: 33195924 PMCID: PMC7659145 DOI: 10.1021/acsomega.0c03987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
A modern method for the preparation of some new N-arylthiophene-2-carboxamidines via amidinyl radicals generated using UV-vis-light promoting the reduction of N-arylthiophene-2-carboxamidoximes without any catalyst in a short amount of time, highly straight forward, and in an efficient manner is described. This method defeats the flaws of the conventional methods for the reduction of amidoxime derivatives to amidine derivatives, which require harsh conditions such as using a strong acid, high temperature, and expensive catalysts. Benzo[d]imidazoles, benzo[d]oxazoles, and amides can also be synthesized by applying this method. The photoproducts were analyzed by various spectroscopic and analytical techniques, including thin-layer chromatography, column chromatography, high-performance liquid chromatography, gas chromatography/mass spectrometry, IR, 1H NMR, 13C NMR, and MS. Notably, the chromatographic analyses proved that the best time for the production of N-arylthiophene-2-carboxamidines is 20 min. The reaction mechanism comprising pathways and intermediates was also suggested via the homolysis of N-O and C-N bonds.
Collapse
|
40
|
Riccio G, Ruocco N, Mutalipassi M, Costantini M, Zupo V, Coppola D, de Pascale D, Lauritano C. Ten-Year Research Update Review: Antiviral Activities from Marine Organisms. Biomolecules 2020; 10:biom10071007. [PMID: 32645994 PMCID: PMC7407529 DOI: 10.3390/biom10071007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023] Open
Abstract
Oceans cover more than 70 percent of the surface of our planet and are characterized by huge taxonomic and chemical diversity of marine organisms. Several studies have shown that marine organisms produce a variety of compounds, derived from primary or secondary metabolism, which may have antiviral activities. In particular, certain marine metabolites are active towards a plethora of viruses. Multiple mechanisms of action have been found, as well as different targets. This review gives an overview of the marine-derived compounds discovered in the last 10 years. Even if marine organisms produce a wide variety of different compounds, there is only one compound available on the market, Ara-A, and only another one is in phase I clinical trials, named Griffithsin. The recent pandemic emergency caused by SARS-CoV-2, also known as COVID-19, highlights the need to further invest in this field, in order to shed light on marine compound potentiality and discover new drugs from the sea.
Collapse
Affiliation(s)
- Gennaro Riccio
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Nadia Ruocco
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Mirko Mutalipassi
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Maria Costantini
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Valerio Zupo
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Daniela Coppola
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Donatella de Pascale
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Correspondence: ; Tel.: +39-081-5833-221
| |
Collapse
|
41
|
Raclea RC, Natho P, Allen LAT, White AJP, Parsons PJ. Oxidative Deconstruction of Azetidinols to α-Amino Ketones. J Org Chem 2020; 85:9375-9385. [PMID: 32543189 DOI: 10.1021/acs.joc.0c00986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A silver-mediated synthesis of α-amino ketones via the oxidative deconstruction of azetidinols has been developed using a readily scalable protocol with isolated yields up to 80%. The azetidinols are easily synthesized in one step and can act as protecting groups for these pharmaceutically relevant synthons. Furthermore, mechanistic insights are presented and these data have revealed that the transformation is likely to proceed through the β-scission of an alkoxy radical, followed by oxidation and C-N cleavage of the resulting α-amido radical.
Collapse
Affiliation(s)
- Robert-Cristian Raclea
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, U.K
| | - Philipp Natho
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, U.K
| | - Lewis A T Allen
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, U.K
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, U.K
| | - Philip J Parsons
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, U.K
| |
Collapse
|
42
|
Wei C, Zhao L, Sun Z, Hu D, Song B. Discovery of novel indole derivatives containing dithioacetal as potential antiviral agents for plants. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104568. [PMID: 32448422 DOI: 10.1016/j.pestbp.2020.104568] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 05/24/2023]
Abstract
Thirty unreported indole derivatives containing dithioacetal moiety were synthesized and evaluated for anti-plant viral activity. Bioassay results displayed that some of the target compounds showed better activities against tobacco mosaic virus (TMV) than the commercial Ribavirin in vivo. In particular, anti-TMV curative, protective and inactivating activity of 4p were 55.1, 57.2, and 80.3%, respectively, and EC50 value for inactivating activity was 88.5 μg/mL. The observation of transmission electron microscope showed that 4p may have a certain destructive effect on TMV particles. To further study, microscale thermophoresis analysis result also demonstrated that 4p powerfully interacted with TMV coat protein in vitro. Hence, this study provides a strong evidence suporting that indole derivatives might be applied as new antiviral agents.
Collapse
Affiliation(s)
- Chunle Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Lei Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhongrong Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
43
|
Recent Advances in the Synthesis and Biological Applications of Nortopsentin Analogs. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02687-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Zhao L, Zhang J, Liu T, Mou H, Wei C, Hu D, Song B. Design, Synthesis, and Antiviral Activities of Coumarin Derivatives Containing Dithioacetal Structures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:975-981. [PMID: 31891504 DOI: 10.1021/acs.jafc.9b06861] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a series of coumarin derivatives containing dithioacetals were synthesized, characterized, and assessed for their anti-tobacco mosaic virus (TMV) activities. Biological tests showed that most of the title compounds exhibited significant anti-TMV biological activities; in particular, compound b21 showed good inactivating activity anti-TMV, with an EC50 of 54.2 mg/L, superior to that of ribavirin (134.2 mg/L). Transmission electron microscopy analyses showed that compound 21 severely ruptured TMV particles. The interaction of compound b21 with TMV coat protein (TMV CP) was investigated using microscale thermophoresis and molecular docking. Compound b21 exhibited a strong binding ability to TMV CP, with a value of 2.9 μM, superior to ribavirin.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Ting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Honglan Mou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Chunle Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| |
Collapse
|
45
|
Wang T, Yang S, Li H, Lu A, Wang Z, Yao Y, Wang Q. Discovery, Structural Optimization, and Mode of Action of Essramycin Alkaloid and Its Derivatives as Anti-Tobacco Mosaic Virus and Anti-Phytopathogenic Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:471-484. [PMID: 31841334 DOI: 10.1021/acs.jafc.9b06006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant diseases seriously affect crop yield and quality and are difficult to control. Marine natural products (MNPs) have become an important source of drug candidates with new biological mechanisms. Marine natural product essramycin (1) was found to have good anti-tobacco mosaic virus (TMV) and anti-phytopathogenic fungus activities for the first time. A series of essramycin derivatives were designed, synthesized, and evaluated for their bioactivity. Most of these compounds exhibited antiviral effects that are greater than that of the control ribavirin. Compounds 7e and 8f displayed antiviral activities that are greater than that of ningnanmycin (the most widely used antiviral agent at present), thus emerging as novel antiviral lead compounds. As the lead compound, 7e was selected for further antiviral mechanism research. The results indicated that 7e could inhibit virus assembly and promote 20S disk protein aggregation. Fungicidal activity tests against 14 kinds of phytopathogenic fungi revealed that essramycin analogues displayed broad-spectrum fungicidal activities. Compound 5b displayed more than 50% inhibition rate against most of the 14 kinds of phytopathogenic fungi at 50 μg/mL. The current research lays a solid foundation for the application of essramycin alkaloids in crop protection.
Collapse
Affiliation(s)
- Tienan Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Shan Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Hongyan Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Aidang Lu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Yingwu Yao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| |
Collapse
|
46
|
|
47
|
Wei C, Zhang J, Shi J, Gan X, Hu D, Song B. Synthesis, Antiviral Activity, and Induction of Plant Resistance of Indole Analogues Bearing Dithioacetal Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13882-13891. [PMID: 31721582 DOI: 10.1021/acs.jafc.9b05357] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of compounds with potential activity to induce plant resistance was synthesized from indole and thiol compounds and methodically evaluated for antiviral activity. The results indicated that some of the synthesized compounds had high antipotato virus Y (PVY), anticucumber mosaic virus, and antitobacco mosaic virus activities. Notably, compound D21 exhibited the best activity against PVY among these compounds in vivo, and the 50% effective concentrations (EC50) of protection activity is 122 μg/mL, which was distinctively better than the corresponding values for ribavirin (653 μg/mL), Ningnanmycin (464 μg/mL), and Xiangcaoliusuobingmi (279 μg/mL). Interestingly, we found that the protection activity of D21 was associated with improvement of chlorophyll content and defense-related enzyme activities. Moreover, D21 could trigger the malate dehydrogenase (MDH) signaling pathway, as further confirmed by the MDH activity evaluation. Hence, D21 can protect plants against viral activity and has potential as a novel activator for plant resistance induction.
Collapse
Affiliation(s)
- Chunle Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| |
Collapse
|
48
|
Zhao X, Liao A, Zhang F, Zhao Q, Zhou L, Fan J, Zhang Z, Wang Z, Wang Q. Design, synthesis, and bioactivity of nortopsentin analogues containing 1,2,4‐triazole moieties. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xinyu Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin China
| | - Ancai Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin China
| | - Fan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin China
| | - Qi Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin China
| | - Lijia Zhou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin China
| | - Jingjing Fan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin China
| | - Zheng Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin China
| | - Qingmin Wang
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai University Tianjin China
| |
Collapse
|
49
|
Campana R, Sabatini L, Frangipani E. Moulds on cementitious building materials-problems, prevention and future perspectives. Appl Microbiol Biotechnol 2019; 104:509-514. [PMID: 31802168 DOI: 10.1007/s00253-019-10185-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Materials rich in organic and inorganic compounds, such as building materials or paints, represent an excellent substrate for the development of moulds. Several conditions affect mould's growth on cementitious materials, such as nutrient and water availability, temperature, pH and moisture. Microorganisms, and especially moulds, attack these surfaces and contribute to their erosion, thereby reducing the life of the structure itself and negatively affecting human health through inhalation, ingestion and dermal contact with spores. Interventions are based on The European Communities Council Directive 89/106/EEC, that obliges the use of materials, products and building elements that are resistant to fungi and other forms of degradation, and that do not constitute a health risk for users and the environment. This mini-review summarises the current state of problems related to mould growth on cementitious building materials, emphasising new innovative approaches for limiting or contrasting their growth. In particular, the use of nanoparticles and the related nanomaterials as well as the potential use of new "biocides" from natural sources is discussed.
Collapse
Affiliation(s)
- Raffaella Campana
- Department of Biomolecular Sciences, Division of Pharmacology and Hygiene, University of Urbino, Via S. Chiara 27, 61029, Urbino (PU), Italy.
| | - Luigia Sabatini
- Department of Biomolecular Sciences, Division of Pharmacology and Hygiene, University of Urbino, Via S. Chiara 27, 61029, Urbino (PU), Italy
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, Division of Pharmacology and Hygiene, University of Urbino, Via S. Chiara 27, 61029, Urbino (PU), Italy
| |
Collapse
|
50
|
Xu H, Xu M, Sun Z, Li S. Preparation of Matrinic/Oxymatrinic Amide Derivatives as Insecticidal/Acaricidal Agents and Study on the Mechanisms of Action against Tetranychus cinnabarinus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12182-12190. [PMID: 31609606 DOI: 10.1021/acs.jafc.9b05092] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In continuation of our program to develop natural-product-based pesticidal candidates, matrinic/oxymatrinic amides were obtained through structural optimization of matrine. N'-(4-Fluoro)phenyl-N-(4-bromo)phenylsulfonyloxymatrinic amide (IIm) showed potent insecticidal activity against Mythimna separata. N-(Un)substituted phenylsulfonylmatrinic acids (3a-c) exhibited promising acaricidal activity against Tetranychus cinnabarinus. By qRT-PCR analysis of nAChR subunits and AChE genes and determination of AChE activity of (un)treated T. cinnabarinus, it suggested that the open lactam ring of matrine and carboxyl group and (4-methyl)phenylsulfonyl of N-(4-methyl)phenylsulfonylmatrinic acid (3b) were necessary for action with α2, α4, α5, and β3 nAChR subunits; compound 3b was an inhibitor of AChE in T. cinnabarinus, and AChE was one possible target of action in T. cinnabarinus against 3b; and compound 3b may be an antagonist of nAChR and AChE in T. cinnabarinus.
Collapse
Affiliation(s)
- Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
- School of Pharmacy , Liaocheng University , Liaocheng , Shandong Province 252059 , China
| | - Ming Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
| | - Zhiqiang Sun
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
| | - Shaochen Li
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
| |
Collapse
|