1
|
Murphy BÓ, Latimer C, Dobani S, Pourshahidi LK, Fontana M, Ternan NG, McDougall G, Rowland I, Pereira-Caro G, Tuohy KM, Del Rio D, Almutairi TM, Crozier A, Naumovski N, Gill CIR. Microbially mediated phenolic catabolites exert differential genoprotective activities in normal and adenocarcinoma cell lines. Int J Food Sci Nutr 2024; 75:673-686. [PMID: 39261459 DOI: 10.1080/09637486.2024.2397055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Age-associated decline of nuclear factor erythroid 2-related factor 2 (Nrf2) activity and DNA repair efficiency leads to the accumulation of DNA damage and increased risk of cancer. Understanding the mechanisms behind increased levels of damaged DNA is crucial for developing interventions to mitigate age-related cancer risk. Associated with various health benefits, (poly)phenols and their microbially mediated phenolic catabolites represent a potential means to reduce DNA damage. Four colonic-microbiota-derived phenolic catabolites were investigated for their ability to reduce H2O2-induced oxidative DNA damage and modulate the Nrf2-Antixoidant Response Element (ARE) pathway, in normal (CCD 841 CoN) and adenocarcinoma (HT29) colonocyte cell lines. Each catabolite demonstrated significant (p < .001) genoprotective activity and modulation of key genes in the Nrf2-ARE pathway. Overall, the colon-derived phenolic metabolites, when assessed at physiologically relevant concentrations, reduced DNA damage in both normal and adenocarcinoma colonic cells in response to oxidative challenge, mediated in part via upregulation of the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Brian Óg Murphy
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Cheryl Latimer
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Massimilano Fontana
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Gordon McDougall
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Dundee, UK
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Gema Pereira-Caro
- Department of Food Science and Health, IFAPA-Alameda Del Obispo, Córdoba, Spain
| | - Kieran M Tuohy
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Alan Crozier
- Department of Chemistry, King Saud University Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Nenad Naumovski
- School of Rehabilitation and Exercise Sciences, Faculty of Health, University of Canberra, Canberra, Australia
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| |
Collapse
|
2
|
Sabaghi Y, PourFarzad F, Zolghadr L, Bahrami A, Shojazadeh T, Farasat A, Gheibi N. A nano-liposomal carrier containing p-coumaric acid for induction of targeted apoptosis on melanoma cells and kinetic modeling. Biochem Biophys Res Commun 2024; 690:149219. [PMID: 37995451 DOI: 10.1016/j.bbrc.2023.149219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
There has been a growth in the use of plant compounds as biological products for the prevention and treatment of various diseases, including cancer. As a phenolic compound, p-Coumaric acid (p-CA) demonstrates preferrable biological effects such as anti-cancer activities. A nano-liposomal carrier containing p-CA was designed to increase the anticancer effectiveness of this compound on melanoma cells (A375). To determine the characteristics of synthesized liposomes, encapsulation efficiency was measured. In addition, the particle size was measured utilizing DLS, FTIR, and morphology examination using SEM. In vitro release was also studied through the dialysis method, while toxicity was evaluated using the MTT assay. To determine apoptotic characteristics, biotechnology tools like flow cytometry, real time PCR, and atomic force microscopy (AFM) were employed. The findings indicated that in the cells treated with the liposomal form of p-CA, the amount of elastic modulus was higher compared to its free form. Kinetic modeling indicated that the best fitting model was zero-order.
Collapse
Affiliation(s)
- Yalda Sabaghi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farnaz PourFarzad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran.
| | - Azita Bahrami
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Tahereh Shojazadeh
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Alireza Farasat
- Monoclnal Antibodi Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
3
|
Zhang LC, Liu YN, La XQ, Li ST, Wen LN, Liu T, Li HQ, Li AP, Wu H, Wu CX, Li ZY. The bound polyphenols of foxtail millet (Setaria italica) inner shell inhibit breast cancer by promoting lipid accumulation-induced autophagic death. Food Chem Toxicol 2023:113855. [PMID: 37230459 DOI: 10.1016/j.fct.2023.113855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Foxtail millet is a traditional excellent crop with high nutritional value in the world, belong to cereals. The bran of foxtail millet is rich in polyphenol that has antioxidant, anti-inflammatory, and anti-tumorigenic effects. Previously, we extracted bound polyphenols from the inner shell of foxtail millet bran (BPIS). Here, we report that BPIS specifically induced breast cancer cell death and elevated the autophagy level simultaneously. The addition of an autophagy inhibitor blocked BPIS-induced breast cancer cell death, indicating that excessive autophagy induced cell death. Furthermore, oil red O and BODIPY staining also confirmed that lipids, which are important inducers of autophagy, accumulated in breast cancer cells treated with BPIS. Lipidomics research revealed that glycerophospholipids were the main accumulated lipids induced by BPIS. Further study showed that elevated PCYT1A expression was responsible for glycerophospholipid accumulation, and BPIS contained ferulic acid and p-coumaric acid, which induced PCYT1A expression and breast cancer cell death. Collectively, our results revealed that BPIS resulted in autophagic death by enhancing lipid accumulation in breast cancer cells, and BPIS contains ferulic acid and p-coumaric acid, which provided new insights into developing nutraceuticals and drugs for breast cancer patients.
Collapse
Affiliation(s)
- Li-Chao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Ya-Ning Liu
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Xiao-Qin La
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Shuai-Tao Li
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Li-Na Wen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ting Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Han-Qing Li
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Ai-Ping Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Haitao Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Chang-Xin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Zhuo-Yu Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China; Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
4
|
Tehami W, Nani A, Khan NA, Hichami A. New Insights Into the Anticancer Effects of p-Coumaric Acid: Focus on Colorectal Cancer. Dose Response 2023; 21:15593258221150704. [PMID: 36636631 PMCID: PMC9830577 DOI: 10.1177/15593258221150704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Colorectal cancer is considered the second most deadly cancer in the world. Studies have indicated that diet can prevent the risk of developing colorectal cancer. Recently, there has been an increasing interest in polyphenols due to their plausible effect on cancer prevention and treatment. p-Coumaric acid (p-CouA), a phenolic compound, is a cinnamic acid derivative found in several fruits, vegetables, and herbs. A growing body of evidence suggests that p-CouA may be an effective agent for preventing and managing colorectal cancer. In this current review, we briefly highlight the bioavailability of p-CouA. We also provide an up-to-date overview of molecular mechanisms underlying its anticancer effects, focusing on anti-inflammatory and antioxidant potentials, apoptosis induction, and cell cycle blockade. Finally, we discuss the impact of p-CouA on clonogenicity and multidrug resistance of colorectal cancer cells.
Collapse
Affiliation(s)
- Wafâa Tehami
- Laboratory of Saharan Natural Resources, University of Ahmed Draia, Adrar, Algeria,Wafâa Tehami, University of Ahmed Draia, National Road N 6, Adrar 01000, Algeria.
| | - Abdelhafid Nani
- Laboratory of Saharan Natural Resources, University of Ahmed Draia, Adrar, Algeria
| | - Naim A. Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, Dijon, France
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, Dijon, France
| |
Collapse
|
5
|
Cui K, Zhang L, La X, Wu H, Yang R, Li H, Li Z. Ferulic Acid and P-Coumaric Acid Synergistically Attenuate Non-Alcoholic Fatty Liver Disease through HDAC1/PPARG-Mediated Free Fatty Acid Uptake. Int J Mol Sci 2022; 23:ijms232315297. [PMID: 36499624 PMCID: PMC9736187 DOI: 10.3390/ijms232315297] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and has become a growing public health concern worldwide. Polyphenols may improve high-fat diet (HFD)-related NAFLD. Our previous study found that ferulic acid (FA) and p-coumaric acid (p-CA) were the polyphenols with the highest content in foxtail millet. In this study, we investigated the mechanism underlying the impact of ferulic acid and p-coumaric acid (FA/p-CA) on non-alcoholic fatty liver (NAFLD). The association of FA and p-CA with fatty liver was first analyzed by network pharmacology. Synergistic ameliorating of NAFLD by FA and p-CA was verified in oleic acid (OA) and palmitic acid (PA) (FFA)-treated hepatocytes. Meanwhile, FA/p-CA suppressed final body weight and TG content and improved liver dysfunction in HFD-induced NAFLD mice. Mechanistically, our data indicated that FA and p-CA bind to histone deacetylase 1 (HDAC1) to inhibit its expression. The results showed that peroxisome proliferator activated receptor gamma (PPARG), which is positively related to HDAC1, was inhibited by FA/p-CA, and further suppressed fatty acid binding protein (FABP) and fatty acid translocase (CD36). It suggests that FA/p-CA ameliorate NAFLD by inhibiting free fatty acid uptake via the HDAC1/PPARG axis, which may provide potential dietary supplements and drugs for prevention of NAFLD.
Collapse
Affiliation(s)
- Kaili Cui
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ruipeng Yang
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hanqing Li
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Correspondence:
| |
Collapse
|
6
|
Yang R, Shan S, An N, Liu F, Cui K, Shi J, Li H, Li Z. Polyphenols from foxtail millet bran ameliorate DSS-induced colitis by remodeling gut microbiome. Front Nutr 2022; 9:1030744. [PMID: 36479296 PMCID: PMC9719911 DOI: 10.3389/fnut.2022.1030744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/01/2022] [Indexed: 01/11/2024] Open
Abstract
INTRODUCTION Polyphenols from plants possess the anti-inflammatory and gut microbiota modulated properties. Foxtail millet (Setaria italica L., FM) has potential medical and nutritional functions because of rich phenolic and other phytochemical components. METHODS Here, the study explored the effects of bound polyphenol of inner shell (BPIS) from FM bran on dextran sodium sulfate (DSS)-induced experimental colitis mice. RESULTS Results showed that BPIS administration effectively relieved the weight loss, decreased disease active index (DAI) scores, restrained the secretion of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β, increased anti-inflammatory cytokines IL-10, IL-4, IL-5. BPIS prevented gut barrier damage by enhancing tight junction proteins Claudin1, ZO-1 and Occludin, increasing the number of goblet cells and facilitating the gene expressions of mucin family. In addition, BPIS restored the gut microbiota composition and increased the relative abundance of commensal bacteria such as Lachnospiraceae and Rikenellaceae and restrained the growth of S24-7 and Staphylococcaceae. Concentrations of short-chain-fatty acids (SCFAs) generated by gut microbiota were elevated in BPIS treated colitis mice. CONCLUSION These data suggest that BPIS effectively ameliorates DSS-induced colitis by preventing intestinal barrier damage and promoting gut microbiota community.
Collapse
Affiliation(s)
- Ruipeng Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Shuhua Shan
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Ning An
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Fengming Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Kaili Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Jiangying Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
7
|
Cui K, Wu H, Fan J, Zhang L, Li H, Guo H, Yang R, Li Z. The Mixture of Ferulic Acid and P-Coumaric Acid Suppresses Colorectal Cancer through lncRNA 495810/PKM2 Mediated Aerobic Glycolysis. Int J Mol Sci 2022; 23:ijms232012106. [PMID: 36292959 PMCID: PMC9603647 DOI: 10.3390/ijms232012106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022] Open
Abstract
Polyphenol-rich foods are gaining popularity due to their potential beneficial effects in the prevention and treatment of cancer. Foxtail millet is one of the important functional foods, riches in a variety of biologically active substance. Our previous study showed that ferulic acid (FA) and p-coumaric acid (p-CA) are the main anticancer components of foxtail millet bran, and the two have a significant synergistic effect. In the present study, the clinical application potential of FA and p-CA (FA + p-CA) were evaluated in vivo and in vitro. The FA and p-CA target gene enrichment analysis discovered that FA + p-CA were associated with aerobic glycolysis. It was further shown that FA + p-CA remodel aerobic glycolysis by inhibiting the glycolysis-associated lncRNA 495810 and the glycolytic rate-limiting enzyme M2 type pyruvate kinase (PKM2). Moreover, PKM2 expression was positively correlated with lncRNA 495810. More interestingly, the exogenous expression of lncRNA 495810 eliminated the inhibitory effects of FA + p-CA on aerobic glycolysis. Collectively, FA + p-CA obstruct the aerobic glycolysis of colorectal cancer cells via the lncRNA 495810/PKM2 axis, which provides a nutrition intervention and treatment candidate for colorectal cancer.
Collapse
Affiliation(s)
- Kaili Cui
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jiangmin Fan
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Hanqing Li
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Huiqin Guo
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Ruipeng Yang
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
- Correspondence: ; Tel.: +86-0351-7010499
| |
Collapse
|
8
|
Aggarwal PR, Pramitha L, Choudhary P, Singh RK, Shukla P, Prasad M, Muthamilarasan M. Multi-omics intervention in Setaria to dissect climate-resilient traits: Progress and prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:892736. [PMID: 36119586 PMCID: PMC9470963 DOI: 10.3389/fpls.2022.892736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Millets constitute a significant proportion of underutilized grasses and are well known for their climate resilience as well as excellent nutritional profiles. Among millets, foxtail millet (Setaria italica) and its wild relative green foxtail (S. viridis) are collectively regarded as models for studying broad-spectrum traits, including abiotic stress tolerance, C4 photosynthesis, biofuel, and nutritional traits. Since the genome sequence release, the crop has seen an exponential increase in omics studies to dissect agronomic, nutritional, biofuel, and climate-resilience traits. These studies have provided first-hand information on the structure, organization, evolution, and expression of several genes; however, knowledge of the precise roles of such genes and their products remains elusive. Several open-access databases have also been instituted to enable advanced scientific research on these important crops. In this context, the current review enumerates the contemporary trend of research on understanding the climate resilience and other essential traits in Setaria, the knowledge gap, and how the information could be translated for the crop improvement of related millets, biofuel crops, and cereals. Also, the review provides a roadmap for studying other underutilized crop species using Setaria as a model.
Collapse
Affiliation(s)
- Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Pooja Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Manoj Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Wu H, Du J, Li C, Li H, Guo H, Li Z. Kaempferol Can Reverse the 5-Fu Resistance of Colorectal Cancer Cells by Inhibiting PKM2-Mediated Glycolysis. Int J Mol Sci 2022; 23:3544. [PMID: 35408903 PMCID: PMC8998549 DOI: 10.3390/ijms23073544] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Resistance to 5-Fluorouracil (5-Fu) chemotherapy is the main cause of treatment failure in the cure of colon cancer. Therefore, there is an urgent need to explore a safe and effective multidrug resistance reversal agent for colorectal cancer, which would be of great significance for improving clinical efficacy. The dietary flavonoid kaempferol plays a key role in the progression of colorectal cancer and 5-Fu resistance. However, the molecular mechanism of kaempferol in reversing 5-Fu resistance in human colorectal cancer cells is still unclear. We found that kaempferol could reverse the drug resistance of HCT8-R cells to 5-Fu, suggesting that kaempferol alone or in combination with 5-Fu has the potential to treat colorectal cancer. It is well known that aerobic glycolysis is related to tumor growth and chemotherapy resistance. Indeed, kaempferol treatment significantly reduced glucose uptake and lactic acid production in drug-resistant colorectal cancer cells. In terms of mechanism, kaempferol promotes the expression of microRNA-326 (miR-326) in colon cancer cells, and miR-326 could inhibit the process of glycolysis by directly targeting pyruvate kinase M2 isoform (PKM2) 3'-UTR (untranslated region) to inhibit the expression of PKM2 or indirectly block the alternative splicing factors of PKM mRNA, and then reverse the resistance of colorectal cancer cells to 5-Fu. Taken together, our data suggest that kaempferol may play an important role in overcoming resistance to 5-Fu therapy by regulating the miR-326-hnRNPA1/A2/PTBP1-PKM2 axis.
Collapse
Affiliation(s)
- Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China; (H.W.); (J.D.); (C.L.); (H.L.)
| | - Jin’e Du
- College of Life Science, Shanxi University, Taiyuan 030006, China; (H.W.); (J.D.); (C.L.); (H.L.)
| | - Chenglu Li
- College of Life Science, Shanxi University, Taiyuan 030006, China; (H.W.); (J.D.); (C.L.); (H.L.)
| | - Hanqing Li
- College of Life Science, Shanxi University, Taiyuan 030006, China; (H.W.); (J.D.); (C.L.); (H.L.)
| | - Huiqin Guo
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China;
| | - Zhuoyu Li
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China;
| |
Collapse
|
10
|
Hydrolyzed Bound Phenolics from Rice Bran Alleviate Hyperlipidemia and Improve Gut Microbiota Dysbiosis in High-Fat-Diet Fed Mice. Nutrients 2022; 14:nu14061277. [PMID: 35334934 PMCID: PMC8953714 DOI: 10.3390/nu14061277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 01/14/2023] Open
Abstract
It has been confirmed the lipid-lowering effect of rice bran free phenolics, but it is unknown whether rice bran bound phenolics, the phenolic profile of which differs from the free ones, have a similar effect. Thus, the hypolipidemic effect and potential mechanism of hydrolyzed bound phenolics (HBP) from rice bran was investigated in this study. The results showed that HBP supplementation significantly improved serum lipid profiles of high-fat-diet fed mice. HBP inhibited the activation of nuclear receptors liver X receptor-α (LXRα), sterol regulatory element binding protein 1c (SREBP-1c), and peroxisome proliferators-activated receptors-γ (PPARγ), and, therefore, changed the expressions of their downstream genes, including LDLR, CD36, ACC1, FAS, and DGAT2 in the liver. Moreover, HBP supplementation reversed the high-fat-diet induced gut microbiota dysbiosis. These findings suggest that HBP might alleviate the hyperlipidemia via inhibiting the hepatic de novolipogenesis, regulating the uptake of cholesterol and fatty acid in the liver and their absorption in the gut. The attenuation of microbiota dysbiosis might contribute to the above effects.
Collapse
|
11
|
Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021; 13:nu13113834. [PMID: 34836091 PMCID: PMC8619660 DOI: 10.3390/nu13113834] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annarita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
12
|
Dietary Polyphenols: Promising Adjuvants for Colorectal Cancer Therapies. Cancers (Basel) 2021; 13:cancers13184499. [PMID: 34572726 PMCID: PMC8465098 DOI: 10.3390/cancers13184499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer is a leading cause of death worldwide. Despite the development of novel surgical and therapeutic strategies, 50% of patients relapse after treatment. Therapy failure, due to low efficacy, adverse effects and drug resistance, is thus a major concern. The idea of combining standard therapy with non-toxic bioactive natural compounds is a recent topic in cancer research and aims to increase the efficacy of current antitumor therapies while reducing drug toxicity and adverse effects. In recent years, several studies have explored the capacity of polyphenols, dietary bioactive compounds enriched in fruit and vegetables, to act as adjuvants to improve colorectal cancer therapy. In the present review, we discuss these studies, highlighting the mechanisms underlying the adjuvant effect, and bring out the potential of this novel therapeutic approach as well as the critical issues related to clinical application. Abstract Colorectal cancer (CRC) is a major cancer type and a leading cause of death worldwide. Despite advances in therapeutic management, the current medical treatments are not sufficient to control metastatic disease. Treatment-related adverse effects and drug resistance strongly contribute to therapy failure and tumor recurrence. Combination therapy, involving cytotoxic treatments and non-toxic natural compounds, is arousing great interest as a promising more effective and safer alternative. Polyphenols, a heterogeneous group of bioactive dietary compounds mainly found in fruit and vegetables, have received great attention for their capacity to modulate various molecular pathways active in cancer cells and to affect host anticancer response. This review provides a summary of the most recent (i.e., since 2016) preclinical and clinical studies using polyphenols as adjuvants for CRC therapies. These studies highlight the beneficial effects of dietary polyphenols in combination with cytotoxic drugs or irradiation on both therapy outcome and drug resistance. Despite substantial preclinical evidence, data from a few pilot clinical trials are available to date with promising but still inconclusive results. Larger randomized controlled studies and polyphenol formulations with improved bioavailability are needed to translate the research progress into clinical applications and definitively prove the added value of these molecules in CRC management.
Collapse
|
13
|
Liu F, Shan S, Li H, Shi J, Hao R, Yang R, Li Z. Millet shell polyphenols prevent atherosclerosis by protecting the gut barrier and remodeling the gut microbiota in ApoE -/- mice. Food Funct 2021; 12:7298-7309. [PMID: 34169953 DOI: 10.1039/d1fo00991e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atherosclerosis, the major cause of cardiovascular disease, is a chronic inflammatory disease. The anti-inflammatory effect of certain polyphenols has been recognized. Active polyphenols were extracted from millet shells (MSPs), and their main components including 3-hydroxybenzylhydrazine, luteolin-3',7-diglucoside, N-acetyltyramine, p-coumaric acid, vanillin, sinapic acid, ferulic acid and isophorone exhibited the anti-atherosclerotic potential in vitro. To explore the anti-atherosclerotic activity of MSPs in vivo, a classic atherosclerosis model was constructed in ApoE-/- mice fed with a high-fat diet. The results showed that MSPs effectively inhibited the development of atherosclerotic plaques in the aorta and reduced the levels of lipopolysaccharide (LPS) and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). A further study found that the expression of tight junction proteins (occludin, zona occludens-1 and claudin1) was obviously up-regulated in the MSPs-treated group at the mRNA and protein levels. Interestingly, MSPs significantly changed the structure of gut microbiota in ApoE-/- mice with a high-fat diet, which is characterized by the enriched Oscillospira and Ruminococcus, and the abridged Allobaculum at the genus level. Collectively, these results suggest that MSPs regulate the integrity of the gut barrier and the structure of the gut microbiota, ultimately inhibiting the development of atherosclerotic plaques. This study provides new insights into the potential cardiovascular protective effects induced by millet shell polyphenols.
Collapse
Affiliation(s)
- Fengming Liu
- School of Life Science, Shanxi University, Taiyuan, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Özerkan D, Erol A, Altuner EM, Canlı K, Kuruca DS. Some Bryophytes Trigger Cytotoxicity of Stem Cell-like Population in 5-Fluorouracil Resistant Colon Cancer Cells. Nutr Cancer 2021; 74:1012-1022. [PMID: 34151658 DOI: 10.1080/01635581.2021.1933098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Colorectal cancer is the third most common cancer worldwide. Cancer stem cells are known to play an important role in relapse, and metastases of the disease after chemotherapy. Investigation of new drugs, and their combinations targeting these cells and thus eliminating cancer is one of the most urgent needs of today's chemotherapy. The aim of the present study was to evaluate the effects of Bryophytes like Abietinella abietina (AA), Homolothecium sericeum (HS), Tortella tortuosa (TT), Syntrichia ruralis (SR), and Bryoerythrophyllum rubrum (BR) species extracted with ethyl alcohol on 5-fluorouracil(5-FU) resistant colorectal cancer cell lines (HCT116 and HT29). After extraction, stock solutions of bryophytes were prepared, and IC50 values were detected in drug-resistant cells obtained with 5-FU application. CD24+, CD44+/CD133+ surface markers and P-glycoprotein (P-gp) mediated efflux were isolated from both 5-FU treated cells and analyzed using the flow cytometry. In all bryophyte-treated groups, the binding Rho123low (low Rho fluorescence) and Rhohigh (high Rho fluorescence) were sorted from 5-FU resistant HCT116, and HT-29 cells. All types of bryophytes were found cytotoxic. Bryophyte extract reduced the percentage of Rholow cells in cultures incubated with 5-FU. In summary, the implementation of these bryophytes might be regarded as an effective approach for treatment of colorectal cancer due to their cytotoxic effect that decreases the recurrence of the disease.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1933098.
Collapse
Affiliation(s)
- Dilşad Özerkan
- Faculty of Health Sciences, Molecular Cancer Research Center, İstinye University, İstanbul, Turkey
| | - Ayşe Erol
- Department of Medical Biology, Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Ergin Murat Altuner
- Department of Biology, Faculty of Science and Literature, Kastamonu University, Kastamonu, Turkey
| | - Kerem Canlı
- Department of Biology, Faculty of Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Dürdane Serap Kuruca
- Department of Physiology, Faculty of Medicine, Istanbul University, İstanbul, Turkey
| |
Collapse
|
15
|
Guo H, Wu H, Sajid A, Li Z. Whole grain cereals: the potential roles of functional components in human health. Crit Rev Food Sci Nutr 2021; 62:8388-8402. [PMID: 34014123 DOI: 10.1080/10408398.2021.1928596] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whole grain cereals have been the basis of human diet since ancient times. Due to rich in a variety of unique bioactive ingredients, they play an important role in human health. This review highlights the contents and distribution of primary functional components and their health effects in commonly consumed whole grain cereals, especially dietary fiber, protein, polyphenols, and alkaloids. In general, cereals exert positive effects in the following ways: 1) Restoring intestinal flora diversity and increasing intestinal short-chain fatty acids. 2) Regulating plasma glucose and lipid metabolism, thereby the improvement of obesity, cardiovascular and cerebrovascular diseases, diabetes, and other chronic metabolic diseases. 3) Exhibiting antioxidant activity by scavenging free radicals. 4) Preventing gastrointestinal cancer via the regulation of classical signaling pathways. In summary, this review provides a scientific basis for the formulation of whole-grain cereals-related dietary guidelines, and guides people to form scientific dietary habits, so as to promote the development and utilization of whole-grain cereals.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan, PR China
| | - Amin Sajid
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China;,College of Life Science, Shanxi University, Taiyuan, PR China
| |
Collapse
|
16
|
Shan S, Lu Y, Zhang X, Shi J, Li H, Li Z. Inhibitory effect of bound polyphenol from foxtail millet bran on miR-149 methylation increases the chemosensitivity of human colorectal cancer HCT-8/Fu cells. Mol Cell Biochem 2021; 476:513-523. [PMID: 33011952 DOI: 10.1007/s11010-020-03906-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Nature polyphenols widely present in plants and foods are promising candidates in cancer chemotherapy. Emerging evidence has shown that plant polyphenols regulate the expression of miRNAs to exert the anti-Multidrug resistance (MDR) activity, which partly attributes to their regulation on miRNAs methylation. Our previous study found that bound polyphenol from foxtail millet bran (BPIS) had potential as an anti-MDR agent for colorectal cancer (CRC), but its mechanism remains unclear. The present findings demonstrated that BPIS upregulated the expression of miR-149 by reducing the methylation of its CpG islands, which subsequently induced the cell cycle arrest in G2/M phase, resulting in enhancing the chemo-sensitivity of HCT-8/Fu cells. Mechanically, BPIS and its active components (FA and p-CA) reduced miR-149 methylation by inhibiting the expression levels of DNA methyltransferases, promoting a remarkable increase of miR-149 expression. Further, the increased miR-149 induced cell cycle arrest in G2/M phase by inhibiting the expression of Akt, Cyclin B1 and CDK1, thus increasing the chemosensitivity of HCT-8/Fu cells. Additionally, a strong inducer of DNA de-methylation (5-aza-dc) treatment markedly increased the chemosensitivity of CRC through elevating miR-149 expression, which indicates the hypermethylation of miR-149 may be the key cause of drug resistance in CRC. The study indicates that the enhanced chemosensitivity of BPIS on CRC is mainly attributed to the increase of miR-149 expression induced by methylation inhibition.
Collapse
Affiliation(s)
- Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Yang Lu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Xiaoli Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China.
- School of Life Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
17
|
Zhang X, Shan S, Shi J, Li H, Li Z. Polyphenol from millet bran increases the sensitivity of colorectal cancer cells to oxaliplatin by blocking the ganglioside GM3 catabolism. Food Funct 2021; 12:291-301. [DOI: 10.1039/d0fo02232b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The study implies that bound polyphenol from millet bran dramatically prevents ganglioside GM3 catabolism followed by the suppression of P-gp, which eventually reverse drug-resistance in colorectal cancer cells to oxaliplatin.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan
- China
| | - Shuhua Shan
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan
- China
| | - Jiangying Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan
- China
| | - Hanqing Li
- School of Life Science
- Shanxi University
- Taiyuan
- China
| | - Zhuoyu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan
- China
| |
Collapse
|
18
|
Identification and in vitro anti-inflammatory activity of different forms of phenolic compounds in Camellia oleifera oil. Food Chem 2020; 344:128660. [PMID: 33229148 DOI: 10.1016/j.foodchem.2020.128660] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 02/01/2023]
Abstract
Camellia oleifera (C. oleifera) oil is known as "oriental olive oil". We previously reported the anti-inflammatory activity of C. oleifera oil was mainly attributed to the phenolic compounds, but the specific compounds remain uncovered. In this study, phenolic compounds in the form of free (11.92 μg GAE/g), esterified (37.57 μg GAE/g), glycosylated (128.71 μg GAE/g), and insoluble (47.53 μg GAE/g) were prepared from C. oleifera oil. Their anti-inflammatory activities were evaluated by lipopolysaccharide induced RAW 264.7 macrophage. Glycosylated fraction showed the highest anti-inflammatory activity as indicated by the low production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Subsequently, 13 different glycosylated polyphenols were identified by UPLC-Q-TOF/MS, and the major compounds were purified for anti-inflammatory re-evaluation. Lower anti-inflammatory activities of compound 3 and compound 6 were observed when compared to kaempferol. Overall, these results would promote the utilization of phenolic compounds in C. oleifera oil.
Collapse
|
19
|
Shan S, Xie Y, Zhang C, Jia B, Li H, Li Z. Identification of polyphenol from Ziziphi spinosae semen against human colon cancer cells and colitis-associated colorectal cancer in mice. Food Funct 2020; 11:8259-8272. [PMID: 32966479 DOI: 10.1039/d0fo01375g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Homology of medicine and food-zizyphi spinosi semen (ZSS) exhibits abundant pharmacological activities, such as sedation, hypnosis and anti-depression. In the present study, the water soluble polyphenols extracted from ZSS via the acid digestion method were named ZSSP, and exhibited significant anti-colorectal cancer (CRC) activity, characterized by restraining cell proliferation, promoting cell apoptosis and increasing chemo-sensitivity of CRC cells. The potential of ZSSP in vivo was further evaluated in an AOM/DSS-induced colitis-associated carcinogenesis (CAC) mouse model. Intriguingly, ZSSP diminished the number and volume of CAC polyps in mice in a dose-dependent manner, and effectively limited the damage of mice organs induced by AOM/DSS. The immunohistochemistry result showed that the elevated CRC early markers in CAC mice, such as COX-II, EMR1, and Ki67, were potently prevented by the ZSSP treatment. Further, the component in ZSSP with the anti-CRC activity was identified as spinosin by the macroporous resin of SP207 and RP-HPLC-MS/MS. Interestingly, during the extraction process, sodium ions were introduced forming spinosin·Na+, which had better water solubility and more remarkable anti-CRC activity than the spinosin. This study provides a new pharmacological property of spinosin derived from ZSS, inhibiting the growth of human CRC cells and colitis-associated CRC in mice, which indicates its potential use as a natural agent against CRC.
Collapse
Affiliation(s)
- Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China.
| | - Yue Xie
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China.
| | - Chengying Zhang
- School of Life Science and Technology, Shanxi University, Taiyuan, China
| | - Bin Jia
- School of Life Science and Technology, Shanxi University, Taiyuan, China and School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Hanqing Li
- School of Life Science and Technology, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China. and School of Life Science and Technology, Shanxi University, Taiyuan, China
| |
Collapse
|
20
|
Espinosa-Paredes DA, Cornejo-Garrido J, Moreno-Eutimio MA, Martínez-Rodríguez OP, Jaramillo-Flores ME, Ordaz-Pichardo C. Echinacea Angustifolia DC Extract Induces Apoptosis and Cell Cycle Arrest and Synergizes with Paclitaxel in the MDA-MB-231 and MCF-7 Human Breast Cancer Cell Lines. Nutr Cancer 2020; 73:2287-2305. [PMID: 32959676 DOI: 10.1080/01635581.2020.1817956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Echinacea spp. displays different biological activities, such as antiviral, immunomodulatory, and anticancer activities. Currently, high sales of hydroalcoholic extracts of Echinacea have been reported; hence, the importance of studies on Echinacea. AIM To establish the effects of Echinacea angustifolia DC extract obtained with ethyl acetate (Ea-AcOEt) in breast cancer cell lines. METHODS Cytotoxicity, cell cycle arrest, and cell death were evaluated. Besides, the safety of the extract, as well as its effect in combination with paclitaxel were investigated. RESULTS The echinacoside and caffeic acid content in the Ea-AcOEt extract were quantified by HPLC, and its antioxidant activity was assessed. The Ea-AcOEt extract showed cytotoxic activity on breast cancer MDA-MB-231 cells (IC50 28.18 ± 1.14 µg/ml) and MCF-7 cells (19.97 ± 2.31 µg/ml). No effect was observed in normal breast MCF-10 cells. The Ea-AcOEt extract induced cell cycle arrest in the G1 phase and caspase-mediated apoptosis. No genotoxicity was found in vitro or in vivo, and the extract showed no signs of toxicity or death at 2,000 mg/kg in rodents. In vitro, the combination of Ea-AcOEt extract and paclitaxel showed a synergistic effect on both cancer cell lines. CONCLUSION The Ea-AcOEt extract is a potential candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Daniel Abraham Espinosa-Paredes
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| | - Jorge Cornejo-Garrido
- Laboratorio de Fitoquímica, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| | | | - Oswaldo Pablo Martínez-Rodríguez
- Laboratorio de Biopolímeros, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN); Av. Wilfrido Massieu Esq. Cda. Manuel Stampa S/N Col. Unidad Profesional López Mateos, Alcaldía Gustavo A. Madero, CDMX, México
| | - María Eugenia Jaramillo-Flores
- Laboratorio de Biopolímeros, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN); Av. Wilfrido Massieu Esq. Cda. Manuel Stampa S/N Col. Unidad Profesional López Mateos, Alcaldía Gustavo A. Madero, CDMX, México
| | - Cynthia Ordaz-Pichardo
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| |
Collapse
|
21
|
Ding S, Xu S, Fang J, Jiang H. The Protective Effect of Polyphenols for Colorectal Cancer. Front Immunol 2020; 11:1407. [PMID: 32754151 PMCID: PMC7366338 DOI: 10.3389/fimmu.2020.01407] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers that threaten people in many countries. It is a multi-factorial chronic disease caused by a combination of genetic and environmental factors, but it is mainly related to lifestyle factors, including diet. Plentiful plant foods and beverages are abundant in polyphenols with antioxidant, anti-atherosclerotic, anti-inflammatory, and anticancer properties. These compounds participate in host nutrition and disease pathology regulation in different ways. Polyphenolic compounds have been used to prevent and inhibit the development and prognosis of cancer, and examples include green tea polyphenol (-)epigallocatechin-3-O-gallate (EGCG), curcumin, and resveratrol. Of course, there are more known and unknown polyphenol compounds that need to be further explored for their anticancer properties. This article focuses on the fact that polyphenols affect the progression of CRC by controlling intestinal inflammation, epigenetics, and the intestinal microbe in the aspects of prevention, treatment, and prognosis.
Collapse
Affiliation(s)
- Sujuan Ding
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Sheng Xu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jun Fang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hongmei Jiang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
22
|
Wang Z, Li S, Ge S, Lin S. Review of Distribution, Extraction Methods, and Health Benefits of Bound Phenolics in Food Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3330-3343. [PMID: 32092268 DOI: 10.1021/acs.jafc.9b06574] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phenolic compounds are important functional bioactive substances distributed in various food plants. They have gained wide interest from researchers due to their multiple health benefits. There are two forms of phenolic compounds: free form and bound form. The latter is also called bound phenolics (BPs), which are found mainly in the cell wall and distributed in various tissues/organs of the plant body. They can either chemically bind to macromolecules and food matrixes or be physically entrapped in food matrixes and intact cells. Various isolation methods, including chemical, biological, and physical methods, have been employed to extract BPs from plants. BPs have been shown to have strong biological activities, including antioxidant, probiotic, anticancer, anti-inflammation, antiobesity, and antidiabetic effects as well as beneficial effects on central nervous system diseases. This review summarizes research findings on these topics to help in better understanding of BPs and provide comprehensive information on their health effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyang Li
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shenghan Ge
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Yang R, Shan S, Zhang C, Shi J, Li H, Li Z. Inhibitory Effects of Bound Polyphenol from Foxtail Millet Bran on Colitis-Associated Carcinogenesis by the Restoration of Gut Microbiota in a Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3506-3517. [PMID: 32100999 DOI: 10.1021/acs.jafc.0c00370] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor occurring in the colon. It has been known that the gut microbiota is a complex ecosystem and plays an important role in the pathogenesis of colorectal cancer. Our previous study showed that bound polyphenol of the inner shell (BPIS) from foxtail millet bran exhibited significant antitumor activities in cancer cells and nude mice models. In the present study, the anticancer potential of BPIS is evaluated in the azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced mouse CRC model. Results showed that BPIS could decrease the number and volume of tumors and protect the epithelial architecture from damage. Certain biomarkers associated with CRC formation, such as COX-2, EMR1, PCNA, and caspase-3, were strongly changed by BPIS. Moreover, by 16S rRNA gene sequence analysis, it was found that BPIS could remodel the overall structure of the gut microbiota from tumor-bearing mice toward that of the normal counterparts, including two phyla and eight genera, together with regulations on several genes that are responsible for 17 signaling pathways.
Collapse
Affiliation(s)
- Ruipeng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Chen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
24
|
Liu F, Shan S, Li H, Li Z. Treatment of Peroxidase Derived from Foxtail Millet Bran Attenuates Atherosclerosis by Inhibition of CD36 and STAT3 in Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1276-1285. [PMID: 31965794 DOI: 10.1021/acs.jafc.9b06963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atherosclerosis is one of the main causes of cardiovascular diseases. Our previous study indicated that a type of peroxidase derived from foxtail millet bran (FMBP) had prominent antitumor activities. In the present study, we found that FMBP had potential antiatherosclerosis effects. The results showed that FMBP treatment strongly suppressed lipid phagocytosis in both HASMCs and THP-1 cells by 52% and 49%, respectively. Further, FMBP significantly inhibited HASMCs migration by promoting transformation of HASMCs from synthetic to contractile, leading to the decrease of lipid phagocytosis. Simultaneously, FMBP repressed lipid uptake by reducing the expression of CD36 in THP-1 cells. In addition, FMBP reduced the secretion of inflammatory factor IL-1β by inhibiting the expression of STAT3 in THP-1 cells. Interestingly, FMBP also had the same effects in models of atherosclerosis constructed with ApoE-/- mice, including decreased aortic lesion area, repressed aortic sinus CD36 and STAT3 expression, and elevated serum HDL-C concentration. Collectively, these results indicate that FMBP has great potential in preventing the development of atherosclerosis.
Collapse
|
25
|
Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules 2020; 10:biom10020221. [PMID: 32028623 PMCID: PMC7072661 DOI: 10.3390/biom10020221] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
Globally, cancer is the second leading cause of death. Different conventional approaches to treat cancer include chemotherapy or radiotherapy. However, these are usually associated with various deleterious effects and numerous disadvantages in clinical practice. In addition, there are increasing concerns about drug resistance. In the continuous search for safer and more effective treatments, plant-derived natural compounds are of major interest. Plant phenolics are secondary metabolites that have gained importance as potential anti-cancer compounds. Phenolics display a great prospective as cytotoxic anti-cancer agents promoting apoptosis, reducing proliferation, and targeting various aspects of cancer (angiogenesis, growth and differentiation, and metastasis). Phenolic acids are a subclass of plant phenolics, furtherly divided into benzoic and cinnamic acids, that are associated with potent anticancer abilities in various in vitro and in vivo studies. Moreover, the therapeutic activities of phenolic acids are reinforced by their role as epigenetic regulators as well as supporters of adverse events or resistance associated with conventional anticancer therapy. Encapsulation of phyto-substances into nanocarrier systems is a challenging aspect concerning the efficiency of natural substances used in cancer treatment. A summary of phenolic acids and their effectiveness as well as phenolic-associated advances in cancer treatment will be discussed in this review.
Collapse
|
26
|
Costea T, Vlad OC, Miclea LC, Ganea C, Szöllősi J, Mocanu MM. Alleviation of Multidrug Resistance by Flavonoid and Non-Flavonoid Compounds in Breast, Lung, Colorectal and Prostate Cancer. Int J Mol Sci 2020; 21:E401. [PMID: 31936346 PMCID: PMC7013436 DOI: 10.3390/ijms21020401] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the manuscript is to discuss the influence of plant polyphenols in overcoming multidrug resistance in four types of solid cancers (breast, colorectal, lung and prostate cancer). Effective treatment requires the use of multiple toxic chemotherapeutic drugs with different properties and targets. However, a major cause of cancer treatment failure and metastasis is the development of multidrug resistance. Potential mechanisms of multidrug resistance include increase of drug efflux, drug inactivation, detoxification mechanisms, modification of drug target, inhibition of cell death, involvement of cancer stem cells, dysregulation of miRNAs activity, epigenetic variations, imbalance of DNA damage/repair processes, tumor heterogeneity, tumor microenvironment, epithelial to mesenchymal transition and modulation of reactive oxygen species. Taking into consideration that synthetic multidrug resistance agents have failed to demonstrate significant survival benefits in patients with different types of cancer, recent research have focused on beneficial effects of natural compounds. Several phenolic compounds (flavones, phenolcarboxylic acids, ellagitannins, stilbens, lignans, curcumin, etc.) act as chemopreventive agents due to their antioxidant capacity, inhibition of proliferation, survival, angiogenesis, and metastasis, modulation of immune and inflammatory responses or inactivation of pro-carcinogens. Moreover, preclinical and clinical studies revealed that these compounds prevent multidrug resistance in cancer by modulating different pathways. Additional research is needed regarding the role of phenolic compounds in the prevention of multidrug resistance in different types of cancer.
Collapse
Affiliation(s)
- Teodora Costea
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana Cezara Vlad
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| | - Luminita-Claudia Miclea
- Department of Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Research Excellence Center in Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Constanta Ganea
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Maria-Magdalena Mocanu
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| |
Collapse
|
27
|
Rollán GC, Gerez CL, LeBlanc JG. Lactic Fermentation as a Strategy to Improve the Nutritional and Functional Values of Pseudocereals. Front Nutr 2019; 6:98. [PMID: 31334241 PMCID: PMC6617224 DOI: 10.3389/fnut.2019.00098] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
One of the greatest challenges is to reduce malnutrition worldwide while promoting sustainable agricultural and food systems. This is a daunting task due to the constant growth of the population and the increasing demands by consumers for functional foods with higher nutritional values. Cereal grains are the most important dietary energy source globally; wheat, rice, and maize currently provide about half of the dietary energy source of humankind. In addition, the increase of celiac patients worldwide has motivated the development of gluten-free foods using alternative flour types to wheat such as rice, corn, cassava, soybean, and pseudocereals (amaranth, quinoa, and buckwheat). Amaranth and quinoa have been cultivated since ancient times and were two of the major crops of the Pre-Colombian cultures in Latin- America. In recent years and due to their well-known high nutritional value and potential health benefits, these pseudocereals have received much attention as ideal candidates for gluten-free products. The importance of exploiting these grains for the elaboration of healthy and nutritious foods has forced food producers to develop novel adequate strategies for their processing. Fermentation is one of the most antique and economical methods of producing and preserving foods and can be easily employed for cereal processing. The nutritional and functional quality of pseudocereals can be improved by fermentation using Lactic Acid Bacteria (LAB). This review provides an overview on pseudocereal fermentation by LAB emphasizing the capacity of these bacteria to decrease antinutritional factors such as phytic acid, increase the functional value of phytochemicals such as phenolic compounds, and produce nutritional ingredients such as B-group vitamins. The numerous beneficial effects of lactic fermentation of pseudocereals can be exploited to design novel and healthier foods or grain ingredients destined to general population and especially to patients with coeliac disease.
Collapse
Affiliation(s)
- Graciela C. Rollán
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, San Miguel de Tucumán, Argentina
| | | | | |
Collapse
|
28
|
Bound polyphenol from foxtail millet bran exhibits an antiproliferative activity in HT-29 cells by reprogramming miR-149-mediated aerobic glycolysis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
29
|
Scandenolone from Cudrania tricuspidata fruit extract suppresses the viability of breast cancer cells (MCF-7) in vitro and in vivo. Food Chem Toxicol 2019; 126:56-66. [PMID: 30753858 DOI: 10.1016/j.fct.2019.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
Abstract
Scandenolone, an isoflavone, has shown anti-cancer potential. In this study, we extracted scandenolone from Cudrania tricuspidata fruit and evaluated its anti-breast cancer effects as well as toxicity in cell and animal models. In cell model, scandenolone suppressed the breast cancer MCF-7 cells viability, ceased mitotic cell cycle, decreased mitochondrial membrane potential, up-regulated cleaved caspase-3 and promoted the phosphorylation of p53. Additionally, this isoflavone promoted cell apoptosis and induced a sustained activation of the phosphorylation of p38 and ERK, but not JNK and Akt. The effects were further verified in a human MCF-7 breast cancer xenograft model, where scandenolone efficiently suppressed the cancer growth and increased apoptotic cells in tumor tissue. However scandenolone has also shown certain toxicity to normal hepatocytes and breast epithelial cells. It could be concluded that scandenolone suppressed the growth of breast cancer cells, but its toxicity towards normal cells might limit its potential clinical use.
Collapse
|
30
|
Shan S, Xie Y, Zhao H, Niu J, Zhang S, Zhang X, Li Z. Bound polyphenol extracted from jujube pulp triggers mitochondria-mediated apoptosis and cell cycle arrest of HepG2 cell in vitro and in vivo. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|