1
|
Wang Y, Wang C, Liu W, Huang Q, Xiao W. Niemann-Pick C2 proteins play crucial role in perception of plant volatiles in Tetranychus cinnabarinus. PEST MANAGEMENT SCIENCE 2025. [PMID: 40343673 DOI: 10.1002/ps.8839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Herbivorous mites perceive odorants through olfactory mechanisms, though the molecular basis of olfaction in these species remains poorly understood. Recent studies have identified Niemann-Pick C2 (NPC2) proteins as odorant carriers in the peripheral olfactory systems of insects. Multiple NPC2 genes have been discovered in spider mite genomes, yet their specific roles in olfactory function have not been fully explored. RESULTS Behavioral assays showed that 8 of the 12 tested plant volatiles elicited either repellent or attractive responses in Tetranychus cinnabarinus. Two NPC2 genes were identified as responsive to odorant stimulation. Recombinant NPC2 proteins were produced, and microscale thermophoresis (MST) assays revealed specific binding: TcinNPC2-2 bound to geranylacetone [dissociation constant (Kd) = 3.32 μm], and TcinNPC2-3 bound to farnesol (Kd = 9.55 μm). Knockdown of NPC2 genes via RNA interference abolished mite responses to these odorants in behavioral assays. CONCLUSIONS Mite olfactory responses to a number of odorants were widely documented. NPC2-2 and NPC2-3 proteins play critical roles in the olfactory detection of geranylacetone and farnesol, respectively. This study enhances our understanding of the peripheral olfactory processes in herbivorous mites, offering insights for the development of behavior-targeting agents for mite control. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Wang
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
| | - Chenglong Wang
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
| | - Wenchengxin Liu
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
| | - Qianqian Huang
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
| | - Wei Xiao
- College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
| |
Collapse
|
2
|
Xu R, Lou Y, Gao Y, Shang S, Song Z, Huang K, Li L, Chen L, Li J. Integrating morphology, physiology, and computer simulation to reveal the toxicity mechanism of eco-friendly rosin-based pesticides. CHEMOSPHERE 2024; 369:143855. [PMID: 39615856 DOI: 10.1016/j.chemosphere.2024.143855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
To mitigate the impact of traditional chemical pesticides on environment, and achieve sustainable crop protection, 24 eco-friendly rosin-based sulfonamide derivatives were synthesized and developed. The in vitro activity assessment showed that compound 4X (Co. 4X) exhibited excellent fungicidal activity against V. mali (EC50 = 1.106 μg/mL), marginally surpassing the positive control carbendazim (EC50 = 1.353 μg/mL). In vivo investigations suggested that Co. 4X exhibited moderate efficacy in mitigating V. mali infection in both apple trees and apples. Physiological assessments revealed that Co. 4X induced severe ultrastructural damage to the mycelium, heightened cell membrane permeability, and inhibited SDH protein activity. Subsequent biosafety evaluations affirmed the environment-friendly of Co. 4X on Zebrafish (LC50(96h) = 25.176 μg/mL). Toxicological research revealed that Co. 4X caused damage to the cells of Zebrafish gills, liver, and intestines, resulting in impaired respiratory, detoxification, digestion, and absorption functions of Zebrafish. In summary, the findings of this study contribute to a deeper understanding of the toxicity mechanisms of novel pesticides, decreasing environmental risks caused by traditional chemical pesticides, and improving the effective management of novel pesticide applications.
Collapse
Affiliation(s)
- Renle Xu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Kerang Huang
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Luqi Li
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
3
|
Chen M, Yazdani M, Murugappan K. Non-Destructive Pest Detection: Innovations and Challenges in Sensing Airborne Semiochemicals. ACS Sens 2024. [PMID: 39511957 DOI: 10.1021/acssensors.4c02049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Pests, especially invasive ones, pose significant threats to the global ecosystem, crop security, and agriculture economy. Sensing airborne semiochemicals as a nondestructive detection method has been recognized as a promising strategy to detect the presence of these living pests on site. However, sensing airborne semiochemicals in fields is challenging, as they are transmitted in concentrations as low as several nanograms per cubic meter in chemically diverse environments. This low vapor pressure together with similarity in functional groups of pheromones among different species have curtailed the practical deployment of corresponding sensors for real world applications. This review describes the advances in semiochemical detection methods and technologies including traditional analytical instruments, trained animals, and electroantennography with a focus on electronic noses (e-noses). Several key types of volatile organic compound (VOC) sensors used in e-noses are summarized, including their transduction methods, sensing materials, and sensing performance for semiochemical and simulants detection. Notably, it was found that many commercial VOC sensors failed to respond to airborne semiochemicals effectively, leading to a reduced efficiency of e-noses. Future work may focus on developing stable and robust sensing materials with higher sensitivity and selectivity to pheromones and understanding the feasibility of the deployment of the sensors under field conditions.
Collapse
Affiliation(s)
- Ming Chen
- CSIRO, Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
- CSIRO, Health and Biosecurity, P.O. Box 2583, Brisbane 4001, Queensland Australia
| | - Maryam Yazdani
- CSIRO, Health and Biosecurity, P.O. Box 2583, Brisbane 4001, Queensland Australia
| | - Krishnan Murugappan
- CSIRO, Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
| |
Collapse
|
4
|
Xu R, Chen K, Han X, Lou Y, Gu S, Gao Y, Shang S, Song Z, Song J, Li J. Design and Synthesis of Antifungal Candidates Containing Triazole Scaffold from Natural Rosin against Valsa mali for Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37318049 DOI: 10.1021/acs.jafc.3c02002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two series of dehydroabietyl-1,2,4-triazole-4-Schiff-based derivatives were synthesized from rosin to control plant fungal diseases. In vitro evaluation and screening of the antifungal activity were performed using Valsa mali, Colletotrichum orbiculare, Fusarium graminearum, Sclerotinia sclerotiorum, and Gaeumannomyces graminis. Compound 3f showed excellent fungicidal activity against V. mali (EC50 = 0.537 μg/mL), which was significantly more effective than the positive control fluconazole (EC50 = 4.707 μg/mL). Compound 3f also had a considerable protective effect against V. mali (61.57%-92.16%), which was slightly lower than that of fluconazole (85.17-100%) at 25-100 μg/mL. Through physiological and biochemical analyses, the preliminary mode of action of compound 3f against V. mali was explored. Ultrastructural observation of mycelia showed that compound 3f hindered the growth of the mycelium and destroyed the ultrastructure of V. mali seriously. Conductivity analysis and laser scanning confocal microscope staining showed that compound 3f changed cell-membrane permeability and caused accumulation of reactive oxygen species. The enzyme activity results showed that compound 3f significantly inhibited the activity of CYP51 (59.70%), SOD (76.9%), and CAT (67.86%). Molecular docking identified strong interaction energy between compound 3f and crystal structures of CYP51 (-11.18 kcal/mol), SOD (-9.25 kcal/mol), and CAT (-8.79 kcal/mol). These results provide guidance for the discovery of natural product-based antifungal pesticide candidates.
Collapse
Affiliation(s)
- Renle Xu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Kun Chen
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xu Han
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shihao Gu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jian Li
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
5
|
Thomas G, Rusman Q, Morrison WR, Magalhães DM, Dowell JA, Ngumbi E, Osei-Owusu J, Kansman J, Gaffke A, Pagadala Damodaram KJ, Kim SJ, Tabanca N. Deciphering Plant-Insect-Microorganism Signals for Sustainable Crop Production. Biomolecules 2023; 13:997. [PMID: 37371577 PMCID: PMC10295935 DOI: 10.3390/biom13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland;
| | - William R. Morrison
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA;
| | - Diego M. Magalhães
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Jordan A. Dowell
- Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;
| | - Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA;
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya EY0329-2478, Ghana;
| | - Jessica Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Alexander Gaffke
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Medical, Agricultural, and Veterinary Entomology, 6383 Mahan Dr., Tallahassee, FL 32308, USA;
| | | | - Seong Jong Kim
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Natural Products Utilization Research Unit, University, MS 38677, USA;
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158, USA
| |
Collapse
|
6
|
Khidyrova N, Turaeva SM, Rakhmatova MJ, Bobakulov KM, Sagdullaev SS, Zakirova RP, Khodjaniyazov KU, Torikai K. Compositional Analysis and Potent Insecticidal Activity of Supercritical CO 2 Fluid Extracts of Alcea nudiflora L. Leaves. ACS OMEGA 2022; 7:19892-19897. [PMID: 35722023 PMCID: PMC9202070 DOI: 10.1021/acsomega.2c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
To mitigate potentially severe food shortages due to the exponential growth of the global population, it is of paramount importance to improve the yield and quality of globally harvested food crops. As pest control contributes to both these aspects, the development of safe and effective pesticides is one of the main strategies pursued in this direction in the context of agricultural chemistry. During our investigation of natural pesticides, a supercritical CO2 fluid extract of Alcea nudiflora L. was found to exert extremely potent insecticidal activity against aphids (Macrosiphum euphorbiae) and cowpea seed beetles (Callosobruchus maculatus) with LC50 values of 0.03 mg/mL (24 h exposure, contact method). The facts that their insecticidal activity is in the most potent class among the essential oils known to date, and that the extract did not show any toxicity toward beneficial insects such as ladybugs (Coccinella magnifica) and European honeybees (Apis mellifera Linnaeus), indicate that this extract could be a good, natural, and safe new pesticide candidate. A compositional analysis of this extract was carried out using GC/MS.
Collapse
Affiliation(s)
- Nazira
K. Khidyrova
- S.
Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, 77 Mirzo Ulugbek Str., Tashkent 100170, Uzbekistan
| | - Saida M. Turaeva
- S.
Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, 77 Mirzo Ulugbek Str., Tashkent 100170, Uzbekistan
| | - Malohat J. Rakhmatova
- S.
Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, 77 Mirzo Ulugbek Str., Tashkent 100170, Uzbekistan
| | - Khayrulla M. Bobakulov
- S.
Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, 77 Mirzo Ulugbek Str., Tashkent 100170, Uzbekistan
- “Tashkent
Institute of Irrigation and Agricultural Mechanization Engineers”, National Research University, 39 Kori Niyoziy Str., Tashkent 100000, Uzbekistan
| | - Shamansur S. Sagdullaev
- S.
Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, 77 Mirzo Ulugbek Str., Tashkent 100170, Uzbekistan
| | - Rano P. Zakirova
- S.
Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, 77 Mirzo Ulugbek Str., Tashkent 100170, Uzbekistan
| | - Khamid U. Khodjaniyazov
- A. S.
Sadikov Institute of the Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, 83 Mirzo Ulugbek Str., Tashkent 100125, Uzbekistan
- Faculty
of Chemistry, National University of Uzbekistan
named after Mirzo Ulugbek, 4 University Str., Tashkent 100174, Uzbekistan
| | - Kohei Torikai
- Faculty
of Chemistry, National University of Uzbekistan
named after Mirzo Ulugbek, 4 University Str., Tashkent 100174, Uzbekistan
- Department
of Chemistry, Faculty of Science, Kyushu
University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Bouteau F, Grésillon E, Chartier D, Arbelet-Bonnin D, Kawano T, Baluška F, Mancuso S, Calvo P, Laurenti P. Our sisters the plants? notes from phylogenetics and botany on plant kinship blindness. PLANT SIGNALING & BEHAVIOR 2021; 16:2004769. [PMID: 34913409 PMCID: PMC9208782 DOI: 10.1080/15592324.2021.2004769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/13/2021] [Accepted: 11/08/2021] [Indexed: 05/27/2023]
Abstract
Before the upheaval brought about by phylogenetic classification, classical taxonomy separated living beings into two distinct kingdoms, animals and plants. Rooted in 'naturalist' cosmology, Western science has built its theoretical apparatus on this dichotomy mostly based on ancient Aristotelian ideas. Nowadays, despite the adoption of the Darwinian paradigm that unifies living organisms as a kinship, the concept of the "scale of beings" continues to structure our analysis and understanding of living species. Our aim is to combine developments in phylogeny, recent advances in biology, and renewed interest in plant agency to craft an interdisciplinary stance on the living realm. The lines at the origin of plant or animal have a common evolutionary history dating back to about 3.9 Ga, separating only 1.6 Ga ago. From a phylogenetic perspective of living species history, plants and animals belong to sister groups. With recent data related to the field of Plant Neurobiology, our aim is to discuss some socio-cultural obstacles, mainly in Western naturalist epistemology, that have prevented the integration of living organisms as relatives, while suggesting a few avenues inspired by practices principally from other ontologies that could help overcome these obstacles and build bridges between different ways of connecting to life.
Collapse
Affiliation(s)
- François Bouteau
- Laboratoire Interdisciplinaire Des Énergies de Demain, Université de Paris, France
| | - Etienne Grésillon
- Laboratoire Dynamiques Sociales Et Recomposition Des Espaces (Ladyss-umr 7533), Université de Paris, Paris, France
| | - Denis Chartier
- Laboratoire Dynamiques Sociales Et Recomposition Des Espaces (Ladyss-umr 7533), Université de Paris, Paris, France
| | | | - Tomonori Kawano
- Graduate School of Environmental Engineering, University of Kitakyushu 1–1, KitakyushuJapan
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Stefano Mancuso
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Sesto Fiorentino (FI), Italy
| | - Paco Calvo
- Minimal Intelligence Lab, Department of Philosophy, University of Murcia, Murcia, Spain
| | - Patrick Laurenti
- Laboratoire Interdisciplinaire Des Énergies de Demain, Université de Paris, France
| |
Collapse
|
8
|
Van Winkle T, Ponce M, Quellhorst H, Bruce A, Albin CE, Kim TN, Zhu KY, Morrison WR. Microbial Volatile Organic Compounds from Tempered and Incubated Grain Mediate Attraction by a Primary but Not Secondary Stored Product Insect Pest in Wheat. J Chem Ecol 2021; 48:27-40. [PMID: 34542783 PMCID: PMC8801404 DOI: 10.1007/s10886-021-01312-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/31/2021] [Accepted: 08/22/2021] [Indexed: 12/04/2022]
Abstract
There has been a dearth of research elucidating the behavioral effect of microbially-produced volatile organic compounds on insects in postharvest agriculture. Demonstrating attraction to MVOC’s by stored product insects would provide an additional source of unique behaviorally-relevant stimuli to protect postharvest commodities at food facilities. Here, we assessed the behavioral response of a primary (Rhyzopertha dominica) and secondary (Tribolium castaneum) grain pest to bouquets of volatiles produced by whole wheat that were untempered, or tempered to 12%, 15%, or 19% grain moisture and incubated for 9, 18, or 27 days. We hypothesized that MVOC’s may be more important for the secondary feeder because they signal that otherwise unusable, intact grains have become susceptible by weakening of the bran. However, contrary to our expectations, we found that the primary feeder, R. dominica, but not T. castaneum was attracted to MVOC’s in a wind tunnel experiment, and in a release-recapture assay using commercial traps baited with grain treatments. Increasing grain moisture resulted in elevated grain damage detected by near-infrared spectroscopy and resulted in small but significant differences in the blend of volatiles emitted by treatments detected by gas chromatography coupled with mass spectrometry (GC–MS). In sequencing the microbial community on the grain, we found a diversity of fungi, suggesting that an assemblage was responsible for emissions. We conclude that R. dominica is attracted to a broader suite of MVOC’s than T. castaneum, and that our work highlights the importance of understanding insect-microbe interactions in the postharvest agricultural supply chain.
Collapse
Affiliation(s)
- Taylor Van Winkle
- School of Planning, Design, and Construction, Michigan State University, East Lansing, MI, USA
| | - Marco Ponce
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hannah Quellhorst
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Alexander Bruce
- USDA-ARS Center for Grain and Animal Health Research, Manhattan, KS, 66502, USA
| | - Chloe E Albin
- Department of Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Tania N Kim
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - William R Morrison
- USDA-ARS Center for Grain and Animal Health Research, Manhattan, KS, 66502, USA.
| |
Collapse
|
9
|
Buzdin AV, Patrushev MV, Sverdlov ED. Will Plant Genome Editing Play a Decisive Role in "Quantum-Leap" Improvements in Crop Yield to Feed an Increasing Global Human Population? PLANTS (BASEL, SWITZERLAND) 2021; 10:1667. [PMID: 34451712 PMCID: PMC8398637 DOI: 10.3390/plants10081667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 02/08/2023]
Abstract
Growing scientific evidence demonstrates unprecedented planetary-scale human impacts on the Earth's system with a predicted threat to the existence of the terrestrial biosphere due to population increase, resource depletion, and pollution. Food systems account for 21-34% of global carbon dioxide (CO2) emissions. Over the past half-century, water and land-use changes have significantly impacted ecosystems, biogeochemical cycles, biodiversity, and climate. At the same time, food production is falling behind consumption, and global grain reserves are shrinking. Some predictions suggest that crop yields must approximately double by 2050 to adequately feed an increasing global population without a large expansion of crop area. To achieve this, "quantum-leap" improvements in crop cultivar productivity are needed within very narrow planetary boundaries of permissible environmental perturbations. Strategies for such a "quantum-leap" include mutation breeding and genetic engineering of known crop genome sequences. Synthetic biology makes it possible to synthesize DNA fragments of any desired sequence, and modern bioinformatics tools may hopefully provide an efficient way to identify targets for directed modification of selected genes responsible for known important agronomic traits. CRISPR/Cas9 is a new technology for incorporating seamless directed modifications into genomes; it is being widely investigated for its potential to enhance the efficiency of crop production. We consider the optimism associated with the new genetic technologies in terms of the complexity of most agronomic traits, especially crop yield potential (Yp) limits. We also discuss the possible directions of overcoming these limits and alternative ways of providing humanity with food without transgressing planetary boundaries. In conclusion, we support the long-debated idea that new technologies are unlikely to provide a rapidly growing population with significantly increased crop yield. Instead, we suggest that delicately balanced humane measures to limit its growth and the amount of food consumed per capita are highly desirable for the foreseeable future.
Collapse
Affiliation(s)
- Anton V Buzdin
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maxim V Patrushev
- Kurchatov Center for Genome Research, National Research Center Kurchatov Institute, 123182 Moscow, Russia
| | - Eugene D Sverdlov
- Kurchatov Center for Genome Research, National Research Center Kurchatov Institute, 123182 Moscow, Russia
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, 123182 Moscow, Russia
| |
Collapse
|
10
|
|
11
|
Usage of Artificial Intelligence and Remote Sensing as Efficient Devices to Increase Agricultural System Yields. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6242288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Artificial Intelligence is an emerging technology in the field of agriculture. Artificial Intelligence-based tools and equipment have actually taken the agriculture sector to a different level. This new technology has improved crop production and enhanced instantaneous monitoring, processing, and collection. The most recent computerized structures using remote sensing and drones have made a significant contribution to the agro-based domain. Moreover, remote sensing has the capability to support the development of farming applications with the aim of facing this main defy, via giving cyclic records on yield status during studied periods at diverse degrees and for diverse parameters. Various hi-tech, computer-supported structures are created to determine different central factors such as plant detection, yield recognition, crop quality, and several other methods. This paper includes the techniques employed for the analysis of collected information in order to enhance the productivity, forecast eventual threats, and reduce the task load on cultivators.
Collapse
|
12
|
Alquézar B, Volpe HXL, Magnani RF, de Miranda MP, Santos MA, Marques VV, de Almeida MR, Wulff NA, Ting HM, de Vries M, Schuurink R, Bouwmeester H, Peña L. Engineered Orange Ectopically Expressing the Arabidopsis β-Caryophyllene Synthase Is Not Attractive to Diaphorina citri, the Vector of the Bacterial Pathogen Associated to Huanglongbing. FRONTIERS IN PLANT SCIENCE 2021; 12:641457. [PMID: 33763099 PMCID: PMC7982956 DOI: 10.3389/fpls.2021.641457] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/27/2021] [Indexed: 05/21/2023]
Abstract
Huanglongbing (HLB) is a destructive disease, associated with psyllid-transmitted phloem-restricted pathogenic bacteria, which is seriously endangering citriculture worldwide. It affects all citrus species and cultivars regardless of the rootstock used, and despite intensive research in the last decades, there is no effective cure to control either the bacterial species (Candidatus Liberibacter spp.) or their insect vectors (Diaphorina citri and Trioza erytreae). Currently, the best attempts to manage HLB are based on three approaches: (i) reducing the psyllid population by intensive insecticide treatments; (ii) reducing inoculum sources by removing infected trees, and (iii) using nursery-certified healthy plants for replanting. The economic losses caused by HLB (decreased fruit quality, reduced yield, and tree destruction) and the huge environmental costs of disease management seriously threaten the sustainability of the citrus industry in affected regions. Here, we have generated genetically modified sweet orange lines to constitutively emit (E)-β-caryophyllene, a sesquiterpene repellent to D. citri, the main HLB psyllid vector. We demonstrate that this alteration in volatile emission affects behavioral responses of the psyllid in olfactometric and no-choice assays, making them repellent/less attractant to the HLB vector, opening a new alternative for possible HLB control in the field.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Haroldo Xavier Linhares Volpe
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Rodrigo Facchini Magnani
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Chemistry Department, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Marcelo Pedreira de Miranda
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Mateus Almeida Santos
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Viviani Vieira Marques
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Márcia Rodrigues de Almeida
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Nelson Arno Wulff
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Hieng-Ming Ting
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Michel de Vries
- Swammerdam Institute for Life Sciences, Green Life Sciences Cluster, University of Amsterdam, Amsterdam, Netherlands
| | - Robert Schuurink
- Swammerdam Institute for Life Sciences, Green Life Sciences Cluster, University of Amsterdam, Amsterdam, Netherlands
| | - Harro Bouwmeester
- Swammerdam Institute for Life Sciences, Green Life Sciences Cluster, University of Amsterdam, Amsterdam, Netherlands
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| |
Collapse
|
13
|
Livingston SJ, Samuels AL. To protect and emit beauty. Nat Chem Biol 2021; 17:124-125. [PMID: 33483698 DOI: 10.1038/s41589-020-00692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Samuel J Livingston
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
14
|
Ochola J, Coyne D, Cortada L, Haukeland S, Ng'ang'a M, Hassanali A, Opperman C, Torto B. Cyst nematode bio-communication with plants: implications for novel management approaches. PEST MANAGEMENT SCIENCE 2021; 77:1150-1159. [PMID: 32985781 PMCID: PMC7894489 DOI: 10.1002/ps.6105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 05/03/2023]
Abstract
Bio-communication occurs when living organisms interact with each other, facilitated by the exchange of signals including visual, auditory, tactile and chemical. The most common form of bio-communication between organisms is mediated by chemical signals, commonly referred to as 'semiochemicals', and it involves an emitter releasing the chemical signal that is detected by a receiver leading to a phenotypic response in the latter organism. The quality and quantity of the chemical signal released may be influenced by abiotic and biotic factors. Bio-communication has been reported to occur in both above- and below-ground interactions and it can be exploited for the management of pests, such as cyst nematodes, which are pervasive soil-borne pests that cause significant crop production losses worldwide. Cyst nematode hatching and successful infection of hosts are biological processes that are largely influenced by semiochemicals including hatching stimulators, hatching inhibitors, attractants and repellents. These semiochemicals can be used to disrupt interactions between host plants and cyst nematodes. Advances in RNAi techniques such as host-induced gene silencing to interfere with cyst nematode hatching and host location can also be exploited for development of synthetic resistant host cultivars. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Juliet Ochola
- International Centre of Insect Physiology and EcologyNairobiKenya
- Chemistry DepartmentKenyatta UniversityNairobiKenya
| | - Danny Coyne
- East Africa, International Institute of Tropical AgricultureNairobiKenya
- Department of Biology, Section NematologyGhent UniversityGhentBelgium
| | - Laura Cortada
- East Africa, International Institute of Tropical AgricultureNairobiKenya
- Department of Biology, Section NematologyGhent UniversityGhentBelgium
| | - Solveig Haukeland
- International Centre of Insect Physiology and EcologyNairobiKenya
- Norwegian Institute of Bioeconomy ResearchÅsNorway
| | | | | | - Charles Opperman
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Baldwyn Torto
- International Centre of Insect Physiology and EcologyNairobiKenya
| |
Collapse
|
15
|
Li F, Hua H, Han Y, Hou M. Plant-Mediated Horizontal Transmission of Asaia Between White-Backed Planthoppers, Sogatella furcifera. Front Microbiol 2020; 11:593485. [PMID: 33329476 PMCID: PMC7734105 DOI: 10.3389/fmicb.2020.593485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022] Open
Abstract
Asaia is a bacterial symbiont of sugar-feeding insects that has been shown to be vertically transmitted by maternal transmission and paternal transmission mechanism, and to be horizontally transmitted via co-feeding artificial diet and venereal routes. Here, the first case of plant-mediated horizontal transmission of Asaia between white-backed planthoppers (WBPH), Sogatella furcifera, was reported. In Asaia-infected WBPH, Asaia was detected mostly in salivary glands and to a less extent in stylets. The rice leaf sheaths fed by Asaia-infected WBPH for 12 h were all positive with Asaia, where Asaia persisted for at least 30 d but was localized in the feeding sites only. When confined to Asaia-infected leaf sheaths for 7 d at the sites pre-infested by the Asaia-infected WBPH, all Asaia-free WBPH became infected with Asaia and the acquired Asaia could be vertically transmitted to their offspring. Phylogenetic analysis confirmed an identical Asaia strain in the Asaia-infected donor WBPH, the Asaia-infected leaf sheaths, and the newly infected recipient WBPH. Our findings provide direct evidence for the first time that rice plant can mediate horizontal transmission of Asaia between WBPH, which may contribute to the spread of Asaia in the field WBPH populations.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hongxia Hua
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqiang Han
- College of Life Science and Environmental Resources, Yichun University, Yichun, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Li X, Tieman D, Liu Z, Chen K, Klee HJ. Identification of a lipase gene with a role in tomato fruit short-chain fatty acid-derived flavor volatiles by genome-wide association. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:631-644. [PMID: 32786123 DOI: 10.1111/tpj.14951] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 05/16/2023]
Abstract
Fatty acid-derived volatile organic compounds (FA-VOCs) make significant contributions to tomato (Solanum lycopersicum) fruit flavor and human preferences. Short-chain FA-VOCs (C5 and C6) are among the most abundant and important volatile compounds in tomato fruits. The precursors of these volatiles, linoleic acid (18:2) and linolenic acid (18:3), are derived from cleavage of glycerolipids. However, the initial step in synthesis of these FA-VOCs has not been established. A metabolite-based genome-wide association study combined with genetic mapping and functional analysis identified a gene encoding a novel class III lipase family member, Sl-LIP8, that is associated with accumulation of short-chain FA-VOCs in tomato fruit. In vitro assays indicated that Sl-LIP8 can cleave 18:2 and 18:3 acyl groups from glycerolipids. A CRISPR/Cas9 gene edited Sl-LIP8 mutant had much lower content of multiple fruit short-chain FA-VOCs, validating an important role for this enzyme in the pathway. Sl-LIP8 RNA abundance was correlated with FA-VOC content, consistent with transcriptional regulation of the first step in the pathway. Taken together, our work indicates that glycerolipid turnover by Sl-LIP8 is an important early step in the synthesis of multiple short-chain FA-VOCs.
Collapse
Affiliation(s)
- Xiang Li
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Denise Tieman
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Zimeng Liu
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Harry J Klee
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| |
Collapse
|
17
|
Yang L, Liao X, Cheng P, Zhang ZG, Li H. Composition and diurnal variation of floral scent emission in Rosa rugosa Thunb. and Tulipa gesneriana L. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThis study was aimed to explore the composition and diurnal variation analyses of floral scent emission from Rosa rugosa Thunb. and Tulipa gesneriana L. The floral scent from the fresh flower were collected at different time points (9:00, 12:00, 15:00, 18:00, and 21:00) using dynamic headspace collection and were analyzed using autothermal desorber-gas chromatography/mass spectrometry (ATD-GC/MS). The results showed that a total of 62 volatile flavor compounds were detected from Rosa rugosa Thunb and a total of 70 volatile flavor compounds were detected from Tulipa gesneriana L. They were identified with eight functional categories: alcohols, fatty hydrocarbons, terpenes, aldehydes, ketones, esters, and other substances. The total release amount first decreased, and then increased with time, and arrived at the lowest at 15:00. The release amounts of different categories present distinct change patterns. Among the components, phenylethyl alcohol, citronellol, methylene chloride, hexane, and acetone showed relatively higher release amounts and were thought as the main components in floral scent of Rosa rugosa Thunb. Alpha-Farnesene, ethanol, pentadecane, beta-ocimene, longifolene, caryophyllene, and acetone showed relatively higher release amounts and were thought as the main components in floral scent of Tulipa gesneriana L. Research of roses and tulips in aromatic in the garden provides a theoretical basis and research and improvement of the aroma components of aroma.
Collapse
Affiliation(s)
- Lu Yang
- Xinjiang Academy of Forestry, Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Urumqi 830052, China
| | - Xiang Liao
- Xinjiang Academy of Forestry, Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Urumqi 830052, China
| | - Ping Cheng
- Xinjiang Academy of Forestry, Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Urumqi 830052, China
| | - Zhi-Gang Zhang
- Xinjiang Academy of Forestry, Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Urumqi 830052, China
| | - Hong Li
- Xinjiang Academy of Forestry, Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Urumqi 830052, China
| |
Collapse
|
18
|
Calcagnile M, Tredici SM, Talà A, Alifano P. Bacterial Semiochemicals and Transkingdom Interactions with Insects and Plants. INSECTS 2019; 10:E441. [PMID: 31817999 PMCID: PMC6955855 DOI: 10.3390/insects10120441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023]
Abstract
A peculiar feature of all living beings is their capability to communicate. With the discovery of the quorum sensing phenomenon in bioluminescent bacteria in the late 1960s, it became clear that intraspecies and interspecies communications and social behaviors also occur in simple microorganisms such as bacteria. However, at that time, it was difficult to imagine how such small organisms-invisible to the naked eye-could influence the behavior and wellbeing of the larger, more complex and visible organisms they colonize. Now that we know this information, the challenge is to identify the myriad of bacterial chemical signals and communication networks that regulate the life of what can be defined, in a whole, as a meta-organism. In this review, we described the transkingdom crosstalk between bacteria, insects, and plants from an ecological perspective, providing some paradigmatic examples. Second, we reviewed what is known about the genetic and biochemical bases of the bacterial chemical communication with other organisms and how explore the semiochemical potential of a bacterium can be explored. Finally, we illustrated how bacterial semiochemicals managing the transkingdom communication may be exploited from a biotechnological point of view.
Collapse
Affiliation(s)
| | | | | | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (M.C.); (S.M.T.); (A.T.)
| |
Collapse
|
19
|
Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F. The role of volatiles in plant communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:892-907. [PMID: 31410886 PMCID: PMC6899487 DOI: 10.1111/tpj.14496] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 05/08/2023]
Abstract
Volatiles mediate the interaction of plants with pollinators, herbivores and their natural enemies, other plants and micro-organisms. With increasing knowledge about these interactions the underlying mechanisms turn out to be increasingly complex. The mechanisms of biosynthesis and perception of volatiles are slowly being uncovered. The increasing scientific knowledge can be used to design and apply volatile-based agricultural strategies.
Collapse
Affiliation(s)
- Harro Bouwmeester
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Robert C. Schuurink
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Petra M. Bleeker
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Florian Schiestl
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 107CH‐8008ZürichSwitzerland
| |
Collapse
|
20
|
Meng L, Li X, Cheng X, Zhang H. 16S rRNA Gene Sequencing Reveals a Shift in the Microbiota of Diaphorina citri During the Psyllid Life Cycle. Front Microbiol 2019; 10:1948. [PMID: 31507561 PMCID: PMC6716071 DOI: 10.3389/fmicb.2019.01948] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/08/2019] [Indexed: 01/11/2023] Open
Abstract
The Asian citrus psyllid (Diaphorina citri) is a major pest of citrus trees as it transmits Candidatus Liberibacter asiaticus (CLas). The composition of a host’s microbiota can affect the evolution and ecological distribution of the host. This study monitored the compositional shifts in the citrus psyllid microbiota through all the life stages (egg, nymph 1–5 stages, and adult) by next-generation sequencing (NGS) and quantitative real-time PCR. There were clear differences in both α- and β-diversity of microbiota through the psyllid life stages. Microbiota diversity was markedly higher in the nymph 2–5 stages than in the adult, egg, and nymph 1 stages. Proteobacteria were dominant in all the life stages of D. citri, representing >97.5% of the total bacterial community, and Candidatus Profftella armature was the dominant genus in all the life stages. Data from the qPCR analysis showed an exponential increase in the populations of three D. citri endosymbionts: Candidatus Profftella armature, Candidatus Carsonella ruddii, and Wolbachia. The gut bacterium Pantoea was present in all the life stages, but it was markedly higher in the nymph 2–5 stages. The microbiota composition substantially differed among the egg–nymph 1, nymphs 2–5, and adult stages. Therefore, we successfully characterized the microbiota dynamics and thus identified a microbiota shift during the life cycle of D. citri by 16S rRNA gene sequencing and quantitative PCR. Moreover, 16S rRNA gene sequencing suggested that D. citri acquired the ability to bear CLas in the nymph 1 stage. This study enhances our understanding of microbial establishment in the developing D. citri and provides a reference resource for the identification of potential biocontrol approaches against this pest.
Collapse
Affiliation(s)
- Lixue Meng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqin Cheng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Sharma R, Zhou M, Hunter MD, Fan X. Rapid In Situ Analysis of Plant Emission for Disease Diagnosis Using a Portable Gas Chromatography Device. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7530-7537. [PMID: 31184878 DOI: 10.1021/acs.jafc.9b02500] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We developed and applied a fully automated portable gas chromatography (GC) device for rapid and in situ analysis of plant volatile organic compounds (VOCs) to examine plant health status. A total of 42 emission samples were collected over a period of 5 days from 10 milkweed ( Asclepias syriaca) plants, half of which were infested by aphids. Thirty-five VOC peaks were separated and detected in 8 min. An algorithm based on machine learning, principal component analysis, and linear discriminant analysis was developed to evaluate the GC results. We found that our device and algorithm are able to distinguish between the undamaged control and the aphid-infested milkweeds with an overall accuracy of 90-100% within 48-72 h of the attack. Such rapid in situ detection of insect attack attests to the great potential of VOC monitoring in plant health management.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Biomedical Engineering , University of Michigan 1101 Beal Avenue , Ann Arbor , Michigan 48109 , United States
| | - Menglian Zhou
- Department of Biomedical Engineering , University of Michigan 1101 Beal Avenue , Ann Arbor , Michigan 48109 , United States
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology , University of Michigan , 3010 Biological Sciences Building , Ann Arbor , Michigan 48109 , United States
| | - Xudong Fan
- Department of Biomedical Engineering , University of Michigan 1101 Beal Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
22
|
Wan C, Hong Q, Zhang X, Zeng Y, Yang D, Che C, Ding S, Xiao Y, Li JQ, Qin Z. Role of the Ring Methyl Groups in 2',3'-Benzoabscisic Acid Analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4995-5007. [PMID: 30901214 DOI: 10.1021/acs.jafc.8b07068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Five analogues of iso-PhABA (20) developed earlier by our research group were designed and synthesized. The bioassay results show that the number and position of methyl groups along with the substitution of hydrogen atoms of the methyl group have a great influence on the activity. Compared with iso-PhABA, the inhibitory activity of diMe-PhABA (21) on seed germination and rice seedling growth decreased slightly; however, it significantly reduced the capability of inhibiting wheat embryo germination. Both 3'-deMe- iso-PhABA (22) and 2'-deMe-PhABA (23) exhibited weak inhibitory activities, and 11'-methoxy iso-PhABA (24a/24b) was much more efficient than its isomer 24c/24d in all bioassays. These results reveal the preservation of quaternary carbon at the 2' or 3' position is necessary to maintain its ABA-like biological activity, and demethylation at the 3' position has a more significant effect. The selectivity of these compounds to different physiological processes makes them available as selective probes for different ABA receptors.
Collapse
Affiliation(s)
| | - Qilin Hong
- Beijing Aerospace Propulsion Institute , Beijing 100076 , China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li Q, Fan J, Sun J, Wang MQ, Chen J. Plant-Mediated Horizontal Transmission of Hamiltonella defensa in the Wheat Aphid Sitobion miscanthi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13367-13377. [PMID: 30516997 DOI: 10.1021/acs.jafc.8b04828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hamiltonella defensa is mainly vertically transmitted, but evidence suggests that horizontal transmission may occur. Here, the first case of plant-mediated horizontal transmission of H. defensa between wheat aphids, Sitobion miscanthi, was reported. H. defensa was harbored in sheath cells, secondary bacteriocytes, and hemolymph. After Hamiltonella-infected aphids fed on wheat leaves, H. defensa was observed in aphid stylets and plant phloem. H. defensa persisted in wheat leaves for at least 10 days. Most Hamiltonella-uninfected aphids became infected with H. defensa after sustained feeding on infected plant leaves and showed almost 100% stable vertical transmission over the next five generations. These horizontal transmission experiments were replicated using two other plants, rice and corn, and two different wheat aphid species, Rhopalosiphum padi and Schizaphis graminum. Surprisingly, aphid feeding induced plant infection only locally rather than systemically in leaves. Our findings indicate that plants may act as horizontal transmission intermediaries, contributing to the ubiquity of the otherwise maternally inherited H. defensa.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
- College of Plant Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Jingxuan Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Man-Qun Wang
- College of Plant Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| |
Collapse
|
24
|
Dou X, Chen L, Lei M, Zellmer L, Jia Q, Ling P, He Y, Yang W, Liao DJ. Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation. Int J Biol Sci 2018; 14:1800-1812. [PMID: 30443184 PMCID: PMC6231223 DOI: 10.7150/ijbs.26962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
Organisms and their different component levels, whether organelle, cellular or other, come by birth and go by death, and the deaths are often balanced by new births. Evolution on the one hand has built demise program(s) in cells of organisms but on the other hand has established external controls on the program(s). For instance, evolution has established death program(s) in animal cells so that the cells can, when it is needed, commit apoptosis or senescent death (SD) in physiological situations and stress-induced cell death (SICD) in pathological situations. However, these programmed cell deaths are not predominantly regulated by the cells that do the dying but, instead, are controlled externally and remotely by the cells' superior(s), i.e. their host tissue or organ or even the animal's body. Currently, it is still unclear whether a cell has only one death program or has several programs respectively controlling SD, apoptosis and SICD. In animals, apoptosis exterminates, in a physiological manner, healthy but no-longer needed cells to avoid cell redundancy, whereas suicidal SD and SICD, like homicidal necrosis, terminate ill but useful cells, which may be followed by regeneration of the live cells and by scar formation to heal the damaged organ or tissue. Therefore, “who dies” clearly differentiates apoptosis from SD, SICD and necrosis. In animals, apoptosis can occur only in those cell types that retain a lifelong ability of proliferation and never occurs in those cell types that can no longer replicate in adulthood. In cancer cells, SICD is strengthened, apoptosis is dramatically weakened while SD has been lost. Most published studies professed to be about apoptosis are actually about SICD, which has four basic and well-articulated pathways involving caspases or involving pathological alterations in the mitochondria, endoplasmic reticula, or lysosomes.
Collapse
Affiliation(s)
- Xixi Dou
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China.,Technology Center, Shandong Freda Pharmaceutical Group, Jinan 250101, Shandong Province, P.R. China
| | - Lichan Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, P.R. China
| | - Mingjuan Lei
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA
| | - Qingwen Jia
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China
| | - Peixue Ling
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China.,Technology Center, Shandong Freda Pharmaceutical Group, Jinan 250101, Shandong Province, P.R. China
| | - Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China
| | - Wenxiu Yang
- Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, P.R. China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China.,Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, P.R. China
| |
Collapse
|
25
|
Cofer TM, Seidl-Adams I, Tumlinson JH. From Acetoin to ( Z)-3-Hexen-1-ol: The Diversity of Volatile Organic Compounds that Induce Plant Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11197-11208. [PMID: 30293420 DOI: 10.1021/acs.jafc.8b03010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Evidence that plants can respond to volatile organic compounds (VOCs) was first presented 35 years ago. Since then, over 40 VOCs have been found to induce plant responses. These include VOCs that are produced not only by plants but also by microbes and insects. Here, we summarize what is known about how these VOCs are produced and how plants detect and respond to them. In doing so, we highlight notable observations we believe are worth greater consideration. For example, the VOCs that induce plant responses appear to have little in common. They are derived from many different biosynthetic pathways and have few distinguishing chemical or structural features. Likewise, plants appear to use several mechanisms to detect VOCs rather than a single dedicated "olfactory" system. Considering these observations, we advocate for more discovery-oriented experiments and propose that future research take a fresh look at the ways plants detect and respond to VOCs.
Collapse
Affiliation(s)
- Tristan M Cofer
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Irmgard Seidl-Adams
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - James H Tumlinson
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
26
|
Njuguna PK, Murungi LK, Fombong A, Teal PEA, Beck JJ, Torto B. Cucumber and Tomato Volatiles: Influence on Attraction in the Melon Fly Zeugodacus cucurbitate (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8504-8513. [PMID: 30041516 DOI: 10.1021/acs.jafc.8b03452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The main hosts of the melon fly Zeugodacus cucurbitate are cultivated and wild cucurbitaceous plants. In eastern Africa, the melon fly is a major pest of the Solanaceae plant Solanum lycopersicum (tomato). We hypothesized that shared species-specific volatiles may play a role in host attraction. We tested this hypothesis by comparing the olfactory responses of the melon fly to Cucumis sativus (cucumber) (Cucurbitaceae) and tomato plant odors in behavioral and electrophysiological assays, followed by chemical analysis to identify the key compounds mediating the interactions. Our results identified 13 shared components between cucumber and tomato plant odors. A synthetic blend of seven of the shared components dominated by monoterpenes at concentrations mimicking the volatile bouquet of cucumber and tomato attracted both sexes of the melon fly. Our results suggest that the presence and quantity of specific compounds in host odors are the main predictors for host recognition in Z. cucurbitate.
Collapse
Affiliation(s)
- Peter K Njuguna
- International Centre of Insect Physiology and Ecology ( icipe), P.O. Box 30772-00100, Nairobi 00100 , Kenya
- Jomo Kenyatta University of Agriculture and Technology , P.O. Box 62000-00200, Nairobi 00200 , Kenya
| | - Lucy K Murungi
- Jomo Kenyatta University of Agriculture and Technology , P.O. Box 62000-00200, Nairobi 00200 , Kenya
| | - Ayuka Fombong
- International Centre of Insect Physiology and Ecology ( icipe), P.O. Box 30772-00100, Nairobi 00100 , Kenya
| | - Peter E A Teal
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology ( icipe), P.O. Box 30772-00100, Nairobi 00100 , Kenya
| |
Collapse
|