1
|
Zheng Y, Wang T, Zhang J, Wei S, Wu Z, Li J, Shi B, Sun Z, Xu W, Zhu J. Plant-Derived Nanovesicles: A Promising Frontier in Tissue Repair and Antiaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40402864 DOI: 10.1021/acs.jafc.5c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
In recent years, mammal-derived extracellular vesicles (EVs) have been widely used in studies on tissue repair and antiaging. Their therapeutic potential lies in mediating intercellular communication through the transfer of various bioactive molecules. As research on nanovesicles progresses, plant-derived nanovesicles (PDNVs) have attracted growing attention as a promising alternative. As an emerging cross-species regulatory "natural force", PDNVs have attracted considerable interest due to their excellent biocompatibility, low immunogenicity, and remarkable therapeutic effects in tissue injury and aging-related diseases. In this review, we examine the bioactive components, drug delivery potential, and functional mechanisms of PDNVs, and we summarize recent advances in their applications for tissue repair and antiaging. In addition, we systematically discuss the major challenges and limitations hindering the clinical translation and industrialization of PDNVs, and we propose five strategic approaches along with future research directions. This review aims to promote further investigation of PDNVs in regenerative medicine and enhance their potential for clinical application.
Collapse
Affiliation(s)
- Yuzhou Zheng
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Tangrong Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Sen Wei
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Zhijing Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiali Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Beihao Shi
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Zixuan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jian Zhu
- Vascular Surgery Department, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| |
Collapse
|
2
|
Yang D, Xuan S, Zhang W, Wu H, Jiang Y, Zhou A. Natural Copper Ion Scavenger: Investigation of the Hepatoprotective Effects of Green Tea Extract in Toxic-Milk Mice with Wilson's Disease Model. Foods 2025; 14:679. [PMID: 40002122 PMCID: PMC11854454 DOI: 10.3390/foods14040679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Wilson's disease (WD) is an inherited disorder characterized by abnormal copper metabolism with complex pathological features. Currently, the mechanism of copper overload-induced hepatic injury is unclear. Green tea is a natural chelator, and its main ingredients, green tea polyphenol (GTP) and L-theanine (L-TA) are good at binding to heavy metals like iron and copper. There have been no reports on green tea extracts (GTE) for the treatment of Wilson's disease. This study investigated the hepatoprotective effect of GTE on WD model mice. Initially, we examined the impact of green tea extract on copper metabolism, excretion, and hepatoprotective effects in WD model toxic milk mice. Then, Ultra performance liquid chromatography (UPLC-DAD) was established to analyze GTP and L-TA in green tea extract. Further screening of eight active components and copper complex active components in green tea extract was carried out by ion analyzer. Finally, we verified the pharmacodynamic effects of these active ingredients at the animal level. The results showed that GTE improves liver function and attenuates liver injury in TX mice by promoting tissue copper excretion and inhibiting oxidative stress, which provides a theoretical basis for green tea's potential to improve the clinical symptoms of WD.
Collapse
Affiliation(s)
- Delai Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China; (D.Y.); (S.X.); (W.Z.)
| | - Shujuan Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China; (D.Y.); (S.X.); (W.Z.)
| | - Wang Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China; (D.Y.); (S.X.); (W.Z.)
| | - Huan Wu
- Key Laboratory of the Ministry of Education of Xinan Medicine, Hefei 230038, China;
| | - Yuge Jiang
- Key Laboratory of the Ministry of Education of Xinan Medicine, Hefei 230038, China;
| | - An Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China; (D.Y.); (S.X.); (W.Z.)
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Hefei 230038, China
| |
Collapse
|
3
|
Han Z, Wang L, Zhu H, Tu Y, He P, Li B. Uncovering the effects and mechanisms of tea and its components on depression, anxiety, and sleep disorders: A comprehensive review. Food Res Int 2024; 197:115191. [PMID: 39593401 DOI: 10.1016/j.foodres.2024.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/28/2024]
Abstract
Depression, anxiety and sleep disorders are prevalent psychiatric conditions worldwide, significantly impacting the physical and mental well-being of individuals. The treatment of these conditions poses various challenges, including limited efficacy and potential side effects. Tea, a globally recognized healthful beverage, contains a variety of active compounds. Studies have shown that consuming tea or ingesting its certain active ingredients have a beneficial impact on the mental health issues mentioned above. While the effects of tea on physical health are well-documented, there remains a gap in our systematic understanding of its impact on mental health. This article offers a thorough overview of animal, clinical, and epidemiological studies examining tea and its components in the treatment of depression, anxiety, and sleep disorders, and summarizes the associated molecular mechanisms. The active ingredients in tea, including L-theanine, γ-aminobutyric acid (GABA), arginine, catechins, theaflavins, caffeine, theacrine, and several volatile compounds, may help improve depression, anxiety, and sleep disorders. The underlying molecular mechanisms involve the regulation of neurotransmitters, including monoamines, GABA, and brain-derived neurotrophic factor (BDNF), as well as the suppression of oxidative stress and inflammation. Additionally, these ingredients may influence the microbiota-gut-brain (MGB) axis and the hypothalamic-pituitary-adrenal (HPA) axis. This review provides valuable insights into the effects and mechanisms by which tea and its components regulate depression, anxiety, and sleep disorders, laying the groundwork for further research into relevant mechanisms and the development of tea-based mental health products.
Collapse
Affiliation(s)
- Ziyi Han
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Leyu Wang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Huanqing Zhu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Youying Tu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Puming He
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bo Li
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
4
|
Xiao G, Yang M, Zeng Z, Tang R, Jiang J, Wu G, Xie C, Jia D, Bi X. Investigation into the anti-inflammatory mechanism of Pothos chinensis (Raf.) Merr. By regulating TLR4/MyD88/NF-κB pathway: Integrated network pharmacology, serum pharmacochemistry, and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118520. [PMID: 38964626 DOI: 10.1016/j.jep.2024.118520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation is directly related to disease progression and contributes significantly to the global burden of disease. Pothos chinensis (Raf.) Merr. (PCM) is commonly used in Yao medicine in China to treat tumors, and orthopedic illnesses such as knee osteoarthritis, and rheumatic bone discomfort. PCM was found to have significant anti-inflammatory properties in previous studies. AIM OF THE STUDY To explore the active compounds of PCM and their anti-inflammatory pharmacological mechanisms through an integrated strategy of serum pharmacochemistry, network pharmacology, and serum metabolomics. MATERIALS AND METHODS The qualitative and quantitative analyses of the chemical components of PCM were performed using UPLC-QTOF-MS/MS and UPLC, respectively, and the prototype components of PCM absorbed into the blood were analyzed. Based on the characterized absorbed into blood components, potential targets and signaling pathways of PCM anti-inflammatory were found using network pharmacology. Furthermore, metabolomics studies using UPLC-QTOF-MS/MS identified biomarkers and metabolic pathways related to the anti-inflammatory effects of PCM. Finally, the hypothesized mechanisms were verified by in vivo and in vitro experiments. RESULTS Forty chemical components from PCM were identified for the first time, and seven of them were quantitatively analyzed, while five serum migratory prototype components were found. Network pharmacology KEGG enrichment analysis revealed that arachidonic acid metabolism, Tyrosine metabolism, TNF signaling pathway, NF-κB signaling pathway, and phenylalanine metabolism were the main signaling pathways of PCM anti-inflammatory. Pharmacodynamic results showed that PCM ameliorated liver injury and inflammatory cell infiltration and downregulated protein expression of IL-1β, NF-κB p65, and MyD88 in the liver. Metabolomics studies identified 53 different serum metabolites, mainly related to purine and pyrimidine metabolism, phenylalanine metabolism, primary bile acid biosynthesis, and glycerophospholipid metabolism. The comprehensive results demonstrated that the anti-inflammatory modulatory network of PCM was related to 5 metabolites, 3 metabolic pathways, 7 targets, and 4 active components of PCM. In addition, molecular docking identified the binding ability between the active ingredients and the core targets, and the anti-inflammatory efficacy of the active ingredients was verified by in vitro experiments. CONCLUSION Our study demonstrated the anti-inflammatory effect of PCM, and these findings provide new insights into the active ingredients and metabolic mechanisms of PCM in anti-inflammation.
Collapse
Affiliation(s)
- Guanlin Xiao
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, China.
| | - Minjuan Yang
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhihao Zeng
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ruiyin Tang
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jieyi Jiang
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Guangyin Wu
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Canhui Xie
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dezheng Jia
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoli Bi
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Miao Y, Ma S, Wu X. Association between tea consumption and stroke in the American adult females: analyses of NHANES 2011-2018 data. Front Nutr 2024; 11:1452137. [PMID: 39502878 PMCID: PMC11534590 DOI: 10.3389/fnut.2024.1452137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background Epidemiological surveys show that there is a significant gender difference in the incidence of stroke, with females having a noticeably higher rate than males. Accordingly, it is crucial to seek preventive measures for stroke specifically targeted at females. Although previous studies have shown that tea has been proven to be negatively correlated with stroke, the relationship between tea and stroke in American adult females is still unclear. Therefore, we aimed to investigate the relationship between tea consumption and the occurrence of stroke in American adult females. Methods The data analyzed is derived from the NHANES database between 2011 and 2018. The quantity of tea consumed was gathered from a 24-h dietary review. Stroke was identified by using questionnaire. The association between tea consumption and stroke was investigated using a weighted regression model. Then we used interaction testing and subgroup analysis to conduct a thorough analysis. Simultaneously, the association between the sugar content in tea and stroke was examined. Results This study included 5731 adult females aged between 20 and 60 years. Compared to those who did not consume tea, the likelihood of stroke decreased by 9% for each additional 100 g of tea ingested by participants (OR = 0.91, 95%CI: 0.83-1.00). In the unadjusted model, those who drank 307.5-480 g of tea per day had a substantially decreased risk of stroke than those who did not drink tea (OR = 0.23, 95%CI: 0.08-0.64). After adjustment, this relationship also persisted (Model II: OR = 0.23, 95% CI: 0.08-0.64; Model III: OR = 0.23, 95% CI: 0.08-0.66). In both Model II and Model III, there was a statistically significant relationship between consuming 480-744 g of tea per day and the risk of stroke (Model II: OR = 0.39, 95%CI: 0.16-0.94; Model III: OR = 0.42, 95% CI: 0.18-0.98). Subgroup analysis revealed an interaction only with level of education (P = 0.031). Ultimately, we also demonstrated that people who drink sugar free tea have a lower risk of stroke, and even after adjusting for mixed factors. Conclusion This study suggested that proper tea consumption was associated with a lower risk of stroke in adult females, which recommended drinking sugar free tea.
Collapse
Affiliation(s)
- Yongyue Miao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Sijia Ma
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xian Wu
- Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Du Z, Wu G, Cheng H, Han T, Li D, Xie Z. L-Theanine Ameliorates Obesity-Related Complications Induced by High-Fat Diet in Mice: Insights from Transcriptomics and Metabolomics. Foods 2024; 13:2977. [PMID: 39335905 PMCID: PMC11431230 DOI: 10.3390/foods13182977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a major public health concern globally. Plant-based ingredients have been proposed as alternative treatments for obesity. L-Theanine (THE), a unique nutraceutical component of tea, is known for its neuroprotective and cognitive benefits. However, there are few reports on THE's effects and mechanisms in improving obesity and its complications. In this study, the alleviating effects and potential mechanisms of THE on obesity-related complications (ORCs) induced by a high-fat diet(HFD) in mice were explored by performing biochemical, hepatic transcriptomics, and plasma metabolomics analyses. The results indicated THE (900 mg/kg of body weight) was effective in mitigating ORCs by decreasing body weight gain and fat deposition, improving glycolipid metabolism disorders, inflammation dysregulation, and alleviating fatty liver formation due to long-term HFD. The hepatic transcriptomics data suggested that THE intervention suppresses the lipid metabolism and inflammation pathways in HFD-fed mice, thereby inhibiting hepatic steatosis and inflammation. Moreover, plasma metabolomics analysis revealed that THE exhibited positive effects on the homeostasis of plasma metabolite balance, such as phosphatidylcholine (PC(14:0/18:1)), phosphatidylethanolamine (Lyso-PE(14:0)), phosphatidic acid (PA(16:0e/18:0)), stigmasterol, and deoxycholic acid glycine conjugate. These metabolites were strongly correlated with ORC-related indicators. Our results indicated that THE, as a functional food additive, possesses potential for ORC alleviation. However, the exact molecular mechanism of how THE alleviates ORCs needs to be investigated in the future.
Collapse
Affiliation(s)
- Zhaofeng Du
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Huijun Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Biological Sciences and Technology, Yili Normal University, Yining 835000, China
| | - Tingting Han
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Gao Q, Zhang K, Fan M, Qian H, Li Y, Wang L. Effects of short-term carbohydrate deprivation on glycolipid metabolism and hepatic lipid accumulation in mice. Food Funct 2024; 15:7400-7415. [PMID: 38288875 DOI: 10.1039/d3fo05024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
To investigate the effect of dietary carbohydrate levels on liver glycolipid metabolism, this study used C57BL/6J male mice receiving standard diet (CON), no-carbohydrate high-fat diet (NCD), and high-carbohydrate no-fat diet (HCD). One week after intervention, mice in the NCD group showed lower blood glucose, HbA1c and LDL-C as well as liver weight and liver index compared with the CON group. Further research found that the liver fat synthesis genes of mice in the NCD group were significantly down-regulated at the gene level, and histopathological sections showed that the livers of mice in the NCD group had less lipid accumulation. Furthermore, liver metabolomic analysis showed that primary bile acid levels and acylcarnitine levels in the liver of mice in the NCD group were significantly increased, and conversely, lysophosphatidylcholine and fatty acyl metabolites were significantly decreased. KEGG metabolic pathway analysis showed that metabolic pathways such as biosynthesis of unsaturated fatty acids and starch and sucrose metabolism were significantly inhibited in mice in the NCD group, while metabolic pathways such as primary bile acid biosynthesis, linoleic acid metabolism and glycerophospholipid metabolism were enhanced. Taken together, these results indicate that short-term carbohydrate deprivation improves blood glucose and lipid metabolism levels in mice; the molecular mechanism of action may involve inhibition of de novo lipogenesis and enhancement of bile acid metabolism.
Collapse
Affiliation(s)
- Qiang Gao
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kuiliang Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
8
|
Huang YC, Tung CL, Ho ST, Li WS, Li S, Tung YT, Wu JH. Nutraceutical Potential of Djulis ( Chenopodium formosanum) Hull: Phytochemicals, Antioxidant Activity, and Liver Protection. Antioxidants (Basel) 2024; 13:721. [PMID: 38929160 PMCID: PMC11201270 DOI: 10.3390/antiox13060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Djulis (Chenopodium formosanum), a traditional Taiwanese crop enriched with phenolic compounds and betalain pigments, is associated with various health benefits, including antioxidant and hepatoprotective effects. This study analysed the phytochemical content and antioxidant capacity of extracts from both the hull and kernel of Djulis. The hull extract, which contained higher levels of flavonoids and exhibited superior antioxidant activity compared to the kernel extract, was selected for further in vivo studies. These experiments showed that oral administration of the Djulis hull crude extract significantly mitigated lipopolysaccharide (LPS)-induced acute liver injury (ALI) in mice by increasing the activity of the antioxidant enzyme glutathione peroxidase (GPx), reducing plasma levels of pro-inflammatory cytokine interferon gamma (IFN-γ), and enhancing liver levels of the anti-inflammatory cytokine interleukin-4 (IL-4). Additionally, the extract demonstrated potential in inhibiting the TLR4/NF-κB pathway, a critical signalling pathway in inflammation and apoptosis, offering insights into its protective mechanisms. These findings underscore Djulis hull's potential as a functional food ingredient for ALI prevention and propose a valuable application for agricultural by-products.
Collapse
Affiliation(s)
- Yu-Chen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
| | - Shang-Tse Ho
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi 600, Taiwan;
| | - Wei-Sung Li
- Plant Pathology Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung 413, Taiwan;
| | - Shiming Li
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Jyh-Horng Wu
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
9
|
Zhang X, Yuan S, Fan H, Zhang W, Zhang H. Liensinine alleviates sepsis-induced acute liver injury by inhibiting the NF-κB and MAPK pathways in an Nrf2-dependent manner. Chem Biol Interact 2024; 396:111030. [PMID: 38692452 DOI: 10.1016/j.cbi.2024.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Sepsis remains a serious public health issue that needs to be addressed globally. Severe liver injury caused by sepsis increases the risk of death in patients with sepsis. Liensinine (Lie) is one of the primary active components in Plumula nelumbinis and has anti-inflammatory and antioxidant effects. Nevertheless, the effects of Lie on septic liver injury are unclear. This research investigated the protective effect of Lie (10, 20 and 40 mg/kg) on liver damage via intraperitoneal administration of LPS (10 mg/kg) to C57BL/6 mice. Lie was given through intraperitoneal injection once a day for five days. Mice were treated with LPS intraperitoneally for 6 h at 1 h after Lie administration on the last day. The results suggested that Lie could decrease AST and ALT levels in serum, ameliorate histopathological changes and inhibit cell apoptosis in mice with LPS-induced septic liver injury. In addition, Lie inhibited increases in the mRNA levels of TNF-α, IL-1β, iNOS and IL-6. Lie also increased the mRNA level of IL-10. Lie reduced the content of MDA, a marker of lipid peroxidation, and increased the activity of the antioxidant enzymes GSH-Px, CAT and SOD. Our results also showed that Lie could suppress the LPS-activated MAPK and NF-κB pathways and trigger the Nrf2 signaling pathway both in vitro and in vivo. Additionally, an Nrf2 inhibitor (ML385) weakened the suppressive effect of Lie on the MAPK and NF-κB pathways. Our results demonstrated that the suppressive effect of Lie on the MAPK and NF-κB pathways was partially reliant on activation of the Nrf2 pathway. In summary, these results indicate that Lie can improve inflammation and oxidative stress by activating Nrf2, which is a prospective therapeutic drug for alleviating septic liver injury.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Silong Yuan
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222005, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Honggang Zhang
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222005, China.
| |
Collapse
|
10
|
Wei Y, Shao J, Pang Y, Wen C, Wei K, Peng L, Wang Y, Wei X. Antidiabetic Potential of Tea and Its Active Compounds: From Molecular Mechanism to Clinical Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11837-11853. [PMID: 38743877 DOI: 10.1021/acs.jafc.3c08492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that poses a long-term risk to human health accompanied by serious complications. Common antidiabetic drugs are usually accompanied by side effects such as hepatotoxicity and nephrotoxicity. There is an urgent need for natural dietary alternatives for diabetic treatment. Tea (Camellia sinensis) consumption has been widely investigated to lower the risk of diabetes and its complications through restoring glucose metabolism homeostasis, safeguarding pancreatic β-cells, ameliorating insulin resistance, ameliorating oxidative stresses, inhibiting inflammatory response, and regulating intestinal microbiota. It is indispensable to develop effective strategies to improve the absorption of tea active compounds and exert combinational effects with other natural compounds to broaden its hypoglycemic potential. The advances in clinical trials and population-based investigations are also discussed. This review primarily delves into the antidiabetic potential and underlying mechanisms of tea active compounds, providing a theoretical basis for the practical application of tea and its active compounds against diabetes.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jie Shao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuxuan Pang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Caican Wen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Lanlan Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P.R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
11
|
Li Z, Huang Z, Jia G, Zhao H, Liu G, Chen X. L-theanine attenuates H 2O 2-induced inflammation and apoptosis in IPEC-J2 cells via inhibiting p38 MAPK signaling pathway. Food Chem Toxicol 2024; 186:114561. [PMID: 38438008 DOI: 10.1016/j.fct.2024.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
This study investigated the protective effects of L-theanine on hydrogen peroxide (H2O2)-induced intestinal barrier dysfunction in IPEC-J2 cells. Results showed that L-theanine reduced H2O2-induced IPEC-J2 cells inflammation and apoptosis, and decreased protein phosphorylation levels of p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor kappa-B (NF-κB). The p38 MAPK inhibitor (SB203580) decreased oxidative stress, the protein expression of phosphorylation of p38 MAPK and NF-κB, the H2O2-induced increase in mRNA expression of pro-apoptotic and pro-inflammatory related genes expression and secretion, and tight junction protein related genes expression, which was similar to the effect of L-theanine. In conclusion, L-theanine inhibited H2O2-induced oxidative damage and inflammatory reaction, eliminated apoptosis, and protected intestinal epithelial barrier damage by inhibiting the activation of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Zhongqing Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
12
|
Xu W, Song Y, Xiao W, Gong Z. Regulatory Effects and Mechanisms of L-Theanine on Neurotransmitters via Liver-Brain Axis Under a High Protein Diet. Mol Neurobiol 2024; 61:783-798. [PMID: 37659037 DOI: 10.1007/s12035-023-03608-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Excessive protein intake causes liver and brain damage and neurotransmitter disorders, thereby inducing cognitive dysfunction. L-theanine can regulate the neurotransmitter content and show great potential in liver and brain protection. However, it remains unclear whether l-theanine effectively regulates neurotransmitter content under high-protein diet. A 40-day feeding experiment was performed in Sprague Dawley rats to investigate the regulatory effects and mechanisms of l-theanine on neurotransmitters via liver-brain axis in high-protein diets. The results showed that a 30% protein diet increased the liver and brain neurotransmitter content while maintaining the normal structure of liver and the hippocampal CA1 of brain and improving the autonomous behavior of rats. In contrast, 40% and 50% protein diets decreased the content of neurotransmitters, affected autonomous behavior, destroyed the hippocampal CA1 of brain structure, increased hepatic inflammatory infiltration, lipid degeneration, and hepatocyte eosinophilic change in liver, increased liver AST, ALT, MDA, CRP, and blood ammonia level, and decreased liver SOD and CAT level. However, l-theanine improved liver and brain neurotransmitter content, autonomous behavior, liver and hippocampal brain structure, and liver biochemical indicators in 40% and 50% protein diets. To explore how LTA can eliminate the adverse effects of a high-protein diet, we analyzed different metabolites and proteomes and using western blotting for validate quantitatively. We found that l-theanine regulates the activity of PF4 and G protein subunit alpha i2, increases the content of brain-derived neurotrophic factor and dopamine under a 20% protein diet. In addition, l-theanine can activate the adenylate cyclase-protein kinase A pathway through the protein alpha/beta-hydrolase domain protein 12 to regulate the content of neurotransmitters under a 40% protein diet, thereby exerting a neuroprotective effect.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, Hunan, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Yuxin Song
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, Hunan, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China.
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China.
| |
Collapse
|
13
|
Chen S, Kang J, Zhu H, Wang K, Han Z, Wang L, Liu J, Wu Y, He P, Tu Y, Li B. L-Theanine and Immunity: A Review. Molecules 2023; 28:molecules28093846. [PMID: 37175254 PMCID: PMC10179891 DOI: 10.3390/molecules28093846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
L-theanine (N-ethyl-γ-glutamine) is the main amino acid in tea leaves. It not only contributes to tea flavor but also possesses several health benefits. Compared with its sedative and calming activities, the immunomodulatory effects of L-theanine have received less attention. Clinical and epidemiological studies have shown that L-theanine reduces immunosuppression caused by strenuous exercise and prevents colds and influenza by improving immunity. Numerous cell and animal studies have proven that theanine plays an immunoregulatory role in inflammation, nerve damage, the intestinal tract, and tumors by regulating γδT lymphocyte function, glutathione (GSH) synthesis, and the secretion of cytokines and neurotransmitters. In addition, theanine can be used as an immunomodulator in animal production. This article reviews the research progress of L-theanine on immunoregulation and related mechanisms, as well as its application in poultry and animal husbandry. It is hoped that this work will be beneficial to future related research.
Collapse
Affiliation(s)
- Shuna Chen
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaxin Kang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Huanqing Zhu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Kaixi Wang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Ziyi Han
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Leyu Wang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Junsheng Liu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Puming He
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Robescu MS, Alcántara AR, Calvio C, Morelli CF, Speranza G, Ubiali D, Bavaro T. l-Theanine Goes Greener: A Highly Efficient Bioprocess Catalyzed by the Immobilized γ-Glutamyl Transferase from Bacillus subtilis. CHEMSUSCHEM 2023; 16:e202202108. [PMID: 36655933 DOI: 10.1002/cssc.202202108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/18/2023] [Indexed: 06/17/2023]
Abstract
l-Theanine (l-Th) was synthesized by simply mixing the reactants (l-glutamine and ethylamine in water) at 25 °C and Bacillus subtilis γ-glutamyl transferase (BsGGT) covalently immobilized on glyoxyl-agarose according to a methodology previously reported by our research group; neither buffers, nor other additives were needed. Ratio of l-glutamine (donor) to ethylamine (acceptor), pH, enzymatic units (IU), and reaction time were optimized (molar ratio of donor/acceptor=1 : 8, pH 11.6, 1 IU mL-1 , 6 h), furnishing l-Th in 93 % isolated yield (485 mg, 32.3 g L-1 ) and high purity (99 %), after a simple filtration of the immobilized biocatalyst, distillation of the volatiles (unreacted ethylamine) and direct lyophilization. Immobilized BsGGT was re-used (four reaction cycles) with 100 % activity retention. This enzymatic synthesis represents a straightforward, fast, high-yielding, and easily scalable approach to l-Th preparation, besides having a favorable green chemistry metrics.
Collapse
Affiliation(s)
- Marina S Robescu
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia, Italy
| | - Andrés R Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, Plaza de Ramon y Cajal s/n, Madrid, Spain
| | - Cinzia Calvio
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 1, Pavia, Italy
| | - Carlo F Morelli
- Department of Chemistry, University of Milan, via Golgi 19, Milano, Italy
| | - Giovanna Speranza
- Department of Chemistry, University of Milan, via Golgi 19, Milano, Italy
| | - Daniela Ubiali
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia, Italy
| |
Collapse
|
15
|
Hu Y, Lin L, Liu K, Liu E, Han S, Gong Z, Xiao W. L-Theanine alleviates heat stress-induced impairment of immune function by regulating the p38 MAPK signalling pathway in mice. Food Funct 2023; 14:335-343. [PMID: 36511090 DOI: 10.1039/d2fo02775e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the current trend of global warming, heat stress-induced impairment could seriously endanger human health. L-Theanine is a non-protein amino acid in tea with various biological activities, including immunoregulatory, anti-anxiety, and anti-oxidation. However, its effect on immune function under heat stress and the underlying mechanism are currently unclear. In this study, male BALB/c mice were used as experimental objects to explore the effect of L-theanine on heat stress-induced changes in immune function and its mechanism. Three doses of L-theanine were used: low (100 mg kg-1 d-1), medium (200 mg kg-1 d-1), and high (400 mg kg-1 d-1). Treatment with L-theanine could attenuate the heat stress-induced reductions in body weight and feed intake in mice, alleviate damage in the liver and jejunum, and inhibit the inflammatory factors IL-6, IL-1β, and TNF-α. Aspartate aminotransferase and alanine transaminase activity levels and the malondialdehyde content decreased, while the IgA, IgM, and IgG contents increased in response to L-theanine. It is possible that L-theanine affects the P38 signalling pathway and inhibits the increase in p-P65/P65 caused by the overexpression of HSP27 and regulation of PPAR-γ and Foxp3 proteins, thereby alleviating immune dysfunction caused by heat stress.
Collapse
Affiliation(s)
- Yuan Hu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Kehong Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Enshuo Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Shumin Han
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| |
Collapse
|
16
|
Chen X, Chen L, Jia G, Zhao H, Liu G, Huang Z. L-theanine improves intestinal barrier functions by increasing tight junction protein expression and attenuating inflammatory reaction in weaned piglets. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
17
|
Wang Z, Zhao Y, Lan X, He J, Wan F, Shen W, Tang S, Zhou C, Tan Z, Yang Y. Tannic acid supplementation in the diet of Holstein bulls: Impacts on production performance, physiological and immunological characteristics, and ruminal microbiota. Front Nutr 2022; 9:1066074. [PMID: 36466399 PMCID: PMC9709124 DOI: 10.3389/fnut.2022.1066074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
This study was conducted to evaluate the influences of supplementing tannic acid (TA) at different doses on the production performance, physiological and immunological characteristics, and rumen bacterial microbiome of cattle. Forty-eight Holstein bulls were randomly allocated to four dietary treatments: the control (CON, basal diet), the low-dose TA treatment [TAL, 0.3% dry matter (DM)], the mid-dose TA treatment (TAM, 0.9% DM), and the high-dose TA treatment (TAH, 2.7% DM). This trial consisted of 7 days for adaptation and 90 days for data and sample collection, and samples of blood and rumen fluid were collected on 37, 67, and 97 d, respectively. The average daily gain was unaffected (P > 0.05), whilst the ruminal NH3-N was significantly decreased (P < 0.01) by TA supplementation. The 0.3% TA addition lowered (P < 0.05) the levels of ruminal isobutyrate, valerate, and tumor necrosis factor alpha (TNF-α), and tended to (P < 0.1) increase the gain to feed ratio. The digestibility of DM, organic matter (OM), and crude protein, and percentages of butyrate, isobutyrate, and valerate were lower (P < 0.05), while the acetate proportion and acetate to propionate ratio in both TAM and TAH were higher (P < 0.05) than the CON. Besides, the 0.9% TA inclusion lessened (P < 0.05) the concentrations of glucagon and TNF-α, but enhanced (P < 0.05) the interferon gamma (IFN-γ) level and Simpson index of ruminal bacteria. The 2.7% TA supplementation reduced (P < 0.05) the intake of DM and OM, and levels of malondialdehyde and thyroxine, while elevated (P < 0.05) the Shannon index of the rumen bacterial populations. Moreover, the relative abundances of the phyla Fibrobacteres and Lentisphaerae, the genera Fibrobacter and Bradyrhizobium, and the species Bradyrhizobium sp., Lachnospiraceae bacterium RM29, and Lachnospiraceae bacterium CG57 were highly significantly (q < 0.01) or significantly (q < 0.05) raised by adding 2.7% TA. Results suggested that the TA addition at 0.3% is more suitable for the cattle, based on the general comparison on the impacts of supplementing TA at different doses on all the measured parameters.
Collapse
Affiliation(s)
- Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yuan Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chuanshe Zhou
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yanming Yang
- Jiurui Biology and Chemistry Co., Ltd., Zhangjiajie, Hunan, China
| |
Collapse
|
18
|
Ye J, Zhang C, Fan Q, Lin X, Wang Y, Azzam M, Alhotan R, Alqhtani A, Jiang S. Antrodia cinnamomea polysaccharide improves liver antioxidant, anti-inflammatory capacity, and cecal flora structure of slow-growing broiler breeds challenged with lipopolysaccharide. Front Vet Sci 2022; 9:994782. [PMID: 36299632 PMCID: PMC9588918 DOI: 10.3389/fvets.2022.994782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
Lipopolysaccharides (LPS) induces liver inflammatory response by activating the TLR4/NF-κB signaling pathway. Antrodia cinnamomea polysaccharide (ACP) is a medicinal mushroom that can protect from intoxication, liver injury, and inflammation. Nevertheless, the effect of ACP on the liver antioxidant, anti-inflammatory capacity and cecal flora structure of LPS-challenged broilers remains unclear. The aim of this experiment was to investigate the effects of ACP on the anti-oxidative and anti-inflammatory capacities of the liver, and cecal microbiota in slow-growing broilers stimulated by LPS. A total of 750 slow-growing broilers (9-day-old) were assigned to five treatments with 6 replicates of 25 chicks per replicate: a control diet, the chicks were fed a control diet and challenged with LPS. Dietary treatments 3 to 5 were the control diet supplemented with 100, 200, 400 mg/kg ACP challenged with LPS, respectively. The groups of 100 mg/kg ACP supplementation significantly increased liver index, pancreas index, and bursa of Fabricius index (P < 0.05). The GSH-Px content of LPS-challenged broilers was lower than that of the control group (P < 0.001), but the content of MDA increased (P < 0.001). Feeding with 100 mg/kg ACP resulted in increased the activity of T-AOC, GSH-Px, and T-SOD, and decreased MDA content (P < 0.05). The activity of TNF-α, IL-1β, and IL-6 of the LPS group increased, but these indicators were decreased with supplemental 100 mg/kg ACP (P < 0.05). Dietary application of ACP up to 100 mg/kg down-regulated (P < 0.05) the expression of TLR4/NF-κB pathway in the liver induced by LPS. The results of 16S rRNA demonstrated that feeding with 100 mg/kg ACP can change the diversity and composition of the gut microbiota, and restrained the decline of beneficial cecal microbiota (typically Lactobacillus, Faecalibacterium, and Christensenellaceae R-7 group) in the challenged LPS group (P < 0.05). Conclusively, feeding a diet with 100 mg/kg ACP may have beneficial effects on liver damage and the bacterial microbiota diversity and composition in the ceca of LPS-stressed slow-growing broiler breeds, probably because of its combined favorable effects on antioxidants and cytokines contents, and restoration the decline of beneficial cecal microbiota.
Collapse
Affiliation(s)
- Jinling Ye
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chang Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuli Fan
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiajing Lin
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yibing Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mahmoud Azzam
- Department of Animal Production College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rashed Alhotan
- Department of Animal Production College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmohsen Alqhtani
- Department of Animal Production College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China,*Correspondence: Shouqun Jiang
| |
Collapse
|
19
|
Fang S, Yang W, Zhang K, Peng C. Gandouling Mitigates CuSO 4-Induced Heart Injury in Rats. Animals (Basel) 2022; 12:2703. [PMID: 36230444 PMCID: PMC9559265 DOI: 10.3390/ani12192703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
We assessed the protective effects of Gandouling (GDL) on copper sulfate (CuSO4)-induced heart injuries in Sprague−Dawley rats, which were randomly divided into the control, CuSO4, GDL + CuSO4 and penicillamine + CuSO4 groups. The rats received intragastric GDL (400 mg/kg body weight) once per day for 42 consecutive days after 56 days of CuSO4 exposure, and penicillamine was used as a positive control. The levels of plasma inflammatory cytokines (IMA, hFABP, cTn-I and BNP) were determined using the enzyme-linked immunosorbent assay. The histopathological symptoms were evaluated using hematoxylin and eosin staining and transmission electron microscopy. To determine the underlying mechanism, Western blotting was conducted for the detection of the heme oxygenase 1 (HO-1) expression. The results revealed that GDL supplementation alleviated the histopathological symptoms of the rat heart tissue, promoted Cu excretion to attenuate impairment, and significantly decreased inflammatory cytokine levels in the plasma (p < 0.01). In addition, GDL increased the HO-1 expression in the rat hepatic tissue. The protective effect of GDL on the heart was superior to that of penicillamine. Overall, these findings indicate that GDL alleviates hepatic heart injury after a Cu overaccumulation challenge, and GDL supplements can be beneficial for patients with Wilson’s disease.
Collapse
Affiliation(s)
- Shuzhen Fang
- University Hospital, Anhui Agricultural University, 130 Changjiang Road West, Shushan District, Hefei 230036, China
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Shushan District, Hefei 230031, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Shushan District, Hefei 230031, China
| | - Kangyi Zhang
- School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang Road West, Shushan District, Hefei 230036, China
| | - Chuanyi Peng
- School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang Road West, Shushan District, Hefei 230036, China
| |
Collapse
|
20
|
Wang Z, Yin L, Liu L, Lan X, He J, Wan F, Shen W, Tang S, Tan Z, Yang Y. Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats. Front Vet Sci 2022; 9:1004841. [PMID: 36187804 PMCID: PMC9516568 DOI: 10.3389/fvets.2022.1004841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The present study was performed to evaluate the impacts of tannic acid (TA) supplementation at different levels on the growth performance, physiological, oxidative and immunological metrics, and ruminal microflora of Xiangdong black goats. Twenty-four goats were randomly assigned to four dietary treatments: the control (CON, basal diet), the low-dose TA group [TAL, 0.3 % of dry matter (DM)], the mid-dose TA group (TAM, 0.6 % of DM), and the high-dose TA group (TAH, 0.9 % of DM). Results showed that the growth performance was unaffected (P > 0.05) by adding TA, whilst the 0.3 % and 0.6 % TA supplementation significantly decreased (P < 0.05) the apparent digestibility of crude protein (CP) and ruminal NH3-N concentration, and raised (P < 0.05) the level of total volatile fatty acid (TVFA) in rumen. The increments of alanine aminotransferase (ALT), triglyceride (TG), cortisol (CORT), total antioxidant capacity (T-AOC), interleukin (IL)-1β, IL-6, and serumamyloid A (SAA), and decrements of globulin (GLB), immunoglobulin G (IgG), cholinesterase (CHE), glutathione reductase (GR), creatinine (CRE), growth hormone (GH), high-density lipoprotein cholesterol (HDLC), and insulin-like growth factor 1 (IGF-1) to different extents by TA addition were observed. Although the Alpha and Beta diversity of rumen bacterial community remained unchanged by supplementing TA, the relative abundance of the predominant genus Prevotella_1 was significantly enriched (P < 0.05) in TAL. It could hence be concluded that the TA supplementation in the present trial generally decreased CP digestion and caused oxidative stress and inflammatory response without influencing growth performance and ruminal microbiota diversity. More research is needed to explore the premium dosage and mechanisms of effects for TA addition in the diet of goats.
Collapse
Affiliation(s)
- Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lei Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanming Yang
- Jiurui Biology & Chemistry Co., Ltd., Zhangjiajie, China
| |
Collapse
|
21
|
Unno K, Furushima D, Tanaka Y, Tominaga T, Nakamura H, Yamada H, Taguchi K, Goda T, Nakamura Y. Improvement of Depressed Mood with Green Tea Intake. Nutrients 2022; 14:nu14142949. [PMID: 35889906 PMCID: PMC9319139 DOI: 10.3390/nu14142949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Being in a prolonged depressed state increases the risk of developing depression. To investigate whether green tea intake is effective in improving depression-like moods, we used an experimental animal model of depression with lipopolysaccharide (LPS) and clarified the effects of green tea on the biological stress response and inflammation in the brain. Regarding the stress reduction effect of green tea, we found that the sum of caffeine (C) and epigallocatechin gallate (E) relative to the sum of theanine (T) and arginine (A), the major components of green tea, or the CE/TA ratio, is important. The results showed that depression-like behavior, adrenal hypertrophy as a typical stress response, and brain inflammation were suppressed in mice fed green tea components with CE/TA ratios of 2 to 8. In addition, the expression of Npas4, which is reduced in anxiety and depression, was maintained at the same level as controls in mice that consumed green tea with a CE/TA ratio of 4. In clinical human trials, the consumption of green tea with CE/TA ratios of 3.9 and 4.7 reduced susceptibility to subjective depression. These results suggest that the daily consumption of green tea with a CE/TA ratio of 4–5 is beneficial to improving depressed mood.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
- Correspondence: ; Tel.: +81-54-264-5822
| | - Daisuke Furushima
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
- Faculty of Medicine School of Health Science, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yuya Tanaka
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
| | - Takeichiro Tominaga
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
| | - Hirotomo Nakamura
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
| | - Hiroshi Yamada
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| | - Toshinao Goda
- Faculty of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| |
Collapse
|
22
|
Wang D, Xue Z, Wu H, Shi G, Feng S, Zhao L. Hepatoprotective effect and structural analysis of Hedysarum polysaccharides in vivo and in vitro. J Food Biochem 2022; 46:e14188. [PMID: 35484857 DOI: 10.1111/jfbc.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
The crude Hedysarum polysaccharides (HPS: HPS-50 and HPS-80) obtained from Radix Hedysari exhibited great pharmacological activities in our previous research. This study investigated the effects of HPS on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury (ALI) in mice and LPS-induced injury in LO2 cells, as well as the relationship between structural characteristics and hepatoprotective activities. The in vivo results showed that compared with HPS-80, HPS-50 showed stronger hepatoprotection, which improved histopathological changes to normal levels. HPS-50 significantly decreased the levels of ALT, AST, MPO, and MDA, increased the activities of SOD, CAT, and GSH, and suppressed the LPS/D-GalN-triggered production of TNF-α, IL-1β, and IL-6 (p < .05). The results in vitro showed that HPS-50-P (HPS-50-1, HPS-50-2, and HPS-50-3) purified from HPS-50 played significant protective roles against LPS-induced injury in LO2 cells by reducing cell apoptosis and relieving cell cycle arrest. HPS-50-2 restored the percentage of normal cells from 54.8% to 94.7%, and reduced the S phase cells from 59.40% to 47.05% (p < .01). By analyzing the structure of HPS-50-P, including monosaccharide composition, molecular weight, chain conformation, and surface morphology, we speculated that the best protective effect of HPS-50-2 might be attributed to its beta configuration, highest molecular weight, and high glucose and galactose contents. These findings indicate that HPS-50 might be a promising source of functional foods for the protection and prevention of ALI. PRACTICAL APPLICATIONS: In this study, the protective effect of HPS on ALI was evaluated from multiple perspectives, and HPS-50-2 was screened as a potential active ingredient. This study has two practical applications. First, it provides a new way to improve ALI, and a new option for patients to prevent and treat ALI. Second, this work also complements the pharmacological activity of Radix Hedysari and provides a basis for the development of Radix Hedysari as a functional food.
Collapse
Affiliation(s)
- Donghan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Zhiyuan Xue
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Huifang Wu
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Gengen Shi
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Shilan Feng
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Lianggong Zhao
- The Second Hospital of Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
23
|
Li MY, Liu HY, Wu DT, Kenaan A, Geng F, Li HB, Gunaratne A, Li H, Gan RY. L-Theanine: A Unique Functional Amino Acid in Tea ( Camellia sinensis L.) With Multiple Health Benefits and Food Applications. Front Nutr 2022; 9:853846. [PMID: 35445053 PMCID: PMC9014247 DOI: 10.3389/fnut.2022.853846] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Tea (Camellia sinensis L.) is a very popular health drink and has attracted increasing attention in recent years due to its various bioactive substances. Among them, L-theanine, a unique free amino acid, is one of the most important substances in tea and endows tea with a special flavor. Moreover, L-theanine is also a bioactive compound with plenty of health benefits, including antioxidant, anti-inflammatory, neuroprotective, anticancer, metabolic regulatory, cardiovascular protective, liver and kidney protective, immune regulatory, and anti-obesity effects. Due to the unique characteristics and beneficial functions, L-theanine has potential applications in the development of functional foods. This review summarized the influencing factors of L-theanine content in teas, the main health benefits and related molecular mechanisms of L-theanine, and its applications in food, understanding of which can provide updated information for the further research of L-theanine.
Collapse
Affiliation(s)
- Ming-Yue Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ahmad Kenaan
- National Graphene Institute, The University of Manchester, Manchester, United Kingdom
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Anil Gunaratne
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Hang Li
- Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
24
|
Essadek S, Bouchab H, El Kebbaj R, Gondcaille C, El Kamouni S, Savary S, Vamecq J, Essamadi A, Cherkaoui-Malki M, Nasser B, Andreoletti P. Effects of a Short-Term Lipopolysaccharides Challenge on Mouse Brain and Liver Peroxisomal Antioxidant and β-oxidative Functions: Protective Action of Argan Oil. Pharmaceuticals (Basel) 2022; 15:ph15040465. [PMID: 35455460 PMCID: PMC9030085 DOI: 10.3390/ph15040465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
During sepsis, the imbalance between oxidative insult and body antioxidant response causes the dysfunction of organs, including the brain and liver. Exposing mice to bacterial lipopolysaccharides (LPS) results in a similar pathophysiological outcome. The protection offered by argan oil was studied against LPS-induced oxidative stress, dysregulation of peroxisomal antioxidants, and β-oxidation activities in the brain and liver. In a short-term LPS treatment, lipid peroxidation (malonaldehyde assay) increased in the brain and liver with upregulations of proinflammatory tumor necrosis factor (Tnf)-α and anti-inflammatory interleukin (Il)-10 genes, especially in the liver. Although exposure to olive oil (OO), colza oil (CO), and argan oil (AO) prevented LPS-induced lipid peroxidation in the brain and liver, only AO exposure protected against liver inflammation. Remarkably, only exposure to AO prevented LPS-dependent glutathione (GSH) dysregulation in the brain and liver. Furthermore, exposure to AO increased more efficiently than OO and CO in both organs, peroxisomal antioxidant capacity via induction of catalase (Cat) gene, protein and activity expression levels, and superoxide dismutase (Sod1) mRNA and activity levels. Interestingly, LPS decreased protein levels of the peroxisomal fatty acid-ATP binding cassette (ABC) transporters, ABCD1 and ABCD2, and increased acyl-CoA oxidase 1 (ACOX1) protein expression. Moreover, these LPS effects were attenuated for ABCD1 and ACOX1 in the brain of mice pretreated with AO. Our data collectively highlight the protective effects of AO against early oxidative stress caused by LPS in the brain and liver and their reliance on the preservation of peroxisomal functions, including antioxidant and β-oxidation activities, making AO a promising candidate for the prevention and management of sepsis.
Collapse
Affiliation(s)
- Soukaina Essadek
- Laboratoire Biochimie, Neurosciences, Ressources Naturelles et Environnement, Faculté des Sciences et Techniques, Université Hassan I, BP577, Settat 26000, Morocco; (S.E.); (H.B.); (R.E.K.); (S.E.K.); (A.E.); (B.N.)
- Laboratoire Bio-PeroxIL EA7270, University Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France; (C.G.); (S.S.)
| | - Habiba Bouchab
- Laboratoire Biochimie, Neurosciences, Ressources Naturelles et Environnement, Faculté des Sciences et Techniques, Université Hassan I, BP577, Settat 26000, Morocco; (S.E.); (H.B.); (R.E.K.); (S.E.K.); (A.E.); (B.N.)
| | - Riad El Kebbaj
- Laboratoire Biochimie, Neurosciences, Ressources Naturelles et Environnement, Faculté des Sciences et Techniques, Université Hassan I, BP577, Settat 26000, Morocco; (S.E.); (H.B.); (R.E.K.); (S.E.K.); (A.E.); (B.N.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco
| | - Catherine Gondcaille
- Laboratoire Bio-PeroxIL EA7270, University Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France; (C.G.); (S.S.)
| | - Soufiane El Kamouni
- Laboratoire Biochimie, Neurosciences, Ressources Naturelles et Environnement, Faculté des Sciences et Techniques, Université Hassan I, BP577, Settat 26000, Morocco; (S.E.); (H.B.); (R.E.K.); (S.E.K.); (A.E.); (B.N.)
| | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France; (C.G.); (S.S.)
| | - Joseph Vamecq
- INSERM and HMNO, CBP, CHRU Lille, 59037 Lille, France;
- RADEME EA 7364, Faculté de Médecine, Université de Lille 2, 59045 Lille, France
| | - Abdelkhalid Essamadi
- Laboratoire Biochimie, Neurosciences, Ressources Naturelles et Environnement, Faculté des Sciences et Techniques, Université Hassan I, BP577, Settat 26000, Morocco; (S.E.); (H.B.); (R.E.K.); (S.E.K.); (A.E.); (B.N.)
| | - Mustapha Cherkaoui-Malki
- Laboratoire Bio-PeroxIL EA7270, University Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France; (C.G.); (S.S.)
- Correspondence: (M.C.-M.); (P.A.); Tel.: +33-380-39-6237 (M.C.-M.); +33-380-39-6255 (P.A.)
| | - Boubker Nasser
- Laboratoire Biochimie, Neurosciences, Ressources Naturelles et Environnement, Faculté des Sciences et Techniques, Université Hassan I, BP577, Settat 26000, Morocco; (S.E.); (H.B.); (R.E.K.); (S.E.K.); (A.E.); (B.N.)
| | - Pierre Andreoletti
- Laboratoire Bio-PeroxIL EA7270, University Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France; (C.G.); (S.S.)
- Correspondence: (M.C.-M.); (P.A.); Tel.: +33-380-39-6237 (M.C.-M.); +33-380-39-6255 (P.A.)
| |
Collapse
|
25
|
Du L, Zheng Y, Yang YH, Huang YJ, Hao YM, Chen C, Wang BZ, Guo X, Wu H, Su GH. Krill oil prevents lipopolysaccharide-evoked acute liver injury in mice through inhibition of oxidative stress and inflammation. Food Funct 2022; 13:3853-3864. [PMID: 35274650 DOI: 10.1039/d1fo04136c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute liver injury is a life-threatening syndrome that often results from the actions of viruses, drugs and toxins. Herein, the protective effect and potential mechanism of krill oil (KO), a novel natural product rich in long-chain n-3 polyunsaturated fatty acids bound to phospholipids and astaxanthin, on lipopolysaccharide (LPS)-evoked acute liver injury in mice were investigated. Male C57BL/6J mice were administered intragastrically with 400 mg kg-1 KO or fish oil (FO) once per day for 28 consecutive days prior to LPS exposure (10 mg kg-1, intraperitoneally injected). The results revealed that KO pretreatment significantly ameliorated LPS-evoked hepatic dysfunction indicated by reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and attenuated hepatic histopathological damage. KO pretreatment also mitigated LPS-induced hepatic oxidative stress, as evidenced by decreased malondialdehyde (MDA) contents, elevated glutathione (GSH) levels, and elevated catalase (CAT) and superoxide dismutase (SOD) activities. Additionally, LPS-evoked overproduction of pro-inflammatory mediators in serum and the liver was inhibited by KO pretreatment. Furthermore, KO pretreatment suppressed LPS-induced activation of the hepatic toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3) signaling pathway. Interestingly, the hepatoprotective effect of KO was superior to that of FO. Collectively, the current findings suggest that KO protects against LPS-evoked acute liver injury via inhibition of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China.
| | - Yu-Hong Yang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, Shandong, 250353, China
| | - Yu-Jie Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Yi-Ming Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Chen Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Bao-Zhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Xin Guo
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Guo-Hai Su
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China.
| |
Collapse
|
26
|
Shi C, Wang J, Zhang R, Ishfaq M, Li Y, Zhang R, Si C, Li R, Li C, Liu F. Dihydromyricetin alleviates Escherichia coli lipopolysaccharide-induced hepatic injury in chickens by inhibiting the NLRP3 inflammasome. Vet Res 2022; 53:6. [PMID: 35073994 PMCID: PMC8785529 DOI: 10.1186/s13567-022-01024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
Dihydromyricetin (DHM), a flavonoid in vine tea, has many pharmacological activities, including anti-inflammatory and antibacterial effects. Lipopolysaccharide is the key inducer of inflammation in avian pathogenic Escherichia coli (E. coli) infection; however, the effect of DHM on E. coli lipopolysaccharide-induced hepatic injury remains unknown. The present study aimed to explore the role of the NLRP3 inflammasome in hepatic injury and the possible protective mechanisms of DHM against hepatic injury in chickens. The results showed that when chickens were administered lipopolysaccharide, liver damage was observed, accompanied by increased levels of serum transaminases and direct bilirubin. Additionally, hepatic expression levels of NLRP3 and caspase-1 p20, the subunit of caspase-1 that is cleaved after NLRP3 activation, significantly increased in liver injury. We found that treatment with MCC950, a specific NLRP3 inhibitor, significantly decreased serum transaminase activities, direct bilirubin content, and hepatic NLRP3 and caspase-1 p20 expression levels. DHM significantly reduced serum transaminase activities and direct bilirubin content and ameliorated histopathological and ultrastructural changes in the liver. DHM decreased hepatic levels of H2O2 and malondialdehyde and increased the activities of superoxide dismutase and glutathione peroxidase. Furthermore, DHM significantly decreased the expression levels of NLRP3, pro-caspase-1 and caspase-1 p20. Moreover, DHM reduced serum lactate dehydrogenase, IL-1β and IL-18 levels and repressed hepatic IL-1β, IL-18 and gasdermin A expression. The results demonstrated that the NLRP3 inflammasome was involved in the mechanism of lipopolysaccharide-induced hepatic injury. Furthermore, DHM could inhibit NLRP3 inflammasome activation and subsequent pyroptosis, eventually ameliorating E. coli lipopolysaccharide-induced liver injury.
Collapse
Affiliation(s)
- Chenxi Shi
- Basic Veterinary Department, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiaqi Wang
- Basic Veterinary Department, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruichen Zhang
- Basic Veterinary Department, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- Basic Veterinary Department, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ying Li
- Basic Veterinary Department, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruihui Zhang
- Basic Veterinary Department, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chuanbiao Si
- Basic Veterinary Department, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Li
- Basic Veterinary Department, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Changwen Li
- Laboratory Animal Base, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fangping Liu
- Basic Veterinary Department, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China. .,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China.
| |
Collapse
|
27
|
Ma J, Li P, An L, Zhang T, Li G. Chemoprotective effect of theanine in 1,2-dimethylhydrazine-induced colorectal cancer in rats via suppression of inflammatory parameters. J Food Biochem 2022; 46:e14073. [PMID: 35014039 DOI: 10.1111/jfbc.14073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Colorectal cancer is considered as a major cancer among all types of cancers, especially in developed countries. The colorectal cancer has few to no symptoms and mostly the tumor is often diagnosed in the later stage of cancer. Oxidative stress and inflammatory reaction play an important role in the expansion and the progression of colorectal cancer. Theanine exhibits antioxidant and anti-inflammatory potential against various diseases. As a result of its antioxidant and anti-inflammatory nature, in this study, we estimated the protective effect of theanine against 1,2-dimethylhydrazine (DMH)-induced colorectal cancer and explored the possible mechanism. Subcutaneous injection (35 mg/kg) of DMH was used to induce colorectal cancer in rats. Rats were divided into different groups and were orally administrated with theanine (5, 10, and 20 mg/kg) for 16 weeks. Body weight, tumor size, and average tumor weight were determined at the end of the experimental study. Biochemical tests, antioxidant properties, phase I and phase II enzymes, and inflammatory mediators were estimated. The mRNA expression of p38 mitogen-activated protein kinase (p38MAPK), p53, and apoptosis was also estimated at the end of the experimental study. Theanine significantly (p < .001) increases the body weight and suppressed the average tumor size in DMH-induced colorectal cancer. Similarly, it significantly (p < .001) reduces the level of prostaglandin (PGE2 ), cyclooxygenase-2 (COX-2), and myeloperoxidase (MPO). It also decreases the oxidative stress by suppressing the level of malonaldehyde (MDA) and enhancing the level of SOD, GPx, CAT, and GR. Theanine considerably reduced tumor markers, such as lactate dehydrogenase (LDH) and carcinoembryonic antigen (CEA) and phase I and phase II enzymes in a dose-dependent manner. It also significantly (p < .001) suppressed the expression of p38-MAPK, p-53, caspase-3, caspase-8, and caspase-9 in a dose-dependent manner. Collectively, we can say that theanine exhibited the chemoprotective effect against the colorectal cancer by inhibiting the oxidative stress and inflammatory reaction. PRACTICAL APPLICATIONS: Theanine is the major amino acid phytoconstituent of green tea. It has a potent antioxidant activity and is also able to protect against various oxidative damage. In this experimental study, theanine exhibits a protective effect against colorectal cancer by suppressing the oxidative stress and inflammatory reaction. The results suggest that theanine may be used for colorectal cancer prevention and treatment.
Collapse
Affiliation(s)
- Jingjing Ma
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Peng Li
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Lipei An
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Teng Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Guodong Li
- School of Life Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Zheng X, Jiang W, Zhang L, Abasubong KP, Zhang D, Li X, Jiang G, Chi C, Liu W. Protective effects of dietary icariin on lipopolysaccharide-induced acute oxidative stress and hepatopancreas injury in Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109192. [PMID: 34597777 DOI: 10.1016/j.cbpc.2021.109192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
To investigate the effects of dietary icariin (ICA) supplementation on acute oxidative stress and hepatopancreatic injury induced by lipopolysaccharide (LPS) injection in Eriocheir sinensis, an 8-week feeding trial of crabs was conducted using 4 diets with different supplementation levels of ICA (0, 50, 100, and 200 mg/kg diet weight, respectively), and then challenged with LPS of 400 μg/kg body weight for 6 h. Results showed that 100 mg/kg ICA supplementation increased the antioxidant capacity, reduced the stress-related indicators in haemolymph, strengthen the mitochondrial membrane potential, and reduce apoptosis compared to the single LPS-treated crabs. The expressions of apoptosis-related genes and proteins were also evaluated to further understand the effects of dietary ICA pretreatment on LPS-induced cell apoptosis. As a result, dietary 100 mg/kg diet weight ICA pre-addition significantly down-regulated the expression of HSP60, HSP70, Caspase 3c, Caspase 8, Caspase 3, Caspase 9, P38, and Bax (P < 0.05), and alleviated the suppressed expression of PI3K, AKT, MEK, and Bcl-2 (P < 0.05) in crabs challenged with LPS. Overall, this research reveals that ICA supplementation of 100 mg/kg diet weight could enhance the resistance to oxidative damage and apoptosis in E. sinensis facing LPS challenge.
Collapse
Affiliation(s)
- Xiaochuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Weibo Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Kenneth P Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
29
|
Zhang L, Yao X, Ma M, Ding Y, Zhang H, He X, Song Z. Protective Effect of l-Theanine against DSS-Induced Colitis by Regulating the Lipid Metabolism and Reducing Inflammation via the NF-κB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14192-14203. [PMID: 34784210 DOI: 10.1021/acs.jafc.1c05839] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present study revealed the phylactic effects of l-theanine on a DSS-induced colitis mice model. The results showed that 3% DSS treatment significantly induced intestinal damage as reflected by DAI, histopathological feature, and colon length, while l-theanine pretreatment markedly prevented these trends to exert protective effects. Meanwhile, l-theanine pretreatment decreased the levels of TNF-α, IL-1β, IL-6, iNOS, and COX2 on DSS-induced colitis. Notably, DSS inhibited the proliferation and promoted the apoptosis of intestinal epithelial cells, thereby damaging the integrity of the intestinal epithelial barrier, whereas l-theanine also played a protective role by attenuating these deteriorated effects. It was also observed that l-theanine treatment downregulated the levels of p-p65, p65, p-p53, p53, and p-AKT protein expression in acute DSS-induced colitis, which showed the protective function of l-theanine, mainly via the NF-κB signaling pathway. Furthermore, the results of lipid analysis and transcriptome analysis show that l-theanine reversed transcriptional profiles and lipid profiles of colitis models, mainly via the inflammatory reactivity-related pathway. Interestingly, the correlation analysis between transcriptional profiles and lipid profiles showed that inflammatory response-related genes were almost significantly correlated with differential lipid metabolites. In summary, l-theanine plays a protective role in DSS-induced colitis via downregulating the NF-κB signaling pathway and regulating lipid metabolism disorders.
Collapse
Affiliation(s)
- Longlin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Xiaofeng Yao
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Mengmeng Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Yanan Ding
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China
| |
Collapse
|
30
|
Alterations of endotoxin distribution across different biofluids and relevant inflammatory responses by supplementing L-theanine in dairy cows during heat stress. ANIMAL NUTRITION 2021; 7:1253-1257. [PMID: 34786498 PMCID: PMC8566959 DOI: 10.1016/j.aninu.2021.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 01/12/2023]
|
31
|
Sun L, Wen S, Li Q, Lai X, Chen R, Zhang Z, Li D, Sun S. L-theanine relieves acute alcoholic liver injury by regulating the TNF-α/NF-κB signaling pathway in C57BL/6J mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
32
|
Li D, Li Z, Qiu C, Peng B, Zhang Y, Sun H, Wang S. 2-Amino-3-methylimidazo[4,5-f]quinoline induced oxidative stress and inflammation via TLR4/MAPK and TLR4/NF-κB signaling pathway in zebrafish (Danio rerio) livers. Food Chem Toxicol 2021; 157:112583. [PMID: 34563632 DOI: 10.1016/j.fct.2021.112583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
2-Amino-3-methylimidazole[4,5-f]quinoline (IQ) is a harmful substance, mainly existing in protein-abundant thermally processed foods and polluted environments. This study investigated the hepatotoxicity of IQ by exposing zebrafish model organisms at 0, 8, 80, and 800 ng/mL concentrations for 35 days and was supposed to reveal the mechanism of IQ-induced oxidative stress and inflammation in the liver. The results showed that, after IQ exposure, alanine aminotransferase (ALT), aspartate aminotransferase (AST), reactive oxygen species (ROS), and malondialdehyde (MDA) levels in zebrafish liver increased significantly; meanwhile, significantly increased tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-12 (IL-12) levels induced severe oxidative stress and inflammation; however, glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione s-transferase (GST) and glutathione peroxidase (GSH-Px) levels significantly decreased. The results indicated that the increased IQ exposure gradually aggravated pathological changes of zebrafish liver tissue (irregular cell morphology, cytoplasmic vacuolation, and inflammatory cell infiltration) and induced significant liver damage at last. Alterations in the expressions of genes and proteins involved in the IQ-induced TLR4/MAPK and TLR4/NF-κB pathways can elucidate the mechanism of its hepatotoxicity. The study provides evidence of IQ-induced hepatotoxicity and helps to draw attention to the health risks of dietary and environmental exposure to IQ.
Collapse
Affiliation(s)
- Dan Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhi Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Caiyi Qiu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Bo Peng
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
33
|
Xu XF, Zhu HY, Ren YF, Feng C, Ye ZH, Cai HM, Wan XC, Peng CY. Efficient isolation and purification of tissue-specific protoplasts from tea plants (Camellia sinensis (L.) O. Kuntze). PLANT METHODS 2021; 17:84. [PMID: 34325718 PMCID: PMC8323221 DOI: 10.1186/s13007-021-00783-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/16/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Plant protoplasts constitute unique single-cell systems that can be subjected to genomic, proteomic, and metabolomic analysis. An effective and sustainable method for preparing protoplasts from tea plants has yet to be established. The protoplasts were osmotically isolated, and the isolation and purification procedures were optimized. Various potential factors affecting protoplast preparation, including enzymatic composition and type, enzymatic hydrolysis duration, mannitol concentration in the enzyme solution, and iodixanol concentration, were evaluated. RESULTS The optimal conditions were 1.5% (w/v) cellulase and 0.4-0.6% (w/v) macerozyme in a solution containing 0.4 M mannitol, enzymatic hydrolysis over 10 h, and an iodixanol concentration of 65%. The highest protoplast yield was 3.27 × 106 protoplasts g-1 fresh weight. As determined through fluorescein diacetate staining, maximal cell viability was 92.94%. The isolated protoplasts were round and regularly shaped without agglomeration, and they were less than 20 μm in diameter. Differences in preparation, with regard to yield and viability in the tissues (roots, branches, and leaves), cultivars, and cultivation method, were also observed. CONCLUSIONS In summary, we reported on a simple, efficient method for preparing protoplasts of whole-organ tissue from tea plant. The findings are expected to contribute to the rapid development of tea plant biology.
Collapse
Affiliation(s)
- Xue-Feng Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Hai-Yan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Yin-Feng Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Can Feng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Zhi-Hao Ye
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Hui-Mei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Chuan-Yi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China.
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China.
| |
Collapse
|
34
|
Xu Y, Zhu J, Hu J, Zou Z, Zhao Y, Lai L, Xu P, Song Y, Cheng H. L-Theanine Alleviates IMQ-Induced Psoriasis Like Skin Inflammation by Downregulating the Production of IL-23 and Chemokines. Front Pharmacol 2021; 12:719842. [PMID: 34381369 PMCID: PMC8350042 DOI: 10.3389/fphar.2021.719842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Psoriasis, the most common skin inflammatory disease, is characterized by massive keratinocyte proliferation and immune cell infiltration into epidermis. L-Theanine (L-THE), a nonproteinogenic amino acid derived from green tea (Camellia sinensis), has been proved to possess the properties of anti-inflammatory, antidepressants and neuroprotective. However, whether L-THE has a therapeutic effect on psoriasis is still unknown. In this study, we found that the epidermal thickness and inflammatory response were significantly reduced in Imiquimod (IMQ)-induced psoriasis mice by applying with L-THE on mice skin. The expression of proliferation and inflammation associated genes such as keratin 17, IL-23 and CXCL1-3 was also downregulated by L-THE. Furthermore, L-THE inhibited the production of IL-23 in dendritic cells (DCs) after IMQ treatment, and decreased the levels of chemokines in keratinocytes treated with IL-17A by downregulating the expression of IL-17RA. RNA-seq and KEGG analysis revealed that L-THE significantly regulated the expression of IL-17A and NF-κB signaling pathway-associated genes. Metabolomics analysis displayed that L-THE promoted propanoate metabolism which has been reported to inhibit the activity of TH17 cells. Therefore, our results demonstrated that L-THE significantly decreases the levels of IL-23 and chemokines, and attenuates IMQ-induced psoriasis like skin inflammation by inhibiting the activation of NF-κB and IL-17A signaling pathways, and promoting the propanoate metabolism. Our findings suggest that topical applied L-THE can be used as a topical drug candidate for the treatment of psoriasis or as an adjuvant treatment of ustekinumab or secukinumab to prevent the relapse of psoriasis.
Collapse
Affiliation(s)
- Yaohan Xu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang Zhu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyi Hu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziqi Zou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueling Zhao
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Xu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Feng M, Zheng X, Wan J, Pan W, Xie X, Hu B, Wang Y, Wen H, Cai S. Research progress on the potential delaying skin aging effect and mechanism of tea for oral and external use. Food Funct 2021; 12:2814-2828. [PMID: 33666618 DOI: 10.1039/d0fo02921a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Skin aging is characterized by the gradual loss of elasticity, the formation of wrinkles and various color spots, the degradation of extracellular matrix proteins, and the structural changes of the dermis. With the increasingly prominent problems of environmental pollution, social pressure, ozone layer thinning and food safety, skin problems have become more and more complex. The skin can reflect the overall health of the body. Skincare products for external use alone cannot fundamentally solve skin problems; it needs to improve the overall health of the body. Based on the literature review in recent 20 years, this paper systematically reviewed the potential delaying effect of tea and its active ingredients on skin aging by oral and external use. Tea is the second-largest health drink after water. It is rich in tea polyphenols, l-theanine, tea pigments, caffeine, tea saponins, tea polysaccharides and other secondary metabolites. Tea and its active substances have whitening, nourishing, anti-wrinkle, removing spots and other skincare effects. Its mechanism of action is ultraviolet absorption, antioxidant, anti-inflammatory, inhibition of extracellular matrix aging, inhibiting the accumulation of melanin and toxic oxidation products, balancing intestinal and skin microorganisms, and improving mood and sleep, among other effects. At present, tea elements skincare products are deeply loved by consumers. This paper provides a scientific theoretical basis for tea-assisted beauty and the high-end application of tea in skincare products.
Collapse
Affiliation(s)
- Meiyan Feng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mei S, Ma H, Chen X. Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms. Food Chem Toxicol 2021; 149:111997. [DOI: 10.1016/j.fct.2021.111997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
|
37
|
Han H, Zhang J, Chen Y, Shen M, Yan E, Wei C, Yu C, Zhang L, Wang T. Dietary taurine supplementation attenuates lipopolysaccharide-induced inflammatory responses and oxidative stress of broiler chickens at an early age. J Anim Sci 2021; 98:5909276. [PMID: 32954422 DOI: 10.1093/jas/skaa311] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to investigate the effect of taurine as a prophylactic treatment on antioxidant function and inflammatory responses of broilers challenged with lipopolysaccharide (LPS). A total of 256 one-day-old male Arbor Acres broiler chicks were randomly assigned to four treatments with eight replicates of eight birds (eight birds per cage). Four treatment groups were designated as follows: 1) in the CON group, broilers fed a basal diet; 2) in the LPS group, LPS-challenged broilers fed a basal diet; 3) in the LPS + T1 group, LPS-challenged broilers fed a basal diet supplemented with 5.0 g/kg taurine; and 4) in the LPS + T2 group, LPS-challenged broilers fed a basal diet supplemented with 7.5 g/kg taurine. The LPS-challenged broilers were intraperitoneally injected with 1 mg/kg body weight (BW) of LPS at 16, 18, and 20 d of age, whereas the CON group received an injection of sterile saline. The results showed that broilers injected with LPS exhibited decreased (P < 0.05) the average daily gain (ADG) and the 21-d BW (P < 0.05), while taurine supplementation alleviated the negative effects of LPS. Additionally, the LPS-induced increases (P < 0.05) in serum alanine transaminase and aspartate transaminase activities were reversed by taurine supplementation. The taurines could alleviate the hepatic oxidative stress, with the presence of lower content of malondialdehyde (P < 0.05), higher content of glutathione (P < 0.05), and an increased glutathione peroxidase (GSH-Px) activity (P < 0.05). The concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the liver were measured by ELISA kits, and the result showed that dietary taurine supplementation prevented these cytokines increases in the liver of LPS-induced broilers. Taurine reduced the genes expression of IL-1β, TNF-α, IL-6, cyclooxygenase-2, and inducible nitric oxide synthase, whereas it boosted the expression levels of antioxidant-related genes (nuclear factor erythroid 2-related factor 2, heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and GSH-Px) in the liver of LPS-induced broilers. In conclusion, dietary taurine supplementation in broilers mitigated LPS-induced defects in ADG, oxidative stress, and inflammatory responses.
Collapse
Affiliation(s)
- Hongli Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Enfa Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chengheng Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Caiyun Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
38
|
Green tea polyphenols mitigate the plant lectins-induced liver inflammation and immunological reaction in C57BL/6 mice via NLRP3 and Nrf2 signaling pathways. Food Chem Toxicol 2020; 144:111576. [DOI: 10.1016/j.fct.2020.111576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
|
39
|
Zhang C, Wang C, Zhao X, Chen K, Geng Z. Effect of L-theanine on meat quality, muscle amino acid profiles, and antioxidant status of broilers. Anim Sci J 2020; 91:e13351. [PMID: 32219964 DOI: 10.1111/asj.13351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/31/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022]
Abstract
This study investigated the effect of L-theanine on carcass traits, meat quality, muscle antioxidant capacity, and amino acid (AA) profiles of broilers. Three hundred 1-day-old Ross 308 male broilers were randomly allotted to five groups with six replicates. Birds were fed the basal diet or basal diet with 300, 600, 900, or 1,500 mg/kg L-theanine for 42 consecutive days. The results showed that L-theanine quadratically increased dressing percentage, eviscerated percentage, and leg muscle yield (p < .05). Meanwhile, drip loss, cooking loss, shear force, L*24h, and muscle lactate content decreased quadratically in response to dietary L-theanine supplementation (p < .05), while pH24h and muscle glycogen content were quadratically improved by L-theanine (p < .05). Notably, the contents of muscle malondialdehyde and protein carbonyl, and the activities of muscle total antioxidant capacity, catalase, and glutathione peroxidase decreased quadratically in response to dietary L-theanine supplementation (p < .05), suggesting that the oxidative stress level of muscle was decreased quadratically. Moreover, L-theanine quadratically increased the concentrations of most of muscle essential AA, nonessential AA, and flavor AA (p < .05). In conclusion, L-theanine can be used as a valuable feed additive to modulate carcass traits, meat quality, muscle antioxidant status, and AA profiles of boilers, and its optimum addition level is 600 mg/kg based on the present study.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei, Anhui, China
| | - Chi Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaohui Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Kaikai Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
40
|
Wang D, Cai M, Wang T, Liu T, Huang J, Wang Y, Granato D. Ameliorative effects of L-theanine on dextran sulfate sodium induced colitis in C57BL/6J mice are associated with the inhibition of inflammatory responses and attenuation of intestinal barrier disruption. Food Res Int 2020; 137:109409. [PMID: 33233096 DOI: 10.1016/j.foodres.2020.109409] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
This study investigated the effects of L-theanine supplementation on the colonic mucosa injury in C57BL/6J male mice treated with dextran sulfate sodium (DSS)-induced colitis. Treatment with L-theanine significantly decreased the disease activity index and ameliorated the inflammation-associated pathological damage in colon length, as well as the histopathological features of DSS-induced colitis. L-Theanine administration also inhibited DSS-induced changes in the colonic tissue that included myeloperoxidase by 4.5-fold and malondialdehyde by 2.3-fold in comparison to the DSS group. In addition, GSH was increased by 85% and lipopolysaccharides level was decreased by 55% in comparison to the DSS group. Proinflammatory cytokines expression, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, at the both protein and mRNA levels were also decreased significantly. Notably, the increase in serum content of lipopolysaccharides and colonic expressions of inducible nitric oxide synthase, cyclooxygenase-2, toll like receptor (TLR)-2, TLR-4, TLR-6, and TLR-9 induced by DSS were also significantly inhibited by L-theanine administration. In addition, L-theanine also attenuated the reduction of serum contents of diamine oxidase and the production of short-chain fatty acids in the colonic tissue, and gene expression of mucosal barrier zonula occludens-1 and claudin-1 in DSS-induced colitis. Furthermore, 16S rRNA phylogenetic sequencing revealed a shift in microbial community composition induced by DSS, but no significant difference was observed following L-theanine supplementation. Overall, our findings demonstrated that L-theanine inhibits intestinal inflammation and protects against intestinal barrier disruption in mice with DSS-induced colitis. Further clinical trials should be considered to assess the effects of L-theanine supplementation on oxidative and inflammatory responses in humans.
Collapse
Affiliation(s)
- Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212004, China; School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Min Cai
- School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Tiantian Liu
- School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jinbao Huang
- School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yijun Wang
- School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Daniel Granato
- Food Processing and Quality, Production Systems Unit - Natural Resources Institute Finland (Luke) - Tietotie 2, FI-02150 Espoo, Finland.
| |
Collapse
|
41
|
Zhang Y, Jia H, Jin Y, Liu N, Chen J, Yang Y, Dai Z, Wang C, Wu G, Wu Z. Glycine Attenuates LPS-Induced Apoptosis and Inflammatory Cell Infiltration in Mouse Liver. J Nutr 2020; 150:1116-1125. [PMID: 32101618 DOI: 10.1093/jn/nxaa036] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/30/2019] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Liver dysfunction impairs immunological homeostasis. Glycine (Gly) has been reported to have antioxidative and anti-inflammatory effects and to regulate apoptosis in various models. OBJECTIVES The aim of the present study was to determine whether Gly could attenuate LPS-induced liver injury. METHODS In Experiment 1, 48 6-week-old male C57BL/6 mice were randomly assigned into one of 4 groups: CON (control), GLY [orally administered Gly, 5 g · kg body weight (BW)-1 · d-1 for 6 d], LPS (5 mg/kg BW, intraperitoneally administered), and GLY + LPS (Gly supplementation, and on day 7 LPS treatment). In Experiment 2, mice were untreated, pretreated with Gly as above, or pretreated with Gly + l-buthionine sulfoximine (BSO) (0.5 g/kg BW, intraperitoneally administered every other day) for 6 d. On day 7, mice were injected with LPS as above. Histological alterations, activities of antioxidative enzymes, apoptosis, and immune cell infiltration were analyzed. RESULTS In Experiment 1, compared with CON, LPS administration resulted in increased karyolysis and karyopyknosis in the liver by 8- to 10-fold, enhanced serum activities of alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) by 1- to 1.8-fold, and increased hepatic apoptosis by 5.5-fold. Furthermore, LPS exposure resulted in increased infiltration of macrophages and neutrophils in the liver by 3.2- to 7.5-fold, elevated hepatic concentrations of malondialdehyde and hydrogen peroxide (H2O2), and elevated myeloperoxidase (MPO) activity by 1.5- to 6.3-fold. In Experiment 2, compared with the LPS group, mice in the GLY + LPS group had fewer histological alterations (68.5%-75.9%); lower serum ALT, AST, and LDH activities (24.3%-64.7%); and lower hepatic malondialdehyde and H2O2 concentrations (46.1%-80.2%), lower MPO activity (39.2%), immune cell infiltration (52.3%-85.3%), and apoptosis (69.6%), which were abrogated by BSO. Compared with the GLY + LPS group, mice in the GLY + BSO + LPS group had lower hepatic activities of catalase, superoxide dismutase, and glutathione peroxidase by 33.5%-48.5%; increased activation of NF-κB by 2.3-fold; and impaired nuclear factor (erythroid-derived 2)-like 2 signaling by 38.9%. CONCLUSIONS Gly is a functional amino acid with an ability to protect the liver against LPS-induced injury in mice.
Collapse
Affiliation(s)
- Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Yuhang Jin
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.,Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
42
|
Malkoç M, Patan H, Yaman SÖ, Türedi S, Kerimoğlu G, Kural BV, Örem A. l-theanine alleviates liver and kidney dysfunction in septic rats induced by cecal ligation and puncture. Life Sci 2020; 249:117502. [PMID: 32142764 DOI: 10.1016/j.lfs.2020.117502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
AIMS Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response against infection that triggers systemic inflammatory response syndrome. l-theanine (LT), a glutamate derivative, is a non-protein amino acid derived from tea (Camellia sinensis), and a valuable nutraceutical product used as an additive in the food industry. This study we aimed to investigate whether LT would exert any therapeutic effect on liver and kidney tissues in Sprague Dawley rats with sepsis induced with cecal ligation and puncture (CLP). MAIN METHODS Rats were divided into four groups; sham, CLP, CLP+LT1 (2x250 mg/kg) and CLP+LT2 (2 × 750 mg/kg). Liver and kidney tissues were subjected to histopathological examination. Apoptotic index percentages (AI%) were examined using the TUNEL method. The oxidized glutathione to total glutathione (GSSG/TGSH) ratio (as a marker of oxidative stress, levels of caspase-3 (a marker of apoptosis), glutathione peroxidase (GPx) and glutathione S-transferase (GST) (as antioxidant enzymes), inducible nitric oxide synthase (iNOS) and the tumor necrosis factor-α to Interleukin-10 ratio (TNF-α/IL-10) (as markers of inflammation) were investigated using commercial kits. Levels of malondialdehyde (MDA) (a marker of oxidative stress) were determined spectrophotometrically. KEY FINDINGS A high dose of LT exhibited more significant effects in reducing oxidative stress, inflammation and apoptosis than a low dose of LT in liver and kidney tissues with CLP-induced sepsis (p < 0.05). SIGNIFICANCE Our results indicated that LT significantly and dose-dependently inhibited sepsis induced liver and kidney injury. This effect may be attributed to the antioxidant, anti-inflammatory, and anti-apoptotic activities of LT.
Collapse
Affiliation(s)
- Meltem Malkoç
- Vocational School of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Huriye Patan
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Serap Özer Yaman
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Süleyman Türedi
- Karadeniz Technical University, Faculty of Medicine, Department of Emergency Medicine, 61080 Trabzon, Turkey
| | - Gökçen Kerimoğlu
- Karadeniz Technical University, Faculty of Medicine, Department of Histology, 61080 Trabzon, Turkey
| | - Birgül Vanizor Kural
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Asım Örem
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
43
|
Zhang C, Geng ZY, Chen KK, Zhao XH, Wang C. L-theanine attenuates transport stress-induced impairment of meat quality of broilers through improving muscle antioxidant status. Poult Sci 2019; 98:4648-4655. [PMID: 30951605 DOI: 10.3382/ps/pez164] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
This study was to investigate the effect of dietary L-theanine (THE) supplementation (0, 600 mg/kg) on growth performance, carcass traits, immune organ indexes, meat quality, and muscle antioxidant status of transported broilers. A total of 180 one-day-old male Ross 308 broilers were randomly allotted to 2 treatment groups including a THE-free group with 12 replicates of 10 birds each and a THE group with 6 replicates of 10 birds each. On the morning of day 42, after a 9-h fast, the birds of THE-free group were divided into 2 equal groups, and then all birds in the 3 groups were placed into 18 crates and were transported according to the following protocols: 0-h transport of birds in the THE-free group (control group), 3-h transport of birds in the THE-free group (T group), and 3-h transport of birds in the THE group (T + THE group). Results showed that dietary THE supplementation improved feed conversion ratio and birds' final body weight (P < 0.05), while transport and dietary THE supplementation did not affect carcass traits of broilers (P > 0.05). Transport increased bird live weight loss, drip loss, L*24 h, muscle malondialdehyde (MDA), protein carbonyl (PC) and lactate contents, while it decreased thymus, spleen, and bursa of Fabricius indexes, pH24h, a*, and muscle total antioxidant capacity (T-AOC), catalase (CAT), and glutathione peroxidase (GSH-PX) activities and glycogen content (P < 0.05). Nevertheless, compared with birds in the T group, birds in the T + THE group exhibited increased thymus, spleen, and bursa of Fabricius indexes, pH24h, a*24 h, and muscle T-AOC, CAT, and GSH-PX activities and glycogen content, and decreased drip loss, L*24 h, and muscle MDA, PC, and lactate contents (P < 0.05). This study provided the first evidence that dietary THE supplementation prevented transport-stress-impaired immune organ indexes and meat quality of broilers, and the reason for maintenance of meat quality by supplementation of THE may be partly ascribed to the changed muscle glycolysis metabolism and antioxidant status.
Collapse
Affiliation(s)
- C Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Z Y Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - K K Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - X H Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - C Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
44
|
Hepatoprotective effect of essential oils of Nepeta cataria L. on acetaminophen-induced liver dysfunction. Biosci Rep 2019; 39:BSR20190697. [PMID: 31337687 PMCID: PMC6684950 DOI: 10.1042/bsr20190697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/24/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022] Open
Abstract
Nepeta cataria L. has long been used in folk food and medicine for several functions. Essential oils (EOs) were extracted from Nepeta cataria L. by supercritical fluid extraction. The results of animal experiments showed that EOs from Nepeta cataria L. significantly attenuated acetaminophen-induced liver damage. Further study confirmed that EOs were able to increase mRNA expression of uridine diphosphate glucuronosyltransferases (UGTs) and sulfotransferases (SULTs), as well as inhibit CYP2E1 activities, and thereby suppressed toxic intermediate formation. Nrf-2 activation might be involved in EOs-induced up-regulation of Phase II enzymes. Collectively, our data provide evidence that EOs protect the liver against acetaminophen-induced liver injury mainly by accelerating acetaminophen harmless metabolism, implying that EOs can be considered as a potential natural resource to develop hepatoprotective agent.
Collapse
|
45
|
Guo J, Li Y, Zhao R, Yang X. Adipokine zinc-α2-glycoprotein alleviates lipopolysaccharide-induced inflammatory responses through the β3-AR/PKA/CREB pathway. Cytokine 2019; 123:154742. [PMID: 31260855 DOI: 10.1016/j.cyto.2019.154742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022]
Abstract
Humans and animals frequently experience dysmetabolism induced by inflammation. Zinc-α2-glycoprotein (ZAG), a newly identified adipokine, is potentially involved in lipid metabolism. Our previous study revealed that the ZAG content increased after lipopolysaccharide (LPS) treatment. To clarify ZAG's possible effects on inflammatory responses and lipid metabolism, we used gene overexpression and knockout mice as models to investigate the function of ZAG during inflammation. The results showed that LPS increased plasma triglyceride, non-esterified fatty acid and hepatic triglyceride, while ZAG overexpression decreased these effects. Furthermore, ZAG overexpression weakened inflammatory responses, suppressed lipogenesis, and improved mitochondrial function during inflammation. ZAG overexpression also increased β3-adrenoreceptor, protein kinase A, and phosphorylated cyclic adenosine monophosphate-response element binding protein (CREB), promoted the combination of CREB and CREB-binding protein (CBP), and competitively inhibited the combination of nuclear factor-κB and CBP. After ZAG knockout, LPS-induced the hyperlipidemia worsened. ZAG knockout aggravated inflammatory responses, promoted lipogenesis, and weakened mitochondrial function during inflammation. ZAG knockout also decreased β3-adrenoreceptor and protein kinase A. The present study demonstrated that ZAG alleviated lipid metabolism disorders by weakening inflammatory responses. The β3-adrenoreceptor/protein kinase A/CREB pathway mediated the effects of ZAG on inflammation. These results will provide new insight for research on anti-inflammation.
Collapse
Affiliation(s)
- Jun Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanfei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
46
|
Ninomiya T, Kanzaki N, Hirakawa Y, Yoshinari M, Higashioka M, Honda T, Shibata M, Sakata S, Yoshida D, Teramoto T, Takemoto S, Nishimoto S, Hata J, Kitazono T. Serum Ethylamine Levels as an Indicator of l-Theanine Consumption and the Risk of Type 2 Diabetes in a General Japanese Population: The Hisayama Study. Diabetes Care 2019; 42:1234-1240. [PMID: 31076414 DOI: 10.2337/dc18-2655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/15/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study investigated the association between serum ethylamine levels as an indicator of l-theanine consumption and the development of type 2 diabetes in a Japanese community. RESEARCH DESIGN AND METHODS A total of 2,253 community-dwelling Japanese individuals aged 40-79 years without diabetes were monitored for 7 years. Serum ethylamine levels were divided into quartiles: ≤0.86, 0.87-2.10, 2.11-5.28, and ≥5.29 ng/mL. Kinetic analysis of serum ethylamine concentrations was performed after ingestion of l-theanine-rich green tea products containing 8 mg of l-theanine by 12 healthy volunteers. RESULTS During follow-up, 282 subjects developed type 2 diabetes. The age- and sex-adjusted cumulative incidence of type 2 diabetes decreased significantly with elevating levels of serum ethylamine (P for trend = 0.04). This association remained unchanged after adjusting for potential confounding factors. The multivariable-adjusted hazard ratio (HR) for type 2 diabetes was significantly lower in the fourth quartile of serum ethylamine than in the first quartile (HR 0.69, 95% CI 0.49-0.98). This trend of decrease in diabetic risk across serum ethylamine levels was more prominent in middle-aged subjects and in subjects with prediabetes, obesity, or insulin resistance. Kinetic analysis estimated that the minimum concentration at the steady state was >5.90 ng/mL in the case of twice-daily ingestion with an interval of 12 h. CONCLUSIONS Higher serum ethylamine was significantly associated with lower risk of the development of type 2 diabetes in a general Japanese population. The measurement of serum ethylamine concentration would be a useful biomarker for the objective estimation of l-theanine consumption.
Collapse
Affiliation(s)
- Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Kanzaki
- Development & Design Department, Japan Business Division, Suntory Beverage & Food Limited, Kanagawa, Japan
| | - Yoichiro Hirakawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahito Yoshinari
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mayu Higashioka
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanori Honda
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mao Shibata
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoko Sakata
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daigo Yoshida
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanori Teramoto
- Development & Design Department, Japan Business Division, Suntory Beverage & Food Limited, Kanagawa, Japan
| | - Susumu Takemoto
- Development & Design Department, Japan Business Division, Suntory Beverage & Food Limited, Kanagawa, Japan
| | - Shozo Nishimoto
- Development & Design Department, Japan Business Division, Suntory Beverage & Food Limited, Kanagawa, Japan
| | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
47
|
Rothenberg DO, Zhang L. Mechanisms Underlying the Anti-Depressive Effects of Regular Tea Consumption. Nutrients 2019; 11:E1361. [PMID: 31212946 PMCID: PMC6627400 DOI: 10.3390/nu11061361] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
This article is a comprehensive review of the literature pertaining to the antidepressant effects and mechanisms of regular tea consumption. Meta-data supplemented with recent observational studies were first analyzed to assess the association between tea consumption and depression risk. The literature reported risk ratios (RR) were 0.69 with 95% confidence intervals of 0.62-0.77. Next, we thoroughly reviewed human trials, mouse models, and in vitro experiments to determine the predominant mechanisms underlying the observed linear relationship between tea consumption and reduced risk of depression. Current theories on the neurobiology of depression were utilized to map tea-mediated mechanisms of antidepressant activity onto an integrated framework of depression pathology. The major nodes within the network framework of depression included hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, inflammation, weakened monoaminergic systems, reduced neurogenesis/neuroplasticity, and poor microbiome diversity affecting the gut-brain axis. We detailed how each node has subsystems within them, including signaling pathways, specific target proteins, or transporters that interface with compounds in tea, mediating their antidepressant effects. A major pathway was found to be the ERK/CREB/BDNF signaling pathway, up-regulated by a number of compounds in tea including teasaponin, L-theanine, EGCG and combinations of tea catechins and their metabolites. Black tea theaflavins and EGCG are potent anti-inflammatory agents via down-regulation of NF-κB signaling. Multiple compounds in tea are effective modulators of dopaminergic activity and the gut-brain axis. Taken together, our findings show that constituents found in all major tea types, predominantly L-theanine, polyphenols and polyphenol metabolites, are capable of functioning through multiple pathways simultaneously to collectively reduce the risk of depression.
Collapse
Affiliation(s)
- Dylan O'Neill Rothenberg
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| | - Lingyun Zhang
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
48
|
Zhou J, Ho CT, Long P, Meng Q, Zhang L, Wan X. Preventive Efficiency of Green Tea and Its Components on Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5306-5317. [PMID: 30892882 DOI: 10.1021/acs.jafc.8b05032] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a typical chronic liver disease highly correlated with metabolic syndrome. Growing prevalence of NAFLD is supposed to be linked with the unhealthy lifestyle, especially high-calorie diet and lacking enough exercise. Currently, there is no validated pharmacological therapy for NAFLD except for weight reduction. However, many dietary strategies had preventive effects on the development of liver steatosis or its progression. As one of the most common beverages, green tea contains abundant bioactive compounds possessing antioxidant, lipid-lowering, and anti-inflammatory effects, as well as improving insulin resistance and gut dysbiosis that can alleviate the risk of NAFLD. Hence, in this review, we summarized the studies of green tea and its components on NAFLD from animal experiments and human interventions and discussed the potential mechanisms. Available evidence suggested that tea consumption is promising to prevent NAFLD, and further mechanisms and clinical studies need to be investigated.
Collapse
Affiliation(s)
| | - Chi-Tang Ho
- Department of Food Science , Rutgers University , New Brunswick , New Jersey , United States
| | | | | | | | | |
Collapse
|
49
|
Jing H, Gao X, Xu L, Lin H, Zhang Z. H 2S promotes a glycometabolism disorder by disturbing the Th1/Th2 balance during LPS-induced inflammation in the skeletal muscles of chickens. CHEMOSPHERE 2019; 222:124-131. [PMID: 30703651 DOI: 10.1016/j.chemosphere.2019.01.136] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/28/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) is a common environmental pollutant. In humans, H2S enters the body and is transported to different tissues and organs, inducing various types of damage such as chronic inflammatory reactions. Glucose metabolism disorders have been shown to be closely associated with chronic inflammation. The goal of the present study was to investigate the effects and mechanisms of H2S on glycometabolism disorders and chronic inflammatory responses. A chronic inflammation model in the skeletal muscles of chickens was induced using lipopolysaccharide (LPS), after which the animals were exposed to exogenous H2S. Subsequently, the glucose metabolism and the pathways associated with chronic inflammation were analyzed. The pathological analysis showed that significant inflammatory injury to skeletal muscles occurred after animals exposed to H2S. The Th1/Th2 ratio imbalance was exacerbated after exposure to H2S with IFNγ downregulated and IL-1, IL-4, and IL-6 upregulated. In addition, the level of IκBα was suppressed and induced the expression of NF-κB, significantly activating the inflammatory pathway, while the expression of heat shock proteins was elevated. In addition, glucose metabolism factors were analyzed. IRS1 phosphorylation was inhibited in animals exposed to H2S, and the expression of insulin-like growth factor (IGF) signaling pathway-related factors was upregulated to promote insulin resistance, causing glucose metabolism disorders. The results of this study revealed that H2S can trigger changes in the ratio of Th1/Th2 to produce more proinflammatory cytokines that disturb the insulin signaling pathway, causing glycometabolism disorders during the inflammatory response in the skeletal muscles of chickens.
Collapse
Affiliation(s)
- Hongyuan Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuejiao Gao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Liqiang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
50
|
Gong Z, Lin L, Liu Z, Zhang S, Liu A, Chen L, Liu Q, Deng Y, Xiao W. Immune-modulatory effects and mechanism of action of l-theanine on ETEC-induced immune-stressed mice via nucleotide-binding oligomerization domain-like receptor signaling pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|