1
|
Celem E, Tarakci Z. Investigation of the use of fruit pomace and glycerol in the encapsulation of Lactobacillus acidophilus (THT 030101) in pullulan-based electrospun nanofibers. Carbohydr Polym 2025; 356:123341. [PMID: 40049941 DOI: 10.1016/j.carbpol.2025.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/09/2025] [Accepted: 01/30/2025] [Indexed: 05/13/2025]
Abstract
Pomace, which contains valuable components such as dietary fiber, is the most important by-product of the fruit juice industry. Since orange and kiwi are the most widely cultivated fruits globally and in our region, respectively, this study aimed to utilise soluble dietary fiber-rich aqueous extracts of the pomace of these fruits (OWE and KWE, respectively) for nano-encapsulation of Lactobacillus acidophilus cells in electrospun pullulan nanofibers. Additionally, the objective was to encapsulate glycerol, a cryoprotectant, in conjunction with the cells. It was found that the viscosity of the pullulan polymer solution decreased significantly and the conductivity increased significantly with the addition of KWE/OWE, and therefore the diameters of the nanofibers formed were significantly smaller (81-170 nm, P < 0.05). The study found that the survival rates of L. acidophilus cells were significantly higher (97 % and 93.78 %, respectively; P < 0.05) in the encapsulation using KWE/OWE in combination with pullulan. However, the addition of glycerol had no significant effect on cell viability. In conclusion, it has been determined that OWE and KWE have positive effects on the production of pullulan-based nanofibers and the encapsulation of L. acidophilus cells by electrospinning technique; that the L. acidophilus and glycerol can be encapsulated together in electrospun nanofibers.
Collapse
Affiliation(s)
- Ersin Celem
- Food Technology, Department of Food Processing, Ulubey Vocational College, Ordu University, Ulubey, Ordu 52850, Turkey.
| | - Zekai Tarakci
- Department of Food Engineering, Faculty of Agriculture, Ordu University, Ordu 52200, Turkey
| |
Collapse
|
2
|
Zhong H, Jiang J, Hussain M, Zhang H, Chen L, Guan R. The Encapsulation Strategies for Targeted Delivery of Probiotics in Preventing and Treating Colorectal Cancer: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500304. [PMID: 40192333 PMCID: PMC12079478 DOI: 10.1002/advs.202500304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Indexed: 05/16/2025]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer worldwide. It is associated with imbalanced gut microbiota. Probiotics can help restore this balance, potentially reducing the risk of CRC. However, the hostile environment and constant changes in the gastrointestinal tract pose significant challenges to the efficient delivery of probiotics to the colon. Traditional delivery methods are often insufficient due to their low viability and lack of targeting. To address these challenges, researchers are increasingly focusing on innovative encapsulation technologies. One such approach is single-cell encapsulation, which involves applying nanocoatings to individual probiotic cells. This technique can improve their resistance to the harsh gastrointestinal environment, enhance mucosal adhesion, and facilitate targeted release, thereby increasing the effectiveness of probiotic delivery. This article reviews the latest developments in probiotic encapsulation methods for targeted CRC treatment, emphasizing the potential benefits of emerging single-cell encapsulation techniques. It also analyzes and compares the advantages and disadvantages of current encapsulation technologies. Furthermore, it elucidates the underlying mechanisms through which probiotics can prevent and treat CRC, evaluates the efficacy and safety of probiotics in CRC treatment and adjuvant therapy, and discusses future directions and potential challenges in the targeted delivery of probiotics for CRC treatment and prevention.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Jin Jiang
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Muhammad Hussain
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
- Moganshan Institute ZJUTKangqianDeqing313200China
| | - Haoxuan Zhang
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Ling Chen
- Sanya Branch of Hainan Academy of Inspection and TestingSan Ya572011China
| | - Rongfa Guan
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
- Moganshan Institute ZJUTKangqianDeqing313200China
| |
Collapse
|
3
|
Feng K, Liu C, Zhang S, Wu J, Eleuteri AM, Bai Y. Insights into the formation of pullulan nanofilm and its feasibility as probiotic-resided oral fast dissolving carrier. Int J Biol Macromol 2025; 299:140091. [PMID: 39842598 DOI: 10.1016/j.ijbiomac.2025.140091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Oral fast dissolving films represent a novel dosage form for probiotics. To reduce the dependence of film preparation on synthetic materials, a polysaccharide-based oral fast dissolving nanofilm for probiotics was fabricated through pullulan (PUL) electrospinning. An electrospinnability map of PUL with varying physical properties was developed, identifying a molecular weight of 200 kDa and a concentration of 20 % as suitable conditions for achieving favorable fiber morphology. Scanning electron microscopy, Fourier-transform infrared spectroscopy, and fluorescence assays confirmed that probiotics could be effectively encapsulated in the nanofilm, with 92.6 % of viable cells retained after electrospinning. Results of thermogravimetric analysis and thermal test indicated that the heat resistance of the encapsulated bacteria was significantly improved (P < 0.05). After 28 days of storage, the loss of viable bacteria was higher at 25 °C (2.9 log) than at 4 °C (0.5 log). This observation is consistent with the results of accelerated storage test, which showed that probiotic nanofilms stored at 4 °C had a longer shelf life with an inactivation rate constant of 1.74 × 10-5. Furthermore, the dissolution study revealed that the nanofilms could disintegrate in simulated saliva within 15 s, highlighting their potential as oral fast dissolving formulation.
Collapse
Affiliation(s)
- Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China
| | - Chuanduo Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Shanshuo Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Junwei Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China.
| |
Collapse
|
4
|
Grilc NK, Kristl J, Zupančič Š. Can polymeric nanofibers effectively preserve and deliver live therapeutic bacteria? Colloids Surf B Biointerfaces 2025; 245:114329. [PMID: 39486375 DOI: 10.1016/j.colsurfb.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Probiotics and live therapeutic bacteria (LTB), their strictly regulated therapeutic counterpart, are increasingly important in treating and preventing biofilm-related diseases. This necessitates new approaches to (i) preserve bacterial viability during manufacturing and storage and (ii) incorporate LTB into delivery systems for enhanced therapeutic efficacy. This review explores advances in probiotic and LTB product development, focusing on preservation, protection, and improved delivery. Preservation of bacteria can be achieved by drying methods that decelerate metabolism. These methods introduce stresses affecting viability which can be mitigated with suitable excipients like polymeric or low molecular weight stabilizers. The review emphasizes the incorporation of LTB into polymer-based nanofibers via electrospinning, enabling simultaneous drying, encapsulation, and delivery system production. Optimization of bacterial survival during electrospinning and storage is discussed, as well as controlled LTB release achievable through formulation design using gel-forming, gastroprotective, mucoadhesive, and pH-responsive polymers. Evaluation of the presence of the actual therapeutic strains, bacterial viability and activity by CFU enumeration or alternative analytical techniques is presented as a key aspect of developing effective and safe formulations with LTB. This review offers insights into designing delivery systems, especially polymeric nanofibers, for preservation and delivery of LTB, guiding readers in developing innovative biotherapeutic delivery systems.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
5
|
Teymoori F, Roshanak S, Bolourian S, Mozafarpour R, Shahidi F. Microencapsulation of Lactobacillus reuteri by Emulsion Technique and Evaluation of Microparticle Properties and Bacterial Viability Under Storage, Processing, and Digestive System Conditions. Food Sci Nutr 2024; 12:10393-10404. [PMID: 39723102 PMCID: PMC11666970 DOI: 10.1002/fsn3.4533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 12/28/2024] Open
Abstract
In this research, the emulsification method was used to encapsulate Lactobacillus reuteri in microparticles of whey protein concentrate (WPC) at different levels (1%, 2%, and 4%) and gum Arabic (GA) at three levels (0/5%, 1%, and 1/5%) and a constant level of sunflower oil (5%). The results showed that emulsions with higher quantities of wall materials exhibited better encapsulation efficiency (67%/57%) and preservation ability at different temperatures, different pH, and presence of 1% bile salt. During the storage time, the droplet size of the emulsion increased more than two times (from 2.2 to 4.6 μm) and the absolute zeta potential of the optimal emulsion decreased (from -19/63 to -16/76 mV). Encapsulating Lactobacillus reuteri in the stabilized emulsion with the highest concentration of wall material improved the cells' protection during storage. The study also observed a decline in the number of primary encapsulated live cells in the gastrointestinal tract (from 4/32 to 3/58 Log CFU/mL) after 90 days of storage. In the case of the nonencapsulated sample, the initial live population decreased from 2.8 to 1 Log CFU/mL after 90 days of storage. The electron microscope images showed that the emulsions became unstable after 30, 60, and 90 days of storage, but the microbial cells were still visible in the continuous phase. Overall, encapsulating Lactobacillus reuteri using emulsification technique can preserve the probiotics during storage and "in vitro" gastrointestinal digestion.
Collapse
Affiliation(s)
- Forough Teymoori
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Sahar Roshanak
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Shadi Bolourian
- Department of Food Additives, Food Science and Technology Research InstituteResearch Center for Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi BranchMashhadIran
| | - Rassoul Mozafarpour
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| |
Collapse
|
6
|
Xu C, Guo J, Chang B, Zhang Y, Tan Z, Tian Z, Duan X, Ma J, Jiang Z, Hou J. Design of probiotic delivery systems and their therapeutic effects on targeted tissues. J Control Release 2024; 375:20-46. [PMID: 39214316 DOI: 10.1016/j.jconrel.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The microbiota at different sites in the body is closely related to disease. The intake of probiotics is an effective strategy to alleviate diseases and be adjuvant in their treatment. However, probiotics may suffer from harsh environments and colonization resistance, making it difficult to maintain a sufficient number of live probiotics to reach the target sites and exert their original probiotic effects. Encapsulation of probiotics is an effective strategy. Therefore, probiotic delivery systems, as effective methods, have been continuously developed and innovated to ensure that probiotics are effectively delivered to the targeted site. In this review, initially, the design of probiotic delivery systems is reviewed from four aspects: probiotic characteristics, processing technologies, cell-derived wall materials, and interactions between wall materials. Subsequently, the review focuses on the effects of probiotic delivery systems that target four main microbial colonization sites: the oral cavity, skin, intestine, and vagina, as well as disease sites such as tumors. Finally, this review also discusses the safety concerns of probiotic delivery systems in the treatment of disease and the challenges and limitations of implementing this method in clinical studies. It is necessary to conduct more clinical studies to evaluate the effectiveness of different probiotic delivery systems in the treatment of diseases.
Collapse
Affiliation(s)
- Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Jiahui Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Baoyue Chang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yiming Zhang
- Department of Psychiatry and Mental Health, Dalian Medical University, Dalian 116044, China
| | - Zhongmei Tan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Zihao Tian
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Xiaolei Duan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
7
|
Lee Y, Shin S, Kim MJ. Production of CaCO 3-single-coated probiotics and evaluation of their spectroscopic properties, morphological characteristics, viability, and intestinal delivery efficiency. Food Chem 2024; 457:140076. [PMID: 38879960 DOI: 10.1016/j.foodchem.2024.140076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
The intake of probiotics offers various health benefits; however, their efficacy depends on the maintenance of viability during industrial processing and digestion. Probiotic viability can be compromised during encapsulation, freeze-drying, storage, and digestion, necessitating multiple coatings. This complicates production and raises costs. In this study, CaCO3-single-coated probiotics (CSCPs) were prepared, an approach rarely reported before. Through instrumental analyses, the encapsulation of probiotics within CaCO3 was confirmed, ensuring their high viability. This proposed technology effectively preserves the viability of probiotics during the encapsulation and freeze-drying processes, resulting in minimal cell loss. Moreover, CSCPs demonstrated exceptional viability performance under simulated gastric and intestinal conditions. Notably, 100% of these microorganisms reached the intestines, delivering over 10 billion CFUs of probiotics in a viable state. This study highlights the potential of CSCPs as a feasible solution for overcoming probiotic encapsulation challenges and optimizing therapeutic benefits.
Collapse
Affiliation(s)
- Youjeong Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Seonmi Shin
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Myoung-Jin Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
| |
Collapse
|
8
|
Shin S, Lee Y, Kim MJ. Oyster shell based indirect carbonation integrated with probiotic encapsulation. Sci Rep 2024; 14:24709. [PMID: 39433771 PMCID: PMC11494112 DOI: 10.1038/s41598-024-72976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Recycling oyster shells-an abundant industrial waste-is essential to reduce marine pollution. Indirect carbonation is promising; however, is cost-prohibitive. This study is a pioneering endeavor to merge indirect carbonation and probiotic encapsulation technologies using oyster shells. Probiotics were encapsulated in the CaCO3 produced through indirect carbonation with oyster shells, and the performance was evaluated. Confocal laser scanning microscopy certified the survival of a substantial proportion of the encased probiotics. Importantly, the majority of the enveloped probiotics demonstrated robust survivability while passing through gastrointestinal and bile fluids. These findings underscore the applicability of oyster shells as an optimal precursor for probiotic encapsulation which is eco-friendly and addresses the challenges faced in industrial waste recycling. This novel approach overcomes the economic limitations associated with indirect carbonation and mitigates the shortcomings of existing probiotic encapsulation methods. Convergence of indirect carbonation and probiotic encapsulation technologies can chart new routes for the environmental sector.
Collapse
Affiliation(s)
- Seonmi Shin
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Youjeong Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Myoung-Jin Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
| |
Collapse
|
9
|
Yuan Y, Jiang X, Li W, Chang C, Wu J. A protectant for Lactobacillus rhamnosus based on whey protein isolate and isomalt: Stress resistance and underlying mechanisms. Int J Biol Macromol 2024; 280:135712. [PMID: 39288859 DOI: 10.1016/j.ijbiomac.2024.135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
Probiotics are exposed to a variety of abiotic and biotic stresses during food fermentation and production, such as acidity, heat, osmolality, and oxidation, which affect their metabolic activity and efficiency. Therefore, it is essential to develop new protective agents to maintain the activity and stability of probiotics. This study introduces a new protectant, spray-dried whey protein isolate (WPI) and isomaltose (ISO). We evaluated the effects of four WPI-ISO ratios (1:0, 2:1, 1:1, 1:2) on the physical properties, including moisture content, water activity (aw), wettability, and glass transition temperature. In addition, we evaluated the environmental tolerance of Lactobacillus rhamnosus to different WPI-ISO ratios under thermal, storage, and simulated gastrointestinal conditions. The results showed that the moisture content (< 7 %) and water activity (< 0.3) of the protectant and probiotic powders met storage stability requirements. The moisture content, water activity, wettability index (WI), and glass transition temperature decreased significantly with the addition of isomalt, thereby improving the pressure resistance of L. rhamnosus through the synergistic effect of WPI and ISO. The WPI-ISO protectant not only improved the environmental tolerance and wettability of probiotics by reducing the moisture content and water activity but also significantly improved the survival rate of L. rhamnosus under various stress conditions such as high temperature and gastrointestinal environment. L. rhamnosus maintains good activity with a viable bacterial count of over 9 lg CFU/g after 90 days of storage, demonstrating effective protection against the environment stress. This study provides a promising new strategy to improve the stability of probiotics in the food industry.
Collapse
Affiliation(s)
- Yanghua Yuan
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanbing Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Hubei, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Hubei, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
10
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
11
|
Alizadeh AM, Mohseni M, Gerami K, Gharavi-Nakhjavani M, Aminzare M, Rastegar H, Assadpour E, Hashempour-Baltork F, Jafari SM. Electrospun Fibers Loaded with Probiotics: Fundamentals, Characterization, and Applications. Probiotics Antimicrob Proteins 2024; 16:1099-1116. [PMID: 37882998 DOI: 10.1007/s12602-023-10174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Increasing demand for safe, efficient, and eco-friendly solutions for pharmaceutical and food industries has led researchers to explore new approaches to bacterial storage. Several advantages make electrospinning (ES) a promising technique for food systems, including simple manufacturing equipment, a relatively low spinning cost, a wide variety of spinnable materials, and a mild process that is easily controlled, which allows continuous fabrication of ultrafine polymeric fibers at submicron or nanoscales without high temperatures or high pressures. This review briefly describes recent advances in the development of electrospun fibers for loading probiotics (PRB) by focusing on ES technology, its efficiency for loading PRB into fibers (viability, digestive stability, growth rate, release, thermal stability, and interactions of fibers with PRB), and the application of PRB-loaded fibers as active packaging (spoilage/microbial control, antioxidant effect, shelf life). Based on the literature reviewed, the incorporation of PRB into electrospun fibers is both feasible and functional. However, several studies have been limited to proof-of-principle experiments and the use of model biological products. It is necessary to conduct further research to establish the industrial applicability of PRB-loaded fibers, particularly in the fields of food and medicine.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehran Mohseni
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kosar Gerami
- Student Research Committee, Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Gharavi-Nakhjavani
- Department of Food Science and Technology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
12
|
Wang K, Chen E, Lin X, Tian X, Wang L, Huang K, Skirtach AG, Tan M, Su W. Core-shell nanofibers based on microalgae proteins/alginate complexes for enhancing survivability of probiotics. Int J Biol Macromol 2024; 271:132461. [PMID: 38777024 DOI: 10.1016/j.ijbiomac.2024.132461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
In this study, a novel one-step coaxial electrospinning process is employed to fabricate shell-core structure fibers choosing Chlorella pyrenoidosa proteins (CP) as the core material. These nanofibers, serving as the wall material for probiotic encapsulation, aimed to enhance the stability and antioxidant activity of probiotics in food processing, storage, and gastrointestinal environments under sensitive conditions. Morphological analysis was used to explore the beads-on-a-string morphology and core-shell structure of the electrospun fibers. Probiotics were successfully encapsulated within the fibers (7.97 log CFU/g), exhibiting a well-oriented structure along the distributed fibers. Compared to free probiotics and uniaxial fibers loaded with probiotics, encapsulation within microalgae proteins/alginate core-shell structure nanofibers significantly enhanced the probiotic cells' tolerance to simulated gastrointestinal conditions (p < 0.05). Thermal analysis indicated that microalgae proteins/alginate core-shell structure nanofibers displayed superior thermal stability compared to uniaxial fibers. The introduction of CP resulted in a 50 % increase in the antioxidant capacity of probiotics-loaded microalgae proteins/alginate nanofibers compared to uniaxial alginate nanofibers, with minimal loss of viability (0.8 log CFU/g) after 28 days of storage at 4 °C. In summary, this dual-layer carrier holds immense potential in probiotic encapsulation and enhancing their resistance to harsh conditions.
Collapse
Affiliation(s)
- Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Entao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiangsong Lin
- School of Medical Imageology, Wannan Medical College, Wuhu 241002, China.
| | - Xueying Tian
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Kexin Huang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Andre G Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
13
|
Gavali P, Desai J, Shah P, Sawarkar S. Transmucosal Delivery of Peptides and Proteins Through Nanofibers: Current Status and Emerging Developments. AAPS PharmSciTech 2024; 25:74. [PMID: 38575778 DOI: 10.1208/s12249-024-02794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
Advancements in recombinant DNA technology have made proteins and peptides available for diagnostic and therapeutic applications, but their effectiveness when taken orally leads to poor patient compliance, requiring clinical administration. Among the alternative routes, transmucosal delivery has the advantage of being noninvasive and bypassing hepato-gastrointestinal clearance. Various mucosal routes-buccal, nasal, pulmonary, rectal, and vaginal-have been explored for delivering these macromolecules. Nanofibers, due to their unique properties like high surface-area-to-volume ratio, mechanical strength, and improved encapsulation efficiency, serve as promising carriers for proteins and peptides. These nanofibers can be tailored for quick dissolution, controlled release, enhanced encapsulation, targeted delivery, and improved bioavailability, offering superior pharmaceutical and pharmacokinetic performance compared to conventional methods. This leads to reduced dosages, fewer side effects, and enhanced patient compliance. Hence, nanofibers hold tremendous potential for protein/peptide delivery, especially through mucosal routes. This review focuses on the therapeutic application of proteins and peptides, challenges faced in their conventional delivery, techniques for fabricating different types of nanofibers and, various nanofiber-based dosage forms, and factors influencing nanofiber generation. Insights pertaining to the precise selection of materials used for fabricating nanofibers and regulatory aspects have been covered. Case studies wherein the use of specific protein/peptide-loaded nanofibers and delivered via oral/vaginal/nasal mucosa for diagnostic/therapeutic use and related preclinical and clinical studies conducted have been included in this review.
Collapse
Affiliation(s)
- Priyanka Gavali
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, 1st Floor Gate No. 1, Mithibai College Campus, VM Road, Vile Parle West, 400056, Maharashtra, India
| | - Jagruti Desai
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Pranav Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi, Surat, 394350, Gujrat, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, 1st Floor Gate No. 1, Mithibai College Campus, VM Road, Vile Parle West, 400056, Maharashtra, India.
| |
Collapse
|
14
|
Hua Y, Wei Z, Xue C, Si J. Stability and programmed sequential release of Lactobacillus plantarum and curcumin encapsulated in bilayer-stabilized W 1/O/W 2 double emulsion: Effect of pectin as protective shell. Int J Biol Macromol 2024; 265:130805. [PMID: 38490382 DOI: 10.1016/j.ijbiomac.2024.130805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
In order to overcome the problem that traditional W1/O/W2 double emulsions do not have targeted release performance, thereby better meeting the health needs of consumers, ovalbumin fibrils/pectin-based bilayer-stabilized double emulsion (OP-BDE) co-encapsulated with Lactobacillus plantarum and curcumin was constructed with pectin as the outer protective shell, which was expected to be used in the development of novel functional foods. The effects of pectin coating on the viability of Lactobacillus plantarum under conditions including storage, pasteurization, freeze-thaw cycles and in vitro simulated digestion were investigated. Results showed that pectin as protective shell could significantly enhance the tolerance of Lactobacillus plantarum to various environmental factors. Besides, the adsorption of pectin endowed OP-BDE with higher lipolysis and stronger protective effect on curcumin, remarkably improving the photostability and bioaccessibility of curcumin. In addition, in vitro simulated gastrointestinal release study indicated that OP-BDE possessed programmed sequential release property, allowing curcumin and Lactobacillus plantarum to be released in small intestine and colon, respectively. OP-BDE is the first reported co-delivery emulsion system with programmed release characteristic. This study provides new insights into OP-BDE in constructing co-delivery systems and programmed sequential release of active substances, and has potential reference and application value in actual food production.
Collapse
Affiliation(s)
- Yijie Hua
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jingyu Si
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
15
|
Zhao Z, Li W, Tran TT, Loo SCJ. Bacillus subtilis SOM8 isolated from sesame oil meal for potential probiotic application in inhibiting human enteropathogens. BMC Microbiol 2024; 24:104. [PMID: 38539071 PMCID: PMC11312844 DOI: 10.1186/s12866-024-03263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND While particular strains within the Bacillus species, such as Bacillus subtilis, have been commercially utilised as probiotics, it is critical to implement screening assays and evaluate the safety to identify potential Bacillus probiotic strains before clinical trials. This is because some Bacillus species, including B. cereus and B. anthracis, can produce toxins that are harmful to humans. RESULTS In this study, we implemented a funnel-shaped approach to isolate and evaluate prospective probiotics from homogenised food waste - sesame oil meal (SOM). Of nine isolated strains with antipathogenic properties, B. subtilis SOM8 displayed the most promising activities against five listed human enteropathogens and was selected for further comprehensive assessment. B. subtilis SOM8 exhibited good tolerance when exposed to adverse stressors including acidity, bile salts, simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and heat treatment. Additionally, B. subtilis SOM8 possesses host-associated benefits such as antioxidant and bile salt hydrolase (BSH) activity. Furthermore, B. subtilis SOM8 contains only haemolysin toxin genes but has been proved to display partial haemolysis in the test and low cytotoxicity in Caco-2 cell models for in vitro evaluation. Moreover, B. subtilis SOM8 intrinsically resists only streptomycin and lacks plasmids or other mobile genetic elements. Bioinformatic analyses also predicted B. subtilis SOM8 encodes various bioactives compound like fengycin and lichendicin that could enable further biomedical applications. CONCLUSIONS Our comprehensive evaluation revealed the substantial potential of B. subtilis SOM8 as a probiotic for targeting human enteropathogens, attributable to its exceptional performance across selection assays. Furthermore, our safety assessment, encompassing both phenotypic and genotypic analyses, showed B. subtilis SOM8 has a favourable preclinical safety profile, without significant threats to human health. Collectively, these findings highlight the promising prospects of B. subtilis SOM8 as a potent probiotic candidate for additional clinical development.
Collapse
Affiliation(s)
- Zhongtian Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wenrui Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - The Thien Tran
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
16
|
Mohamadzadeh M, Fazeli A, Shojaosadati SA. Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to improve stability and viability in the gastrointestinal tract: A review. Int J Biol Macromol 2024; 259:129287. [PMID: 38211924 DOI: 10.1016/j.ijbiomac.2024.129287] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Probiotics have recently received significant attention due to their various benefits, such as the modulation of gut flora, reduction of blood sugar and insulin resistance, prevention and treatment of digestive disorders, and strengthening of the immune system. One of the major issues concerning probiotics is the maintenance of their viability in the presence of digestive conditions and extended shelf life during storage. To address this concern, numerous techniques have been explored to achieve success. Among these methods, the microencapsulation of probiotics has been proposed as the most effective way to overcome this challenge. The combination of nanomaterials with biopolymer coating is considered a novel approach to improve its viability and effective delivery. The use of polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics has emerged as an efficient and promising approach for maintaining cell viability and targeted delivery. This review article aims to investigate the use of different bionanocomposites in microencapsulation of probiotics and their effect on cell survival in long-term storage and harsh conditions in the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Ahmad Fazeli
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
17
|
Adeel M, Afzaal M, Saeed F, Ahmed A, Mahmood K, Abbas Shah Y, Ateeq H, Sibat A, Khan MR, Busquets R. Encapsulation of probiotic bacteria using polyelectrolytes stabilized nanoliposomes for improved viability under hostile conditions. J Food Sci 2023; 88:3839-3848. [PMID: 37530623 DOI: 10.1111/1750-3841.16709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Probiotics viability and stability is a core challenge for the food processing industry. To prolong the viability of probiotics (Lactobacillus acidophilus), gelatin (GE)-chitosan (CH) polyelectrolytes-coated nanoliposomes were developed and characterized. The average particle size of the nanoliposomes was in the range of 131.7-431.6 nm. The mean zeta potential value of the nanoliposomes differed significantly from -42.2 to -9.1 mV. Scanning electron micrographs indicated that the nanoliposomes were well distributed and had a spherical shape with a smooth surface. The Fourier transform infrared spectra revealed that the GE-CH polyelectrolyte coating has been effectively applied on the surface of nanoliposomes and L. acidophilus cells were successfully encapsulated in the lipid-based nanocarriers. X-ray diffraction results indicated that nanoliposomes are semicrystalline and GE-CH polyelectrolyte coating had an influence on the crystalline nature of nanoliposomes. Moreover, the coating of L. acidophilus-loaded nanoliposomes with GE-CH polyelectrolytes significantly improved its viability when exposed to simulated gastrointestinal environments. The findings of the current study indicated that polyelectrolyte-coated nanoliposomes could be used as an effective carrier for the delivery of probiotics and their application to food matrix for manufacturing functional foods.
Collapse
Affiliation(s)
- Muhammad Adeel
- Food Safety and Biotechnology Laboratory, Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Food Safety and Biotechnology Laboratory, Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Food Safety and Biotechnology Laboratory, Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Aftab Ahmed
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Kaiser Mahmood
- School of Industrial Technology, Universiti Sains Malaysia, George Town, Malaysia
| | - Yasir Abbas Shah
- Food Safety and Biotechnology Laboratory, Department of Food Science, Government College University, Faisalabad, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Huda Ateeq
- Food Safety and Biotechnology Laboratory, Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Amaima Sibat
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, Surrey, UK
| |
Collapse
|
18
|
Sun Q, Yin S, He Y, Cao Y, Jiang C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2185. [PMID: 37570503 PMCID: PMC10421492 DOI: 10.3390/nano13152185] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Probiotics have garnered significant attention in recent years due to their potential advantages in diverse biomedical applications, such as acting as antimicrobial agents, aiding in tissue repair, and treating diseases. These live bacteria must exist in appropriate quantities and precise locations to exert beneficial effects. However, their viability and activity can be significantly impacted by the surrounding tissue, posing a challenge to maintain their stability in the target location for an extended duration. To counter this, researchers have formulated various strategies that enhance the activity and stability of probiotics by encapsulating them within biomaterials. This approach enables site-specific release, overcoming technical impediments encountered during the processing and application of probiotics. A range of materials can be utilized for encapsulating probiotics, and several methods can be employed for this encapsulation process. This article reviews the recent advancements in probiotics encapsulated within biomaterials, examining the materials, methods, and effects of encapsulation. It also provides an overview of the hurdles faced by currently available biomaterial-based probiotic capsules and suggests potential future research directions in this field. Despite the progress achieved to date, numerous challenges persist, such as the necessity for developing efficient, reproducible encapsulation methods that maintain the viability and activity of probiotics. Furthermore, there is a need to design more robust and targeted delivery vehicles.
Collapse
Affiliation(s)
- Qiqi Sun
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
| | - Sheng Yin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Yi Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
19
|
Ma J, Li T, Wang Q, Xu C, Yu W, Yu H, Wang W, Feng Z, Chen L, Hou J, Jiang Z. Enhanced viability of probiotics encapsulated within synthetic/natural biopolymers by the addition of gum arabic via electrohydrodynamic processing. Food Chem 2023; 413:135680. [PMID: 36796267 DOI: 10.1016/j.foodchem.2023.135680] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
To enhance the probiotics' viability, novel vehicles consisting of synthetic/natural biopolymers, i.e., polyvinyl alcohol (PVOH), polyvinylpyrrolidone, whey protein concentrate and maltodextrin, encapsulated with L. plantarum KLDS 1.0328 and gum arabic (GA) as a prebiotic were fabricated by electrohydrodynamic techniques. Inclusion of cells into composites caused an increase in conductivity and viscosity. Morphological analysis showed that cells were distributed along the electrospun nanofibres or distributed randomly in the electrosprayed microcapsules. Both intramolecular and intermolecular hydrogen bond interactions exist between biopolymers and cells. Thermal analysis revealed that the degradation temperatures (>300 °C) of various encapsulation systems have potential applications in heat-treatment foods. Additionally, cells especially immobilized in PVOH/GA electrospun nanofibres showed the highest viability compared with free cells after exposure to simulated gastrointestinal stress. Furthermore, cells retained their antimicrobial ability after rehydration of the composite matrices. Therefore, electrohydrodynamic techniques have great potential in encapsulating probiotics.
Collapse
Affiliation(s)
- Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China; Heilongjiang Green Food Science Research Institute, Harbin 150028, PR China
| | - Tianzhu Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China; Heilongjiang Green Food Science Research Institute, Harbin 150028, PR China
| | - Qingyun Wang
- Beidahuang Wondersun Dairy Co., Ltd, Harbin 150090, PR China
| | - Cong Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China
| | - Wei Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China
| | - Hongliang Yu
- Beidahuang Wondersun Dairy Co., Ltd, Harbin 150090, PR China
| | - Wan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China
| | - Zhibiao Feng
- Department of Applied Chemistry, Northeast Agricultural University, Harbin 150030, PR China
| | - Lijun Chen
- Beijing Sanyuan Foods Co Ltd, Natl Hlth Engn Res Ctr Maternal & Infant Dairy, Beijing 100163, PR China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China; Heilongjiang Green Food Science Research Institute, Harbin 150028, PR China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China; Heilongjiang Green Food Science Research Institute, Harbin 150028, PR China.
| |
Collapse
|
20
|
Feng K, Huangfu L, Liu C, Bonfili L, Xiang Q, Wu H, Bai Y. Electrospinning and Electrospraying: Emerging Techniques for Probiotic Stabilization and Application. Polymers (Basel) 2023; 15:polym15102402. [PMID: 37242977 DOI: 10.3390/polym15102402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Probiotics are beneficial for human health. However, they are vulnerable to adverse effects during processing, storage, and passage through the gastrointestinal tract, thus reducing their viability. The exploration of strategies for probiotic stabilization is essential for application and function. Electrospinning and electrospraying, two electrohydrodynamic techniques with simple, mild, and versatile characteristics, have recently attracted increased interest for encapsulating and immobilizing probiotics to improve their survivability under harsh conditions and promoting high-viability delivery in the gastrointestinal tract. This review begins with a more detailed classification of electrospinning and electrospraying, especially dry electrospraying and wet electrospraying. The feasibility of electrospinning and electrospraying in the construction of probiotic carriers, as well as the efficacy of various formulations on the stabilization and colonic delivery of probiotics, are then discussed. Meanwhile, the current application of electrospun and electrosprayed probiotic formulations is introduced. Finally, the existing limitations and future opportunities for electrohydrodynamic techniques in probiotic stabilization are proposed and analyzed. This work comprehensively explains how electrospinning and electrospraying are used to stabilize probiotics, which may aid in their development in probiotic therapy and nutrition.
Collapse
Affiliation(s)
- Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Lulu Huangfu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Chuanduo Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| |
Collapse
|
21
|
He X, Yang W, Qin X. Ultrasound-assisted multilayer Pickering emulsion fabricated by WPI-EGCG covalent conjugates for encapsulating probiotics in colon-targeted release. ULTRASONICS SONOCHEMISTRY 2023; 97:106450. [PMID: 37224638 DOI: 10.1016/j.ultsonch.2023.106450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
This study demonstrated the influences of ultrasound-assisted multilayer Pickering double emulsion capsules on the pasteurization and gastrointestinal digestive viability of probiotic (L. plantarum) strain liquid. Firstly, the role of ultrasonic homogenization on the morphology of W1/O/W2 double emulsions were studied. The double emulsion formed by ultrasonic intensity at 285 W had a single and narrow distribution with smallest droplet size. The double emulsion particles were then coated with chitosan(Chi), alginate (Alg), and CaCl2(Ca). The multilayer emulsion after pasteurization and gastrointestinal digestion both had the highest viability at 5 coating layers, but its particle size (108.65 μm) exceeded the limit of human oral sensory (80 μm). It could be noted that the deposition of 3-4 layers of coating had similar activity after pasteurization/GIT digestion. And droplets with 3 layers of coating were the minimum and most available formulation for encapsulated probiotics (L. plantarum). Hence, the results suggest that the use of ultrasound-assisted multilayer emulsions encapsulated with probiotics in granular food and pharmaceutical applications is a promising strategy.
Collapse
Affiliation(s)
- Xian He
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Xinsheng Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
22
|
Kyser AJ, Masigol M, Mahmoud MY, Ryan M, Lewis WG, Lewis AL, Frieboes HB, Steinbach-Rankins JM. Fabrication and characterization of bioprints with Lactobacillus crispatus for vaginal application. J Control Release 2023; 357:545-560. [PMID: 37076014 PMCID: PMC10696519 DOI: 10.1016/j.jconrel.2023.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Bacterial vaginosis (BV) is characterized by low levels of lactobacilli and overgrowth of potential pathogens in the female genital tract. Current antibiotic treatments often fail to treat BV in a sustained manner, and > 50% of women experience recurrence within 6 months post-treatment. Recently, lactobacilli have shown promise for acting as probiotics by offering health benefits in BV. However, as with other active agents, probiotics often require intensive administration schedules incurring difficult user adherence. Three-dimensional (3D)-bioprinting enables fabrication of well-defined architectures with tunable release of active agents, including live mammalian cells, offering the potential for long-acting probiotic delivery. One promising bioink, gelatin alginate has been previously shown to provide structural stability, host compatibility, viable probiotic incorporation, and cellular nutrient diffusion. This study formulates and characterizes 3D-bioprinted Lactobacillus crispatus-containing gelatin alginate scaffolds for gynecologic applications. Different weight to volume (w/v) ratios of gelatin alginate were bioprinted to determine formulations with highest printing resolution, and different crosslinking reagents were evaluated for effect on scaffold integrity via mass loss and swelling measurements. Post-print viability, sustained-release, and vaginal keratinocyte cytotoxicity assays were conducted. A 10:2 (w/v) gelatin alginate formulation was selected based on line continuity and resolution, while degradation and swelling experiments demonstrated greatest structural stability with dual genipin and calcium crosslinking, showing minimal mass loss and swelling over 28 days. 3D-bioprinted L. crispatus-containing scaffolds demonstrated sustained release and proliferation of live bacteria over 28 days, without impacting viability of vaginal epithelial cells. This study provides in vitro evidence for 3D-bioprinted scaffolds as a novel strategy to sustain probiotic delivery with the ultimate goal of restoring vaginal lactobacilli following microbiological disturbances.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohammadali Masigol
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mark Ryan
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
23
|
Zhang Z, Su W, Li Y, Zhang S, Liang H, Ji C, Lin X. High-speed electrospinning of phycocyanin and probiotics complex nanofibrous with higher probiotic activity and antioxidation. Food Res Int 2023; 167:112715. [PMID: 37087274 DOI: 10.1016/j.foodres.2023.112715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
This study reports for the first time the co-encapsulation of probiotics and phycocyanin by electrospinning. SEM showed that the electrospun fibers exhibited a homogeneous, smooth surface and a circular shape. XRD and ATR-FTIR results showed that Lactiplantibacillus plantarum 1-24-LJ and Pc were co-embedded in the fibers and that the presence of L. plantarum 1-24-LJ promoted the encapsulation of phycocyanin. TG analysis showed that the addition of phycocyanin and L. plantarum 1-24-LJ improved the composite fiber's thermal stability. The fibers co-embedded with phycocyanin and L. plantarum 1-24-LJ had the highest DPPH and ABTS+ activity, indicating that the two may have synergistic antioxidant effects. After 28 days, the viability of the strain could still be above 6 log cfu/g, and the addition of phycocyanin could help to improve the strain's survivability. In this experiment, a co-embedding method for probiotics and antioxidants was proposed, which could effectively increase the survivability of probiotics and improve the antioxidant properties of the fibers.
Collapse
|
24
|
Ilomuanya MO, Bassey PO, Ogundemuren DA, Ubani-Ukoma UN, Tsamis A, Fan Y, Michalakis K, Angsantikul P, Usman A, Amenaghawon AN. Development of Mucoadhesive Electrospun Scaffolds for Intravaginal Delivery of Lactobacilli spp., a Tenside, and Metronidazole for the Management of Bacterial Vaginosis. Pharmaceutics 2023; 15:pharmaceutics15041263. [PMID: 37111748 PMCID: PMC10143884 DOI: 10.3390/pharmaceutics15041263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial vaginosis (BV) is an infection of the vagina associated with thriving anaerobes, such as Gardnerella vaginitis and other associated pathogens. These pathogens form a biofilm responsible for the recurrence of infection after antibiotic therapy. The aim of this study was to develop a novel mucoadhesive polyvinyl alcohol and polycaprolactone electrospun nanofibrous scaffolds for vaginal delivery, incorporating metronidazole, a tenside, and Lactobacilli. This approach to drug delivery sought to combine an antibiotic for bacterial clearance, a tenside biofilm disruptor, and a lactic acid producer to restore healthy vaginal flora and prevent the recurrence of bacterial vaginosis. F7 and F8 had the least ductility at 29.25% and 28.39%, respectively, and this could be attributed to the clustering of particles that prevented the mobility of the crazes. F2 had the highest at 93.83% due to the addition of a surfactant that increased the affinity of the components. The scaffolds exhibited mucoadhesion between 31.54 ± 0.83% and 57.86 ± 0.95%, where an increased sodium cocoamphoacetate concentration led to increased mucoadhesion. F6 showed the highest mucoadhesion at 57.86 ± 0.95%, as compared to 42.67 ± 1.22% and 50.89 ± 1.01% for the F8 and F7 scaffolds, respectively. The release of metronidazole via a non-Fickian diffusion-release mechanism indicated both swelling and diffusion. The anomalous transport within the drug-release profile pointed to a drug-discharge mechanism that combined both diffusion and erosion. The viability studies showed a growth of Lactobacilli fermentum in both the polymer blend and the nanofiber formulation that was retained post-storage at 25 °C for 30 days. The developed electrospun scaffolds for the intravaginal delivery of Lactobacilli spp., along with a tenside and metronidazole for the management of bacterial vaginosis, provide a novel tool for the treatment and management of recurrent vaginal infection.
Collapse
Affiliation(s)
- Margaret O Ilomuanya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Peace O Bassey
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Deborah A Ogundemuren
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Uloma N Ubani-Ukoma
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Alkiviadis Tsamis
- Department of Mechanical Engineering, School of Engineering, University of Western Macedonia, 50100 Kozani, Greece
- School of Engineering, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Yuwei Fan
- Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Konstantinos Michalakis
- Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | | - Abdulrahman Usman
- Department of Biotechnology and Pharmaceutical Microbiology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Andrew N Amenaghawon
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City 300287, Nigeria
| |
Collapse
|
25
|
Diep E, Schiffman JD. Electrospinning Living Bacteria: A Review of Applications from Agriculture to Health Care. ACS APPLIED BIO MATERIALS 2023; 6:951-964. [PMID: 36791266 DOI: 10.1021/acsabm.2c01055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Living bacteria are used in biotechnologies that lead to improvements in health care, agriculture, and energy. Encapsulating bacteria into flexible and modular electrospun polymer fabrics that maintain their viability will further enable their use. This review will first provide a brief overview of electrospinning before examining the impact of electrospinning parameters, such as precursor composition, applied voltage, and environment on the viability of encapsulated bacteria. Currently, the use of nanofiber scaffolds to deliver live probiotics into the gut is the most researched application space; however, several additional applications, including skin probiotics (wound bandages) and menstruation products have also been explored and will be discussed. The use of bacteria-loaded nanofibers as seed coatings that promote plant growth, for the remediation of contaminated wastewaters, and in energy-generating microbial fuel cells are also covered in this review. In summary, electrospinning is an effective method for encapsulating living microorganisms into dry polymer nanofibers. While these living composite scaffolds hold potential for use across many applications, before their use in commercial products can be realized, numerous challenges and further investigations remain.
Collapse
Affiliation(s)
- Emily Diep
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
26
|
Qin X, Bo Q, Qin P, Wang S, Liu K. Fabrication of WPI-EGCG covalent conjugates/gellan gum double network emulsion gels by duo-induction of GDL and CaCl2 for colon-controlled Lactobacillus Plantarum delivery. Food Chem 2023; 404:134513. [DOI: 10.1016/j.foodchem.2022.134513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
27
|
Pramanik S, Venkatraman S, Vaidyanathan VK. Development of engineered probiotics with tailored functional properties and their application in food science. Food Sci Biotechnol 2023; 32:453-470. [PMID: 36911322 PMCID: PMC9992677 DOI: 10.1007/s10068-023-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/27/2023] Open
Abstract
The potential health benefits of probiotics may not be cognized because of the substantial curtailment in their viability during food storage and passage through the gastrointestinal system. Intestinal flora composition, and resistance against pathogens are among the health benefits associated with probiotic consumption. In the gastric environment, pH 2.0, probiotics dramatically lose their viability during the transit through the gastrointestinal system. The challenge remains to maintain cell viability until it reaches the large intestine. In extreme conditions, such as a decrease in pH or an increase in temperature, encapsulation technology can enhance the viability of probiotics. Probiotic bacterial strains can be encapsulated in a variety of ways. The methods are broadly systematized into two categories, liquid and solid delivery systems. This review emphasizes the technology used in the research and commercial sectors to encapsulate probiotic cells while keeping them alive and the food matrix used to deliver these cells to consumers. Graphical abstract
Collapse
Affiliation(s)
- Shreyasi Pramanik
- Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India
| | - Swethaa Venkatraman
- Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India
| |
Collapse
|
28
|
Sun C, Wang S, Yang L, Song H. Advances in probiotic encapsulation methods to improve bioactivity. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
29
|
Preparation of shell-core fiber-encapsulated Lactobacillus rhamnosus 1.0320 using coaxial electrospinning. Food Chem 2023; 402:134253. [DOI: 10.1016/j.foodchem.2022.134253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 01/18/2023]
|
30
|
Fareed F, Saeed F, Afzaal M, Imran A, Ahmad A, Mahmood K, Shah YA, Hussain M, Ateeq H. Fabrication of electrospun gum Arabic-polyvinyl alcohol blend nanofibers for improved viability of the probiotic. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4812-4821. [PMID: 36276519 PMCID: PMC9579235 DOI: 10.1007/s13197-022-05567-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/01/2023]
Abstract
In the current study, the probiotic (Lactobacillus acidophilus) was encapsulated using Gum Arabic and polyvinyl alcohol blended nanofibers by electrospinning. Obtained nanofibers were characterized in terms of particle size, diameter, mechanical strength, and encapsulation efficiency. The molecular and internal structure characterization was carried out using Fourier transform infrared spectroscopy and X-ray diffraction respectively. Thermo Gravimetric (TGA) analysis was conducted to determine the thermal features of PVA/GA/probiotics nanofibers. Free and encapsulated probiotics were also subjected to in vitro assay under different detrimental conditions. Images obtained using SEM indicated that probiotics were successfully encapsulated in blends by a nano-spider. FTIR and XRD spectra showed bonding interactions between the wall and core materials. In-vitro assay indicated that probiotics with encapsulated showed significantly (P < 0.05) viability compared to free cells. Free cells lost their viability under simulated gastrointestinal conditions while encapsulated cells retained viability count above the therapeutic number (107 cfu).
Collapse
Affiliation(s)
- Faisal Fareed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aftab Ahmad
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Yasir Abbas Shah
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzammal Hussain
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huda Ateeq
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
31
|
Insights into Protective Effects of Different Synbiotic Microcapsules on the Survival of Lactiplantibacillus plantarum by Electrospraying. Foods 2022; 11:foods11233872. [PMID: 36496680 PMCID: PMC9736631 DOI: 10.3390/foods11233872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
This study evaluated the protective effects of different synbiotic microcapsules on the viability of encapsulated Lactiplantibacillus plantarum GIM1.648 fabricated by electrospraying. The optimum amount of substrate for three synbiotic microcapsules separately containing fructooligosaccharide (FOS), fish oil, and the complex of both were 4% FOS (SPI-F-L-P), 20 μL fish oil (SPI-O-L-P) and the complex of 20 μL fish oil, and 2% FOS (SPI-O-F-L-P), respectively. The obtained synbiotic microcapsules had a better encapsulation efficiency (EE) and survival rate (SR) after in vitro digestion than microcapsules without the addition of substrate (SPI-L-P) and SPI-O-F-L-P presented the highest EE (95.9%) and SR (95.5%). When compared to SPI-L-P, the synbiotic microcapsules possessed a more compact structure as proved by the SEM observation and their cell viability were significantly improved in response to environmental stresses (heat treatment, freeze drying, and storage). The synbiotic microcapsules containing the complex of FOS and fish oil showed the best beneficial effect, followed by ones with fish oil and then FOS, suggesting the FOS and fish oil complex has more potential in application.
Collapse
|
32
|
Characteristics of Probiotic Preparations and Their Applications. Foods 2022; 11:foods11162472. [PMID: 36010472 PMCID: PMC9407510 DOI: 10.3390/foods11162472] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/17/2022] Open
Abstract
The probiotics market is one of the fastest growing segments of the food industry as there is growing scientific evidence of the positive health effects of probiotics on consumers. Currently, there are various forms of probiotic products and they can be categorized according to dosage form and the site of action. To increase the effectiveness of probiotic preparations, they need to be specifically designed so they can target different sites, such as the oral, upper respiratory or gastrointestinal tracts. Here we review the characteristics of different dosage forms of probiotics and discuss methods to improve their bioavailability in detail, in the hope that this article will provide a reference for the development of probiotic products.
Collapse
|
33
|
Polysaccharides of Weissella cibaria Act as a Prebiotic to Enhance the Probiotic Potential of Lactobacillus rhamnosus. Appl Biochem Biotechnol 2022; 195:3928-3940. [PMID: 35947292 DOI: 10.1007/s12010-022-04104-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
This work aimed to investigate the effect of EPS (extracellular polysaccharide) of Weissella cibaria as a prebiotic to promote the growth and antibacterial properties of Lactobacillus rhamnosus. The morphological, growth behavior, and antibacterial properties of L. rhamnosus were determined in MRSB (de Man Rogosa Sharpe broth) supplemented with different concentrations of EPS (0.1-2%). The results revealed that the incorporation of the EPS (2%) in MRSA improved the bacterial growth in terms of colony-forming unit (CFU, 0.7 × 105 CFU/mL) compared to L. rhamnosus grown in bare MRSA. The SEM observation revealed that EPS incorporation in the MRSB culture media does not affect the morphological properties of L. rhamnosus. Moreover, it was confirmed that the extract of probiotics cultured in MRSA supplemented with EPS (2%) was exhibited strong antibacterial and antibiofilm activity against targeted pathogens. This L. rhamnosus extract was found to be biocompatible evidanced by erythrocyte hemolysis assay. These results confirmed that EPS regulates the growth of probiotics, resists pathogen infection, and biocompatibility.
Collapse
|
34
|
Ding X, Xu Y, Wang Y, Xie L, Liang S, Li D, Wang Y, Wang J, Zhan X. Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized double emulsions incorporated into alginate hydrogel beads for the encapsulation, protection and delivery of probiotics. Carbohydr Polym 2022; 289:119438. [DOI: 10.1016/j.carbpol.2022.119438] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 01/13/2023]
|
35
|
Xu C, Ban Q, Wang W, Hou J, Jiang Z. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. J Control Release 2022; 349:184-205. [PMID: 35798093 DOI: 10.1016/j.jconrel.2022.06.061] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022]
Abstract
Gut microbes are closely associated with most human health. When ingested orally, probiotics can effectively regulate the composition and quantity of human intestinal microorganisms, which is beneficial to human health. However, probiotics will be affected by the harsh environment of the digestive tract during the in vivo transportation process, and ensuring the viability of probiotics is a great challenge. Probiotic encapsulating technology provides an effective solution to this problem. The introduction of extreme temperatures, large probiotic microcapsule sizes and the difficulty in controlling probiotic microcapsule particle sizes mean that traditional microcapsule encapsulation methods have some limitations. From traditional microcapsule technology to the bulk encapsulation of probiotics with nanofibers and nanoparticles to the recent ability to wear nano "armor" for a single probiotic through biofilm, biological membrane and nanocoating. Emerging probiotic nanoagents provides a new conceptual and development direction for the field of probiotic encapsulation. In this review, we presented the characteristics of encapsulated probiotic carrier materials and digestive tract transport systems, we focused on the encapsulation systems of probiotic nanoagents, we analyzed the shortcomings and advantages of the current agent encapsulation systems, and we stated the developmental direction and challenges for these agents for the future.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Qingfeng Ban
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Wan Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| |
Collapse
|
36
|
Mohankumar B, Shandil R, Narayanan S, Krishnan UM. Vaginosis: Advances in new therapeutic development and microbiome restoration. Microb Pathog 2022; 168:105606. [DOI: 10.1016/j.micpath.2022.105606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
|
37
|
Improving the Viability of Probiotics under Harsh Conditions by the Formation of Biofilm on Electrospun Nanofiber Mat. Foods 2022; 11:foods11091203. [PMID: 35563925 PMCID: PMC9102203 DOI: 10.3390/foods11091203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
For improving probiotics’ survivability under harsh conditions, this study used Lactiplantibacillus plantarum GIM1.648 as a model microorganism to investigate its ability to produce biofilms on electrospun ethyl cellulose nanofiber mats. SEM observations confirmed that biofilm was successfully formed on the nanofibers, with the latter being an excellent scaffold material. The optimal cultivation conditions for biofilm formation were MRS medium without Tween 80, a culture time of 36 h, a temperature of 30 °C, a pH of 6.5, and an inoculum concentration of 1% (v/v). The sessile cells in the biofilm exhibited improved gastrointestinal and thermal tolerance compared to the planktonic cells. Additionally, the RT-qPCR assay indicated that the luxS gene played a crucial role in biofilm formation, with its relative expression level being 8.7-fold higher compared to the planktonic cells. In conclusion, biofilm formation on electrospun nanofiber mat has great potential for improving the viability of probiotic cells under harsh conditions.
Collapse
|
38
|
Hosseini SF, Ansari B, Gharsallaoui A. Polyelectrolytes-stabilized liposomes for efficient encapsulation of Lactobacillus rhamnosus and improvement of its survivability under adverse conditions. Food Chem 2022; 372:131358. [PMID: 34655826 DOI: 10.1016/j.foodchem.2021.131358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023]
Abstract
To improve the survivability of Lactobacillus rhamnosus probiotics, nanoliposomes (NLs) coated with chitosan (CH)-gelatin (GE) polyelectrolytes have been synthesized and characterized. The produced CH-GE-coated NLs containing L. rhamnosus had mean sizes in the range of 134.8-495.8 nm. HRTEM showed the smooth spherical shape of the vesicles. ATR-FTIR findings indicated the successful coating of the produced NLs by the used CH-GE polyelectrolytes. According to DSC results, CH-GE polyelectrolytes desorption on the surface of NLs altered the physical characteristics of the phospholipid bilayers. Here, an increase in the melting temperature (Tm) from 119.9 to 127.5 °C in L. rhamnosus-loaded CH-GE-coated NLs made this system more stable than uncoated liposomes. Furthermore, the CH-GE coated nanoparticles loaded with L. rhamnosus exhibited a significant enhancement in the viability of cells under simulated gastrointestinal fluids (SGF/SIF). These results may guide the potential application of polyelectrolytes-coated NLs as a carrier of probiotic cells in functional food development.
Collapse
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356 Noor, Iran.
| | - Bentolhoda Ansari
- Department of Food Science & Industries, Khazar Institute of Higher Education, P.O. 46315-389 Mazandaran, Mahmoodabad, Iran
| | | |
Collapse
|
39
|
Mudgil P, Aldhaheri F, Hamdi M, Punia S, Maqsood S. Fortification of Chami (traditional soft cheese) with probiotic-loaded protein and starch microparticles: Characterization, bioactive properties, and storage stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Preparation of pectin-based nanofibers encapsulating Lactobacillus rhamnosus 1.0320 by electrospinning. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
|
42
|
Probiotics in Functional Foods: Survival Assessment and Approaches for Improved Viability. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nowadays, food is no longer just for nutrition. Consumers are more demanding and expect to get health benefits from their daily meals. Various areas of the food industry are in great demand of functional chemicals to enhance the taste and nutritional value of their products. Probiotic bacteria have already been part of the human’s routine for good gut microbiota maintenance in terms of pharmaceutical products. Their incorporation in food however is a challenging task that offers great opportunities but has limitations as well. Specifically, the purpose of this review is to emphasize the importance of probiotics in food, to assess their survival through gastrointestinal tract, and to highlight the recent advances in approaches for their improved viability.
Collapse
|
43
|
CAMPOS-ESPINOZA F, CASTAÑO-AGUDELO J, RODRIGUEZ-LLAMAZARES S. Polysaccharides systems for probiotic bacteria microencapsulation: mini review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.95121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Engineering of Vaginal Lactobacilli to Express Fluorescent Proteins Enables the Analysis of Their Mixture in Nanofibers. Int J Mol Sci 2021; 22:ijms222413631. [PMID: 34948426 PMCID: PMC8708671 DOI: 10.3390/ijms222413631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
Lactobacilli are a promising natural tool against vaginal dysbiosis and infections. However, new local delivery systems and additional knowledge about their distribution and mechanism of action would contribute to the development of effective medicine. This will be facilitated by the introduction of the techniques for effective, inexpensive, and real-time tracking of these probiotics following their release. Here, we engineered three model vaginal lactobacilli (Lactobacillus crispatus ATCC 33820, Lactobacillus gasseri ATCC 33323, and Lactobacillus jensenii ATCC 25258) and a control Lactobacillus plantarum ATCC 8014 to express fluorescent proteins with different spectral properties, including infrared fluorescent protein (IRFP), green fluorescent protein (GFP), red fluorescent protein (mCherry), and blue fluorescent protein (mTagBFP2). The expression of these fluorescent proteins differed between the Lactobacillus species and enabled quantification and discrimination between lactobacilli, with the longer wavelength fluorescent proteins showing superior resolving power. Each Lactobacillus strain was labeled with an individual fluorescent protein and incorporated into poly (ethylene oxide) nanofibers using electrospinning, as confirmed by fluorescence and scanning electron microscopy. The lactobacilli retained their fluorescence in nanofibers, as well as after nanofiber dissolution. To summarize, vaginal lactobacilli were incorporated into electrospun nanofibers to provide a potential solid vaginal delivery system, and the fluorescent proteins were introduced to distinguish between them and allow their tracking in the future probiotic-delivery studies.
Collapse
|
45
|
Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106882] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Deng Z, Li J, Song R, Zhou B, Li B, Liang H. Carboxymethylpachymaran/alginate gel entrapping of natural pollen capsules for the encapsulation, protection and delivery of probiotics with enhanced viability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Huang RM, Feng K, Li SF, Zong MH, Wu H, Han SY. Enhanced survival of probiotics in the electrosprayed microcapsule by addition of fish oil. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Zare M, Dziemidowicz K, Williams GR, Ramakrishna S. Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1968. [PMID: 34443799 PMCID: PMC8399548 DOI: 10.3390/nano11081968] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Electrospinning is an inexpensive and powerful method that employs a polymer solution and strong electric field to produce nanofibers. These can be applied in diverse biological and medical applications. Due to their large surface area, controllable surface functionalization and properties, and typically high biocompatibility electrospun nanofibers are recognized as promising materials for the manufacturing of drug delivery systems. Electrospinning offers the potential to formulate poorly soluble drugs as amorphous solid dispersions to improve solubility, bioavailability and targeting of drug release. It is also a successful strategy for the encapsulation of nutraceuticals. This review aims to briefly discuss the concept of electrospinning and recent progress in manufacturing electrospun drug delivery systems. It will further consider in detail the encapsulation of nutraceuticals, particularly probiotics.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
| |
Collapse
|
49
|
New Biocomposite Electrospun Fiber/Alginate Hydrogel for Probiotic Bacteria Immobilization. MATERIALS 2021; 14:ma14143861. [PMID: 34300780 PMCID: PMC8307157 DOI: 10.3390/ma14143861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Biotechnological use of probiotic microorganisms involves providing them with appropriate conditions for growth, but also protection against environmental changes caused by an exchange of the medium, isolation of metabolites, etc. Therefore, the research on effective immobilization of probiotic microorganisms should be focused in this direction. The present study aimed to evaluate the effectiveness of an innovative hybrid immobilization system based on electrospun nanofibers and alginate hydrogel. The analyses carried out included the study of properties of the initial components, the evaluation of the degree and durability of cell immobilization in the final material, and their survival under stress conditions. Effective binding of microorganisms to the hydrogel and nanofibers was confirmed, and the collected results proved that the proposed biocomposite is an efficient method of cell protection. In addition, it was shown that immobilization on electrospun nanofibers leads to the preservation of the highest cell activity and the least cell growth restriction as compared to free or lyophilized cells only. The completed research opens new perspectives for the effective immobilization of microorganisms of significant economic importance.
Collapse
|
50
|
Qin XS, Gao QY, Luo ZG. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus Plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106658] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|