1
|
Sun Q, Chen X, Ran X, Yin Y, Lei X, Li J, Le T. From traditional to modern: Nanotechnology-driven innovation in mycotoxin sensing for Chinese herbal medicines. Talanta 2025; 288:127681. [PMID: 39938420 DOI: 10.1016/j.talanta.2025.127681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025]
Abstract
Mycotoxin contamination in Chinese herbal medicines (CHMs) is a pressing concern that jeopardizes their quality and safety, despite their widespread therapeutic use. Conventional detection methods are often limited by complexity, cost, and sensitivity, particularly in resource-limited settings. This gap in effective and efficient mycotoxin detection necessitates a comprehensive review that explores innovative solutions to enhance the safety and efficacy of CHMs. Advancements in nanomaterials and related advanced sensing techniques have emerged as a beacon of hope. Therefore, this review aims to fill the knowledge gap by providing a comprehensive overview of the latest developments in mycotoxin detection in CHMs, spotlighting the transformative role of nanomaterials and advanced sensing techniques. This review stands out for its in-depth exploration of functional nanomaterials across dimensions and their innovative applications in mycotoxin detection. Its innovation stems from a holistic approach that not only surveys current technologies but also charts a forward-looking path, emphasizing novel nanomaterial development, refined pretreatment, and advanced biosensing for on-site detection. It delves into the integration of nanomaterials with advanced sensing technologies, discussing the advantages and limitations of these approaches. A significant innovation of this review lies in the nuanced integration of nanomaterials with machine learning and artificial intelligence, revealing untapped potential for accuracy enhancement. Through this synthesis of knowledge, we hope to inspire further research and development in this critical area, ensuring the continued safe use of CHMs in traditional medicine practices.
Collapse
Affiliation(s)
- Qi Sun
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Xiang Chen
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Xueyan Ran
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Yuting Yin
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Xianlu Lei
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Jianmei Li
- Institute of Intelligent Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, 402760, China
| | - Tao Le
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| |
Collapse
|
2
|
Lu MC, Yang YC, Lee CJ, Chiu CW. Helicobacter pylori Detection Based on Synergistic Electromagnetic and Chemical Enhancement of Surface-Enhanced Raman Scattering in 3D Hotspot-Activated Gold Nanorods/Nano Mica Platelets/ZnO Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503562. [PMID: 40265978 DOI: 10.1002/advs.202503562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Indexed: 04/24/2025]
Abstract
Gold nanorods (AuNRs) with a controllable aspect ratio are anchored on the surface of delaminated nano mica platelets (NMPs) in the presence of a cationic interfacial activator and protective agent enabling the positive charging of the AuNR and nanohybrid surfaces. The high anionic charge and specific surface area of NMPs stabilize AuNR growth and benefit the adsorption of anionic analytes. The nanohybrids (AuNRs/NMPs) exhibit a 3D hotspot effect due to self-assembly and feature regularly arranged AuNRs, thus enabling Raman signal enhancement and sensitive (limit of detection (LOD) = 10-9 m, Raman enhancement factor (EF) = 2.0 × 108) and reproducible (relative standard deviation (RSD) = 8.82%) adenine detection based on surface-enhanced Raman scattering (SERS). The further incorporation of ZnO quantum dots (QDs) affords nanohybrids (AuNRs/NMPs/ZnO QDs) that exhibit electromagnetic and chemical signal enhancement mechanisms and enable more sensitive and reproducible adenine detection (LOD = 10-10 m, EF = 1.6 × 109, RSD = 7.66%). AuNRs/NMPs/ZnO QDs are subsequently used for the selective and sensitive SERS-based detection of Helicobacter pylori (LOD = 90 CFU mL-1). Thus, this work paves the way for the noninvasive, nonfluorescent labeling, rapid, sensitive, selective, and reproducible detection of H. pylori.
Collapse
Affiliation(s)
- Ming-Chang Lu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yung-Chi Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
3
|
Sharma A, Thakur A, Sharma A, Thakur M, Sharma S, Sharma H, Thakur R, Thakur D, Suhag R. Nano-edible coatings for quality enhancement and shelf-life extension of fruits and vegetables. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:397-412. [PMID: 39917353 PMCID: PMC11794942 DOI: 10.1007/s13197-024-06146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 02/09/2025]
Abstract
In developing countries, significant fruit and vegetable losses stem from inadequate storage and mishandling during harvest. Employing edible coatings on agricultural products offers an alternative method to reduce these losses as it aids in controlling the flow of moisture and gases between the product and its immediate environment. A significant benefit of applying edible films and coatings to agricultural produce is the incorporation of active components to the biopolymer matrix, which can be consumed together with the food, improving its nutritional and sensory appeal as well as its safety. Producing edible coatings at the nanoscale level has become more prevalent since the introduction of nanotechnology. By decreasing the coating particles to a nanometric scale of 1 to 100 nanometers, nanotechnology offers an innovative approach for producing new edible coatings. Such nanomaterials exhibit unique and improved characteristics of slowing ripening and decay of fruit and have additional advantages like affordability, convenience of application, and use of natural ingredients. The primary objective of incorporating edible coatings with nanoparticles is to improve the mechanical and barrier qualities of the biopolymer. Despite the tremendous advancements in nutritional nanotechnology, little is known about the toxicity of nanomaterials and due to their potential for toxicity, nanomaterials require more characterization and strict regulations to be incorporating them along with food. This review provides a comprehensive understanding of nanocoatings, including its synthesis and application for fruits and vegetables quality enhancement and shelf-life extension.
Collapse
Affiliation(s)
- Arushi Sharma
- Department of Food Science and Technology, College of Horticulture and Forestry, Dr. YS Parmar University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Abhishek Thakur
- Department of Food Science and Technology, College of Horticulture and Forestry, Dr. YS Parmar University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Ananya Sharma
- Department of Food Science and Technology, College of Horticulture and Forestry, Dr. YS Parmar University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Meenakshi Thakur
- Department of Basic Science, College of Horticulture and Forestry, Dr. YS Parmar, University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Sakshi Sharma
- Department of Food Science and Technology, College of Horticulture and Forestry, Dr. YS Parmar University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Himani Sharma
- Department of Biotechnology, College of Horticulture and Forestry, Dr. YS Parmar, University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Rimpika Thakur
- Department of Fruit Science, College of Horticulture and Forestry, Dr. YS Parmar, University of Horticulture and Forestry, Thunag, Himachal Pradesh India
| | - Dhruv Thakur
- Department of Food Science and Technology, College of Horticulture and Forestry, Dr. YS Parmar University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
4
|
Leite ML, Comeau P, Zaghwan A, Shen Y, Manso AP. Long-lasting antimicrobial effect of multipurpose ZnO nanoparticle-loaded dental resins enhanced by blue light photodynamic therapy. Dent Mater 2025; 41:347-355. [PMID: 39765362 DOI: 10.1016/j.dental.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 02/11/2025]
Abstract
OBJECTIVES This study aimed to assess the potential of experimental dental resins containing ZnO nanoparticles (ZnO-NPs) for antimicrobial photodynamic therapy (aPDT) as a functional tool for the modulation of cariogenic biofilm in long-term. METHODS Minimum inhibitory and bactericidal concentrations (MIC/MBC) of ZnO-NPs against Streptococcus mutans were initially determined under different energy densities of blue LED irradiation (0.00, 1.35, 6.75, or 20.25 J/cm2) to optimize aPDT parameters. Experimental dental resins were then formulated with 0 % (control), 5 %, 10 %, and 20 % ZnO-NPs. Resin disks (1 mm x 6 mm) were prepared to evaluate the antimicrobial and photocatalytic potential of the experimental groups associated with 0 (dark), 1, 2, or 4 light cycles of blue-light irradiation (20.25 J/cm2, each cycle). The CFU count and Live/Dead assays were performed on a cariogenic biofilm model (S. mutans) on fresh and 6-month aged resin disks. RESULTS Blue light at 20.25 J/cm2 decreased MIC (from 250 µg/mL to 125 µg/mL) and MBC (from 1000 µg/mL to 500 µg/mL), establishing the optimal aPDT protocol. Experimental resins with 5 %, 10 %, or 20 % ZnO-NPs, when exposed to 4 cycles of blue light, significantly reduced biofilm viability compared to controls, both initially and after aging. The 20 % ZnO-NP resin sustained > 3.log10 CFU reduction after 6 months, even with 2 cycles of light. Live/Dead assays showed > 50 % dead cells with the 20 % ZnO-NP resin after 2 light cycles. SIGNIFICANCE ZnO-NP-loaded dental resins associated with blue light aPDT offer promise as a long-lasting antimicrobial alternative, potentially enhancing the control of pathogenic biofilms.
Collapse
Affiliation(s)
- Maria Luisa Leite
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, room 352, BC V6T-1Z3, Canada; College of Dentistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Patricia Comeau
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, room 352, BC V6T-1Z3, Canada; Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, QC H3G 1M8, Canada
| | - Ala Zaghwan
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ya Shen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Adriana Pigozzo Manso
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, room 352, BC V6T-1Z3, Canada.
| |
Collapse
|
5
|
Kumawat G, Rajpurohit D, Vyas D, Bhojiya AA, Upadhyay SK, Jain D. Characterization of green-synthesized zinc oxide nanoparticles and its influence on post-harvest shelf-life of garlic against black mold disease caused by Aspergillus niger. Front Microbiol 2025; 16:1532593. [PMID: 40028456 PMCID: PMC11869905 DOI: 10.3389/fmicb.2025.1532593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Garlic is an important spice crop used for flavoring food and has a long history of use in traditional medicine. However, black mold is a common fungal disease affecting garlic, which was caused by an Aspergillus infection. This disease significantly impacts both the production and quality of garlic. Therefore, this study aimed to evaluate the antifungal activity of novel green-synthesized zinc oxide nanoparticles (ZnO-NPs) against black mold diseases in garlic. An environmentally friendly green synthesis technique was used to produce ZnO-NPs using zinc-tolerant bacteria Serratia sp. (ZTB24). In the present study the experimental analysis viz. UV-Vis spectroscopy at 380 nm, transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential confirmed the successful biosynthesis of green ZnO-NPs from Serratia sp. The poisoned food technique and spore germination test revealed the antifungal activities of ZnO-NPs against A. niger under in vitro conditions. The presence of disease-causing A. niger fungus was confirmed through its isolation from infected garlic bulbs, and it was further identified at the molecular level using inter-transcribed sequence (ITS) rDNA sequencing. ZnO-NPs reduced the mycelial growth up to 90% and the 73% spore germination at 250 μg ml-1 concentration of ZnO-NPs. The ZnO-NPs were further used in vivo at different concentrations (50, 100, 250, and 500 ppm) in the post-harvest treatment of garlic. The percentage of disease severity was assessed after 7 and 14 days, and the application of 500 ppm of ZnO-NPs exhibited 0% disease severity in the pre-inoculation method, while disease severity of black mold disease in garlic plant was recorded at 1.10% after 7 days and 0.90% after 14 days in the post-inoculation method, compared to the control group. Hence, the antifungal activity of ZnO-NPs synthesized using the green technique paves the way for the development of natural fungicides, offering a sustainable and renewable alternative to traditional chemical control methods.
Collapse
Affiliation(s)
- Govind Kumawat
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Deepak Rajpurohit
- Department of Processing and Food Engineering, College of Technology and Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Divya Vyas
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Ali Asger Bhojiya
- Department of Botany, U.S. Ostwal P.G. College, Mohanlal Sukhadia University, Chittorgarh, Rajasthan, India
| | - Sudhir Kumar Upadhyay
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- Research and Development Cell, Lovely Professional University, Phagwara, Punjab, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| |
Collapse
|
6
|
Rohaeti E, Helmiyati, Joronavalona R, Taba P, Sondari D, Kamari A. The Role of Brown Algae as a Capping Agent in the Synthesis of ZnO Nanoparticles to Enhance the Antibacterial Activities of Cotton Fabrics. Mar Drugs 2025; 23:71. [PMID: 39997195 PMCID: PMC11857194 DOI: 10.3390/md23020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Research was conducted on the role of brown algae as a capping agent in the synthesis of ZnO nanoparticles, the characteristics of ZnO nanoparticles, and the effect of the addition of ZnO nanoparticles and/or silane compounds on antibacterial and antifungal activities. The synthesis of ZnO nanoparticles involved green synthesis, and then nanoparticles were characterized using UV/VIS/NIR, ATR-FTIR, XRD, PSA, and SEM-EDS, followed by the in situ deposition of ZnO nanoparticles on cotton fabrics and the addition of silane compounds. The characterization of modified and unmodified cotton fabrics and antibacterial and antifungal activity tests were carried out using the disc diffusion method through measurements of the diameter of the inhibition zone against Pseudomonas aeruginosa, Staphylococcus epidermidis, and Malassezia furfur. The characterization of ZnO nanoparticles showed absorption at a wavelength of 357 nm; the number of waves was 450 cm-1; the diffraction peak occurred at an angle of 36.14°; the crystal size was 15.35 nm; there was a heterogeneous particle distribution; the particle size was in the ranges of 1.74-706 nm (PSA) and 45-297 nm (SEM); and an irregular particle shape was noted. The results showed that the best antibacterial and antifungal activity was obtained in cotton + HDTMS + ZnO nanoparticles (K8) and cotton + ZnO nanoparticles+HDTMS/MTMS (K4).
Collapse
Affiliation(s)
- Eli Rohaeti
- Department of Chemistry Education, Faculty of Mathematics and Natural Science, Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia
| | - Helmiyati
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok 16424, Indonesia;
| | - Rasamimanana Joronavalona
- Department of Organic Chemistry, University of Antananarivo, VS 21 GAI Ankatso, Antananarivo 101, Madagascar;
| | - Paulina Taba
- Department of Chemistry, University of Hasanudin, Makasar 90245, Indonesia;
| | - Dewi Sondari
- The National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia;
| | - Azlan Kamari
- Department of Chemistry, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Malaysia;
| |
Collapse
|
7
|
Leeyaphan C, Punnakitikashem P, Suiwongsa B, Komesmuneeborirak P, Chongtrakool P, Kulthanachairojana N, Limphoka P, Hutachoke T, Saengthong-Aram P, Kobkurkul P, Wongdama S, Pongkittilar B, Matthapan L, Panyawong C, Prasong W, Plengpanich A, Kunwong N, Rodponthukwaji K, Bunyaratavej S. Efficacy, Safety, and Cost-effectiveness of Zinc Oxide Nanoparticles in Whitfield's Spirit Solution for Treating Superficial Fungal Foot Infections: A Randomized Controlled Trial. Dermatol Ther (Heidelb) 2025; 15:351-365. [PMID: 39871011 PMCID: PMC11833036 DOI: 10.1007/s13555-025-01340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
INTRODUCTION A novel antifungal formulation combining zinc oxide nanoparticles and Whitfield's spirit solution (ZnO-WFs) was developed to enhance the treatment of superficial fungal foot infections. METHODS This 8-week, randomized, double-blinded controlled trial compared the efficacy, safety, and cost-effectiveness of ZnO-WFs with those of Whitfield's spirit solution (WFs) alone and a zinc oxide nanoparticle solution (ZnOs). Seventy of the 84 enrolled patients completed the trial. RESULTS Patients treated with ZnO-WFs and WFs showed similar mycological cure rates, significantly outperforming ZnOs at the 4-week and 8-week evaluations (65.2% and 81.8% for ZnO-WFs and 66.7% and 83.3% for WFs, respectively, compared to 4.0% and 16.7% for ZnOs; P < 0.001). Particularly in nondermatophyte mold (NDM) infections, ZnO-WFs tended to have greater cure rates than WFs (90.0% vs 44.4% at 4 weeks, P = 0.057; 90.0% vs 55.6% at 8 weeks, P = 0.141). Patient satisfaction was equivalent across all groups. The cost-effectiveness analysis revealed that ZnO-WFs is a more economical option for managing NDM infections. CONCLUSION This study confirmed that both ZnO-WFs and WFs effectively treat superficial fungal foot infections. However, ZnO-WFs demonstrates a trend toward increased efficacy and lower cost per patient in managing NDM infections, suggesting a potential advantage over WFs in these specific cases. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT05901961.
Collapse
Affiliation(s)
- Charussri Leeyaphan
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Primana Punnakitikashem
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Bordeesuda Suiwongsa
- Department of Pharmacy General Pharmaceutical Production Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phojana Komesmuneeborirak
- Department of Pharmacy General Pharmaceutical Production Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piriyaporn Chongtrakool
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattanichcha Kulthanachairojana
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Pichaya Limphoka
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Thrit Hutachoke
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Phuwakorn Saengthong-Aram
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Pantaree Kobkurkul
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Supisara Wongdama
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Bawonpak Pongkittilar
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Lalita Matthapan
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Chatisa Panyawong
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Waranyoo Prasong
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Akkarapong Plengpanich
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Natsuda Kunwong
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Kamonlatth Rodponthukwaji
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sumanas Bunyaratavej
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand.
| |
Collapse
|
8
|
Lei X, Li S, Zeng J, Huang M, Ma M, Ran X, Chen X, Yin Y, Sun Q, Le T. Ultrasound-Assisted and Citric Acid-Guided Creation of ZnO Nanoparticles with Optimized Morphologies to Boost Malachite Green Photocatalysis. Molecules 2025; 30:466. [PMID: 39942573 PMCID: PMC11820828 DOI: 10.3390/molecules30030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Zinc oxide (ZnO) semiconductors are renowned for their cost-effective synthesis and superior catalytic attributes, making them prominent in environmental remediation applications. This study presents the synthesis of ZnO nanoparticles (NPs) with distinct morphologies, achieved by modulating citric acid concentrations in an ultrasonic-assisted hydrothermal process. The photocatalytic efficacy of these ZnO NPs in degrading malachite green (MG), a persistent environmental pollutant, was thoroughly investigated. Our findings reveal a strong correlation between the morphological features of ZnO catalysts and their photodegradation performance. Among the synthesized NPs, the chrysanthemum-shaped ZnO (denoted as USZ-0.1) demonstrated exceptional photocatalytic activity, attributed to its enhanced surface area and optimized nano-crystal aggregation. This structure facilitated the generation of a higher concentration of reactive oxygen species, leading to over 96.5% degradation of MG within 40 min under simulated sunlight in an acidic medium. This study underscores the potential of morphological manipulation in enhancing the photocatalytic properties of ZnO NPs for environmental applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qi Sun
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
9
|
Zhang H, Zheng T, Wang Y, Li T, Chi Q. Multifaceted impacts of nanoparticles on plant nutrient absorption and soil microbial communities. FRONTIERS IN PLANT SCIENCE 2024; 15:1497006. [PMID: 39606675 PMCID: PMC11600800 DOI: 10.3389/fpls.2024.1497006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
With the growth of the global population and the increasing scarcity of resources, the sustainability and efficiency improvement of agricultural production have become urgent needs. The rapid development of nanotechnology provides new solutions to this challenge, especially the application of nanoparticles in agriculture, which is gradually demonstrating its unique advantages and broad prospects. Nonetheless, various nanoparticles can influence plant growth in diverse manners, often through distinct mechanisms of action. Beyond their direct effects on the plant itself, they frequently alter the physicochemical properties of the soil and modulate the structure of microbial communities in the rhizosphere. This review focuses intently on the diverse methods through which nanoparticles can modulate plant growth, delving deeply into the interactions between nanoparticles and plants, as well as nanoparticles with soil and microbial communities. The aim is to offer a comprehensive reference for the utilization of functionalized nanoparticles in the agricultural sector.
Collapse
Affiliation(s)
- Hanfeng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tiantian Zheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yue Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ting Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing Chi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Javid H, Amiri H, Hashemi SF, Reihani A, Mehri A, Hashemy SI. Multifunctional zinc oxide nanoparticles: investigating antifungal, cytotoxic, and oxidative properties. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 2024; 112:524-532. [DOI: 10.1007/s10971-024-06531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/23/2024] [Indexed: 11/29/2024]
|
11
|
Sultan M, Ibrahim H, El-Masry HM, Hassan YR. Antimicrobial gelatin-based films with cinnamaldehyde and ZnO nanoparticles for sustainable food packaging. Sci Rep 2024; 14:22499. [PMID: 39341844 PMCID: PMC11438991 DOI: 10.1038/s41598-024-72009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Cinnamaldehyde (CIN), a harmless bioactive chemical, is used in bio-based packaging films for its antibacterial and antioxidant properties. However, high amounts can change food flavor and odor. Thus, ZnO nanoparticles (NPs) as a supplementary antimicrobial agent are added to gelatin film with CIN. The CIN/ZnO interactions are the main topic of this investigation. FTIR-Attenuated Total Reflection (ATR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were utilized to investigate CIN/ZnO@gelatin films. Transmission electron microscope (TEM) images revealed nanospheres morphology of ZnO NPs, with particle sizes ranging from 12 to 22 nm. ZnO NPs integration increased the overall activation energy of CIN/ZnO@gelatin by 11.94%. The incorporation of ZnO NPs into the CIN@gelatin film significantly reduced water vapour permeability (WVP) of the CIN/ZnO@gelatin film by 12.07% and the oxygen permeability (OP) by 86.86%. The water sorption isotherms of CIN/ZnO@gelatin were described using Guggenheim-Anderson-de Boer (GAB) model. The incorporation of ZnO NPs into the CIN@gelatin film reduced monolayer moisture content (M0) by 35.79% and significantly decreased the solubility of CIN/ZnO@gelatin by 15.15%. The inclusion of ZnO into CIN@gelatin film significantly decreased tensile strength of CIN/ZnO@gelatin by 13.32% and Young`s modulus by 18.33% and enhanced elongation at break by 11.27%. The incorporation of ZnO NPs into the CIN@gelatin film caused a significant decrease of antioxidant activity of CIN/ZnO@gelatin film by 9.09%. The most susceptible organisms to the CIN/ZnO@gelatin film included Candida albicans, Helicobacter pylori, and Micrococcus leutus. The inhibition zone produced by the CIN/ZnO@gelatin film versus Micrococcus leutus was 25.0 mm, which was comparable to the inhibition zone created by antibacterial gentamicin (23.33 mm) and cell viability assessment revealed that ZnO/CIN@gelatin (96.8 ± 0.1%) showed great performance as potent biocompatible active packaging material.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials Department, National Research Centre, 33 El-Behouth St., P.O.12622, Dokki, Cairo, Egypt
| | - Hassan Ibrahim
- Pre-Treatment and Finishing of Cellulosic Fibres Department, National Research Centre, 33 El-Behouth St., P.O.12622, Dokki, Cairo, Egypt.
| | - Hossam Mohammed El-Masry
- Chemistry of Natural and Microbial Products, National Research Centre, 33 El-Behouth St., P.O.12622, Dokki, Cairo, Egypt
| | - Youssef R Hassan
- Packaging Materials Department, National Research Centre, 33 El-Behouth St., P.O.12622, Dokki, Cairo, Egypt
| |
Collapse
|
12
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
13
|
Nxumalo KA, Adeyemi JO, Leta TB, Pfukwa TM, Okafor SN, Fawole OA. Antifungal properties and molecular docking of ZnO NPs mediated using medicinal plant extracts. Sci Rep 2024; 14:18071. [PMID: 39103387 PMCID: PMC11300460 DOI: 10.1038/s41598-024-68979-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024] Open
Abstract
Significant postharvest losses and food safety issues persist in many developing nations, primarily due to fungal activities, including mycotoxin production. In this study, green synthesised zinc oxide nanoparticles (ZnO-NPs) were prepared from leaf extracts of Syzygium cordatum (ZnO 1), Lippia javanica (ZnO 2), Bidens pilosa (ZnO 3), and Ximenia caffra (ZnO 4). Physicochemical characteristics of the ZnO-NPs were determined using X-ray diffraction (XRD), Fourier transmission Infrared spectroscopy and ultraviolet-visible (UV-vis) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD analysis confirmed the presence of a wurtzite crystal structure in the hexagonal shape of the ZnO nanoparticles (NPs), with an average size ranging between 25 and 43 nm. The microscopic examination of the morphology revealed the presence of spherical particles with sizes ranging from 37 to 47 nm in diameter. The antifungal efficacy of the ZnO-NPs was assessed against pathogenic plant fungi, including Botrytis sp. (STEU 7866), Penicillium sp. (STEU 7865), and Pilidiella granati (STEU 7864), using the poisoned food technique. Further antifungal evaluation of the ZnOPs was performed using the broth microdilution assay. A significant interaction between the type of ZnO-NPs and fungal species was observed, with the highest susceptibility in Mucor sp. to ZnO 2, achieving over 50% inhibition. Penicillium sp. also showed high susceptibility to all ZnO-NPs. Molecular docking results confirmed the strong H-bonding interactions of ZnO-NPs with fungal receptors in Mucor sp. and Penicillium sp., Botrytis sp. and P. granati exhibited the least susceptibility. Further tests revealed that ZnO 2 exhibited the highest inhibitory effect on Botrytis sp., with a low minimum inhibitory concentration (MIC) of 25 µg/mL, attributed to its larger positive zeta potential. This study indicates that ZnO NPs, particularly those mediated using Lippia javanica (ZnO 2), have promising potential as effective antifungal agents, which could play a significant role in reducing postharvest decay and losses.
Collapse
Affiliation(s)
- Kwanele A Nxumalo
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa
| | - Jerry O Adeyemi
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Tshiamo B Leta
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Trust M Pfukwa
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Sunday N Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka, 41001, Nigeria
| | - Olaniyi A Fawole
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa.
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, 2006, South Africa.
| |
Collapse
|
14
|
Yadav A, Sohlot M, Sahu SR, Banerjee T, Bhattacharya J, Bandyopadhyay K, Das S, Debnath N. Determination of antifungal efficacy and phytotoxicity of a unique silica coated porous zinc oxide nanocomposite medium for slow-release agrochemicals. J Appl Microbiol 2024; 135:lxae153. [PMID: 38925655 DOI: 10.1093/jambio/lxae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIMS In this study, the antifungal efficacy and phytotoxicity of silica coated porous zinc oxide nanoparticle (SZNP) were analyzed as this nanocomposite was observed to be a suitable platform for slow release fungicides and has the promise to bring down the dosage of other agrochemicals as well. METHODS AND RESULTS Loading and release kinetics of tricyclazole, a potent fungicide, were analyzed by measuring surface area (SBET) using Brunauer-Emmett-Teller (BET) isotherm and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. The antifungal efficacy of ZnO nanoparticle (ZNP) and SZNP was investigated on two phytopathogenic fungi (Alternaria solani and Aspergillus niger). The morphological changes to the fungal structure due to ZNP and SZNP treatment were studied by field emission-scanning electron microscopy. Nanoparticle mediated elevation of reactive oxygen species (ROS) in fungal samples was detected by analyzing the levels of superoxide dismutase, catalase, thiol content, lipid peroxidation, and by 2,7-dichlorofluorescin diacetate assay. The phytotoxicity of these two nanostructures was assessed in rice plants by measuring primary plant growth parameters. Further, the translocation of the nanocomposite in the same plant model system was examined by checking the presence of fluorescein isothiocyanate tagged SZNP within the plant tissue. CONCLUSIONS ZNP had superior antifungal efficacy than SZNP and caused the generation of more ROS in the fungal samples. Even then, SZNP was preferred as an agrochemical delivery vehicle because, unlike ZNP alone, it was not toxic to plant system. Moreover, as silica in nanoform is entomotoxic in nature and nano ZnO has antifungal property, both the cargo (agrochemical) and the carrier system (silica coated porous nano zinc oxide) will have a synergistic effect in crop protection.
Collapse
Affiliation(s)
- Annu Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Monika Sohlot
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Sudama Ram Sahu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | | - Sumistha Das
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Nitai Debnath
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
15
|
Malandrakis AA, Varikou K, Kavroulakis Ν, Nikolakakis A, Dervisi I, Reppa CΙ, Papadakis S, Holeva MC, Chrysikopoulos CV. Copper nanoparticles interfere with insecticide sensitivity, fecundity and endosymbiont abundance in olive fruit fly Bactrocera oleae (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2024; 80:3640-3649. [PMID: 38456555 DOI: 10.1002/ps.8068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The potential of copper nanoparticles (Cu-NPs) to be used as an alternative control strategy against olive fruit flies (Bactrocera oleae) with reduced sensitivity to the pyrethroid deltamethrin and the impact of both nanosized and bulk copper hydroxide (Cu(OH)2) on the insect's reproductive and endosymbiotic parameters were investigated. RESULTS The application of nanosized and bulk copper applied by feeding resulted in significant levels of adult mortality, comparable to or surpassing those achieved with deltamethrin at recommended doses. Combinations of Cu-NPs or copper oxide nanoparticles (CuO-NPs) with deltamethrin significantly enhanced the insecticide's efficacy against B. oleae adults. When combined with deltamethrin, Cu-NPs significantly reduced the mean total number of offspring compared with the control, and the number of stings, pupae, female and total number of offspring compared with the insecticide alone. Both bulk and nanosized copper negatively affected the abundance of the endosymbiotic bacterium Candidatus Erwinia dacicola which is crucial for the survival of B. oleae larvae. CONCLUSION The Cu-NPs can aid the control of B. oleae both by reducing larval survival and by enhancing deltamethrin performance in terms of toxicity and reduced fecundity, providing an effective anti-resistance tool and minimizing the environmental footprint of synthetic pesticides by reducing the required doses for the control of the pest. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Kyriaki Varikou
- Hellenic Agricultural Organization 'ELGO-Dimitra', Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, Chania, Greece
| | - Νektarios Kavroulakis
- Hellenic Agricultural Organization 'ELGO-Dimitra', Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, Chania, Greece
| | - Antonis Nikolakakis
- Hellenic Agricultural Organization 'ELGO-Dimitra', Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, Chania, Greece
| | - Irene Dervisi
- Scientific Directorate of Phytopathology, Laboratory of Bacteriology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Chrysavgi Ι Reppa
- Scientific Directorate of Phytopathology, Laboratory of Bacteriology, Benaki Phytopathological Institute, Kifissia, Greece
| | | | - Maria C Holeva
- Scientific Directorate of Phytopathology, Laboratory of Bacteriology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Constantinos V Chrysikopoulos
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
AlHarethi AA, Abdullah QY, AlJobory HJ, Anam AM, Arafa RA, Farroh KY. Zinc oxide and copper oxide nanoparticles as a potential solution for controlling Phytophthora infestans, the late blight disease of potatoes. DISCOVER NANO 2024; 19:105. [PMID: 38907852 PMCID: PMC11193706 DOI: 10.1186/s11671-024-04040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
Late blight, caused by Phytophthora infestans, is a major potato disease globally, leading to significant economic losses of $6.7 billion. To address this issue, we evaluated the antifungal activity of ZnO and CuO nanoparticles (NPs) against P. infestans for the first time in laboratory and greenhouse conditions. Nanoparticles were synthesized via a chemical precipitation method and characterized using various techniques. The XRD results revealed that the synthesized ZnO nanoparticles had a pure hexagonal wurtzite crystalline structure, whereas the CuO NPs had a monoclinic crystalline structure. TEM images confirmed the synthesis of quasi-spherical nanoparticles with an average size of 11.5 nm for ZnO NPs and 24.5 nm for CuO NPs. The UV-Vis Spectral Report showed peaks corresponding to ZnO NPs at 364 nm and 252 nm for CuO NPs.In an in vitro study, both ZnO and CuO NPs significantly (p < 0.05) inhibited the radial growth of P. infestans at all tested concentrations compared to the untreated control. The highest inhibitory effect of 100% was observed with ZnO and CuO NPs at 30 mg/L. A lower inhibition of 60.4% was observed with 10 mg/L CuO NPs. Under greenhouse conditions, 100 mg/L ZnO NPs was the most effective treatment for controlling potato late blight, with an efficacy of 71%. CuO NPs at 100 mg/L followed closely, with an efficacy of 69%. Based on these results, ZnO and CuO NPs are recommended as promising eco-friendly fungicides for the management and control of potato late blight after further research.
Collapse
Affiliation(s)
- Amira A AlHarethi
- Department of Biological Science, Faculty of Science, Sana'a University, Sana'a, Yemen.
| | - Qais Y Abdullah
- Department of Biological Science, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - Hala J AlJobory
- Department of Biological Science, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - AbdulRahman M Anam
- Department of Pharmacology, Faculty of Medicine and Health Science, Sana'a University, Sana'a, Yemen
| | - Ramadan A Arafa
- Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
17
|
Katta CB, Bahuguna D, Veerabomma H, Gollapalli S, Shaikh AS, Bhale NA, Dikundwar AG, Kaki VR, Singh PK, Madan J. Naringenin-Zinc Oxide Nanocomposites Amalgamated Polymeric Gel Augmented Drug Delivery and Attenuated Experimental Cutaneous Candidiasis in Balb/c Mice: In Vitro and In Vivo Studies. AAPS PharmSciTech 2024; 25:130. [PMID: 38844611 DOI: 10.1208/s12249-024-02841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/14/2024] [Indexed: 09/05/2024] Open
Abstract
Naringenin (NRG) inhibits the fungal 17β-hydroxysteroid dehydrogenase accountable for ergosterol synthesis in Candida albicans (C. albicans), a causative agent for cutaneous candidiasis. In present research, NRG was complexed with ZnO nanomaterial (NRG-Zn2+) to synthesize NRG-Zn2+ nanocomposites. The particle size and ζ-potential of NRG-Zn2+ nanocomposites were respectively estimated to be 180.33 ± 1.22-nm and - 3.92 ± 0.35-mV. In silico data predicted the greater affinity of NRG-Zn2+ nanocomposite for 14α-demethylase and ceramide in comparison to NRG alone. Later, NRG-Zn2+ nanocomposites solution was transformed in to naringenin-zinc oxide nanocomposites loaded chitosan gel (NRG-Zn-CS-Gel) with viscosity and firmness of 854806.7 ± 52386.43 cP and 698.27 ± 10.35 g, respectively. The ex-vivo skin permeation demonstrated 70.49 ± 5.22% skin retention, significantly greater (P < 0.05) than 44.48 ± 3.06% of naringenin loaded chitosan gel (NRG-CS-Gel) and 31.24 ± 3.28% of naringenin solution (NRG Solution). NRG-Zn-CS-Gel demonstrated 6.71 ± 0.84% permeation of NRG with a flux value of 0.046 ± 0.01-µg/cm2/h. The MIC50 of NRG-Zn-CS-Gel against C. albicans was estimated to be 0.156-µg/mL with FICI (fractional inhibitory concentration index) of 0.018 that consequently exhibited synergistic efficacy. Further, NRG-Zn-CS-Gel demonstrated superior antifungal efficacy in C. albicans induced cutaneous candidiasis infection in Balb/c mice. The fungal burden in NRG-Zn-CS-Gel treated group was 109 ± 25 CFU/mL, significantly lower (P < 0.05) than positive control (2260 ± 446 CFU/mL), naringenin loaded chitosan gel (NRG-CS-Gel; 928 ± 127 CFU/mL) and chitosan gel (CS-Gel; 2116 ± 186 CFU/mL) treated mice. Further, histopathology examination and cytokine profiling of TNF-α, IL-1β and IL-10 revealed the healing of skin and inflammation associated with cutaneous candidiasis infection. In conclusion, NRG-Zn-CS-Gel may be a potential candidate for translating in to a clinical viable topical nanotherapeutic.
Collapse
Affiliation(s)
- Chanti Babu Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Deepankar Bahuguna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Harithasree Veerabomma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Spandana Gollapalli
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Nagesh A Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Venkat Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
18
|
Lai X, Wang M, Zhang Z, Chen S, Tan X, Liu W, Liang H, Li L, Shao L. ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via mTORC1-TFEB-BLOC1S3 axis. J Nanobiotechnology 2024; 22:312. [PMID: 38840221 PMCID: PMC11151536 DOI: 10.1186/s12951-024-02519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Zinc oxide nanoparticles (ZNPs) are widely used in sunscreens and nanomedicines, and it was recently confirmed that ZNPs can penetrate stratum corneum into deep epidermis. Therefore, it is necessary to determine the impact of ZNPs on epidermis. In this study, ZNPs were applied to mouse skin at a relatively low concentration for one week. As a result, desmosomes in epidermal tissues were depolymerized, epidermal mechanical strain resistance was reduced, and the levels of desmosomal cadherins were decreased in cell membrane lysates and increased in cytoplasmic lysates. This finding suggested that ZNPs promote desmosomal cadherin endocytosis, which causes desmosome depolymerization. In further studies, ZNPs were proved to decrease mammalian target of rapamycin complex 1 (mTORC1) activity, activate transcription factor EB (TFEB), upregulate biogenesis of lysosome-related organelle complex 1 subunit 3 (BLOC1S3) and consequently promote desmosomal cadherin endocytosis. In addition, the key role of mTORC1 in ZNP-induced decrease in mechanical strain resistance was determined both in vitro and in vivo. It can be concluded that ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via the mTORC1-TFEB-BLOC1S3 axis. This study helps elucidate the biological effects of ZNPs and suggests that ZNPs increase the risk of epidermal fragmentation.
Collapse
Affiliation(s)
- Xuan Lai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Menglei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Suya Chen
- Hospital of Stomatology, Guanghua school of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiner Tan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Wenjing Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Huimin Liang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Kanchana U, Jose J, Ali N, AlAsmari AF, Khalid Parvez M, Mathew TV. Tailoring ZnO nanoparticles for biomedical applications: Surface functionalization of ZnO nanoparticles with 2-oxo-2H-chromene-3-carboxylic acid coupled beta-cyclodextrin for enhanced antimicrobial and anticancer effect. INORG CHEM COMMUN 2024; 163:112363. [DOI: 10.1016/j.inoche.2024.112363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
|
20
|
Dordevic S, Dordevic D, Tesikova K, Sedlacek P, Kalina M, Vapenka L, Nejezchlebova M, Treml J, Tremlova B, Koudelková Mikulášková H. Nanometals incorporation into active and biodegradable chitosan films. Heliyon 2024; 10:e28430. [PMID: 38576574 PMCID: PMC10990857 DOI: 10.1016/j.heliyon.2024.e28430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
This study investigates the effects of incorporating ZnO, TiO2, and colloidal Ag nanoparticles on the antioxidant, antimicrobial, and physical properties of biodegradable chitosan films. The research focuses on addressing the growing demand for sustainable packaging solutions that offer efficient food preservation while mitigating environmental concerns. In this investigation, the physical properties including thickness, water content, solubility, swelling degree, tensile strength, and elasticity of the chitosan films were examined. Additionally, the samples were analyzed for total polyphenol content, antimicrobial activity, and antioxidant capacity. Notably, the incorporation of ZnO nanoparticles led to the lowest water content and highest strength values among the tested films. Conversely, the addition of colloidal Ag nanoparticles resulted in films with the highest antioxidant capacities (DPPH: 32.202 ± 1.631 %). Remarkably, antimicrobial tests revealed enhanced activity with the inclusion of colloidal silver nanoparticles, yet the most potent antimicrobial properties were observed in films containing ZnO (E.coli: 2.0 ± 0.0 mm; MRSA: 2.0 ± 0.5 mm). The findings of this study hold significant implications for the advancement of edible biodegradable films, offering potential for more efficient food packaging solutions that address environmental sustainability concerns. By elucidating the effects of nanoparticle incorporation on film properties, this research contributes to the ongoing discourse surrounding sustainable packaging solutions in the food industry.
Collapse
Affiliation(s)
- Simona Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Karolina Tesikova
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Michal Kalina
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Lukas Vapenka
- Department of Food Preservation, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Marcela Nejezchlebova
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00, Brno, Czech Republic
| | - Jakub Treml
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00, Brno, Czech Republic
| | - Bohuslava Tremlova
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Hana Koudelková Mikulášková
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
21
|
Indumathi T, Kumaresan I, Suriyaprakash J, Alarfaj AA, Hirad AH, Jaganathan R, Mathanmohun M. Synthesis and characterization of 4-nitro benzaldehyde with ZnO-based nanoparticles for biomedical applications. J Basic Microbiol 2024; 64:e2300494. [PMID: 37988661 DOI: 10.1002/jobm.202300494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
Globally, cancer is the leading cause of death and morbidity, and skin cancer is the most common cancer diagnosis. Skin problems can be treated with nanoparticles (NPs), particularly with zinc oxide (ZnO) NPs, which have antioxidant, antibacterial, anti-inflammatory, and anticancer properties. An antibacterial activity of zinc oxide nanoparticles prepared in the presence of 4-nitrobenzaldehyde (4NB) was also tested in the present study. In addition, the influence of synthesized NPs on cell apoptosis, cell viability, mitochondrial membrane potential (MMP), endogenous reactive oxygen species (ROS) production, apoptosis, and cell adhesion was also examined. The synthesized 4-nitro benzaldehyde with ZnO (4NBZnO) NPs were confirmed via characterization techniques. 4NBZnO NPs showed superior antibacterial properties against the pathogens tested in antibacterial investigations. As a result of dose-based treatment with 4NBZnO NPs, cell viability, and MMP activity of melanoma cells (SK-MEL-3) cells were suppressed. A dose-dependent accumulation of ROS was observed in cells exposed to 4NBZnO NPs. As a result of exposure to 4NBZnO NPs in a dose-dependent manner, viable cells declined and apoptotic cells increased. This indicates that apoptotic cell death was higher. The cell adhesion test revealed that 4NBZnO NPs reduced cell adhesion and may promote apoptosis of cancer cells because of enhanced ROS levels.
Collapse
Affiliation(s)
- Thangavelu Indumathi
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | | | - Jagadeesh Suriyaprakash
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ravindran Jaganathan
- Microbiology Unit, Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Malaysia
| | - Maghimaa Mathanmohun
- Department of Microbiology, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamilnadu, India
| |
Collapse
|
22
|
Al-darwesh MY, Ibrahim SS, Mohammed MA. A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. RESULTS IN CHEMISTRY 2024; 7:101368. [DOI: 10.1016/j.rechem.2024.101368] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
23
|
Balu SK, Andra S, Jeevanandam J, Kulabhusan PK, Khamari A, Vedarathinam V, Hamimed S, Chan YS, Danquah MK. Exploring the potential of metal oxide nanoparticles as fungicides and plant nutrient boosters. CROP PROTECTION 2023; 174:106398. [DOI: 10.1016/j.cropro.2023.106398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Huq MA, Apu MAI, Ashrafudoulla M, Rahman MM, Parvez MAK, Balusamy SR, Akter S, Rahman MS. Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics 2023; 15:2634. [PMID: 38004613 PMCID: PMC10675506 DOI: 10.3390/pharmaceutics15112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnONPs) have gained tremendous attention because of their safe and non-toxic nature and distinctive biomedical applications. A diverse range of microbes (bacteria, fungi and yeast) and various parts (leaf, root, fruit, flower, peel, stem, etc.) of plants have been exploited for the facile, rapid, cost-effective and non-toxic synthesis of ZnONPs. Plant extracts, microbial biomass or culture supernatant contain various biomolecules including enzymes, amino acids, proteins, vitamins, alkaloids, flavonoids, etc., which serve as reducing, capping and stabilizing agents during the biosynthesis of ZnONPs. The biosynthesized ZnONPs are generally characterized using UV-VIS spectroscopy, TEM, SEM, EDX, XRD, FTIR, etc. Antibiotic resistance is a serious problem for global public health. Due to mutation, shifting environmental circumstances and excessive drug use, the number of multidrug-resistant pathogenic microbes is continuously rising. To solve this issue, novel, safe and effective antimicrobial agents are needed urgently. Biosynthesized ZnONPs could be novel and effective antimicrobial agents because of their safe and non-toxic nature and powerful antimicrobial characteristics. It is proven that biosynthesized ZnONPs have strong antimicrobial activity against various pathogenic microorganisms including multidrug-resistant bacteria. The possible antimicrobial mechanisms of ZnONPs are the generation of reactive oxygen species, physical interactions, disruption of the cell walls and cell membranes, damage to DNA, enzyme inactivation, protein denaturation, ribosomal destabilization and mitochondrial dysfunction. In this review, the biosynthesis of ZnONPs using microbes and plants and their characterization have been reviewed comprehensively. Also, the antimicrobial applications and mechanisms of biosynthesized ZnONPs against various pathogenic microorganisms have been highlighted.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Md. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | | | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 05006, Republic of Korea;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
25
|
Daniel AI, Keyster M, Klein A. Biogenic zinc oxide nanoparticles: A viable agricultural tool to control plant pathogenic fungi and its potential effects on soil and plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165483. [PMID: 37442458 DOI: 10.1016/j.scitotenv.2023.165483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Fungal and bacterial pathogens represent some of the greatest challenges facing crop production globally and account for about 20-40 % crop losses annually. This review highlights the use of ZnO NPs as antimicrobial agents and explores their mechanisms of actions against disease causing plant fungal pathogens. The behavior of ZnO NPs in soil and their interactions with the soil components were also highlighted. The review discusses the potential effects of ZnO NPs on plants and their mechanisms of action on plants and how these mechanisms are related to their physicochemical properties. In addition, the reduction of ZnO NPs toxicity through surface modification and coating with silica is also addressed. Soil properties play a significant role in the dispersal, aggregation, stability, bioavailability, and transport of ZnO NPs and their release into the soil. The transport of ZnO NPs into the soil might influence soil components and, as a result, plant physiology. The harmful effects of ZnO NPs on plants and fungi are caused by a variety of processes, the most important of which is the formation of reactive oxygen species, lysosomal instability, DNA damage, and the reduction of oxidative stress by direct penetration/liberation of Zn2+ ions in plant/fungal cells. Based on these highlighted areas, this review concludes that ZnO NPs exhibit its antifungal activity via generations of reactive oxygen species, coupled with the inhibition of various metabolic pathways. Despite the numerous advantages of ZnO NPs, there is need to regulate its uses to minimize the harmful effects that may arise from its applications in the soil and plants.
Collapse
Affiliation(s)
- Augustine Innalegwu Daniel
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa; Department of Biochemistry, Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria.
| | - Marshall Keyster
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| | - Ashwil Klein
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| |
Collapse
|
26
|
Asif N, Amir M, Fatma T. Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles. Bioprocess Biosyst Eng 2023; 46:1377-1398. [PMID: 37294320 PMCID: PMC10251335 DOI: 10.1007/s00449-023-02886-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) have become the widely used metal oxide nanoparticles and drawn the interest of global researchers due to their biocompatibility, low toxicity, sustainability and cost-effective properties. Due to their unique optical and chemical properties, it emerges as a potential candidate in the fields of optical, electrical, food packaging and biomedical applications. Biological methods using green or natural routes are more environmentally friendly, simple and less use of hazardous techniques than chemical and/or physical methods in the long run. In addition, ZnONPs are less harmful and biodegradable while having the ability to greatly boost pharmacophore bioactivity. They play an important role in cell apoptosis because they enhance the generation of reactive oxygen species (ROS) and release zinc ions (Zn2+), causing cell death. Furthermore, these ZnONPs work well in conjunction with components that aid in wound healing and biosensing to track minute amounts of biomarkers connected to a variety of illnesses. Overall, the present review discusses the synthesis and most recent developments of ZnONPs from green sources including leaves, stems, bark, roots, fruits, flowers, bacteria, fungi, algae and protein, as well as put lights on their biomedical applications such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, antiviral, wound healing, and drug delivery, and modes of action associated. Finally, the future perspectives of biosynthesized ZnONPs in research and biomedical applications are discussed.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
27
|
Rocha F, Nunes Calumby RJ, Svetaz L, Sortino M, Teixeira Ribeiro Vidigal MC, Campos-Bermudez VA, Rius SP. Effects of Larrea nitida nanodispersions on the growth inhibition of phytopathogens. AMB Express 2023; 13:98. [PMID: 37735315 PMCID: PMC10514021 DOI: 10.1186/s13568-023-01605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Larrea nitida Cav. (Zygophyllaceae) is a plant endemic to Argentina and Chile, and its extract has been studied over the last years due to the presence of antimicrobial agents that can be used to control the growth of some pathogens in agriculture. However, the extract is highly hydrophobic, which strongly affects its fungicidal activity in aqueous media. In this sense, the solid dispersion technique was used to produce L. nitida extract nanodispersions with polyethylene glycol (PLE) and with polyethylene glycol and zinc acetate (PZLE). In order to further evaluate the activity of the extract in PLE and PZLE, blank nanodispersions containing only polyethylene glycol (PEG) and zinc acetate (PZ) without the addition of the extract were also produced. The fungicidal activity of the water-soluble nanoparticles was evaluated at different concentrations (0.037-0.110 g.mL-1). In general, the nanoparticles were successfully produced on a nanometric size and presented a significant inhibitory activity on the growth of the pathogens Fusarium oxysporum and Fusarium verticillioides in aqueous media. Compared to PLE, PZLE presented increased fungistatic activity, possibly due to their increased solubility in water. Even though their application in agriculture should be further investigated, the nanodispersions present great potential to be applied as a green biotechnological tool.
Collapse
Affiliation(s)
- Felipe Rocha
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Rodrigo José Nunes Calumby
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Laura Svetaz
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Farmacognosia, Universidad Nacional de Rosario, Suipacha 531, CP 2000, Rosario, Argentina
| | - Maximiliano Sortino
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Farmacognosia, Universidad Nacional de Rosario, Suipacha 531, CP 2000, Rosario, Argentina
| | | | - Valeria Alina Campos-Bermudez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Sebastián Pablo Rius
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
28
|
Sousa F, Nascimento C, Ferreira D, Reis S, Costa P. Reviving the interest in the versatile drug nystatin: A multitude of strategies to increase its potential as an effective and safe antifungal agent. Adv Drug Deliv Rev 2023; 199:114969. [PMID: 37348678 DOI: 10.1016/j.addr.2023.114969] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Nystatin is an antifungal molecule with a remarkable yet squandered versatility. In this review, its mechanism of action is explored, along with its extensive action spectrum and toxicity. A multitude of methodologies to tackle the drug's physical and chemical hurdles are outlined along with some proven-effective strategies to increase its activity and/or decrease its toxicity. A separate detailed section focused on micro and nanotechnology solutions addresses new drug delivery systems made of polymeric, metallic or lipid materials. Although the topical route depicts greater representativeness amongst these formulations, the intravenous, dental, oral, vaginal and inhalation routes are also mentioned. The unsuccessful previous attempts at developing parenteral formulations of nystatin or even the withdrawal of a nystatin-loaded multilamellar liposome should not divert research away from this drug. In fact, the interest in nystatin ought to be reawakened with the ongoing clinical trials on the promising nystatin-like genetically engineered derivate BSG005.
Collapse
Affiliation(s)
- Filipa Sousa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Cecília Nascimento
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Domingos Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Paulo Costa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
29
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [DOI: https:/doi.org/10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
30
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [PMID: 37507944 PMCID: PMC10376173 DOI: 10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
31
|
Cruz-Luna AR, Vásquez-López A, Rojas-Chávez H, Valdés-Madrigal MA, Cruz-Martínez H, Medina DI. Engineered Metal Oxide Nanoparticles as Fungicides for Plant Disease Control. PLANTS (BASEL, SWITZERLAND) 2023; 12:2461. [PMID: 37447021 DOI: 10.3390/plants12132461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
Metal oxide nanoparticles are considered to be good alternatives as fungicides for plant disease control. To date, numerous metal oxide nanoparticles have been produced and evaluated as promising antifungal agents. Consequently, a detailed and critical review on the use of mono-, bi-, and tri-metal oxide nanoparticles for controlling phytopathogenic fungi is presented. Among the studied metal oxide nanoparticles, mono-metal oxide nanoparticles-particularly ZnO nanoparticles, followed by CuO nanoparticles -are the most investigated for controlling phytopathogenic fungi. Limited studies have investigated the use of bi- and tri-metal oxide nanoparticles for controlling phytopathogenic fungi. Therefore, more studies on these nanoparticles are required. Most of the evaluations have been carried out under in vitro conditions. Thus, it is necessary to develop more detailed studies under in vivo conditions. Interestingly, biological synthesis of nanoparticles has been established as a good alternative to produce metal oxide nanoparticles for controlling phytopathogenic fungi. Although there have been great advances in the use of metal oxide nanoparticles as novel antifungal agents for sustainable agriculture, there are still areas that require further improvement.
Collapse
Affiliation(s)
- Aida R Cruz-Luna
- Instituto Politécnico Nacional, CIIDIR-OAXACA, Hornos Núm 1003, Col. Noche Buena, Santa Cruz Xoxocotlán, Oaxaca 71230, Mexico
| | - Alfonso Vásquez-López
- Instituto Politécnico Nacional, CIIDIR-OAXACA, Hornos Núm 1003, Col. Noche Buena, Santa Cruz Xoxocotlán, Oaxaca 71230, Mexico
| | - Hugo Rojas-Chávez
- Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Camino Real 625, Alcaldía Tláhuac, Ciudad de México 13550, Mexico
| | - Manuel A Valdés-Madrigal
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez 2120, Fracc. Valle de la Herradura, Ciudad Hidalgo 61100, Mexico
| | - Heriberto Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
32
|
Liu L, Tsyusko OV, Unrine JM, Liu S, Liu Y, Guo L, Wei G, Chen C. Pristine and Sulfidized Zinc Oxide Nanoparticles Promote the Release and Decomposition of Organic Carbon in the Legume Rhizosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37285309 DOI: 10.1021/acs.est.3c02071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effects and mechanisms of zinc oxide nanoparticles (ZnO NPs) and their aging products, sulfidized (s-) ZnO NPs, on the carbon cycling in the legume rhizosphere are still unclear. We observed that, after 30 days of cultivation, in the rhizosphere soil of Medicago truncatula, under ZnO NP and s-ZnO NP treatments, the dissolved organic carbon (DOC) concentrations were significantly increased by 1.8- to 2.4-fold compared to Zn2+ treatments, although the soil organic matter (SOM) contents did not change significantly. Compared to Zn2+ additions, the additions of NPs significantly induced the production of root metabolites such as carboxylic acids and amino acids and also stimulated the growth of microbes involved in the degradations of plant-derived and recalcitrant SOM, such as bacteria genera RB41 and Bryobacter, and fungi genus Conocybe. The bacterial co-occurrence networks indicated that microbes associated with SOM formation and decomposition were significantly increased under NP treatments. The adsorption of NPs by roots, the generation of root metabolites (e.g., carboxylic acid and amino acid), and enrichment of key taxa (e.g., RB41 and Gaiella) were the major mechanisms by which ZnO NPs and s-ZnO NPs drove DOC release and SOM decomposition in the rhizosphere. These results provide new perspectives on the effect of ZnO NPs on agroecosystem functions in soil-plant systems.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
- Kentucky Water Resources Research Institute, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Shuang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yidan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lulu Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
33
|
Paz-Trejo C, Flores-Márquez AR, Gómez-Arroyo S. Nanotechnology in agriculture: a review of genotoxic studies of nanopesticides in animal cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66473-66485. [PMID: 37115444 PMCID: PMC10203029 DOI: 10.1007/s11356-023-26848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
Agriculture has been and still is one of the most influential primary operations in economic history worldwide. Its social, cultural, and political impact allows the progression and survival of humanity. Sustaining the supply of primary resources is crucial for the future. Therefore, the development of new technologies applied to agrochemicals is growing to obtain better food quality faster. Recently, nanotechnology has gained strength in this field in the last decade, mainly because of the presumed benefits that will carry with it compared with the current commercial presentations, like the decrease of risk in non-target organisms. The harm of pesticides is commonly associated with unwanted effects on human health, some with long-term genotoxic effects. Therefore, it would be relevant to set the existence of a risk or a benefit of the nanopesticides from a genotoxic point of view, comparing against those without this technology. Although some studies are concerned with its genotoxicity in live aquatic organisms, few focus on human in vitro models. Several studies conclude that some of them can induce oxidative stress, leading to DNA damage or cell death. However, there is still much to investigate to establish an accurate and complete assessment. In this review, we aim to give an overview of the genotoxic effect caused by nanopesticides in animal cells and a guide to the evolution of this topic, offering a base and critical review to facilitate future research.
Collapse
Affiliation(s)
- Cynthia Paz-Trejo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México.
| |
Collapse
|
34
|
Ouzakar S, Skali Senhaji N, Saidi MZ, El Hadri M, El Baaboua A, El Harsal A, Abrini J. Antibacterial and antifungal activity of zinc oxide nanoparticles produced by Phaeodactylum tricornutum culture supernatants and their potential application to extend the shelf life of sweet cherry (Prunus avium L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
35
|
Kanakari E, Dendrinou-Samara C. Fighting Phytopathogens with Engineered Inorganic-Based Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2388. [PMID: 36984268 PMCID: PMC10052108 DOI: 10.3390/ma16062388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The development of effective and ecofriendly agrochemicals, including bactericides, fungicides, insecticides, and nematicides, to control pests and prevent plant diseases remains a key challenge. Nanotechnology has provided opportunities for the use of nanomaterials as components in the development of anti-phytopathogenic agents. Indeed, inorganic-based nanoparticles (INPs) are among the promising ones. They may play an effective role in targeting and killing microbes via diverse mechanisms, such as deposition on the microbe surface, destabilization of cell walls and membranes by released metal ions, and the induction of a toxic mechanism mediated by the production of reactive oxygen species. Considering the lack of new agrochemicals with novel mechanisms of action, it is of particular interest to determine and precisely depict which types of INPs are able to induce antimicrobial activity with no phytotoxicity effects, and which microbe species are affected. Therefore, this review aims to provide an update on the latest advances in research focusing on the study of several types of engineered INPs, that are well characterized (size, shape, composition, and surface features) and show promising reactivity against assorted species (bacteria, fungus, virus). Since effective strategies for plant protection and plant disease management are urgently needed, INPs can be an excellent alternative to chemical agrochemical agents as indicated by the present studies.
Collapse
|
36
|
Rai RS, P GJ, Bajpai V, Khan MI, Elboughdiri N, Shanableh A, Luque R. An eco-friendly approach on green synthesis, bio-engineering applications, and future outlook of ZnO nanomaterial: A critical review. ENVIRONMENTAL RESEARCH 2023; 221:114807. [PMID: 36455633 DOI: 10.1016/j.envres.2022.114807] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Synthesizing ZnO nanostructures ranging from 1 nm to 4 nm confines the electron cloud and exhibits a quantum effect generally called as quantum confinement effect attracting many researchers in the field of electronics and optics. ZnO nanostructures are used in medical applications to formulate antioxidant, antibacterial, antifungal, anti-inflammatory, wound healing, and anti-diabetic medications. This work is a comprehensive study of green synthesis of ZnO nanomaterials using different biological sources and highlights different processes able to produce nanostructures including nanowires, nanorods, nanotubes and other nano shapes of ZnO nanostructures. Different properties of ZnO nanostructures and their targeted bioengineering applications are also described. The strategies and challenges of the eco-friendly approach to enhance the application span of ZnO nanomaterials are also summarized, with future prospects for greener design of ZnO nanomaterials are also suggested.
Collapse
Affiliation(s)
- Ravi Shankar Rai
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India.
| | - Girish J P
- Department of Mechanical Engineering with Specialization in Design and Manufacturing, Indian Institute of Information Technology Design and Manufacturing, Kurnool, A.P, India.
| | - Vivek Bajpai
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Muhammad Imran Khan
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il, 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes, 6029, Tunisia.
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
37
|
Yuan Y, Tian H, Huang R, Liu H, Wu H, Guo G, Xiao J. Fabrication and characterization of natural polyphenol and ZnO nanoparticles loaded protein-based biopolymer multifunction electrospun nanofiber films, and application in fruit preservation. Food Chem 2023; 418:135851. [PMID: 36944306 DOI: 10.1016/j.foodchem.2023.135851] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
To extend the shelf life of sweet cherries (Prunus avium L.) and considering the environmental problems caused by traditional packaging materials, novel Zein/Gelatin-proanthocyanidins-zinc oxide nanoparticles (ZE/GE-PC-ZnO) and Zein/Gelatin-gallic acid-zinc oxide nanoparticles (ZE/GE-GA-ZnO) protein-based composite nanofiber films were prepared by electrospinning. According to the results, ZE/GE-PC-ZnO and ZE/GE-GA-ZnO films' contact angles were higher than those of Zein/Gelatin film by 28.91% and 21.27%, and their antioxidant activities were 5 and 9 times higher, respectively. Moreover, ZE/GE-PC-ZnO film showed good inhibitory activity against B. cinerea. On the eleventh day of the cherry packaging test, compared to unwrapped cherries, the losses of weight and firmness of wrapped fruit were reduced by more than 20% and 60%, respectively. Respiration time was delayed by 5 days, and the peak of ethylene release was decreased by nearly half. In conclusion, these two nanofiber films were viable packaging materials that fulfilled global strategies for green development.
Collapse
Affiliation(s)
- Yue Yuan
- Beijing Technology and Business University, Beijing 100048, China
| | - Huafeng Tian
- Beijing Technology and Business University, Beijing 100048, China
| | - Ruru Huang
- Beijing Technology and Business University, Beijing 100048, China
| | - Hongtao Liu
- Beijing Technology and Business University, Beijing 100048, China
| | - Hua Wu
- Beijing Technology and Business University, Beijing 100048, China
| | - Gaiping Guo
- College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, 102617, China
| | - Junsong Xiao
- Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
38
|
Wang X, Zhang W, Lamichhane S, Dou F, Ma X. Effects of physicochemical properties and co-existing zinc agrochemicals on the uptake and phytotoxicity of PFOA and GenX in lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43833-43842. [PMID: 36680712 DOI: 10.1007/s11356-023-25435-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Even though the potential toxicity and treatment methods for per- and polyfluoroalkyl substances (PFAS) have attracted extensive attention, the plant uptake and accumulation of PFAS in edible plant tissues as a potential pathway for human exposure received little attention. Our study in a hydroponic system demonstrated that perfluorooctanoic acid (PFOA) and its replacing compound, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic acid (GenX) displayed markedly different patterns of plant uptake and accumulation. For example, the root concentration factor (RCF) of PFOA in lettuce is almost five times of that of GenX while the translocation factor (TF) of GenX is about 66.7% higher than that for PFOA. The co-presence of zinc amendments affected the phyto-effect of these two compounds and their accumulation in plant tissues, and the net effect on their plant accumulation depended on both the properties of Zn amendments and PFAS. Zinc oxide nanoparticles (ZnONPs) at 100 mg/L did not affect the uptake of PFOA in either lettuce roots or shoots; however, Zn2+ at the same concentration significantly increased PFOA accumulation in both tissues. In contrast, both Zn amendments significantly lowered the accumulation of GenX in lettuce roots, but only ZnONPs significantly hindered the GenX accumulation in lettuce shoots. The co-exposure to ZnONPs and PFOA/GenX resulted in lower oxidative stress than the plants exposed to PFOA or GenX alone. However, both zinc agrochemicals with or without PFAS led to lower root dry biomass. The results shed light on the property-dependent plant uptake of PFAS and the potential impact of co-existing nanoagrochemicals and their dissolved ions on plant uptake of PFOA and GenX.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | | | - Fugen Dou
- Texas A&M Agrilife Research Center, Beaumont, TX, 77713, USA
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
39
|
Wang H, Qian C, Jiang H, Liu S, Yang D, Cui J. Visible-Light-Driven Zinc Oxide Quantum Dots for the Management of Bacterial Fruit Blotch Disease and the Improvement of Melon Seedlings Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2773-2783. [PMID: 36703540 DOI: 10.1021/acs.jafc.2c06204] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bacterial fruit blotch is one of the most destructing diseases of melon producing-regions. Here, zinc oxide quantum dots (ZnO QDs) were synthesized, and their antibacterial activity against Acidovorax citrulli was investigated. The results indicated that the obtained ZnO QDs displayed 5.7-fold higher antibacterial activity than a commercial Zn-based bactericide (zinc thiazole). Interestingly, the antibacterial activity of ZnO QDs irradiated with light was 1.8 times higher than that of the dark-treated group. It was because ZnO QDs could induce the generation of hydroxyl radicals and then up-regulate the expression of oxidative stress-related genes, finally leading to the loss of cell membrane integrity. A pot experiment demonstrated that foliar application of ZnO QDs significantly reduced the bacterial fruit blotch disease incidence (32.0%). Furthermore, the supply of ZnO QDs could improve the growth of infected melon seedlings by activating the antioxidant defense system. This work provides a promising light-activated quantum-bactericide for the management of pathogenic bacterial infections in melon crop protection.
Collapse
Affiliation(s)
- Haodong Wang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang832003, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Cancan Qian
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang832003, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Hao Jiang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Shengxue Liu
- Analysis and Test Center, Shihezi University, Shihezi, Xinjiang832003, China
| | - Desong Yang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang832003, China
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| |
Collapse
|
40
|
Yassin MT, Elgorban AM, Al-Askar AA, Sholkamy EN, Ameen F, Maniah K. Synergistic Anticandidal Activities of Greenly Synthesized ZnO Nanomaterials with Commercial Antifungal Agents against Candidal Infections. MICROMACHINES 2023; 14:209. [PMID: 36677271 PMCID: PMC9865458 DOI: 10.3390/mi14010209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/31/2023]
Abstract
The high occurrence of mycological resistance to conventional antifungal agents results in significant illness and death rates among immunodeficient patients. In addition, the underprivileged therapeutic results of conventional antifungal agents, besides the potential toxicity resulting from long term therapy necessitate the fabrication of efficient antimicrobial combinations. Hence, the objective of the present investigation is to synthesize, characterize and investigate the anticandidal action of green zinc oxide nanoparticles (ZnO-NPs) formulated using Camellia sinensis leaf extract against three candidal pathogens. The eco-friendly synthesized ZnO-NPs were characterized utilizing different physicochemical methods and their anticandidal potency was tested utilizing a disk diffusion assay. In this setting, the size of the biofabricated ZnO-NPs was detected using transmission electron microscope (TEM) micrographs, recording an average particle size of 19.380 ± 2.14 nm. In addition, zeta potential analysis revealed that the ZnO-NPs surface charge was -4.72 mV. The biogenic ZnO-NPs reveal the highest anticandidal activity against the C. tropicalis strain, demonstrating relative suppressive zones measured at 35.16 ± 0.13 and 37.87 ± 0.24 mm in diameter for ZnO-NPs concentrations of 50 and 100 μg/disk, respectively. Excitingly, Candida glabrata showed a high susceptibility to the biofabricated ZnO nanomaterials at both ZnO-NPs' concentrations (50 and 100 μg/disk) compared to the control. Moreover, the biosynthesized ZnO-NPs revealed potential synergistic effectiveness with nystatin and terbinafine antifungal agents against the concerned strains. The maximum synergistic efficiency was noticed against the C. glabrata strain, demonstrating relative synergistic percentages of 23.02 and 45.9%, respectively. The biogenic ZnO-NPs revealed no hemolytic activity against human erythrocytes revealing their biosafety and hemocompatibility. Finally, the high anticandidal effectiveness of biogenic ZnO-NPs against the concerned candidal pathogens, as well as potential synergistic patterns with conventional antifungal agents such as nystatin and terbinafine, emphasize the prospective application of these combinations for the fabrication of biocompatible and highly efficient antifungal agents.
Collapse
Affiliation(s)
- Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
41
|
Preda MD, Popa ML, Neacșu IA, Grumezescu AM, Ginghină O. Antimicrobial Clothing Based on Electrospun Fibers with ZnO Nanoparticles. Int J Mol Sci 2023; 24:ijms24021629. [PMID: 36675140 PMCID: PMC9862659 DOI: 10.3390/ijms24021629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
There has been a surge in interest in developing protective textiles and clothes to protect wearers from risks such as chemical, biological, heat, UV, pollution, and other environmental factors. Traditional protective textiles have strong water resistance but lack breathability and have a limited capacity to remove water vapor and moisture. Electrospun fibers and membranes have shown enormous promise in developing protective materials and garments. Textiles made up of electrospun fibers and membranes can provide thermal comfort and protection against a wide range of environmental threats. Because of their multifunctional properties, such as semi-conductivity, ultraviolet absorption, optical transparency, and photoluminescence, their low toxicity, biodegradability, low cost, and versatility in achieving diverse shapes, ZnO-based nanomaterials are a subject of increasing interest in the current review. The growing uses of electrospinning in the development of breathable and protective textiles are highlighted in this review.
Collapse
Affiliation(s)
- Manuela Daniela Preda
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Maria Leila Popa
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Octav Ginghină
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila from Bucharest, 37 Dionisie Lupu Street, District 2, 020021 Bucharest, Romania
| |
Collapse
|
42
|
U VJ, Nargund VB, Patil RR, Vanti GL. Bacillus sp. extract used to fabricate ZnO nanoparticles for their antagonist effect against phytopathogens. Biometals 2022; 35:1255-1269. [PMID: 36075996 DOI: 10.1007/s10534-022-00440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
In order to achieve the food demand of a growing population, agricultural productivity needs to be increased by employing safe strategies. In the present study we have evaluated ZnONPs that were synthesized from the culture supernatant of Bacillus subtilis. Bio mimetically synthesized ZnONPs showed a surface resonance peak of 355 nm corresponding to NPs formation. Further, NPs were examined for their size, shape and element confirmation by DLS, AFM, SEM, TEM and EDAX, which confirmed the synthesized NPs were nearly spherical in size with average diameter of 32 nm by TEM. Surface charge of + 34.3 mV was observed for NPs with a low poly-dispersity index of 0.21. In vitro efficacy studies against fungi Colletotrichum capsici, Sclerotium rolfsii, Alternaria solani and Fusarium oxysporum f. sp. cicero showed up to 99% mycelial growth inhibition at 0.125% ZnONPs. Further, in-vitro disk-diffusion assay showed inhibition zones of 23 ± 0.4 mm and 12.67 ± 0.24 mm for Xanthomonas axonopodis pv. punicae (Xap) and Xanthomonas oryzae pv. oryzae (Xoo) bacterial cultures. Plant toxicity study was observed that ≤ 0.14% NPs concentration was safe under greenhouse conditions. Overall, the present study emphasizes the potential effect of ZnONPs against agricultural pathogens which play an important role in agriculture production.
Collapse
Affiliation(s)
- Vinay J U
- University of Agricultural Sciences, Karnataka, Dharwad, 580 005, India. .,Department of Nanotechnology, University of Agricultural Science, Dharwad, India.
| | | | | | - Gulamnabi L Vanti
- Karnataka Institute of Medical Science, Hubli, Karnataka, 580021, India. .,Migal Galilee Research Institute, Kiryat Shmona, Israel.
| |
Collapse
|
43
|
Albizia lebbeck-mediated ZnO phytosynthesis and their non-antimicrobial and biocompatibility studies. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Samrot AV, Ram Singh SP, Deenadhayalan R, Rajesh VV, Padmanaban S, Radhakrishnan K. Nanoparticles, a Double-Edged Sword with Oxidant as Well as Antioxidant Properties—A Review. OXYGEN 2022; 2:591-604. [DOI: https:/doi.org/10.3390/oxygen2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The usage of nanoparticles became inevitable in medicine and other fields when it was found that they could be administered to hosts to act as oxidants or antioxidants. These oxidative nanoparticles act as pro-oxidants and induce oxidative stress-mediated toxicity through the generation of free radicals. Some nanoparticles can act as antioxidants to scavenge these free radicals and help in maintaining normal metabolism. The oxidant and antioxidant properties of nanoparticles rely on various factors including size, shape, chemical composition, etc. These properties also help them to be taken up by cells and lead to further interaction with cell organelles/biological macromolecules, leading to either the prevention of oxidative damage, the creation of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. It is important to know the properties that make these nanoparticles act as oxidants/antioxidants and the mechanisms behind them. In this review, the roles and mechanisms of nanoparticles as oxidants and antioxidants are explained.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Sanjay Preeth Ram Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Rajalakshmi Deenadhayalan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Vinod Vincent Rajesh
- MSU College, Naduvakurichi, Sankarankovil Taluk, Tenkasi District, Tirunelveli 627012, Tamil Nadu, India
| | - Sathiyamoorthy Padmanaban
- Department of Medical Nanotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Kamalakannan Radhakrishnan
- Combinatorial Cancer Immunotherapy MRC, Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| |
Collapse
|
45
|
Inhibition of cGAS ameliorates acute lung injury triggered by zinc oxide nanoparticles. Toxicol Lett 2022; 373:62-75. [PMID: 36368621 DOI: 10.1016/j.toxlet.2022.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Zinc oxide nanoparticles (ZnONPs) have been widely used in various industrial and biomedical fields. Occupational or accidental inhalation exposure to ZnONPs might lead to acute lung injury (ALI). Cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) are critical for the initiation and expansion of inflammation and contribute to tissue injury; however, the role and mechanism of the cGAS-STING pathway in ALI-induced by ZnONPs are unclear. METHODS Male C57BL/6 J mice were intratracheally injected with ZnONPs (0.6 mg/kg) or mock. The mice were euthanized and the degree of lung injury was determined 3 days after the instillation of ZnONPs. The BEAS-2B cell line was used as a cell model to investigate the cytotoxicity of ZnONPs in vitro. RESULTS We found that ZnONPs inhalation induced ALI in mice, manifested by exacerbated lung pathological changes, mitochondrial damage, oxidative stress and inflammation. Interestingly, cGAS and STING were activated in the lung tissues of the mice and BEAS-2B lung epithelial cells treated with ZnONPs. More importantly, we illustrated that the cGAS inhibitor RU.521 inhibited the activation of the cGAS-STING pathway, further decreased oxidative stress and inflammation, and led to ameliorated lung injury in mice treated with ZnONPs. CONCLUSION This study demonstrated that ZnONPs trigger the activation of the cGAS-STING pathway, which plays an important role in ZnONPs-induced ALI. Inhibition of cGAS with RU.521 mitigates the oxidative stress induced by ZnONPs, suggesting that targeting the cGAS-STING pathway may be a feasible strategy to ameliorate the pulmonary injury caused by nanoparticles.
Collapse
|
46
|
Zhang L, Zhang M, Mujumdar AS, Yu D, Wang H. Potential nano bacteriostatic agents to be used in meat-based foods processing and storage: A critical review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Zhang Y, Goss GG. Nanotechnology in agriculture: Comparison of the toxicity between conventional and nano-based agrochemicals on non-target aquatic species. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129559. [PMID: 35863222 DOI: 10.1016/j.jhazmat.2022.129559] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Increased crop production is necessary to keep up with rising food demand. However, conventional agricultural practices and agrochemicals are unable to sustain further increases without serious risk of adverse environmental consequences. The implementation of nanotechnology in agriculture practices has been increasing in recent years and has shown tremendous potential to boost crop production. The rapid growth in development and use of nano-agrochemicals in agriculture will inevitably result in more chemicals reaching water bodies. Some unique properties of nanoformulations may also alter the toxicity of the AI on aquatic organisms when compared to their conventional counterparts. Results from studies on conventional formulations may not properly represent the toxicity of new nanoformulations in the aquatic environment. As a result, current guidelines derived from conventional formulations may not be suitable to regulate those newly developed nanoformulations. Current knowledge on the toxicity of nano-agrochemicals on aquatic organisms is limited, especially in an ecologically relevant setting. This review complies and analyzes 18 primary studies based on 7 criteria to provide a comprehensive analysis of the available toxicity information of nano-agrochemicals and their conventional counterparts on aquatic organisms. Our analysis demonstrates that the overall toxicity of nano-agrochemicals on non-target aquatic species is significantly lower as compared to conventional counterparts. However, further dividing formulations into three categories (organic, bulk and ionic) shows that some nanoformulations can be more toxic when compared to bulk materials but less toxic as compared to ionic formulations while organic nanopesticides do not show a general trend in overall toxicity. Moreover, our analysis reveals the limitations of current studies and provides recommendations for future toxicity studies to ensure the effective and sustainable application of nano-agrochemicals, which will be beneficial to both the agrochemical industry and regulatory agencies alike.
Collapse
Affiliation(s)
- Yueyang Zhang
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada; National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada; Director of Office of Environmental Nanosafety, University of Alberta, Canada.
| |
Collapse
|
48
|
Zhao W, Liu Y, Zhang P, Zhou P, Wu Z, Lou B, Jiang Y, Shakoor N, Li M, Li Y, Lynch I, Rui Y, Tan Z. Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture. NANOIMPACT 2022; 28:100420. [PMID: 36038133 DOI: 10.1016/j.impact.2022.100420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
People's desire for food has never slowed, despite the deterioration of the global agricultural environment and the threat to food security. People rely on agrochemicals to ensure normal crop growth and to relieve the existing demand pressure. Phytopathogens have acquired resistance to traditional pesticides as a result of pesticdes' abuse. Compared with traditional formulations, nano-pesticides have superior antimicrobial performance and are environmentally friendly. Zn-based nanoparticles (NPs) have shown their potential as strong antipathogen activity. However, their full potential has not been demonstrated yet. Here, we analyzed the prerequisites for the use of Zn-based NPs as nano-pesticides in agriculture including both intrinsic properties of the materials and environmental conditions. We also summarized the mechanisms of Zn-based NPs against phytopathogens including direct and indirect strategies to alleviate plant disease stress. Finally, the current challenges and future directions are highlighted to advance our understanding of this field and guide future studies.
Collapse
Affiliation(s)
- Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwanjing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhangguo Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Benzhen Lou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; China Agricultural University Professor Workstation of Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China; China Agricultural University Professor Workstation of Sunji Town, Shanghe County, Jinan, Shandong, China.
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
49
|
Malandrakis AA, Kavroulakis N, Chrysikopoulos CV. Metal nanoparticles against fungicide resistance: alternatives or partners? PEST MANAGEMENT SCIENCE 2022; 78:3953-3956. [PMID: 35620887 DOI: 10.1002/ps.7014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Chemical control suffers from the loss of available conventional active ingredients due to strict environmental safety regulations which, combined with the loss of fungicide efficacy due to resistance development, constitute major problems of contemporary crop protection. Metal-containing nanoparticles (MNPs) appear to have all the credentials to be next-generation, eco-compatible fungicide alternatives and a valuable anti-resistance management tool. Could the introduction of MNPs as nano-fungicides be the answer to both reducing the environmental footprint of xenobiotics and dealing with fungicide resistance? The potential of MNPs to be utilized as nano-fungicides, both as alternatives to conventional fungicides or/and as partners in combating fungicide resistance, is discussed in terms of effectiveness, potential antimicrobial mechanisms as well as synergy profiles with conventional fungicides. However, their "golden" potential to be used both as alternatives and partners of conventional fungicides to combat resistance and reduce environmental pollution is challenged by undesirable effects towards non-target organisms such as phytotoxicity, toxicity to humans and environmental ecotoxicity, constituting risks that should be considered before their commercial introduction as nano-pesticides at a large scale. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Nektarios Kavroulakis
- Hellenic Agricultural Organization "Dimitra", Institute for Olive Tree, Subtropical Plants and Viticulture, Chania, Greece
| | | |
Collapse
|
50
|
Zinc Oxide Nanoconjugates against Brain-Eating Amoebae. Antibiotics (Basel) 2022; 11:antibiotics11101281. [DOI: 10.3390/antibiotics11101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Naegleria fowleri and Balamuthia mandrillaris are opportunistic protists, responsible for fatal central nervous system infections such as primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE) with mortality rates higher than 90%. Threatening a rise in cases is the increase in temperature due to global warming. No effective treatment is currently available. Herein, nanotechnology was used to conjugate Zinc oxide with Ampicillin, Ceftrixon, Naringin, Amphotericin B, and Quericitin, and the amoebicidal activity and host cell cytotoxicity of these resulting compounds were investigated. The compounds ZnO-CD-AMPi, ZnO-CD-CFT, ZnO-CD-Nar, ZnO-CD-AMB, and ZnO-CD-QT were found to reduce N. fowleri viability to 35.5%, 39.6%, 52.0%, 50.8%, 35.9%, and 69.9%, respectively, and B. mandrillaris viability to 40.9%, 48.2%, 51.6%, 43.8%, and 62.4%, respectively, when compared with their corresponding controls. Furthermore, the compounds reduced N. fowleri-mediated and B. mandrillaris-mediated host cell death significantly. Additionally, the compounds showed limited cytotoxicity against human cells; cell toxicity was 35.5%, 36.4%, 30.9%, 36.6%, and 35.6%, respectively, for the compounds ZnO-CD-AMPi, ZnO-CD-CFT, ZnO-CD-Nar, ZnO-CD-AMB, and ZnO-CD-QT. Furthermore, the minimum inhibitory concentrations to inhibit amoeba growth by 50% were determined for N. fowleri and B. mandrillaris. The MIC50 for N. fowleri were determined to be 69.52 µg/mL, 82.05 µg/mL, 88.16 µg/mL, 95.61 µg/mL, and 85.69 µg/mL, respectively; the MIC50 of the compounds for B. mandrillaris were determined to be 113.9 µg/mL, 102.3 µg/mL, 106.9 µg/mL, 146.4 µg/mL, and 129.6 µg/mL, respectively. Translational research to further develop therapies based on these compounds is urgently warranted, given the lack of effective therapies currently available against these devastating infections.
Collapse
|