1
|
Lyu L, Li L, Zhao C, Ning Y, Luo Y, He X, Nan M. Whole-Genome DNA Methylation Analysis of Inoculation with Trichothecium roseum in Harvested Muskmelons. J Fungi (Basel) 2025; 11:243. [PMID: 40278064 PMCID: PMC12027829 DOI: 10.3390/jof11040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
DNA methylation is a crucial epigenetic marker linked to plant defense responses, but its significance in fungal infection of postharvest fruits remains poorly understood. This study indicated that Trichothecium roseum inoculation increased ROS production, enhanced phenylpropanoid metabolism-related enzyme activity, and promoted lignin accumulation in harvested muskmelon fruits (Cucumis melo cv. Yujinxiang) within 24 h post-inoculation (hpi). In addition, whole-genome bisulfite sequencing showed that genomic DNA methylation levels of muskmelon decreased by 6.15% at 24 hpi. Notably, CG sites exhibited a higher methylation level and the largest number of differentially methylated regions (DMRs). Moreover, 176 DMR-associated genes (DMGs) involved in the defense response, 134 DMGs in the ROS metabolic pathway, and 41 DMGs in phenylpropanoid metabolism were identified. The differentially expressed genes harboring differential methylation were mainly influenced by hypomethylation and exhibited elevated transcript levels, involved in phenylpropanoid biosynthesis and biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Liang Lyu
- College of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lei Li
- College of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Chenglong Zhao
- College of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuchao Ning
- College of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yawen Luo
- College of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xining He
- College of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Mina Nan
- Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Mukherjee A, Ghosh KK, Chakrabortty S, Gulyás B, Padmanabhan P, Ball WB. Mitochondrial Reactive Oxygen Species in Infection and Immunity. Biomolecules 2024; 14:670. [PMID: 38927073 PMCID: PMC11202257 DOI: 10.3390/biom14060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROS) contain at least one oxygen atom and one or more unpaired electrons and include singlet oxygen, superoxide anion radical, hydroxyl radical, hydroperoxyl radical, and free nitrogen radicals. Intracellular ROS can be formed as a consequence of several factors, including ultra-violet (UV) radiation, electron leakage during aerobic respiration, inflammatory responses mediated by macrophages, and other external stimuli or stress. The enhanced production of ROS is termed oxidative stress and this leads to cellular damage, such as protein carbonylation, lipid peroxidation, deoxyribonucleic acid (DNA) damage, and base modifications. This damage may manifest in various pathological states, including ageing, cancer, neurological diseases, and metabolic disorders like diabetes. On the other hand, the optimum levels of ROS have been implicated in the regulation of many important physiological processes. For example, the ROS generated in the mitochondria (mitochondrial ROS or mt-ROS), as a byproduct of the electron transport chain (ETC), participate in a plethora of physiological functions, which include ageing, cell growth, cell proliferation, and immune response and regulation. In this current review, we will focus on the mechanisms by which mt-ROS regulate different pathways of host immune responses in the context of infection by bacteria, protozoan parasites, viruses, and fungi. We will also discuss how these pathogens, in turn, modulate mt-ROS to evade host immunity. We will conclude by briefly giving an overview of the potential therapeutic approaches involving mt-ROS in infectious diseases.
Collapse
Affiliation(s)
- Arunima Mukherjee
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| |
Collapse
|
3
|
Li Q, Xian L, Yuan L, Lin Z, Chen X, Wang J, Li T. The use of selenium for controlling plant fungal diseases and insect pests. FRONTIERS IN PLANT SCIENCE 2023; 14:1102594. [PMID: 36909414 PMCID: PMC9992213 DOI: 10.3389/fpls.2023.1102594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The selenium (Se) applications in biomedicine, agriculture, and environmental health have become great research interest in recent decades. As an essential nutrient for humans and animals, beneficial effects of Se on human health have been well documented. Although Se is not an essential element for plants, it does play important roles in improving plants' resistances to a broad of biotic and abiotic stresses. This review is focused on recent findings from studies on effects and mechanisms of Se on plant fungal diseases and insect pests. Se affects the plant resistance to fungal diseases by preventing the invasion of fungal pathogen through positively affecting plant defense to pathogens; and through negative effects on pathogen by destroying the cell membrane and cellular extensions of pathogen inside plant tissues after invasion; and changing the soil microbial community to safeguard plant cells against invading fungi. Plants, grown under Se enriched soils or treated with Se through foliar and soil applications, can metabolize Se into dimethyl selenide or dimethyl diselenide, which acts as an insect repellent compound to deter foraging and landing pests, thus providing plant mediated resistance to insect pests; moreover, Se can also lead to poisoning to some pests if toxic amounts of Se are fed, resulting in steady pest mortality, lower reproduction rate, negative effects on growth and development, thus shortening the life span of many insect pests. In present manuscript, reports are reviewed on Se-mediated plant resistance to fungal pathogens and insect pests. The future perspective of Se is also discussed on preventing the disease and pest control to protect plants from economic injuries and damages.
Collapse
Affiliation(s)
- Qianru Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu, Key Laboratory of Crop Genomics and Molecular Breeding and Collaborative Innovation of Modern Crops and Food Crops in Jiangsu, Jiangsu Key Laboratory of Crop Genetics and Physiology, and College of Agriculture, Yangzhou University, Yangzhou, China
| | - Limei Xian
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu, Key Laboratory of Crop Genomics and Molecular Breeding and Collaborative Innovation of Modern Crops and Food Crops in Jiangsu, Jiangsu Key Laboratory of Crop Genetics and Physiology, and College of Agriculture, Yangzhou University, Yangzhou, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Zhiqing Lin
- Department of Environmental Sciences and Department of Biological Sciences, Southern Illinois University - Edwardsville, Edwardsville, IL, United States
| | - Xiaoren Chen
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Tao Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu, Key Laboratory of Crop Genomics and Molecular Breeding and Collaborative Innovation of Modern Crops and Food Crops in Jiangsu, Jiangsu Key Laboratory of Crop Genetics and Physiology, and College of Agriculture, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Lu C, Lv Y, Kou G, Liu Y, Liu Y, Chen Y, Wu X, Yang F, Luo J, Yang X. Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113993. [PMID: 35994909 DOI: 10.1016/j.ecoenv.2022.113993] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023]
Abstract
Sliver nanoparticles (AgNPs) are widely used in industry, agriculture, and medicine, potentially resulting in adverse effects on human health and aquatic environments. Here, we investigated the developmental toxicity of zebrafish embryos with acute exposure to AgNPs. Our results demonstrated developmental defects in 4 hpf zebrafish embryos after exposure to different concentrations of AgNPs for 72 h. In addition, RNA-seq profiling of zebrafish embryos after AgNPs treatment. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the differentially expressed genes (DEGs) were enriched in DNA replication initiation, oxidoreductase activity, DNA replication, cellular senescence, and oxidative phosphorylation signaling pathways in the AgNPs-treated group. Notably, we also found that AgNPs exposure could result in the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), the inhibition of superoxide dismutase (SOD), catalase (CAT), and mitochondrial complex I-V activities, and the downregulated expression of SOD, CAT, and mitochondrial complex I-IV chain-related genes. Moreover, the expression of mitochondrion-mediated apoptosis signaling pathway-related genes, such as bax, bcl2, caspase-3, and caspase-9, was significantly regulated after AgNPs exposure in zebrafish. Therefore, these findings demonstrated that AgNPs exposure could cause oxidative stress, induce mitochondrial dysfunction, and ultimately lead to developmental toxicity.
Collapse
Affiliation(s)
- Chunjiao Lu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yuhang Lv
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Guanhua Kou
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yao Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yi Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xuewei Wu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Juanjuan Luo
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Mitochondria: Key Organelles Accelerating Cell Wall Material Accumulation in Juice Sacs of Pummelo (Citrus grandis L. Osbeck) Fruits during Postharvest Storage. J FOOD QUALITY 2021. [DOI: 10.1155/2021/2433994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Granulation is a physiological disorder of juice sacs in citrus fruits, which develops through secondary cell wall formation. However, the synergistic changes in the cytoplasm of juice sac cells remain largely unknown. This study investigated the dynamic ultrastructure of juice sacs of “Guanxi” pummelo fruits by transmission electron microscopy and determined their cell wall material, soluble sugar, and organic acid contents. The results showed that lignin and hemicellulose are accumulated in juice sacs isolated from dorsal vascular bundles, while lignin and cellulose contribute to the granulation of juice sacs isolated from septal vascular bundles. The significant differences in lignin, cellulose, and hemicellulose contents between the two types of juice sacs began to be observed at 30 days of storage. Fructose levels were elevated in juice sacs isolated from the dorsal vascular bundles from 10 to 60 days. Sucrose contents significantly decreased in juice sacs isolated from the septal vascular bundles from 30 to 60 days. Meanwhile glucose, citric acid, and malic acid contents exhibited no apparent changes in both types of juice sacs. Based on the comprehensive analysis of the ultrastructure of both types of juice sacs, it was clearly found that plasma membrane ruptures induce cell wall material synthesis in intracellular spaces; however, cell wall substance contents did not significantly increase until the number of mitochondria sharply increased. In particular, sucrose contents began to decrease significantly just after the mitochondria amount largely increased in juice sacs isolated from the septal vascular bundles, indicating that mitochondria play a key role in regulating carbon source sugar partitioning for cell wall component synthesis.
Collapse
|
6
|
Li X, Chai Y, Yang H, Tian Z, Li C, Xu R, Shi C, Zhu F, Zeng Y, Deng X, Wang P, Cheng Y. Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit. HORTICULTURE RESEARCH 2021; 8:31. [PMID: 33518707 PMCID: PMC7848011 DOI: 10.1038/s41438-021-00470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 05/03/2023]
Abstract
Mitochondria are crucial for the production of primary and secondary metabolites, which largely determine the quality of fruit. However, a method for isolating high-quality mitochondria is currently not available in citrus fruit, preventing high-throughput characterization of mitochondrial functions. Here, based on differential and discontinuous Percoll density gradient centrifugation, we devised a universal protocol for isolating mitochondria from the pulp of four major citrus species, including satsuma mandarin, ponkan mandarin, sweet orange, and pummelo. Western blot analysis and microscopy confirmed the high purity and intactness of the isolated mitochondria. By using this protocol coupled with a label-free proteomic approach, a total of 3353 nonredundant proteins were identified. Comparison of the four mitochondrial proteomes revealed that the proteins commonly detected in all proteomes participate in several typical metabolic pathways (such as tricarboxylic acid cycle, pyruvate metabolism, and oxidative phosphorylation) and pathways closely related to fruit quality (such as γ-aminobutyric acid (GABA) shunt, ascorbate metabolism, and biosynthesis of secondary metabolites). In addition, differentially abundant proteins (DAPs) between different types of species were also identified; these were found to be mainly involved in fatty acid and amino acid metabolism and were further confirmed to be localized to the mitochondria by subcellular localization analysis. In summary, the proposed protocol for the isolation of highly pure mitochondria from different citrus fruits may be used to obtain high-coverage mitochondrial proteomes, which can help to establish the association between mitochondrial metabolism and fruit storability or quality characteristics of different species and lay the foundation for discovering novel functions of mitochondria in plants.
Collapse
Affiliation(s)
- Xin Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yingfang Chai
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhen Tian
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chengyang Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rangwei Xu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chunmei Shi
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feng Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunliu Zeng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiuxin Deng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pengwei Wang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
7
|
Xu T, Qin D, Muhae Ud Din G, Liu T, Chen W, Gao L. Characterization of histological changes at the tillering stage (Z21) in resistant and susceptible wheat plants infected by Tilletia controversa Kühn. BMC PLANT BIOLOGY 2021; 21:49. [PMID: 33461490 PMCID: PMC7814547 DOI: 10.1186/s12870-020-02819-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 12/25/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Dwarf bunt, which is caused by Tilletia controversa Kühn, is a soilborne and seedborne disease that occurs worldwide and can lead to 70% or even total losses of wheat crops. However, very little information is available about the histological changes that occur in dwarf bunt-resistant and dwarf bunt-susceptible wheat plants at the tillering stage (Z21). In this study, we used scanning electron microscopy and transmission electron microscopy to characterize the histological changes at this stage in resistant and susceptible wheat cultivars infected by T. controversa. RESULTS Using scanning electron microscopy, the root, stem, and leaf structures of resistant and susceptible cultivars were examined after T. controversa infection. The root epidermal and vascular bundles were more severely damaged in the susceptible T. controversa-infected plants than in the resistant plants. The stem cell and longitudinal sections were much more extensively affected in susceptible plants than in resistant plants after pathogen infection. However, slightly deformed mesophyll cells were observed in the leaves of susceptible plants. With transmission electron microscopy, we found that the cortical bundle cells and the cell contents and nuclei in the roots were more severely affected in the susceptible plants than in the resistant plants; in the stems and leaves, the nuclei, chloroplasts, and mesophyll cells changed significantly in the susceptible plants after fungal infection. Moreover, we found that infected susceptible and resistant plants were affected much more severely at the tillering stage (Z21) than at the seedling growth stage (Z13). CONCLUSION Histological changes in the wheat roots, stems and leaves were much more severe in T. controversa-infected susceptible plants than in infected resistant plants at the tillering stage (Z21).
Collapse
Affiliation(s)
- Tongshuo Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dandan Qin
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ghulam Muhae Ud Din
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Zou W, Zhang X, Ouyang S, Hu X, Zhou Q. Graphene oxide nanosheets mitigate the developmental toxicity of TDCIPP in zebrafish via activating the mitochondrial respiratory chain and energy metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138486. [PMID: 32330713 DOI: 10.1016/j.scitotenv.2020.138486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 05/14/2023]
Abstract
Graphene oxide (GO), a novel two-dimension carbon nanomaterial, has showed tremendous potential for utilization in intelligent manufacturing and environmental protection. In parallel, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is widely distributed in the water environment and represents a great threat to ecosystem health. However, the related knowledge remained absent regarding the impact of GO on the biological risks of TDCIPP. Herein, GO significantly reduced the mortality and malformation rates of zebrafish induced by TDCIPP maximumly by 28.6% and 41.8%, respectively. Decreased mitochondrial respiratory chain (MRC) enzyme and ATP activity induced by TDCIPP were mitigated by GO. Integrating proteomics and metabolomics revealed TDCIPP obviously induced the downregulation of the proteins and metabolites involved in the cytoskeleton, mitochondrial function, carbohydrate and amino acid metabolism, and the TCA cycle, but the alterations were attenuated by GO. GO primarily promoted MRC activity, carbohydrate metabolism, and fatty acid β-oxidation, thus activating the energy metabolism of zebrafish and leading to antagonistic effects on the developmental toxicity of TDCIPP. These results provide a novel view on the co-exposure of GO with other pollutants and promote the reconsideration of the environmental risks of GO.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Xu J, Jia W, Hu C, Nie M, Ming J, Cheng Q, Cai M, Sun X, Li X, Zheng X, Wang J, Zhao X. Selenium as a potential fungicide could protect oilseed rape leaves from Sclerotinia sclerotiorum infection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113495. [PMID: 31733958 DOI: 10.1016/j.envpol.2019.113495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 05/21/2023]
Abstract
Sclerotinia sclerotiorum (S. sclerotiorum) is a soil-borne pathogen causing serious damage to the yield of oilseed rape. Selenium (Se) acted as a beneficial element for plants, and also proved to inhibit the growth of plant pathogens. However, whether Se could reduce S. sclerotiorum infection in oilseed rape, the related mechanism is still unclear. In this study, proper Se levels (0.1 mg/kg and 0.5 mg/kg) applied in soil decreased the lesion diameter and incidence of S. sclerotiorum in rape leaves. Se enfeebled the decrease of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr), and maintained leaf cell structure. Se enhanced the antioxidant system of leaves, as evidenced by the maintenance of mitochondrial function, reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content, and the improvement of antioxidant enzyme activities including catalase (CAT), polyphenol oxidase (PPO) and peroxidase (POD). The upregulated defense gene expressions (CHI, ESD1, NPR1 and PDF1.2) of leaves were also observed under Se treatments. Furthermore, metabolome analysis revealed that Se promoted the metabolism of energy and amino acids in leaves infected with S. sclerotiorum. These findings inferred that Se could act as a potential eco-fungicide to protect oilseed rape leaves from S. sclerotiorum attack. The result arising from this study not only introduces an ecological method to control S. sclerotiorum, but also provides a deep insight into microelement for plant protection.
Collapse
Affiliation(s)
- Jiayang Xu
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Wei Jia
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Min Nie
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Jiajia Ming
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Qin Cheng
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Miaomiao Cai
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xuecheng Sun
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xinran Li
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaoyan Zheng
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Jing Wang
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| |
Collapse
|