1
|
Bisinotto MS, Castro I, Maldonado-Valderrama J, Jones NC, Del Castillo-Santaella T, Hoffmann SV, Guadix EM, García-Moreno PJ. Use of emulsifying plant protein hydrolysates from winery, whiskey and brewery by-products for the development of echium oil delivery emulsions. Int J Biol Macromol 2025:142736. [PMID: 40180091 DOI: 10.1016/j.ijbiomac.2025.142736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
This study investigates the production of plant protein hydrolysates from defatted grape seed flour and barley spent grains, by-products of wine, beer and whiskey industries, using limited hydrolysis with subtilisin or trypsin. The hydrolysates were characterized by protein content, molecular weight, antioxidant capacity, interfacial adsorption, dilatational rheology, and interfacial conformational changes using synchrotron radiation circular dichroism. Physical and oxidative stability of 5 % echium oil-in-water emulsions (pH 7), stabilized by the hydrolysates, were studied during seven days of storage. The trypsin-derived hydrolysate from brewers' spent grains resulted in the most physically stable emulsion due to enhanced interfacial adsorption and higher dilatational modulus. Alternatively, the trypsin-treated grape seed flour hydrolysate provided the emulsion with the highest oxidative stability, aligning with its superior in vitro antioxidant capacity. These results show the potential of wine and brewery industry side streams as a sustainable source of plant-based emulsifiers with application in omega-3 delivery systems.
Collapse
Affiliation(s)
- Mariana Sisconeto Bisinotto
- Department of Chemical Engineering, University of Granada, Granada, Spain; LADAF, Pharmaceutical Science Faculty, University of Sao Paulo, Brazil
| | - Inar Castro
- LADAF, Pharmaceutical Science Faculty, University of Sao Paulo, Brazil
| | | | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | | | | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, Granada, Spain
| | | |
Collapse
|
2
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Ozgolet M, Cakmak ZHT, Bozkurt F, Sagdic O, Karasu S. Response surface optimization of protein extraction from cold-pressed terebinth (Pistacia terebinthus L.) oil byproducts: Physicochemical and functional characteristics. J Food Sci 2024; 89:7380-7396. [PMID: 39394045 DOI: 10.1111/1750-3841.17441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
The current study focused on optimizing the extraction parameters of terebinth seed proteins from cold-pressed terebinth oil byproducts to maximize protein purity and protein yield. The isolated proteins were characterized to evaluate their properties; thus revealing the valorization potential of these byproducts. Response surface methodology was used to detect the effect of three extraction parameters (pH, temperature, and time). The protein isolates were studied for their physicochemical and functional characteristics. The results indicated that an extraction pH of 8, a temperature of 50°C, and an extraction period of 60 min are optimum conditions for obtaining protein isolates with the highest purity. On the other hand, it was demonstrated that an extraction pH of 12, a temperature of 46.4°C, and an extraction duration of 102.4 min were optimum conditions for the maximum protein yield. The proteins produced under these two sets of conditions, referred to as TRP (terebinth protein with maximum purity) and TRY (terebinth protein with maximum yield), respectively, exhibited comparable oil absorption capacity (OAC), foaming, emulsifying capabilities, and stability. Both proteins showed the highest solubility at pH 11, and their zeta potentials approached zero at pH 4, indicating proximity to their isoelectric points. However, FRAP and DPPH assays showed that TRP and TRY offered low antioxidative capacity. The high β-sheet content in TRP and TRY suggests enhanced thermal stability but reduced digestibility of these proteins. Therefore, in addition to protein enrichment, TRP and TRY protein isolates can be utilized in muffins and other food applications thanks to their favorable oil absorption, foaming and emulsifying capacities, and thermal stabilities.
Collapse
Affiliation(s)
- Muhammed Ozgolet
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, Turkey
| | - Zeynep Hazal Tekin Cakmak
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, Turkey
| | - Fatih Bozkurt
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, Turkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, Turkey
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, Turkey
| |
Collapse
|
4
|
Li W, Zhou Q, Xu J, Zhu S, Lv S, Yu Z, Yang Y, Liu Y, Zhou Y, Sui X, Zhang Q, Xiao Y. Insight into the solubilization mechanism of wheat gluten by protease modification from conformational change and molecular interaction perspective. Food Chem 2024; 447:138992. [PMID: 38503066 DOI: 10.1016/j.foodchem.2024.138992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/29/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
The low solubility limits the utilization of other functional characteristics of wheat gluten (WG). This study effectively improved the solubility of WG through protease modification and explored the potential mechanism of protease modification to enhance the solubility of WG, further stimulating the potential application of WG in the food industry. Solubility of WG modified with alkaline protease, complex protease, and neutral protease was enhanced by 98.99%, 54.59%, and 51.68%, respectively. Notably, the content of β-sheet was reduced while the combined effect of hydrogen bond and ionic bond were increased after protease modification. Meanwhile, the reduced molecular size and viscoelasticity as well as the elevated surface hydrophobicity, thermostability, water absorption capacity, and crystallinity were observed in modified WG. Moreover, molecular docking indicated that protease was specifically bound to the amino acid residues of WG through hydrogen bonding, hydrophobic interaction, and salt bridge.
Collapse
Affiliation(s)
- Weixiao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jianxia Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shanlong Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sixu Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yin Yang
- Anhui Bi Lv Chun Biotechnology Co., Ltd., Chuzhou 239200, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qiang Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Ospina-Quiroga JL, Coronas-Lozano C, García-Moreno PJ, Guadix EM, Almécija-Rodríguez MDC, Pérez-Gálvez R. Use of olive and sunflower protein hydrolysates for the physical and oxidative stabilization of fish oil-in-water emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5541-5552. [PMID: 38362946 DOI: 10.1002/jsfa.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Olive and sunflower seeds are by-products generated in large amounts by the plant oil industry. The technological and biological properties of plant-based substrates, especially protein hydrolysates, have increased their use as functional ingredients for food matrices. The present study evaluates the physical and oxidative stabilities of 50 g kg-1 fish oil-in-water emulsions where protein hydrolysates from olive and sunflower seeds were incorporated at 20 g kg-1 protein as natural emulsifiers. The goal was to investigate the effect of protein source (i.e. olive and sunflower seeds), enzyme (i.e. subtilisin and trypsin) and degree of hydrolysis (5%, 8% and 11%) on the ability of the hydrolysate to stabilize the emulsion and retard lipid oxidation over a 7-day storage period. RESULTS The plant protein hydrolysates displayed different emulsifying and antioxidant capacities when incorporated into the fish oil-in-water emulsions. The hydrolysates with degrees of hydrolysis (DH) of 5%, especially those from sunflower seed meal, provided higher physical stability, regardless of the enzymatic treatment. For example, the average D [2, 3] values for the emulsions containing sunflower subtilisin hydrolysates at DH 5% only slightly increased from 1.21 ± 0.02 μm (day 0) to 2.01 ± 0.04 μm (day 7). Moreover, the emulsions stabilized with sunflower or olive seed hydrolysates at DH 5% were stable against lipid oxidation throughout the storage experiment, with no significant variation in the oxidation indices between days 0 and 4. CONCLUSION The results of the present study support the use of sunflower seed hydrolysates at DH 5% as natural emulsifiers for fish oil-in-water emulsions, providing both physical and chemical stability against lipid oxidation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Xu J, Zhang H, Deng M, Guo H, Cui L, Liu Z, Xu J. Formation mechanism of quinoa protein hydrolysate-EGCG complexes at different pH conditions and its effect on the protein hydrolysate-lipid co-oxidation in emulsions. Food Res Int 2024; 186:114365. [PMID: 38729700 DOI: 10.1016/j.foodres.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
This study aimed to investigate the interaction, structure, antioxidant, and emulsification properties of quinoa protein hydrolysate (QPH) complexes formed with (-)-epigallocatechin gallate (EGCG) at pH 3.0 and 7.0. Additionally, the effect of pH conditions and EGCG complexation on protein hydrolysate-lipid co-oxidation in QPH emulsions was explored. The results indicated that QPH primarily interacted with EGCG through hydrophobic interactions and hydrogen bonds. This interaction led to alterations in the secondary structure of QPH, as well as a decrease in surface hydrophobicity and free SH content. Notably, the binding affinity between QPH and EGCG was observed to be higher at pH 7.0 compared to pH 3.0. Consequently, QPH-EGCG complexes exhibited more significant enhancement in antioxidant and emulsification properties at pH 7.0 than pH 3.0. The pH level also influenced the droplet size, ζ-potential, and interfacial composition of emulsions formed by QPH and QPH-EGCG complexes. Compared to QPH stabilized emulsions, QPH-EGCG stabilized emulsions were more capable of mitigating destabilization during storage and displayed fewer lipid oxidation products, carbonyl generation, and sulfhydryl groups and fluorescence loss, which implied better oxidative stability of the emulsions. Furthermore, the QPH-EGCG complexes formed at pH 7.0 exhibited better inhibition of protein hydrolysate-lipid co-oxidation. Overall, these findings provide valuable insights into the potential application of QPH and its complexes with EGCG in food processing systems.
Collapse
Affiliation(s)
- Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hezhen Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengyu Deng
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotong Guo
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lifan Cui
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhengqin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Ozgolet M, Cakmak ZHT, Bozkurt F, Sagdic O, Karasu S. Optimization of extraction parameters of protein isolate from milk thistle seed: Physicochemical and functional characteristics. Food Sci Nutr 2024; 12:3346-3359. [PMID: 38726413 PMCID: PMC11077193 DOI: 10.1002/fsn3.4001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 05/12/2024] Open
Abstract
In the current study, optimization of milk thistle protein extraction parameters was carried out in terms of purity and yield. In addition, the characterization of proteins isolated from milk thistle seeds was conducted. The optimal conditions for achieving the highest purity of protein (MTP) from milk thistle seeds were identified as extraction pH 9.47, temperature 30°C, and extraction time 180 min. Conversely, optimal values for overall protein yield (MTY) were determined at extraction pH 12, temperature 50°C, and extraction time 167 min. The proteins obtained under these two sets of conditions (MTP and MTY) demonstrated comparable oil absorption capacity (OAC), foaming, and emulsifying capabilities, as well as stability, aligning with findings from previous studies on seed protein. Both proteins had the highest protein solubilities at pH 11. Both proteins' zeta potentials were closest to zero at pH 4, demonstrating their closeness to the isoelectric point. MTP and MTY had poorer antioxidant capabilities than the other protein isolates/concentrates. MTP and MTY contain high β sheet concentrations that might enhance thermal stability and lower the digestibility of proteins. In conclusion, the protein extraction process demonstrated a high potential for achieving both substantial yield and remarkable purity with some decent technological and functional properties, thus holding promise for various applications in diverse fields.
Collapse
Affiliation(s)
- Muhammed Ozgolet
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Zeynep Hazal Tekin Cakmak
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Fatih Bozkurt
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| |
Collapse
|
8
|
Li Z, Al-Wraikat M, Hao C, Liu Y. Comparison of Non-Covalent and Covalent Interactions between Lactoferrin and Chlorogenic Acid. Foods 2024; 13:1245. [PMID: 38672917 PMCID: PMC11048835 DOI: 10.3390/foods13081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Adding polyphenols to improve the absorption of functional proteins has become a hot topic. Chlorogenic acid is a natural plant polyphenol with anti-inflammatory, antioxidant, and anticancer properties. Bovine lactoferrin is known for its immunomodulatory, anticancer, antibacterial, and iron-chelating properties. Therefore, the non-covalent binding of chlorogenic acid (CA) and bovine lactoferrin (BLF) with different concentrations under neutral conditions was studied. CA was grafted onto lactoferrin molecules by laccase catalysis, free radical grafting, and alkali treatment. The formation mechanism of non-covalent and covalent complexes of CA-BLF was analyzed by experimental test and theoretical prediction. Compared with the control BLF, the secondary structure of BLF in the non-covalent complex was rearranged and unfolded to provide more active sites, the tertiary structure of the covalent conjugate was changed, and the amino group of the protein participated in the covalent reaction. After adding CA, the covalent conjugates have better functional activity. These lactoferrin-polyphenol couplings can carry various bioactive compounds to create milk-based delivery systems for encapsulation.
Collapse
Affiliation(s)
- Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Z.L.); (M.A.-W.)
| | - Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Z.L.); (M.A.-W.)
| | - Changchun Hao
- College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Z.L.); (M.A.-W.)
| |
Collapse
|
9
|
Hennebelle M, Villeneuve P, Durand E, Lecomte J, van Duynhoven J, Meynier A, Yesiltas B, Jacobsen C, Berton-Carabin C. Lipid oxidation in emulsions: New insights from the past two decades. Prog Lipid Res 2024; 94:101275. [PMID: 38280491 DOI: 10.1016/j.plipres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Lipid oxidation constitutes the main source of degradation of lipid-rich foods, including food emulsions. The complexity of the reactions at play combined with the increased demand from consumers for less processed and more natural foods result in additional challenges in controlling this phenomenon. This review provides an overview of the insights acquired over the past two decades on the understanding of lipid oxidation in oil-in-water (O/W) emulsions. After introducing the general structure of O/W emulsions and the classical mechanisms of lipid oxidation, the contribution of less studied oxidation products and the spatiotemporal resolution of these reactions will be discussed. We then highlight the impact of emulsion formulation on the mechanisms, taking into consideration the new trends in terms of emulsifiers as well as their own sensitivity to oxidation. Finally, novel antioxidant strategies that have emerged to meet the recent consumer's demand will be detailed. In an era defined by the pursuit of healthier, more natural, and sustainable food choices, a comprehensive understanding of lipid oxidation in emulsions is not only an academic quest, but also a crucial step towards meeting the evolving expectations of consumers and ensuring the quality and stability of lipid-rich food products.
Collapse
Affiliation(s)
- Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Unilever Food Innovation Centre, Wageningen, the Netherlands
| | | | - Betül Yesiltas
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte Jacobsen
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes 44300, France; Laboratory of Food Process Engineering, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
10
|
Chen C, Murray BS, Ettelaie R. Surface adsorption properties of peptides produced by non-optimum pH pepsinolysis of proteins: A combined experimental and self-consistent-field calculation study. J Colloid Interface Sci 2023; 652:405-417. [PMID: 37604052 DOI: 10.1016/j.jcis.2023.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
HYPOTHESIS Partial hydrolysis of large molecular weight (Mw), highly aggregated plant proteins is frequently used to improve their solubility. However, if this hydrolysis is extensive, random or nonselective, it is unlikely to improve functional properties such as surface activity, emulsion, or foam-stabilising capacity. EXPERIMENTS AND SIMULATION Soy protein isolate (SPI) was hydrolysed by pepsin under optimal (pH 2.1) and non-optimal (pH 4.7) conditions. The surface activity and emulsion stabilising capacity of the resultant peptides were measured and compared. The colloidal interactions between a pair of emulsion droplets were modelled via Self-Consistent-Field Calculations (SCFC). FINDINGS Hydrolysis at pH 2.1 and 4.7 resulted in a considerable increase in measured surface activity compared to the native (non-hydrolysed) SPI, but the hydrolysate from pH 2.1 was not as good an emulsion stabiliser as the hydrolysate (particularly the fraction Mw > 10 kDa) at pH 4.7. Furthermore, peptide analysis of the latter suggested it was dominated by a fragment of one of the major soy proteins β-conglycinin, with Mw ≈ 25 kDa. SCFC calculations confirmed that interactions mediated by adsorbed layers of this peptide point to it being an excellent emulsion stabiliser.
Collapse
Affiliation(s)
- Cuizhen Chen
- Food Colloids & Bioprocessing Group, School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Brent S Murray
- Food Colloids & Bioprocessing Group, School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Rammile Ettelaie
- Food Colloids & Bioprocessing Group, School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
11
|
Ding Y, Zengin A, Cheng W, Wang L, Ettelaie R. Emulsifying properties of plant-derived polypeptide and their conjugates: a self-consistent-field calculation study of the impact of hydrolysis. SOFT MATTER 2023; 19:7443-7458. [PMID: 37747041 DOI: 10.1039/d3sm00855j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
By considering the hydrolysates of soy protein produced by trypsin as an example, the emulsion stabilizing properties of plant-based protein fragments have been investigated theoretically. We apply Self-Consistent-Field (SCF) calculations to determine the colloidal interactions induced between a pair of droplets stabilized by adsorbed layers of various soy protein fragments. The study is extended to conjugates of such polypeptides, formed by covalent bonding with a suitable hydrophilic sidechain (e.g. a polysaccharide). Our results show that the relatively longer fragments, with a greater number of hydrophobic amino acids, will display a stronger degree of adsorption affinity compared to the smaller hydrolysates, even where the latter may have a higher overall ratio of hydrophobic residues. This suggested that the degree of protein hydrolysis should be carefully controlled and limited to modest values to avoid the generation of a large number of short polypeptides, while still sufficient to improve solubility. While the emulsion stabilizing performance of a protein fragment type is strongly dependent on the conformation it adopts on the interface, we find this to be less critical for the conjugated polypeptides. However, we argue that with increasing degree of hydrolysis, many small fragments will not have the chance to form bonds with polysaccharides. It is demonstrated that the abundance of these unreacted polypeptides in the system severely reduces the efficiency of the conjugated longer protein fragments, preventing their presence on the surface of the droplets through competitive adsorption process.
Collapse
Affiliation(s)
- Yue Ding
- College of Food and Bioengineering, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471000, P. R. China.
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Adem Zengin
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan Sakarya, Turkey
| | - Weiwei Cheng
- College of Food and Bioengineering, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471000, P. R. China.
| | - Libo Wang
- College of Food and Bioengineering, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471000, P. R. China.
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| |
Collapse
|
12
|
Pan W, Zheng Z, Li P, Ai Z, Liu Y. Effects of enzymatic modification on the stability of cashew-based milk. Food Funct 2023; 14:7946-7958. [PMID: 37552523 DOI: 10.1039/d3fo01013a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The green and low-carbon awareness drives the consumption demand for "clean-label" plant-based milk, which is limited by its physicochemical stability. Herein, the effects of enzymatic hydrolysis on the stability of cashew-based milk (CM) are explored in detail. Our results showed that a maximum protein solubility of 41.36 ± 2.14% was achieved under bromelain treatment of CM either for 60 min or with the addition of 600 U g-1. Under these hydrolysis conditions, CM showed smaller particle size, larger zeta potential, and more uniform size distribution in comparison with the control. Similar behavior was also observed in the apparent viscosity and macroscopic stability, demonstrating the fortification of moderate hydrolysis on the physical stability of CM. Interestingly, bromelain hydrolysis could favor improving the oxidative stability of CM, for which the peroxide value and thiobarbituric acid reactive substances were decreased by 90% and 60%, respectively, after 14 days of storage in comparison with the control. The correlation analysis confirmed that the physical and oxidative stability was highly associated with protein solubility and secondary structures like α-helix. Therefore, our findings could provide scientific support for developing plant-based milk with fortified physicochemical stability.
Collapse
Affiliation(s)
- Wenjie Pan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Panpan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Zixuan Ai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
13
|
Li Y, Liu J, Zhang H, Shi X, Li S, Yang M, Zhang T, Xiao H, Du Z. A Comprehensive Review of Self-Assembled Food Protein-Derived Multicomponent Peptides: From Forming Mechanism and Structural Diversity to Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37486612 DOI: 10.1021/acs.jafc.3c02930] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Food protein-derived multicomponent peptides (FPDMPs) are a natural blend of numerous peptides with various bioactivities and multiple active sites that can assume several energetically favorable conformations in solutions. The remarkable structural characteristics and functional attributes of FPDMPs make them promising codelivery carriers that can coassemble with different bioactive ingredients to induce multidimensional structures, such as fibrils, nanotubes, and nanospheres, thereby producing specific health benefits. This review offers a prospective analysis of FPDMPs-based self-assembly nanostructures, focusing on the mechanism of formation of self-assembled FPDMPs, the internal and external stimuli affecting peptide self-assembly, and their potential applications. In particular, we introduce the exciting prospect of constructing functional materials through precursor template-induced self-assembly of FPDMPs, which combine the bioactivity and self-assembly capacity of peptides and could dramatically broaden the functional utility of peptide-based materials.
Collapse
Affiliation(s)
- Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xiaoxia Shi
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
14
|
Structural characterization, interfacial and emulsifying properties of soy protein hydrolysate-tannic acid complexes. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Du Q, Wu Y, Zeng X, Tu M, Wu Z, Liu J, Pan D, Ding Y. Competitive binding of maltodextrin and pectin at the interface of whey protein hydrolyzate-based fish oil emulsion under high temperature sterilization: Effects on storage stability and in vitro digestion. Food Res Int 2023; 164:112368. [PMID: 36737955 DOI: 10.1016/j.foodres.2022.112368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
Whey protein hydrolysate (WPH), maltodextrin (MD), low methoxy pectin (LMP) and high methoxy pectin (HMP) were used to study the interface binding under high temperature sterilization conditions (121 °C, 15 min). The effect of competitive binding of MD and pectin with interface protein on the storage stability and gastrointestinal fate of fish oil emulsion was studied. The low-molecular-weight MD and the interface protein undergo a wide range of covalent binding through the Maillard reaction, while a small amount of high-molecular-weight pectin can form a protective shell with the interface protein through electrostatic interaction to inhibit the covalent reaction of MD, which was called competitive binding. However, due to the bridging and depletion flocculation of pectin, the emulsification stability of fish oil emulsion reduced. After 13 days of storage, compared with the particle size of the WPH fish oil emulsion (459.18 nm), the fish oil emulsion added with LMP and HMP reached 693.58 nm and 838.54 nm, respectively. In vitro digestion proved that WPH fish oil emulsion flocculated rapidly in the stomach (1.76 μm), while WPH-MD and WPH-MD-pectin fish oil emulsions flocculated slightly (less than800 nm). WPH-MD-pectin delayed digestion in the gastrointestinal tract, and HMP exhibited a better slow-release effect. This study provides reference for the design of multi-component functional drinks and other bioactive ingredient delivery system.
Collapse
Affiliation(s)
- Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Yang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
16
|
Gu J, Li M, Nawaz MA, Stockmann R, Buckow R, Suleria HAR. In Vitro Digestion and Colonic Fermentation of UHT Treated Faba Protein Emulsions: Effects of Enzymatic Hydrolysis and Thermal Processing on Proteins and Phenolics. Nutrients 2022; 15:89. [PMID: 36615747 PMCID: PMC9824445 DOI: 10.3390/nu15010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Faba bean (Vicia faba L.) protein is a new plant protein alternative source with high nutrient content especially protein and phenolic compounds. The present study investigated physicochemical properties, phenolic content, antioxidant potential, and short chain fatty acids (SCFAs) production during in vitro digestion and colonic fermentation of faba bean hydrolysates and oil-in-water (O/W) emulsions. Results indicate that the enzymic hydrolysates of faba proteins exhibited higher protein solubility, increased electronegativity, and decreased surface hydrophobicity than native faba protein. O/W emulsions showed improved colloidal stability for the faba protein hydrolysates after ultra-high temperature processing (UHT). Furthermore, UHT processing preserved total phenolic content, DPPH and ABTS radical scavenging abilities while decreasing total flavonoid content and ferric reducing power. Besides, the release of phenolic compounds in faba bean hydrolysates (FBH) and emulsions (FBE) improved after intestinal digestion by 0.44 mg GAE/g and 0.55 mg GAE/g, respectively. For colonic fermentation, FBH demonstrated an approximately 10 mg TE/g higher ABTS value than FBE (106.45 mg TE/g). Total SCFAs production of both FBH and FBE was only 0.03 mM. The treatment of FBH with 30 min enzymatic hydrolysis displayed relatively higher antioxidant capacities and SCFAs production, indicating its potential to bring more benefits to gut health. Overall, this study showed that enzymic hydrolysis of faba proteins not only improved the colloidal emulsion stability, but also released antioxidant capacity during in vitro digestibility and colonic fermentation. Colonic fermentation metabolites (SCFAs) were related to the degree of hydrolysis for both FBH and FBE. Additional studies are required to further elucidate and differentiate the role of phenolics during faba protein processing and digestion stages in comparison to contributions of peptides, amino acids and microelements to digestion rates, antioxidant capacities and colonial SCFA production.
Collapse
Affiliation(s)
- Jingyu Gu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Minhao Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Malik Adil Nawaz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC 3030, Australia
| | - Regine Stockmann
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC 3030, Australia
| | - Roman Buckow
- Centre for Advanced Food Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2006, Australia
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
17
|
Mookerjee A, Tanaka T. Influence of enzymatic treatments on legume proteins for improved functional and nutritional properties: Expansion of legume protein utilization as food ingredients. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Wang Y, Li Z, Li H, Selomulya C. Effect of hydrolysis on the emulsification and antioxidant properties of plant-sourced proteins. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Alves Barroso L, Grossi Bovi Karatay G, Dupas Hubinger M. Effect of Potato Starch Hydrogel:Glycerol Monostearate Oleogel Ratio on the Physico-Rheological Properties of Bigels. Gels 2022; 8:694. [PMID: 36354602 PMCID: PMC9689572 DOI: 10.3390/gels8110694] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 08/26/2023] Open
Abstract
Bigel (BG) has been shown to be promising for the food industry due to the possibility to manipulate the properties of the system by adjusting the ratio of each individual phase, namely the hydrogel (H) and oleogel (O) phases. This work aimed to evaluate the influence of the O:H ratio on the physical-rheological properties of BG produced with potato starch (PS) and glycerol monostearate (GM). The hydrogel hardness (i.e., 1423.47 g) directly influenced the viscosity of the BG samples, as BG with a higher H-phase presented the highest viscosity and firmness. All BG samples presented shear-thinning behavior and structural breakdown at ~50 °C. BG with a higher O-phase had superior results for thermal stability, softer texture, and yield stress values, representative of good plasticity and spreadability, as compared to BG with less O-phase. The BG with 80% H-phase was less stable during the 21 days of storage in relation to the other BG samples. This study showed the role that the O:H ratio plays in the development of PS-GM-based BGs with tailor-made physical-rheological properties. In addition, the BG is an easily reproduced system with great potential to be used as a trans and saturated fat substitute in food applications.
Collapse
Affiliation(s)
- Lívia Alves Barroso
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas 13083-862, Brazil
| | | | | |
Collapse
|
20
|
Structural Modification of Jackfruit Leaf Protein Concentrate by Enzymatic Hydrolysis and Their Effect on the Emulsifier Properties. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Jackfruit leaf protein concentrate (LPC) was hydrolyzed by pepsin (H–Pep) and pancreatin (H–Pan) at different hydrolysis times (30–240 min). The effect of the enzyme type and hydrolysis time of the LPC on the amino acid composition, structure, and thermal properties and its relationship with the formation of O/W emulsions were investigated. The highest release of amino acids (AA) occurred at 240 min for both enzymes. H–Pan showed the greatest content of essential and hydrophobic amino acids. Low β-sheet fractions and high β-turn contents had a greater influence on the emulsifier properties. In H–Pep, the β-sheet fraction increased, while in H–Pan it decreased as a function of hydrolysis time. The temperatures of glass transition and decomposition were highest in H–Pep due to the high content of β-sheets. The stabilized emulsions with H–Pan (180 min of hydrolysis) showed homogeneous distributions and smaller particle sizes. The changes in the secondary structure and AA composition of the protein hydrolysates by the effect of enzyme type and hydrolysis time influenced the emulsifying properties. However, further research is needed to explore the use of H–Pan as an alternative to conventional emulsifiers or ingredients in functional foods.
Collapse
|
21
|
Zhou X, Liu Z, Wang W, Miao Y, Gu L, Li Y, Liu X, Jiang L, Hou J, Jiang Z. NaCl induces flocculation and lipid oxidation of soybean oil body emulsions recovered by neutral aqueous extraction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3752-3761. [PMID: 34913174 DOI: 10.1002/jsfa.11723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Soybean oil bodies (SOB) are naturally pre-emulsified lipid droplets recovered directly from soybean seeds. Almost all food emulsions contain salts. However, it was not clear how the incorporation of salts affected the physicochemical stability of SOB. RESULTS This study investigated the effect of NaCl (0-1.2%) on the physical and oxidative stability of SOB emulsions under neutral (pH 7) and acidic (pH 3) conditions. In the presence of NaCl, the SOB emulsion (pH 7) showed strong flocculation during storage due to electrostatic screening. The NaCl-induced flocculation of SOB was attenuated at pH 3, which may be due to the difference in conformation or interaction of the protein interfaces covering SOB at different pH values. The increase in ionic strength or acid conditioning treatment resulted in a remarkable increase in the stability of SOB emulsions against coalescence. The confocal laser scanning microscopy images also confirmed the NaCl-induced changes in the flocculation/coalescence properties of SOB. The oxidative behavior tests indicated that SOB emulsions containing NaCl were more susceptible to lipid oxidation but protein oxidation was inhibited due to electrostatic screening, which reduced pro-oxidant accessibility of unadsorbed proteins in the emulsion. This oxidative behavior was attenuated at pH 3. CONCLUSION The incorporation of NaCl significantly reduced the physical and oxidative stability of the SOB emulsion, and acidic pH mitigated NaCl-induced flocculation and lipid oxidation of SOB. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuan Zhou
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhijing Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wan Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yusi Miao
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liya Gu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yanan Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xin Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Juncai Hou
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhanmei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
22
|
Keramat M, Kheynoor N, Golmakani MT. Oxidative stability of Pickering emulsions. Food Chem X 2022; 14:100279. [PMID: 35284815 PMCID: PMC8914557 DOI: 10.1016/j.fochx.2022.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative stability of O/W Pickering emulsions depends on their interfacial layer. Solid particles can reduce Pickering emulsion oxidation by creating a thick interface. Manipulating the charge of the interface can control Pickering emulsion oxidation. Adding antioxidants to solid particles can reduce oxidation in Pickering emulsions.
In recent years, Pickering emulsions have been the focus of growing interest because of their possible role as alternatives to conventional emulsions. Some reviews have investigated the physical stability of Pickering emulsions, but the oxidative stability of these emulsions remains largely unexplored. In this review, the oxidation mechanism and factors affecting lipid oxidation rates in Pickering emulsions are discussed. Then, different food-grade solid particles are evaluated for their ability to stabilize Pickering emulsions. Finally, several strategies are reviewed for improving the oxidative stability of Pickering emulsions. These strategies are based on efforts to manipulate the physical and chemical properties of the interfacial layer, increase the concentration of antioxidants at the interfacial layer through incorporating them into solid particles, cause oil droplets to crowd at high packing fractions, trap oil droplets in a gel network and increase the viscosity of the continuous phase.
Collapse
|
23
|
Boukid F, Castellari M. How can processing technologies boost the application of faba bean (
Vicia faba
L.) proteins in food production? EFOOD 2022. [DOI: 10.1002/efd2.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA) Food Safety and Functionality Programme, Food Industry Area Catalonia Spain
| |
Collapse
|
24
|
Liu C, Pei R, Heinonen M. Faba bean protein: A promising plant-based emulsifier for improving physical and oxidative stabilities of oil-in-water emulsions. Food Chem 2022; 369:130879. [PMID: 34455319 DOI: 10.1016/j.foodchem.2021.130879] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/13/2021] [Accepted: 08/15/2021] [Indexed: 01/29/2023]
Abstract
Faba bean is a protein-rich, sustainable, but understudied legume. Faba bean protein isolates (FBPIs) can serve as promising emulsifiers. This review aims to summarize the research on FBPIs as emulsifiers and various modification methods to improve the emulsifying functionalities. The emulsifying activities of FBPIs depend on several physiochemical characteristics (e.g. solubility, surface hydrophobicity, surface charge, interfacial activity). Physical modifications, especially via linking FBPIs electrostatically to polysaccharides can effectively increase the interfacial layer thickness/compactness and maintain the interfacial protein adsorption. Chemical modifications of FBPIs (e.g. acetylation and Maillard reaction) could improve the interfacial activity and affect the droplet-size distribution. Enzymatic modifications, usually either via hydrolysis or cross-linking, help to optimize the molecular size, solubility, and surface hydrophobicity of FBPIs. It is critical to consider the lipid/protein oxidative stability and physical stability when optimizing the emulsifying functionality of FBPIs. With suitable modifications, FBPI can serve as a promising emulsifier in food production.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Ruisong Pei
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Drive, Babcock Hall, Madison, WI 53705, USA
| | - Marina Heinonen
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki 00790, Finland
| |
Collapse
|
25
|
Nawaz MA, Buckow R, Jegasothy H, Stockmann R. Enzymatic hydrolysis improves the stability of UHT treated faba bean protein emulsions. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Liu G, Hu M, Du X, Yan S, Liao Y, Zhang S, Qi B, Li Y. Effects of succinylation and chitosan assembly at the interface layer on the stability and digestion characteristics of soy protein isolate-stabilized quercetin emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Wang X, Cheng L, Wang H, Yang Z. Limited Alcalase hydrolysis improves the thermally-induced gelation of quinoa protein isolate (QPI) dispersions. Curr Res Food Sci 2022; 5:2061-2069. [DOI: 10.1016/j.crfs.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
|
28
|
Calderón-chiu C, Calderón-santoyo M, Damasceno-gomes S, Ragazzo-Sánchez JA. Use of jackfruit leaf ( Artocarpus heterophyllus L.) protein hydrolysates as a stabilizer of the nanoemulsions loaded with extract-rich in pentacyclic triterpenes obtained from Coccoloba uvifera L. leaf. Food Chem X 2021; 12:100138. [PMID: 34693274 PMCID: PMC8517541 DOI: 10.1016/j.fochx.2021.100138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to evaluate the encapsulating potential of a jackfruit leaf protein hydrolysate, through obtaining pentacyclic triterpenes-rich extract loaded nanoemulsion. Response surface methodology (RSM) was used to optimize the conditions to obtain an optimal nanoemulsion (NE-Opt). The effect of protein hydrolysate concentration (0.5-2%), oil loaded with extract (2.5-7.5%), and ultrasound time (5-15 min) on the polydispersity index (PDI) and droplet size of the emulsion (D[3,2] and D[4,3]) was evaluated. RSM revealed that 1.25% protein hydrolysate, 2.5% oil, and ultrasound time of 15 min produced the NE-Opt with the lowest PDI (0.85), D[3,2] (330 nm), and D[4,3] (360 nm). Encapsulation efficiency and extract loading of the NE-Opt was of 40.15 ± 1.46 and 18.03 ± 2.78% respectively. The NE-Opt was relatively stable during storage (at 4 and 25 °C), pH, temperature, and ionic strength. Then, the protein hydrolysate could be used as an alternative to conventional emulsifiers.
Collapse
Affiliation(s)
- Carolina Calderón-chiu
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico #2595, Col. Lagos del Country, Tepic, Nayarit C.P. 63175, México
| | - Montserrat Calderón-santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico #2595, Col. Lagos del Country, Tepic, Nayarit C.P. 63175, México
| | - Simone Damasceno-gomes
- Center of Exact and Technological Sciences, State University of West Paraná (UNIOESTE), Cascavel, Brazil
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico #2595, Col. Lagos del Country, Tepic, Nayarit C.P. 63175, México
- Corresponding author.
| |
Collapse
|
29
|
Byanju B, Lamsal B. Protein-Rich Pulse Ingredients: Preparation, Modification Technologies and Impact on Important Techno-Functional and Quality Characteristics, and Major Food Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bibek Byanju
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Buddhi Lamsal
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
30
|
Felix M, Cermeño M, FitzGerald RJ. Structure and in vitro bioactive properties of O/W emulsions generated with fava bean protein hydrolysates. Food Res Int 2021; 150:110780. [PMID: 34865795 DOI: 10.1016/j.foodres.2021.110780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
The use of plant-derived proteins in the generation of food products is gaining popularity as an alternative to proteins of animal origin. This study described the emulsifying and bioactive properties of fava bean protein hydrolysates (FBH) generated at low and high degree of hydrolysis (DH), i.e., FBH8 (low DH: 8.4 ± 0.3) and FBH210 (high DH: 15.6 ± 0.7) when adjusted to three different pHs (3.0, 5.0 and 8.0). Overall, FBH8, had more favourable emulsifying properties compared to the FBH210. The emulsion generated with FBH8 at pH 8.0 also had the highest antioxidant activity when measured by the oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays with values of 1108.6 ± 3.8 and 1159.9 ± 20.5 μmol Trolox Eq·g-1 emulsion, respectively. The antioxidant activity of the emulsions, in most cases, remained unchanged following in vitro simulated gastrointestinal digestion. Both the FBH8 and FBH210 emulsions following in vitro simulated gastrointestinal digestion were able to inhibit the activities of dipeptidyl peptidase-IV (DPP-IV) and angiotensin converting enzyme (ACE) with ∼45% and 65% inhibition, respectively. These results indicated that hydrolysates from fava bean may find use for the generation of bioactive emulsions.
Collapse
Affiliation(s)
- Manuel Felix
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Ireland
| | - Maria Cermeño
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Ireland
| | - Richard J FitzGerald
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Ireland.
| |
Collapse
|
31
|
Interfacial behavior of plant proteins — novel sources and extraction methods. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Modulating the fat globules of plant-based cream emulsion: Influence of the source of plant proteins. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Gu L, Jiao H, McClements DJ, Ji M, Li J, Chang C, Dong S, Su Y, Yang Y. Improvement of egg yolk powder properties through enzymatic hydrolysis and subcritical fluid extraction. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Xu L, yan W, Zhang M, Hong X, Liu Y, Li J. Application of ultrasound in stabilizing of Antarctic krill oil by modified chickpea protein isolate and ginseng saponin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Bozkurt F, Bekiroglu H, Dogan K, Karasu S, Sagdic O. Technological and bioactive properties of wheat glutenin hydrolysates prepared with various commercial proteases. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Exploration of the Microstructure and Rheological Properties of Sodium Alginate-Pectin-Whey Protein Isolate Stabilized Β-Carotene Emulsions: To Improve Stability and Achieve Gastrointestinal Sustained Release. Foods 2021; 10:foods10091991. [PMID: 34574098 PMCID: PMC8465917 DOI: 10.3390/foods10091991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Sodium alginate (SA)-pectin (PEC)-whey protein isolate (WPI) complexes were used as an emulsifier to prepare β-carotene emulsions, and the encapsulation efficiency for β-carotene was up to 93.08%. The confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) images showed that the SA-PEC-WPI emulsion had a compact network structure. The SA-PEC-WPI emulsion exhibited shear-thinning behavior and was in a semi-dilute or weak network state. The SA-PEC-WPI stabilized β-carotene emulsion had better thermal, physical and chemical stability. A small amount of β-carotene (19.46 ± 1.33%) was released from SA-PEC-WPI stabilized β-carotene emulsion in simulated gastric digestion, while a large amount of β-carotene (90.33 ± 1.58%) was released in simulated intestinal digestion. Fourier transform infrared (FTIR) experiments indicated that the formation of SA-PEC-WPI stabilized β-carotene emulsion was attributed to the electrostatic and hydrogen bonding interactions between WPI and SA or PEC, and the hydrophobic interactions between β-carotene and WPI. These results can facilitate the design of polysaccharide-protein stabilized emulsions with high encapsulation efficiency and stability for nutraceutical delivery in food and supplement products.
Collapse
|
37
|
Du Q, Wang S, Lyu F, Liu J, Ding Y. The interfacial covalent bonding of whey protein hydrolysate and pectin under high temperature sterilization: Effect on emulsion stability. Colloids Surf B Biointerfaces 2021; 206:111936. [PMID: 34214839 DOI: 10.1016/j.colsurfb.2021.111936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
In this study, the effect of high-pressure steam sterilization (121 °C for 15 min) on whey protein hydrolysate-pectin solutions and emulsions was studied. The interaction and emulsification characteristics of pectin and whey protein concentrate (WPC) were evaluated from the solution system to the emulsion system. Enzymatic hydrolysis of WPC (WPH, 2 % and 8 % degree of hydrolysis) increased the covalent binding with pectin, which reduced the heat-induced aggregation of protein and improved emulsification. The thermodynamic incompatibility between WPC and pectin was not conducive to the covalent bonding under high temperature sterilization and produced serious aggregates, which also made a rapid increase in particle size (up to ∼3 μm), compared to WPH-pectin emulsion (∼ 400 nm). In addition, if emulsion was stirred during the sterilization, the creaming and protein aggregation could be avoided. By comparing low methoxy pectin (LMP) and high methoxy pectin (HMP), it was found that the whey protein-HMP complex had better emulsification stability, and the steric stabilization played a more important role in emulsion stability than the electrostatic repulsion. The changes of whey protein and pectin at the oil-water interface of the emulsion during the sterilization process may provide a reference for the sterilized bioactive ingredient delivery system.
Collapse
Affiliation(s)
- Qiwei Du
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China
| | - Shunyu Wang
- Liziyuan Food Limited Liability Company, Zhejiang, 321031, PR China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China.
| |
Collapse
|
38
|
Nawaz MA, Singh TK, Stockmann R, Jegasothy H, Buckow R. Quality Attributes of Ultra-High Temperature-Treated Model Beverages Prepared with Faba Bean Protein Concentrates. Foods 2021; 10:1244. [PMID: 34070795 PMCID: PMC8226724 DOI: 10.3390/foods10061244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/28/2021] [Indexed: 11/27/2022] Open
Abstract
The objective of this research was to develop a model faba bean drink with a high concentration of protein (>4% w/w). The protein molecular weights and frequency for both faba and soy were assessed using SDS-PAGE. Results showed similarities in the protein molecular weight of both faba and soy (mainly 11S globulin ~Glycinin and 7S globulin ~β-conglycinin). Thus, faba can be considered as a potential soy replica in plant-based milk beverages. Oil-in-water emulsions (5-8% w/w available protein) were prepared using faba bean protein concentrate (FPC), 1% sunflower oil, and 0.2% sunflower lecithin. These emulsions were used as model beverages and were further investigated for UHT processibility, stability, and physicochemical properties. The physicochemical properties of emulsions at various processing stages viz., coarse emulsification, homogenisation, and UHT, were measured. An increase in the protein concentration and thermal treatment resulted in an increased oil droplet size, coalescence and flocculation, and protein aggregation. Lower protein concentrations viz., 5-6%, showed greater negative ζ-potential, and thereby, high dispersibility through enhanced electrostatic repulsions than those of higher concentrations (7-8%). Furthermore, an increase in protein concentration and UHT treatment resulted in an increased creaming index. In total, 21 different volatile compounds were detected and quantified, representing different chemical classes, namely alcohols, aldehydes, ketones, esters, furan, and acids. These volatiles have major consequences for the overall flavour chemistry of the model beverage product. Overall, this study showed the potential for application of faba bean as a protein source in UHT-treated legume-based beverages and identified areas for further development.
Collapse
Affiliation(s)
- Malik Adil Nawaz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, 671 Sneydes Road, Private Bag 16, Werribee 3030, Australia; (T.K.S.); (R.S.); (H.J.); (R.B.)
| | - Tanoj Kumar Singh
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, 671 Sneydes Road, Private Bag 16, Werribee 3030, Australia; (T.K.S.); (R.S.); (H.J.); (R.B.)
| | - Regine Stockmann
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, 671 Sneydes Road, Private Bag 16, Werribee 3030, Australia; (T.K.S.); (R.S.); (H.J.); (R.B.)
| | - Hema Jegasothy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, 671 Sneydes Road, Private Bag 16, Werribee 3030, Australia; (T.K.S.); (R.S.); (H.J.); (R.B.)
| | - Roman Buckow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, 671 Sneydes Road, Private Bag 16, Werribee 3030, Australia; (T.K.S.); (R.S.); (H.J.); (R.B.)
- Centre for Advanced Food Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington 2008, Australia
| |
Collapse
|
39
|
Li M, Yu R, Fu R, He Y, Zhao P, Jiang Z, Hou J. Limited hydrolysis of glycosylated whey protein isolate ameliorates the oxidative and physical stabilities of conjugated linoleic acid oil-in-water emulsions. Food Chem 2021; 362:130212. [PMID: 34091171 DOI: 10.1016/j.foodchem.2021.130212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Conjugated linoleic acid contains unsaturated fatty acids with multiple bioactivities, but it has poor oxidative and physical stabilities. Its emulsion was fabricated with glycosylated whey protein isolate and hydrolysates of glycosylated whey protein isolate to enhance its stability. An obvious decrease in peroxide value, thiobarbituric acid-reactive substances, particle size and creaming index of emulsion loaded by hydrolysates of glycosylated protein isolate with the increase of hydrolysis time. However, the absolute value of zeta-potential and interfacial adsorption rate of emulsion stabilized by hydrolysates of glycosylated whey protein isolate, were increased by 10.99 and 16.94% at hydrolysis time of 120 min, compared with emulsion loaded by glycosylated whey protein isolate. Thus, limited hydrolysis of glycosylated whey protein isolate as an effective method, remarkably improved the oxidative and physical stability of emulsion.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Dairy Science (Northeast Agriculture University), Ministry of Education, College of Food Science and Technology, Harbin 150030, PR China
| | - Rui Yu
- Key Laboratory of Dairy Science (Northeast Agriculture University), Ministry of Education, College of Food Science and Technology, Harbin 150030, PR China
| | - Runxiao Fu
- Key Laboratory of Dairy Science (Northeast Agriculture University), Ministry of Education, College of Food Science and Technology, Harbin 150030, PR China
| | - Yanting He
- Key Laboratory of Dairy Science (Northeast Agriculture University), Ministry of Education, College of Food Science and Technology, Harbin 150030, PR China
| | - Panpan Zhao
- Key Laboratory of Dairy Science (Northeast Agriculture University), Ministry of Education, College of Food Science and Technology, Harbin 150030, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agriculture University), Ministry of Education, College of Food Science and Technology, Harbin 150030, PR China.
| | - Juncai Hou
- Key Laboratory of Dairy Science (Northeast Agriculture University), Ministry of Education, College of Food Science and Technology, Harbin 150030, PR China.
| |
Collapse
|
40
|
Pan Y, Li XM, Meng R, Zhang B. Stability and bioaccessibility of curcumin emulsions stabilized by casein hydrolysates after maleic anhydride acylation and pullulan glycation. J Dairy Sci 2021; 104:8425-8438. [PMID: 33985779 DOI: 10.3168/jds.2020-19613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
The effects of maleic anhydride (MA) acylation and pullulan glycation on casein hydrolysates (CH) and the physicochemical stability of modified or unmodified CH-stabilized emulsions were explored. Compared with casein, the solubility of CH was improved, and CH1 (hydrolysis degree 4%) exhibited the optimal emulsifying properties. After the acylation of MA, degrees of acylation (DA) increased with increasing addition of MA. Fourier-transform infrared spectroscopy revealed that a covalent bond was formed between MA and CH1. The results of pullulan glycation indicated that the degree of glycation decreased with increasing DA. Acylation combined with glycation effectively reduced the surface hydrophobicity of CH. Results of analysis of physicochemical stability and gastrointestinal fate of curcumin in emulsions revealed that CH modified by MA acylation and pullulan glycation played a positive role in enhancing the stability and bioaccessibility of curcumin loaded in emulsions.
Collapse
Affiliation(s)
- Yi Pan
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Xiao-Min Li
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Ran Meng
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Bao Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P. R. China.
| |
Collapse
|
41
|
Vogelsang-O’Dwyer M, Zannini E, Arendt EK. Production of pulse protein ingredients and their application in plant-based milk alternatives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Estimation of Degree of Hydrolysis of Protein Hydrolysates by Size Exclusion Chromatography. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Qayum A, Li M, Shi R, Bilawal A, Gantumur MA, Hussain M, Ishfaq M, Waqas Ali Shah S, Jiang Z, Hou J. Laccase cross-linking of sonicated α-Lactalbumin improves physical and oxidative stability of CLA oil in water emulsion. ULTRASONICS SONOCHEMISTRY 2021; 71:105365. [PMID: 33125963 PMCID: PMC7786593 DOI: 10.1016/j.ultsonch.2020.105365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/06/2020] [Accepted: 10/02/2020] [Indexed: 05/08/2023]
Abstract
α-lactalbumin was modified by ultrasound (US, 20 kHz, 43 ± 3.4 W/cm-2) pre-treatments (0, 15, 30 and 60 min) and laccase cross-linking of sonicated α-lactalbumin was used to evaluate the physical and oxidative stability of conjugated linoleic acid (CLA) emulsions. The emulsions prepared with laccase cross-linking US-α-lactalbumin (α-lactalbumin treated with US pre-treatment) and US-α-lactalbumin were scrutinized for oxidative and physical stability at room temperature for two weeks of storage. Laccase cross-linking US-α-lactalbumin (Lac-US-α-lactalbumin) revealed improved physical stability in comparison with US-α-lactalbumin, specified by droplet size, structural morphology, adsorbed protein, emulsifying properties and creaming index. SDS-PAGE analysis showed that there was formation of polymers in Lac-US-α-lactalbumin emulsion. Surface hydrophobicity of Lac-US-α-lactalbumin was higher than that of US-α-lactalbumin, and gradually enhanced with the increase of ultrasound time. More importantly, the measurements of peroxide values and conjugated dienes were used to study the oxidative stability of the CLA emulsions. The Lac-US-α-lactalbumin emulsion proved to be reducing the synthesis of fatty acid hydroperoxides and less conjugated dienes compared to the native and US-α-lactalbumin emulsions. This study revealed that the combination of US pre-treatment and laccase cross-linking might be an effective technique for the modification of CLA emulsions.
Collapse
Affiliation(s)
- Abdul Qayum
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, PR China
| | - Meng Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, PR China
| | - Ruijie Shi
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, PR China
| | - Akhunzada Bilawal
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, PR China
| | - Muhammad Hussain
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, PR China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030 PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, PR China.
| | - Juncai Hou
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, PR China.
| |
Collapse
|
44
|
Nivala O, Nordlund E, Kruus K, Ercili-Cura D. The effect of heat and transglutaminase treatment on emulsifying and gelling properties of faba bean protein isolate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Combinations of Legume Protein Hydrolysates Synergistically Inhibit Biological Markers Associated with Adipogenesis. Foods 2020; 9:foods9111678. [PMID: 33212815 PMCID: PMC7696775 DOI: 10.3390/foods9111678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
The objective was to investigate the anti-adipogenesis potential of selected legume protein hydrolysates (LPH) and combinations using biochemical assays and in silico predictions. Black bean, green pea, chickpea, lentil and fava bean protein isolates were hydrolyzed using alcalase (A) or pepsin/pancreatin (PP). The degree of hydrolysis ranged from 15.5% to 35.5% for A-LPH and PP-LPH, respectively. Antioxidant capacities ranged for ABTS•+ IC50 from 0.3 to 0.9 Trolox equivalents (TE) mg/mL, DPPH• IC50 from 0.7 to 13.5 TE mg/mL and nitric oxide (NO) inhibition IC50 from 0.3 to 1.3 mg/mL. LPH from PP–green pea, A–green pea and A–black bean inhibited pancreatic lipase (PL) (IC50 = 0.9 mg/mL, 2.2 mg/mL and 1.2 mg/mL, respectively) (p < 0.05). For HMG-CoA reductase (HMGR) inhibition, the LPH from A–chickpea (0.15 mg/mL), PP–lentil (1.2 mg/mL), A–green pea (1.4 mg/mL) and PP–green pea (1.5 mg/mL) were potent inhibitors. Combinations of PP–green pea + A–black bean (IC50 = 0.4 mg/mL), A–green pea + PP–green pea (IC50 = 0.9 mg/mL) and A–black bean + A–green pea (IC50 = 0.6 mg/mL) presented synergistic effects to inhibit PL. A–chickpea + PP–lentil (IC50 = 0.8 mg/mL) and PP–lentil + A–green pea (IC50 = 1.3 mg/mL) interacted additively to inhibit HMGR and synergistically in the combination of A–chickpea + PP–black bean (IC50 = 1.3 mg/mL) to block HMGR. Peptides FEDGLV and PYGVPVGVR inhibited PL and HMGR in silico, showing predicted binding energy interactions of −7.6 and −8.8 kcal/mol, respectively. Combinations of LPH from different legume protein sources could increase synergistically their anti-adipogenic potential.
Collapse
|
46
|
Samaei SP, Ghorbani M, Tagliazucchi D, Martini S, Gotti R, Themelis T, Tesini F, Gianotti A, Gallina Toschi T, Babini E. Functional, nutritional, antioxidant, sensory properties and comparative peptidomic profile of faba bean (Vicia faba, L.) seed protein hydrolysates and fortified apple juice. Food Chem 2020; 330:127120. [DOI: 10.1016/j.foodchem.2020.127120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
|
47
|
Padial-Domínguez M, Espejo-Carpio FJ, García-Moreno PJ, Jacobsen C, Guadix EM. Protein derived emulsifiers with antioxidant activity for stabilization of omega-3 emulsions. Food Chem 2020; 329:127148. [PMID: 32485647 DOI: 10.1016/j.foodchem.2020.127148] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 01/21/2023]
Abstract
The performance of a whey protein hydrolysate (WPH) for producing physically and chemically stable omega-3 emulsions was compared to hydrolysates obtained from other sustainable protein sources such as soy (SPH) and blue whiting (BPH). The oxidative stability of hydrolysate-stabilized emulsions was greatly influenced by their physical stability. Emulsion stabilized with BPH suffered a constant increase in droplet size and BPH was not able to prevent omega-3 oxidation, showing high concentration of volatiles. The peroxide value of SPH emulsion increased after the first day of storage, but it had a lower concentration of volatiles. In contrast, WPH-stabilized emulsion, which did not had any change in droplet size during storage, showed the highest oxidative stability. Therefore, our results confirmed that WPH is an interesting option for physical and oxidative stabilization of omega-3 emulsions, while SPH could be used in emulsions with shorter storage time such as pre-emulsions for microencapsulation of omega-3 oils.
Collapse
Affiliation(s)
| | | | | | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, Granada, Spain
| |
Collapse
|
48
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
49
|
Addition of cationic guar-gum and oleic acid improved the stability of plasma emulsions prepared with enzymatically hydrolyzed egg yolk. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
50
|
Optimization of the Emulsifying Properties of Food Protein Hydrolysates for the Production of Fish Oil-in-Water Emulsions. Foods 2020; 9:foods9050636. [PMID: 32429164 PMCID: PMC7278789 DOI: 10.3390/foods9050636] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/15/2023] Open
Abstract
The incorporation of lipid ingredients into food matrices presents a main drawback-their susceptibility to oxidation-which is associated with the loss of nutritional properties and the generation of undesirable flavors and odors. Oil-in-water emulsions are able to stabilize and protect lipid compounds from oxidation. Driven by consumers' demand, the search for natural emulsifiers, such as proteins, is gaining much interest in food industries. This paper evaluates the in vitro emulsifying properties of protein hydrolysates from animal (whey protein concentrate) and vegetal origin (a soy protein isolate). By means of statistical modelling and bi-objective optimization, the experimental variables, namely, the protein source, enzyme (i.e., subtilisin, trypsin), degree of hydrolysis (2-14%) and emulsion pH (2-8), were optimized to obtain their maximal in vitro emulsifying properties. This procedure concluded that the emulsion prepared from the soy protein hydrolysate (degree of hydrolysis (DH) 6.5%, trypsin) at pH 8 presented an optimal combination of emulsifying properties (i.e., the emulsifying activity index and emulsifying stability index). For validation purposes, a fish oil-in-water emulsion was prepared under optimal conditions, evaluating its physical and oxidative stability for ten days of storage. This study confirmed that the use of soy protein hydrolysate as an emulsifier stabilized the droplet size distribution and retarded lipid oxidation within the storage period, compared to the use of a non-hydrolyzed soy protein isolate.
Collapse
|