1
|
Shankar KS, Vanaja M, Shankar M, Siddiqua A, Sharma KL, Girijaveni V, Singh VK. Change in mineral composition and cooking quality in legumes grown on semi-arid alfisols due to elevated CO 2 and temperature. Front Nutr 2025; 11:1444962. [PMID: 39834453 PMCID: PMC11742948 DOI: 10.3389/fnut.2024.1444962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/04/2024] [Indexed: 01/22/2025] Open
Abstract
This study aimed to determine the effects of elevated carbon dioxide (eCO2) and temperature (eT) on the phytochemical and nutritional parameters of legumes. Field experiments were conducted using black gram (Vigna mungo L.), green gram (Vigna radiate L.), and pigeonpea (Cajanus cajan L.) genotypes under the Free Air Temperature Elevation (FATE) facility, with three treatments (Ac, eT, and eCO2 + eT) at ICAR-CRIDA, Hyderabad. The results revealed that the negative impact on both phytochemical and nutritional quality was greater under eT compared to eCO2 + eT. Specifically, protein content decreased by 25.6% under eT + eCO2, while the ash content increased by 38.19%. Carbohydrate levels also decreased by 5.53% under these conditions. The reduction in micronutrients (Zn, Fe, Mn, and Cu) was more pronounced than in macronutrients (P, Ca, and Mg) across the three crops. Moreover, principal component analysis (PCA) revealed that the major contributors to PC1 were Mg, crude fiber, cooking time, phosphorus, hydration capacity, ash content, and Mn. The primary contributors to PC2 included swelling capacity, Cu, Mn, carbohydrate, hydration capacity, and Zn. In contrast, the major contributors to PC3 were Ca, Fe, Zn, protein, carbohydrate, swelling index, and ash content. The eigenvalues of principal components, calibrated through different parameters, ranged from 1.052 to 4.755 in black gram and from 1.073 to 6.267 in green gram. This study provides insights into nutritional quality under changing global climate conditions.
Collapse
Affiliation(s)
- K. Sreedevi Shankar
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India
| | - M. Vanaja
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India
| | - Mekala Shankar
- Jaya Shankar Telangana State Agricultural University, Hyderabad, Telangana, India
| | - Asma Siddiqua
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India
| | - K. L. Sharma
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India
| | - V. Girijaveni
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India
| | - V. K. Singh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Tcherkez G, Ben Mariem S, Jauregui I, Larraya L, García-Mina JM, Zamarreño AM, Fangmeier A, Aranjuelo I. Differential effects of elevated CO 2 on awn and glume metabolism in durum wheat ( Triticum durum). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23255. [PMID: 38388529 DOI: 10.1071/fp23255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
While the effect of CO2 enrichment on wheat (Triticum spp.) photosynthesis, nitrogen content or yield has been well-studied, the impact of elevated CO2 on metabolic pathways in organs other than leaves is poorly documented. In particular, glumes and awns, which may refix CO2 respired by developing grains and be naturally exposed to higher-than-ambient CO2 mole fraction, could show specific responses to elevated CO2 . Here, we took advantage of a free-air CO2 enrichment experiment and performed multilevel analyses, including metabolomics, ionomics, proteomics, major hormones and isotopes in Triticum durum . While in leaves, elevated CO2 tended to accelerate amino acid metabolism with many significantly affected metabolites, the effect on glumes and awns metabolites was modest. There was a lower content in compounds of the polyamine pathway (along with uracile and allantoin) under elevated CO2 , suggesting a change in secondary N metabolism. Also, cytokinin metabolism appeared to be significantly affected under elevated CO2 . Despite this, elevated CO2 did not affect the final composition of awn and glume organic matter, with the same content in carbon, nitrogen and other elements. We conclude that elevated CO2 mostly impacts on leaf metabolism but has little effect in awns and glumes, including their composition at maturity.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, ACT 2601, Australia; and Institut de Recherche en Horticulture et Semences, INRA d'Angers, Université d'Angers, Structure Fédérative de Recherche QUASAV, 42 rue Georges Morel, Beaucouzé 49071, France
| | - Sinda Ben Mariem
- AgroBiotechnology Institute (IdAB), CSIC-Government of Navarre, Av. Pamplona 123, Mutilva 31006, Spain
| | - Iván Jauregui
- Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, Campus Arrosadia, Pamplona 31006, Spain
| | - Luis Larraya
- Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, Campus Arrosadia, Pamplona 31006, Spain
| | - Jose M García-Mina
- Universidad de Navarra, Facultades de Ciencias y Farmacia y Nutrición, Grupo de Biología y Química Agrícola (Departamento de Biología Ambiental), c/Irunlarrea 1, Pamplona 31008, Spain
| | - Angel M Zamarreño
- Universidad de Navarra, Facultades de Ciencias y Farmacia y Nutrición, Grupo de Biología y Química Agrícola (Departamento de Biología Ambiental), c/Irunlarrea 1, Pamplona 31008, Spain
| | - Andreas Fangmeier
- Institute of Landscape and Plant Ecology, University of Hohenheim, Ottilie-Zeller-Weg 3, Stuttgart 70599, Germany
| | - Iker Aranjuelo
- AgroBiotechnology Institute (IdAB), CSIC-Government of Navarre, Av. Pamplona 123, Mutilva 31006, Spain
| |
Collapse
|
3
|
Pan Y, Han X, Xu H, Wu W, Liu X, Li Y, Xue C. Elevated atmospheric CO 2 delays the key timing for split N applications to improve wheat ( Triticum aestivum L.) protein composition. FRONTIERS IN PLANT SCIENCE 2023; 14:1186890. [PMID: 37409303 PMCID: PMC10318929 DOI: 10.3389/fpls.2023.1186890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Late stage nitrogen (N) applications following basic fertilization are commonly used to ensure grain yield and increase grain protein content in wheat. Split N applications at the late growth stage of wheat are an effective measure to improve N absorption and transport and thus increase grain protein content. However, whether split N applications can alleviate the decrease in grain protein content induced by elevated atmospheric CO2 concentrations (e[CO2]) remains unclear. In the present study, a free-air CO2 enrichment system was used to investigate the effects of split N applications (at booting or anthesis) on grain yield, N utilization, protein content, and the composition of wheat under atmospheric (ACO2; 400 ± 15 ppm) and elevated CO2 concentrations (ECO2; 600 ± 15 ppm). The results showed that wheat grain yield and grain N uptake increased by 5.0% (being grains per ear by 3.0%, 1000-grain weight by 2.0%, and harvest index by 1.6%) and 4.3%, respectively, whereas grain protein content decreased by 2.3% under ECO2 conditions. Although the negative effect of e[CO2] on grain protein content was not alleviated by split N applications, gluten protein content was enhanced due to the alteration of N distribution in different protein fractions (albumins, globulins, gliadins, and glutenins). Compared to that without split N applications, the gluten content of wheat grains increased by 4.2% and 4.5% when late stage N was applied at the booting stage under ACO2 and anthesis under ECO2 conditions, respectively. The results indicate that rational handling of N fertilizers may be a promising approach to coordinating grain yield and quality under the effects of future climate change. However, compared to ACO2 conditions, the key timing for improving grain quality by split N applications should be postponed from the booting stage to anthesis under e[CO2] conditions.
Collapse
Affiliation(s)
- Yue Pan
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Farmland Eco-Environment of Hebei/College of Resources and Environmental Science, Hebei Agricultural University, Baoding, China
| | - Xue Han
- Key Laboratory of Agro-environment and Climate Change of Agriculture Ministry, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huasen Xu
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Farmland Eco-Environment of Hebei/College of Resources and Environmental Science, Hebei Agricultural University, Baoding, China
| | - Wei Wu
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Farmland Eco-Environment of Hebei/College of Resources and Environmental Science, Hebei Agricultural University, Baoding, China
| | - Xiaoming Liu
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Farmland Eco-Environment of Hebei/College of Resources and Environmental Science, Hebei Agricultural University, Baoding, China
| | - Yingchun Li
- Key Laboratory of Agro-environment and Climate Change of Agriculture Ministry, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Xue
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Farmland Eco-Environment of Hebei/College of Resources and Environmental Science, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Zahra N, Hafeez MB, Wahid A, Al Masruri MH, Ullah A, Siddique KHM, Farooq M. Impact of climate change on wheat grain composition and quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2745-2751. [PMID: 36273267 DOI: 10.1002/jsfa.12289] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Wheat grain quality, an important determinant for human nutrition, is often overlooked when improving crop production for stressed environments. Climate change makes this task more difficult by imposing combined stresses. The scenarios relevant to climate change include elevated CO2 concentrations (eCO2 ) and extreme climatic events such as drought, heat waves, and salinity stresses. However, data on wheat quality in terms of climate change are limited, with no concerted efforts at the global level to provide an equitable and consistent climate risk assessment for wheat grain quality. Climate change induces changes in the quality and composition of wheat grain, a premier staple food crop globally. Climate-change events, such as eCO2 , heat, drought, salinity stress stresses, heat + drought, eCO2 + drought, and eCO2 + heat stresses, alter wheat grain quality in terms of grain weight, nutrient, anti-nutrient, fiber, and protein content and composition, starch granules, and free amino acid composition. Interestingly, in comparison with other stresses, heat stress and drought stress increase phytate content, which restricts the bioavailability of essential mineral elements. All climatic events, except for eCO2 + heat stress, increase grain gliadin content in different wheat varieties. However, grain quality components depend more on inter-varietal difference, stress type, and exposure time and intensity. The climatic events show differential regulation of protein and starch accumulation, and mineral metabolism in wheat grains. Rapid climate shifting impairs wheat productivity and causes grain quality to deteriorate by interrupting the allocation of essential nutrients and photoassimilates. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Noreen Zahra
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
- Department of Botany, Government College for Women University, Faisalabad, Pakistan
| | | | - Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muna Hamed Al Masruri
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Seeb, Oman
| | - Aman Ullah
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Seeb, Oman
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Seeb, Oman
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| |
Collapse
|
5
|
Jain D, Jones L, Roy S. Gene editing to improve legume-rhizobia symbiosis in a changing climate. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102324. [PMID: 36535148 DOI: 10.1016/j.pbi.2022.102324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
In the last three years, several gene editing techniques have been developed for both model and crop legumes. CRISPR-Cas9-based tools, in particular, are outpacing other comparable gene editing technologies used in legume hosts and their microbial symbionts to understand the molecular basis of symbiotic nitrogen-fixation. Gene editing has helped identify new gene functions, validate genetic screens, resolve gene redundancy, examine the role of tandemly duplicated genes, and investigate symbiotic signaling networks in non-model plants. In this review, we discuss the advances made in understanding the legume-rhizobia symbiosis through the use of gene editing and highlight studies conducted under varying environmental conditions. We reason that future climate-hardy legumes must be able to better integrate environmental signals with nitrogen fixation by fine-tuning long distance signaling, continuing to select efficient rhizobial partners, and adjusting their molecular circuitry to function optimally under variable light and nutrient availability and rising atmospheric carbon dioxide.
Collapse
Affiliation(s)
- Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| | - Lauren Jones
- Noble Research Institute, LLC, Ardmore, OK 73401, USA
| | - Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
6
|
Zingale S, Spina A, Ingrao C, Fallico B, Timpanaro G, Anastasi U, Guarnaccia P. Factors Affecting the Nutritional, Health, and Technological Quality of Durum Wheat for Pasta-Making: A Systematic Literature Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:530. [PMID: 36771615 PMCID: PMC9920027 DOI: 10.3390/plants12030530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/30/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Durum wheat is one of the most important food sources in the world, playing a key role in human nutrition, as well as in the economy of the different countries in which its production areas are concentrated. Its grain also represents a staple and highly versatile ingredient in the development of health foods. Nonetheless, the aspects determining durum wheat's health quality and their interactions are many, complex, and not entirely known. Therefore, the present systematic literature review aims at advancing the understanding of the relationships among nutritional, health, and technological properties of durum wheat grain, semolina, and pasta, by evaluating the factors that, either positively or negatively, can affect the quality of the products. Scopus, Science Direct, and Web of Science databases were systematically searched utilising sets of keywords following the PRISMA guidelines, and the relevant results of the definitive 154 eligible studies were presented and discussed. Thus, the review identified the most promising strategies to improve durum wheat quality and highlighted the importance of adopting multidisciplinary approaches for such purposes.
Collapse
Affiliation(s)
- Silvia Zingale
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Alfio Spina
- Agricultural Research Council and Economics (CREA)—Research Centre for Cereal and Industrial Crops, Corso Savoia, 190, 95024 Acireale, Italy
| | - Carlo Ingrao
- Department of Economics, Management and Business Law, University of Bari Aldo Moro, Largo Abbazia Santa Scolastica, 53, 70124 Bari, Italy
| | - Biagio Fallico
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Giuseppe Timpanaro
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Umberto Anastasi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Paolo Guarnaccia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| |
Collapse
|
7
|
Večeřová K, Oravec M, Puranik S, Findurová H, Veselá B, Opoku E, Ofori-Amanfo KK, Klem K, Urban O, Sahu PP. Single and interactive effects of variables associated with climate change on wheat metabolome. FRONTIERS IN PLANT SCIENCE 2022; 13:1002561. [PMID: 36299781 PMCID: PMC9589161 DOI: 10.3389/fpls.2022.1002561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023]
Abstract
One of the key challenges linked with future food and nutritional security is to evaluate the interactive effect of climate variables on plants' growth, fitness, and yield parameters. These interactions may lead to unique shifts in the morphological, physiological, gene expression, or metabolite accumulation patterns, leading to an adaptation response that is specific to future climate scenarios. To understand such changes, we exposed spring wheat to 7 regimes (3 single and 4 combined climate treatments) composed of elevated temperature, the enhanced concentration of CO2, and progressive drought stress corresponding to the predicted climate of the year 2100. The physiological and metabolic responses were then compared with the current climate represented by the year 2020. We found that the elevated CO2 (eC) mitigated some of the effects of elevated temperature (eT) on physiological performance and metabolism. The metabolite profiling of leaves revealed 44 key metabolites, including saccharides, amino acids, and phenolics, accumulating contrastingly under individual regimes. These metabolites belong to the central metabolic pathways that are essential for cellular energy, production of biosynthetic pathways precursors, and oxidative balance. The interaction of eC alleviated the negative effect of eT possibly by maintaining the rate of carbon fixation and accumulation of key metabolites and intermediates linked with the Krebs cycle and synthesis of phenolics. Our study for the first time revealed the influence of a specific climate factor on the accumulation of metabolic compounds in wheat. The current work could assist in the understanding and development of climate resilient wheat by utilizing the identified metabolites as breeding targets for food and nutritional security.
Collapse
Affiliation(s)
- Kristýna Večeřová
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Michal Oravec
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Swati Puranik
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Hana Findurová
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Barbora Veselá
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Emmanuel Opoku
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Kojo Kwakye Ofori-Amanfo
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Karel Klem
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Otmar Urban
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Pranav Pankaj Sahu
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
8
|
Shi X, Shen J, Niu B, Lam SK, Zong Y, Zhang D, Hao X, Li P. An optimistic future of C 4 crop broomcorn millet ( Panicum miliaceum L.) for food security under increasing atmospheric CO 2 concentrations. PeerJ 2022; 10:e14024. [PMID: 36097526 PMCID: PMC9463996 DOI: 10.7717/peerj.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Broomcorn millet, a C4 cereal, has better tolerance to environmental stresses. Although elevated atmospheric CO2 concentration has led to grain nutrition reduction in most staple crops, studies evaluating its effects on broomcorn millet are still scarce. The yield, nutritional quality and metabolites of broomcorn millet were investigated under ambient CO2 (aCO2, 400 µmol mol-1) and elevated CO2 (eCO2, aCO2+ 200 µmol mol-1) for three years using open-top chambers (OTC). The results showed that the yield of broomcorn millet was markedly increased under eCO2 compared with aCO2. On average, eCO2 significantly increased the concentration of Mg (27.3%), Mn (14.6%), and B (21.2%) over three years, whereas it did not affect the concentration of P, K, Fe, Ca, Cu or Zn. Protein content was significantly decreased, whereas starch and oil concentrations were not changed by eCO2. With the greater increase in grain yield, eCO2 induced increase in the grain accumulations of P (23.87%), K (29.5%), Mn (40.08%), Ca (22.58%), Mg (51.31%), Zn (40.95%), B (48.54%), starch (16.96%) and oil (28.37%) on average for three years. Flavonoids such as kaempferol, apigenin, eriodictyol, luteolin, and chrysoeriol were accumulated under eCO2. The reduction in L-glutamine and L-lysine metabolites, which were the most representative amino acid in grain proteins, led to a reduction of protein concentration under eCO2. Broomcorn millet has more desirable nutritional traits for combating hidden hunger. This may potentially be useful for breeding more nutritious plants in the era of climate change.
Collapse
Affiliation(s)
- Xinrui Shi
- Shanxi Agricultural University, Taigu, China
| | - Jie Shen
- Changzhi University, Changzhi, China
| | - Bingjie Niu
- Shanxi Agricultural University, Taigu, China
| | - Shu Kee Lam
- University of Melbourne, Melbourne, Australia
| | | | | | - Xingyu Hao
- Shanxi Agricultural University, Taigu, China,Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Taigu, China
| | - Ping Li
- Shanxi Agricultural University, Taigu, China,Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Taigu, China
| |
Collapse
|
9
|
Domergue JB, Lalande J, Abadie C, Tcherkez G. Compound-Specific 14N/ 15N Analysis of Amino Acid Trimethylsilylated Derivatives from Plant Seed Proteins. Int J Mol Sci 2022; 23:ijms23094893. [PMID: 35563286 PMCID: PMC9105707 DOI: 10.3390/ijms23094893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Isotopic analyses of plant samples are now of considerable importance for food certification and plant physiology. In fact, the natural nitrogen isotope composition (δ15N) is extremely useful to examine metabolic pathways of N nutrition involving isotope fractionations. However, δ15N analysis of amino acids is not straightforward and involves specific derivatization procedures to yield volatile derivatives that can be analysed by gas chromatography coupled to isotope ratio mass spectrometry (GC-C-IRMS). Derivatizations other than trimethylsilylation are commonly used since they are believed to be more reliable and accurate. Their major drawback is that they are not associated with metabolite databases allowing identification of derivatives and by-products. Here, we revisit the potential of trimethylsilylated derivatives via concurrent analysis of δ15N and exact mass GC-MS of plant seed protein samples, allowing facile identification of derivatives using a database used for metabolomics. When multiple silylated derivatives of several amino acids are accounted for, there is a good agreement between theoretical and observed N mole fractions, and δ15N values are satisfactory, with little fractionation during derivatization. Overall, this technique may be suitable for compound-specific δ15N analysis, with pros and cons.
Collapse
Affiliation(s)
- Jean-Baptiste Domergue
- Institut de Recherche en Horticulture et Semences, Université d’Angers, INRAe, 42 Rue Georges Morel, 49070 Beaucouzé, France; (J.-B.D.); (J.L.); (C.A.)
| | - Julie Lalande
- Institut de Recherche en Horticulture et Semences, Université d’Angers, INRAe, 42 Rue Georges Morel, 49070 Beaucouzé, France; (J.-B.D.); (J.L.); (C.A.)
| | - Cyril Abadie
- Institut de Recherche en Horticulture et Semences, Université d’Angers, INRAe, 42 Rue Georges Morel, 49070 Beaucouzé, France; (J.-B.D.); (J.L.); (C.A.)
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, Université d’Angers, INRAe, 42 Rue Georges Morel, 49070 Beaucouzé, France; (J.-B.D.); (J.L.); (C.A.)
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- Correspondence:
| |
Collapse
|
10
|
Hay WT, Anderson JA, McCormick SP, Hojilla-Evangelista MP, Selling GW, Utt KD, Bowman MJ, Doll KM, Ascherl KL, Berhow MA, Vaughan MM. Fusarium head blight resistance exacerbates nutritional loss of wheat grain at elevated CO 2. Sci Rep 2022; 12:15. [PMID: 34996967 PMCID: PMC8741757 DOI: 10.1038/s41598-021-03890-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022] Open
Abstract
The nutritional integrity of wheat is jeopardized by rapidly rising atmospheric carbon dioxide (CO2) and the associated emergence and enhanced virulence of plant pathogens. To evaluate how disease resistance traits may impact wheat climate resilience, 15 wheat cultivars with varying levels of resistance to Fusarium Head Blight (FHB) were grown at ambient and elevated CO2. Although all wheat cultivars had increased yield when grown at elevated CO2, the nutritional contents of FHB moderately resistant (MR) cultivars were impacted more than susceptible cultivars. At elevated CO2, the MR cultivars had more significant differences in plant growth, grain protein, starch, fructan, and macro and micro-nutrient content compared with susceptible wheat. Furthermore, changes in protein, starch, phosphorus, and magnesium content were correlated with the cultivar FHB resistance rating, with more FHB resistant cultivars having greater changes in nutrient content. This is the first report of a correlation between the degree of plant pathogen resistance and grain nutritional content loss in response to elevated CO2. Our results demonstrate the importance of identifying wheat cultivars that can maintain nutritional integrity and FHB resistance in future atmospheric CO2 conditions.
Collapse
Affiliation(s)
- William T Hay
- Mycotoxin Prevention and Applied Microbiology Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA.
| | - James A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA
| | - Milagros P Hojilla-Evangelista
- Plant Polymer Research Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA
| | - Gordon W Selling
- Plant Polymer Research Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA
| | - Kelly D Utt
- Plant Polymer Research Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA
| | - Michael J Bowman
- Bioenergy Research Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA
| | - Kenneth M Doll
- Bio-Oils Research Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA
| | - Kim L Ascherl
- Bio-Oils Research Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA
| | - Mark A Berhow
- Functional Foods Research Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA
| |
Collapse
|
11
|
Soba D, Aranjuelo I, Gakière B, Gilard F, Pérez-López U, Mena-Petite A, Muñoz-Rueda A, Lacuesta M, Sanz-Saez A. Soybean Inoculated With One Bradyrhizobium Strain Isolated at Elevated [CO 2] Show an Impaired C and N Metabolism When Grown at Ambient [CO 2]. FRONTIERS IN PLANT SCIENCE 2021; 12:656961. [PMID: 34093614 PMCID: PMC8173217 DOI: 10.3389/fpls.2021.656961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 05/27/2023]
Abstract
Soybean (Glycine max L.) future response to elevated [CO2] has been shown to differ when inoculated with B. japonicum strains isolated at ambient or elevated [CO2]. Plants, inoculated with three Bradyrhizobium strains isolated at different [CO2], were grown in chambers at current and elevated [CO2] (400 vs. 700 ppm). Together with nodule and leaf metabolomic profile, characterization of nodule N-fixation and exchange between organs were tested through 15N2-labeling analysis. Soybeans inoculated with SFJ14-36 strain (isolated at elevated [CO2]) showed a strong metabolic imbalance, at nodule and leaf levels when grown at ambient [CO2], probably due to an insufficient supply of N by nodules, as shown by 15N2-labeling. In nodules, due to shortage of photoassimilate, C may be diverted to aspartic acid instead of malate in order to improve the efficiency of the C source sustaining N2-fixation. In leaves, photorespiration and respiration were boosted at ambient [CO2] in plants inoculated with this strain. Additionally, free phytol, antioxidants, and fatty acid content could be indicate induced senescence due to oxidative stress and lack of nitrogen. Therefore, plants inoculated with Bradyrhizobium strain isolated at elevated [CO2] may have lost their capacity to form effective symbiosis at ambient [CO2] and that was translated at whole plant level through metabolic impairment.
Collapse
Affiliation(s)
- David Soba
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Pamplona, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Pamplona, Spain
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
| | - Usue Pérez-López
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Amaia Mena-Petite
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alberto Muñoz-Rueda
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maite Lacuesta
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alvaro Sanz-Saez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
12
|
Huérfano X, Estavillo JM, Duñabeitia MK, González-Moro MB, González-Murua C, Fuertes-Mendizábal T. Response of Wheat Storage Proteins and Breadmaking Quality to Dimethylpyrazole-Based Nitrification Inhibitors under Different Nitrogen Fertilization Splitting Strategies. PLANTS 2021; 10:plants10040703. [PMID: 33917372 PMCID: PMC8067339 DOI: 10.3390/plants10040703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022]
Abstract
Improving fertilizer nitrogen (N) use efficiency is essential to increase crop productivity and avoid environmental damage. This study was conducted during four crop cycles of winter wheat under humid Mediterranean conditions (Araba, northern Spain). The effects of N-fertilization splitting and the application of the nitrification inhibitors (NIs) 3,4-dimethylpyrazole phosphate (DMPP) and 2-(3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA) as strategies to improve grain quality were examined. The hypothesis of this study was to test if the partial ammonium nutrition and the reduction of fertilizer losses presumably induced by the application of NIs can modify the grain gliadin and glutenin protein contents and the breadmaking quality (dough rheological properties). Among both NIs assayed, only DMPP showed a slight effect of decreasing the omega gliadin fraction, following splitting either two or three times, although this effect was dependent on the year and was not reflected in terms of dough extensibility. The slight decreases observed in grain quality in terms of dough strength and glutenin content induced by DMPP suggest that DMPSA is more promising in terms of maintaining grain quality. Nonetheless, these poor effects exerted by NI application on grain quality parameters did not lead to changes in the quality parameters defining the flour aptitudes for breadmaking.
Collapse
|
13
|
Ma Y, Xie Y, Ha R, Cao B, Song L. Effects of Elevated CO 2 on Photosynthetic Accumulation, Sucrose Metabolism-Related Enzymes, and Genes Identification in Goji Berry ( Lycium barbarum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:643555. [PMID: 33777078 PMCID: PMC7991576 DOI: 10.3389/fpls.2021.643555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/16/2021] [Indexed: 05/14/2023]
Abstract
Goji berry (Lycium barbarum L.) exposure to elevated CO2 (eCO2) for long periods reduces their sugar and secondary metabolite contents. However, sugar accumulation in fruit depends on photosynthesis and photoassimilate partitioning. This study aimed to explore photosynthesis, sugar content, and sucrose metabolism-related enzyme activities in goji berry leaves and fruits under ambient and eCO2 levels, and identify the genes encoding L. barbarum acid invertase (LBAI), L. barbarum sucrose synthase (LBSS), L. barbarum sucrose phosphate synthase (LBSPS), and L. barbarum neutral invertase (LBNI), based on transcriptome profiling. Further, the characterization of four identified genes was analyzed including subcellular localization and expression patterns. In plants grown under eCO2 for 90 or 120 days, the expression of the above-mentioned genes changed significantly as the photosynthetic rate increased. In addition, leaf and fruit sugar contents decreased, and the activities of four sucrose metabolism-related enzymes increased in leaves, while acid and neutral invertase increased in fruits. Protein sequence analysis demonstrated that LBAI and LBNI contain a conservative structure domain belonging to the glycosyl hydrolases (Glyco_hydro) family, and both LBSS and LBSPS belonging to the sucrose synthase (Sucrose_synth) and glycosyltransferase (Glycos_transf) family. Subcellular localization analysis showed that LBAI, LBNI, and LBSS were all located in the nucleus, plasma membrane, and cytoplasm, while LBSPS was located in the plasma membrane. The expressions of LBAI, LBSPS, and LBNI were high in the stems, whereas LBSS was predominantly expressed in the fruits. Our findings provide fundamental data on photosynthesis and sugar accumulation trends in goji berries under eCO2 exposure.
Collapse
Affiliation(s)
- Yaping Ma
- School of Agriculture, Ningxia University, Yinchuan, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yun Xie
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Rong Ha
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Bing Cao
- School of Agriculture, Ningxia University, Yinchuan, China
- *Correspondence: Bing Cao,
| | - Lihua Song
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
14
|
Tcherkez G, Ben Mariem S, Larraya L, García-Mina JM, Zamarreño AM, Paradela A, Cui J, Badeck FW, Meza D, Rizza F, Bunce J, Han X, Tausz-Posch S, Cattivelli L, Fangmeier A, Aranjuelo I. Elevated CO2 has concurrent effects on leaf and grain metabolism but minimal effects on yield in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5990-6003. [PMID: 32687190 PMCID: PMC7751139 DOI: 10.1093/jxb/eraa330] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 05/21/2023]
Abstract
While the general effect of CO2 enrichment on photosynthesis, stomatal conductance, N content, and yield has been documented, there is still some uncertainty as to whether there are interactive effects between CO2 enrichment and other factors, such as temperature, geographical location, water availability, and cultivar. In addition, the metabolic coordination between leaves and grains, which is crucial for crop responsiveness to elevated CO2, has never been examined closely. Here, we address these two aspects by multi-level analyses of data from several free-air CO2 enrichment experiments conducted in five different countries. There was little effect of elevated CO2 on yield (except in the USA), likely due to photosynthetic capacity acclimation, as reflected by protein profiles. In addition, there was a significant decrease in leaf amino acids (threonine) and macroelements (e.g. K) at elevated CO2, while other elements, such as Mg or S, increased. Despite the non-significant effect of CO2 enrichment on yield, grains appeared to be significantly depleted in N (as expected), but also in threonine, the S-containing amino acid methionine, and Mg. Overall, our results suggest a strong detrimental effect of CO2 enrichment on nutrient availability and remobilization from leaves to grains.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra Australia
- Institut de Recherche en Horticulture et Semences, INRA d’Angers, Université d’Angers, Structure Fédérative de Recherche QUASAV, Beaucouzé, France
| | - Sinda Ben Mariem
- AgroBiotechnology Institute (IdAB), CSIC-Government of Navarre, Mutilva, Spain
| | - Luis Larraya
- Institute for Multidisciplinary Applied Biology, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, Spain
| | - Jose M García-Mina
- Facultades de Ciencias y Farmacia y Nutrición, Grupo de Biología y Química Agrícola (Departamento de Biología Ambiental), Universidad de Navarra, Pamplona, Spain
| | - Angel M Zamarreño
- Facultades de Ciencias y Farmacia y Nutrición, Grupo de Biología y Química Agrícola (Departamento de Biología Ambiental), Universidad de Navarra, Pamplona, Spain
| | | | - Jing Cui
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra Australia
| | - Franz-Werner Badeck
- CREA Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Diego Meza
- Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - Fulvia Rizza
- CREA Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - James Bunce
- Adaptive Cropping Systems Lab, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, USA
| | - Xue Han
- Institute of Environment and sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (IEDA, CAAS), Beijing, China
| | - Sabine Tausz-Posch
- Department of Agriculture, Science and the Environment, School of Health, Medical and Applied Sciences, CQUniversity Australia, Kawana, QLD, Australia
| | - Luigi Cattivelli
- CREA Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Andreas Fangmeier
- Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - Iker Aranjuelo
- AgroBiotechnology Institute (IdAB), CSIC-Government of Navarre, Mutilva, Spain
| |
Collapse
|
15
|
Li X, Zhao J, Shang M, Song H, Zhang J, Xu X, Zheng S, Hou L, Li M, Xing G. Physiological and molecular basis of promoting leaf growth in strawberry (Fragaria ananassa Duch.) by CO2 enrichment. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1811766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Xuan Li
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Jing Zhao
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Mengya Shang
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Hongxia Song
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Jing Zhang
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Xiaoyong Xu
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Shaowen Zheng
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Leiping Hou
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Meilan Li
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Guoming Xing
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| |
Collapse
|
16
|
Geng P, Sun J, Chen P, Li Y, Peng B, Harnly JM, Bunce J. A systematic approach to determine the impact of elevated CO2 levels on the chemical composition of wheat (Triticum aestivum). J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
MacDonald JG, Rodriguez K, Quirk S. An Oxygen Delivery Polymer Enhances Seed Germination in a Martian-like Environment. ASTROBIOLOGY 2020; 20:846-863. [PMID: 32196355 PMCID: PMC7368388 DOI: 10.1089/ast.2019.2056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Critical to the success of establishing a sustainable human presence on Mars is the ability to economically grow crop plants. Several environmental factors make it difficult to fully rely on local resources for agriculture. These include nutrient sparse regolith, low and fluctuating temperatures, a high amount of ultraviolet radiation, and water trapped locally in the form of ice or metal oxides. While the 96% CO2 martian atmosphere is ideal to support photosynthesis, high CO2 concentrations inhibit germination. An added difficulty is the fact that a vast majority of crop plants require oxygen for germination. Here, we report the production of a polymer-based oxygen delivery system that supports the germination and growth of cress seeds (Lepidium sativum) in a martian regolith simulant under a martian atmosphere at 101 kPa. The oxygen-donating system is based on a low-density lightly cross-linked polyacrylate that is foamed and converted into a dry powder. It is lightweight, added in low amounts to regolith simulant, and efficiently donates enough oxygen throughout the volume of hydrated regolith simulant to fully support seed germination and plant growth. Germination rates, plant development, and plant mass are nearly identical for L. sativum grown in 100% CO2 in the presence of the oxygen-donating lightly cross-linked polyacrylate compared with plants grown in air. The polymer system also serves to protect root structures and better anchors plants in the regolith simulant.
Collapse
|
18
|
Hay WT, McCormick SP, Hojilla-Evangelista MP, Bowman MJ, Dunn RO, Teresi JM, Berhow MA, Vaughan MM. Changes in Wheat Nutritional Content at Elevated [CO 2] Alter Fusarium graminearum Growth and Mycotoxin Production on Grain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6297-6307. [PMID: 32407107 DOI: 10.1021/acs.jafc.0c01308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rising atmospheric [CO2] has been shown to impact plant primary metabolism and the severity of Fusarium head blight (FHB) in wheat. In this study, we evaluated how changes in grain nutritional content due to growth at elevated [CO2] affected Fusarium graminearum growth and mycotoxin production. Susceptible (Norm) and moderately resistant (Alsen) hard spring wheat grains that had been grown at ambient (400 ppm) or elevated [CO2] (800 ppm) were independently inoculated with two F. graminearum fungal strains, which produce the trichothecene mycotoxin, deoxynivalenol. Under higher [CO2], FHB-susceptible and moderately resistant wheat had disproportionate losses in protein and mineral contents, with Alsen being more severely impacted. Furthermore, the F. graminearum strain 9F1 had increased mycotoxin biosynthesis in response to the loss of wheat nutritional content in Alsen. Our results demonstrate that future [CO2] conditions may provide a strain-specific pathogenic advantage on hosts, with greater losses in nutritional content.
Collapse
Affiliation(s)
- William T Hay
- Mycotoxin Prevention and Applied Microbiology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 North, University Street, Peoria, Illinois 61604, United States
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 North, University Street, Peoria, Illinois 61604, United States
| | - Milagros P Hojilla-Evangelista
- Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, United States
| | - Michael J Bowman
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, United States
| | - Robert O Dunn
- Bio-oils Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, United States
| | - Jennifer M Teresi
- Mycotoxin Prevention and Applied Microbiology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 North, University Street, Peoria, Illinois 61604, United States
| | - Mark A Berhow
- Functional Foods Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, United States
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 North, University Street, Peoria, Illinois 61604, United States
| |
Collapse
|
19
|
Dier M, Hüther L, Schulze WX, Erbs M, Köhler P, Weigel HJ, Manderscheid R, Zörb C. Elevated Atmospheric CO 2 Concentration Has Limited Effect on Wheat Grain Quality Regardless of Nitrogen Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3711-3721. [PMID: 32105067 DOI: 10.1021/acs.jafc.9b07817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elevated atmospheric CO2 concentrations (e[CO2]) can decrease the grain quality of wheat. However, little information exists concerning interactions between e[CO2] and nitrogen fertilization on important grain quality traits. To investigate this, a 2-year free air CO2 enrichment (FACE) experiment was conducted with two CO2 (393 and 600 ppm) and three (deficiency, adequate, and excess) nitrogen levels. Concentrations of flour proteins (albumins/globulins, gliadins, and glutenins) and key minerals (iron, zinc, and sulfur) and baking quality (loaf volume) were markedly increased by increasing nitrogen levels and varied between years. e[CO2] resulted in slightly decreased albumin/globulin and total gluten concentration under all nitrogen conditions, whereas loaf volume and mineral concentrations remained unaffected. Two-dimensional gel electrophoresis revealed strong effects of nitrogen supply and year on the grain proteome. Under adequate nitrogen, the grain proteome was affected by e[CO2] with 19 downregulated and 17 upregulated protein spots. The downregulated proteins comprised globulins but no gluten proteins. e[CO2] resulted in decreased crude protein concentration at maximum loaf volume. The present study contrasts with other FACE studies showing markedly stronger negative impacts of e[CO2] on chemical grain quality, and the reasons for that might be differences between genotypes, soil conditions, or the extent of growth stimulation by e[CO2].
Collapse
Affiliation(s)
- Markus Dier
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Emil-Wolff-Str. 25, D-70599 Stuttgart, Germany
- Thünen Institute of Biodiversity, Bundesallee 65, D-38116 Braunschweig, Germany
| | - Liane Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, D-38116 Braunschweig, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Garbenstr. 30, D-70593 Stuttgart, Germany
| | - Martin Erbs
- German Agricultural Research Alliance-Deutsche Agrarforschungsallianz (DAFA), Bundesallee 50, D-38116 Braunschweig, Germany
- Thünen Institute of Biodiversity, Bundesallee 65, D-38116 Braunschweig, Germany
| | - Peter Köhler
- Biotask AG, Schelztorstr. 54-56, D-73728 Esslingen, Germany
| | - Hans-Joachim Weigel
- Thünen Institute of Biodiversity, Bundesallee 65, D-38116 Braunschweig, Germany
| | - Remy Manderscheid
- Thünen Institute of Biodiversity, Bundesallee 65, D-38116 Braunschweig, Germany
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Emil-Wolff-Str. 25, D-70599 Stuttgart, Germany
| |
Collapse
|