1
|
Wang L, Liu S, Mehdi S, Liu Y, Zhang H, Shen R, Wen H, Jiang J, Sun K, Li B. Lignocellulose-Derived Energy Materials and Chemicals: A Review on Synthesis Pathways and Machine Learning Applications. SMALL METHODS 2025:e2500372. [PMID: 40264353 DOI: 10.1002/smtd.202500372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Lignocellulose biomass, Earth's most abundant renewable resource, is crucial for sustainable production of high-value chemicals and bioengineered materials, especially for energy storage. Efficient pretreatment is vital to boost lignocellulose conversion to bioenergy and biomaterials, cut costs, and broaden its energy-sector applications. Machine learning (ML) has become a key tool in this field, optimizing pretreatment processes, improving decision-making, and driving innovation in lignocellulose valorization for energy storage. This review explores main pretreatment strategies - physical, chemical, physicochemical, biological, and integrated methods - evaluating their pros and cons for energy storage. It also stresses ML's role in refining these processes, supported by case studies showing its effectiveness. The review examines challenges and opportunities of integrating ML into lignocellulose pretreatment for energy storage, underlining pretreatment's importance in unlocking lignocellulose's full potential. By blending process knowledge with advanced computational techniques, this work aims to spur progress toward a sustainable, circular bioeconomy, particularly in energy storage solutions.
Collapse
Affiliation(s)
- Luyao Wang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Huanhuan Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Hao Wen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| |
Collapse
|
2
|
Qiu Z, Wang G, Shao W, Cao L, Tan H, Shao S, Jin C, Xia J, He J, Liu X, He A, Han X, Xu J. Third-generation D-lactic acid production using red macroalgae Gelidium amansii by co-fermentation of galactose, glucose and xylose. BIORESOURCE TECHNOLOGY 2024; 399:130631. [PMID: 38554760 DOI: 10.1016/j.biortech.2024.130631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/16/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Macroalgae biomass has been considered as a promising renewable feedstock for lactic acid production owing to its lignin-free, high carbohydrate content and high productivity. Herein, the D-lactic acid production from red macroalgae Gelidium amansii by Pediococcus acidilactici was investigated. The fermentable sugars in G. amansii acid-prehydrolysate were mainly galactose and glucose with a small amounts of xylose. P. acidilactici could simultaneously ferment the mixed sugars of galactose, glucose and xylose into D-lactic acid at high yield (0.90 g/g), without carbon catabolite repression (CCR). The assimilating pathways of these sugars in P. acidilactici were proposed based on the whole genome sequences. Simultaneous saccharification and co-fermentation (SSCF) of the pretreated and biodetoxified G. amansii was also conducted, a record high of D-lactic acid (41.4 g/L) from macroalgae biomass with the yield of 0.34 g/g dry feedstock was achieved. This study provided an important biorefinery strain for D-lactic acid production from macroalgae biomass.
Collapse
Affiliation(s)
- Zhongyang Qiu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Guangli Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Wenjun Shao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Longyu Cao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Hufangguo Tan
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Shuai Shao
- School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Ci Jin
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jianlong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China.
| |
Collapse
|
3
|
Gu H, Han X, Zhang J, Bao J. Upgrading dry acid pretreatment by post-hydrolysis for carbon efficient conversion of lignocellulose. BIORESOURCE TECHNOLOGY 2024; 394:130261. [PMID: 38151209 DOI: 10.1016/j.biortech.2023.130261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Dry acid pretreatment (DAP) as a promising process for industrial biorefinery provide an efficient bioconversion of cellulose without free wastewater, although the partial xylan and lignin degrade to inhibitors or recondense. A biorefinery strategy for carbon efficient conversion of lignocellulose into bioethanol, xylose, and reactive lignin was developed by upgrading DAP with post-hydrolysis. The results showed that lignocellulose after mild DAP (175 °C, acid dosage of 15 mg/g dry material) obtained higher xylan recovery and lower inhibitors than that of general DAP. Subsequently, post-hydrolysis, simultaneous saccharification and ethanol fermentation were performed at solids loading of 20 wt% without detoxification and sterilization, resulting in xylose and ethanol yield of 71.8 % and 67.6 %. The fractionated lignin presented more reactive β-aryl ether linkages and less condensation than that from DAP. 66 % of lignocellulose carbon was recovered as ethanol, xylose and reactive lignin. This upgrading biorefinery strategy provided an easy-to-operate process for integrated utilization of lignocellulose.
Collapse
Affiliation(s)
- Hanqi Gu
- Department of Biology and Food Science, Hebei Normal University for Nationalities, Chengde, Hebei 067000, China; Key Laboratory of Botany (Hebei Normal University for Nationalities) State Ethnic Affairs Commission, Chengde, Hebei 067000, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xushen Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Qiu Z, Han X, He J, Jiang Y, Wang G, Wang Z, Liu X, Xia J, Xu N, He A, Gu H, Xu J. One-pot d-lactic acid production using undetoxified acid-pretreated corncob slurry by an adapted Pediococcus acidilactici. BIORESOURCE TECHNOLOGY 2022; 363:127993. [PMID: 36262001 DOI: 10.1016/j.biortech.2022.127993] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/26/2023]
Abstract
Inhibitor tolerance is still a bottleneck for lactic acid bacteria in lignocellulose biorefinery, while it is hard to obtain one engineered strain with strong tolerance to all inhibitors. Herein, a robust adapted d-lactic acid producing strain Pediococcus acidilactici XH11 was obtained by 111 days' long-term adaptive evolution in undetoxified corncob prehydrolysates. The adapted strain had higher inhibitors tolerance compared to the parental strain, primarily due to its increased conversion capacities of four typical aldehyde inhibitors (furfural, HMF, vanillin, and 4-hydroxybenzaldehyde). One-pot simultaneous saccharification and co-fermentation was successfully achieved using the whole slurry of acid-pretreated corncob without solid-liquid separation and detoxification, by applying the adapted P. acidilactici XH11. Finally, 61.9 g/L of d-lactic acid was generated after 96 h' fermentation (xylose conversion of 89.9 %) with the overall yield of 0.48 g/g dry corncob. This study gave an important option for screening of industrial strains in cellulosic lactic acid production processes.
Collapse
Affiliation(s)
- Zhongyang Qiu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu, China; Key Laboratory of Botany of State Ethnic Affairs Commission, Hebei Normal University for Nationalities, Chengde, Hebei, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Jianlong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu, China.
| | - Yanan Jiang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Guangli Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Zejia Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Ning Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Hanqi Gu
- Key Laboratory of Botany of State Ethnic Affairs Commission, Hebei Normal University for Nationalities, Chengde, Hebei, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu, China
| |
Collapse
|
5
|
Chong SL, Tan IS, Foo HCY, Chan YS, Lam MK, Lee KT. Ultrasonic‑assisted molten salt hydrates pretreated Eucheuma cottonii residues as a greener precursor for third-generation l-lactic acid production. BIORESOURCE TECHNOLOGY 2022; 364:128136. [PMID: 36257523 DOI: 10.1016/j.biortech.2022.128136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This study aims to establish an efficient pretreatment method that facilitates the conversion of sugars from macroalgae wastes, Eucheuma cottonii residues (ECRs) during hydrolysis and subsequently enhances l-lactic acid (L-LA) production. Hence, ultrasonic-assisted molten salt hydrates (UMSHs) pretreatment was proposed to enhance the accessibility of ECRs to hydrolyze into glucose through dilute acid hydrolysis (DAH). The obtained hydrolysates were employed as the substrate in producing L-LA by separate hydrolysis and fermentation (SHF). The maximum glucose yield (97.75 %) was achieved using UMSHs pretreated ECRs with 40 wt% ZnCl2 at 80 °C for 2 h and followed with DAH. The optimum glucose to L-LA yield obtained for SHF was 90.08 % using 5 % (w/w) inoculum cell densities of B. coagulans ATCC 7050 with yeast extract (YE). A comparable performance (89.65 %) was obtained using a nutrient combination (lipid-extracted Chlorella vulgaris residues (CVRs), vitamin B3, and vitamin B5) as a partial alternative for YE.
Collapse
Affiliation(s)
- Soo Ling Chong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Yen San Chan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
6
|
Li YW, Yang CL, Peng H, Nie ZK, Shi TQ, Huang H. RETRACTED ARTICLE: Mutagenesis combined with fermentation optimization to enhance gibberellic acid GA3 yield in Fusarium fujikuroi. BIORESOUR BIOPROCESS 2022; 9:106. [PMID: 38647889 PMCID: PMC10991607 DOI: 10.1186/s40643-022-00595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Gibberellic acid (GA3) is a plant growth hormone that plays an important role in the production of crops, fruits, and vegetables with a wide market share. Due to intrinsic advantages, liquid fermentation of Fusarium fujikuroi has become the sole method for industrial GA3 production, but the broader application of GA3 is hindered by low titer. In this study, we combined atmospheric and room-temperature plasma (ARTP) with ketoconazole-based screening to obtain the mutant strain 3-6-1 with high yield of GA3. Subsequently, the medium composition and fermentation parameters were systematically optimized to increase the titer of GA3, resulting in a 2.5-fold increase compared with the titer obtained under the initial conditions. Finally, considering that the strain is prone to substrate inhibition and glucose repression, a new strategy of fed-batch fermentation was adopted to increase the titer of GA3 to 575.13 mg/L, which was 13.86% higher than the control. The strategy of random mutagenesis combined with selection and fermentation optimization developed in this study provides a basis for subsequent research on the industrial production of GA3.
Collapse
Affiliation(s)
- Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Cai-Ling Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Hui Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Zhi-Kui Nie
- Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| |
Collapse
|
7
|
Ma K, Cui Y, Zhao K, Yang Y, Wang Y, Hu G, He M. D-Lactic acid production from agricultural residues by membrane integrated continuous fermentation coupled with B vitamin supplementation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:24. [PMID: 35246204 PMCID: PMC8897852 DOI: 10.1186/s13068-022-02124-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022]
Abstract
Background d-Lactic acid played an important role in the establishment of PLA as a substitute for petrochemical plastics. But, so far, the d-lactic acid production was limited in only pilot scale, which was definitely unable to meet the fast growing market demand. To achieve industrial scale d-lactic acid production, the cost-associated problems such as high-cost feedstock, expensive nutrient sources and fermentation technology need to be resolved to establish an economical fermentation process. Results In the present study, the combined effect of B vitamin supplementation and membrane integrated continuous fermentation on d-lactic acid production from agricultural lignocellulosic biomass by Lactobacillus delbrueckii was investigated. The results indicated the specific addition of vitamins B1, B2, B3 and B5 (VB1, VB2, VB3 and VB5) could reduce the yeast extract (YE) addition from 10 to 3 g/l without obvious influence on fermentation efficiency. By employing cell recycling system in 350 h continuous fermentation with B vitamin supplementation, YE addition was further reduced to 0.5 g/l, which resulted in nutrient source cost reduction of 86%. A maximum d-lactate productivity of 18.56 g/l/h and optical purity of 99.5% were achieved and higher than most recent reports. Conclusion These findings suggested the novel fermentation strategy proposed could effectively reduce the production cost and improve fermentation efficiency, thus exhibiting great potential in promoting industrial scale d-lactic acid production from lignocellulosic biomass. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02124-y. High d-lactic acid productivity is achieved by L. delbrueckii from rice straw. B vitamins are satisfied substitute of yeast extract for d-lactic acid fermentation. A process of membrane-integrated continuous fermentation with B vitamin is developed. High fermentation efficiency is achieved by the novel fermentation process.
Collapse
Affiliation(s)
- Kedong Ma
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, People's Republic of China.,College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China.,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, People's Republic of China. .,College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China.
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, People's Republic of China
| | - Yuxuan Yang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, People's Republic of China.,College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China
| | - Yidan Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, People's Republic of China.,College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China
| | - Guoquan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
8
|
Yankov D. Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. Front Chem 2022; 10:823005. [PMID: 35308791 PMCID: PMC8931288 DOI: 10.3389/fchem.2022.823005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
The second (lignocellulosic biomass and industrial wastes) and third (algal biomass) generation feedstocks gained substantial interest as a source of various value-added chemicals, produced by fermentation. Lactic acid is a valuable platform chemical with both traditional and newer applications in many industries. The successful fractionation, separation, and hydrolysis of lignocellulosic biomass result in sugars' rich raw material for lactic acid fermentation. This review paper aims to summarize the investigations and progress in the last 5 years in lactic acid production from inexpensive and renewable resources. Different aspects are discussed-the type of raw materials, pretreatment and detoxification methods, lactic acid-producers (bacteria, fungi, and yeasts), use of genetically manipulated microorganisms, separation techniques, different approaches of process organization, as well as main challenges, and possible solutions for process optimization.
Collapse
Affiliation(s)
- Dragomir Yankov
- Chemical and Biochemical Reactors Laboratory, Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
9
|
Bangar SP, Suri S, Trif M, Ozogul F. Organic acids production from lactic acid bacteria: A preservation approach. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front Bioeng Biotechnol 2021; 9:612285. [PMID: 34055755 PMCID: PMC8149962 DOI: 10.3389/fbioe.2021.612285] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Lactic acid bacteria are a kind of microorganisms that can ferment carbohydrates to produce lactic acid, and are currently widely used in the fermented food industry. In recent years, with the excellent role of lactic acid bacteria in the food industry and probiotic functions, their microbial metabolic characteristics have also attracted more attention. Lactic acid bacteria can decompose macromolecular substances in food, including degradation of indigestible polysaccharides and transformation of undesirable flavor substances. Meanwhile, they can also produce a variety of products including short-chain fatty acids, amines, bacteriocins, vitamins and exopolysaccharides during metabolism. Based on the above-mentioned metabolic characteristics, lactic acid bacteria have shown a variety of expanded applications in the food industry. On the one hand, they are used to improve the flavor of fermented foods, increase the nutrition of foods, reduce harmful substances, increase shelf life, and so on. On the other hand, they can be used as probiotics to promote health in the body. This article reviews and prospects the important metabolites in the expanded application of lactic acid bacteria from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Yaqi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiangtao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxin Lv
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Shao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Meluleki Hungwe
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jinju Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojia Bai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanping Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Weitao Geng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
11
|
Liu J, Zhao C. Lactic Acid-Catalyzed Transamidation Reactions of Carboxamides with Amines. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zheng L, Han X, Han T, Liu G, Bao J. Formulating a fully converged biorefining chain with zero wastewater generation by recycling stillage liquid to dry acid pretreatment operation. BIORESOURCE TECHNOLOGY 2020; 318:124077. [PMID: 32916463 DOI: 10.1016/j.biortech.2020.124077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Huge wastewater generation is the major challenge of biorefinery technology for production of cellulosic ethanol. This study designed and verified a method for completely recycling of wastewater stream (the stillage liquid from the beer column) in cellulosic ethanol production by dry biorefining processing. When the stillage liquid was directly recycled to dry acid pretreatment operation, ethanol production gradually reduced after two recycles primarily because the inorganic compounds accumulated by around 139%. To ultimately solve this technical barrier, the stillage liquid was evaporated and condensed into distillated water, then recycled to the pretreatment for complete dry biorefining process. This strategy supported a stable cellulosic ethanol production, and the overall mass and heat balance confirmed that only 65% of the lignin residue consumption was used for wastewater evaporation with 35% surplus for electricity generation. This study provided a fully converged biorefining process with a closed-loop wastewater recycling.
Collapse
Affiliation(s)
- Lixiang Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xushen Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tao Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
13
|
Zhang F, Liu J, Han X, Gao C, Ma C, Tao F, Xu P. Kinetic characteristics of long-term repeated fed-batch (LtRFb) l-lactic acid fermentation by a Bacillus coagulans strain. Eng Life Sci 2020; 20:562-570. [PMID: 33304229 PMCID: PMC7708950 DOI: 10.1002/elsc.202000043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Application of degradable plastics is the most critical solution to plastic pollution. As the precursor of biodegradable plastic PLA (polylactic acid), efficient production of l-lactic acid is vital for the commercial replacement of traditional plastics. Bacillus coagulans H-2, a robust strain, was investigated for effective production of l-lactic acid using long-term repeated fed-batch (LtRFb) fermentation. Kinetic characteristics of l-lactic acid fermentation were analyzed by two models, showing that cell-growth coupled production gradually replaces cell-maintenance coupled production during fermentation. With the LtRFb strategy, l-lactic acid was produced at a high final concentration of 192.7 g/L, on average, and a yield of up to 93.0% during 20 batches of repeated fermentation within 487.5 h. Thus, strain H-2 can be used in the industrial production of l-lactic acid with optimization based on kinetic modeling.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Jiongqin Liu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xiao Han
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Chao Gao
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoP. R. China
| | - Cuiqing Ma
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoP. R. China
| | - Fei Tao
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Ping Xu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| |
Collapse
|
14
|
Effect of manganese sulfate and vitamin B12 on the properties of physicochemical, textural, sensory and bacterial growth of set yogurt. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00720-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Pretreatment and Detoxification of Acid-Treated Wood Hydrolysates for Pyruvate Production by an Engineered Consortium of Escherichia coli. Appl Biochem Biotechnol 2020; 192:243-256. [PMID: 32372381 DOI: 10.1007/s12010-020-03320-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
The biorefinery concept makes use of renewable lignocellulosic biomass to produce commodities sustainably. A synthetic microbial consortium can enable the simultaneous utilization of sugars such as glucose and xylose to produce biochemicals, where each consortium member converts one sugar into the target product. In this study, woody biomass was used to generate glucose and xylose after pretreatment with 20% (w/v) sulfuric acid and 60-min reaction time. We compared several strategies for detoxification with charcoal and sodium borohydride treatments to improve the fermentability of this hydrolysate in a defined medium for the production of the growth-associated product pyruvate. In shake flask culture, the highest pyruvate yield on xylose of 0.8 g/g was found using pH 6 charcoal-treated hydrolysate. In bioreactor studies, a consortium of two engineered E. coli strains converted the mixture of glucose and xylose in batch studies to 12.8 ± 2.7 g/L pyruvate in 13 h. These results demonstrate that lignocellulosic biomass as the sole carbon source can be used to produce growth-related products after employing suitable detoxification strategies.
Collapse
|