1
|
Li Y, Li TT, Qin XJ, Zhu Y, Zhou SW, Xu FR, Liu XY, Dong X. Linalool Inactivates TORC1, Disrupting Ribosome Biogenesis and Inhibiting Fusarium oxysporum Growth. Chem Biodivers 2025:e202403421. [PMID: 40248990 DOI: 10.1002/cbdv.202403421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/19/2025]
Abstract
Fusarium oxysporum (Fo), a pathogenic fungus threatening medicinal plants like Panax notoginseng, causes severe root rot. Linalool, the primary component of Alpinia officinarum Hance essential oil (EO), is a biologically active compound with demonstrated anti-inflammatory, antibacterial, and antioxidant properties. Notably, it has garnered considerable attention for its remarkable antifungal efficacy. In vitro studies revealed that linalool significantly inhibited Fo hyphal growth. At 12.08 mmol/L, spore germination decreased by 43%, whereas spore yield dropped by 99%. Transcriptomic analysis identified 562 upregulated and 4095 downregulated genes in the linalool-treated group. The upregulated genes were predominantly enriched in pathways related to metabolism, oxidative phosphorylation, and carbohydrate metabolism, indicating adaptive stress responses. Downregulated genes were primarily associated with the ribosome biogenesis, transcription, and spliceosome pathways, with ribosome biogenesis showing the most pronounced inhibition. Linalool treatment inactivated TORC1 (target of rapamycin complex 1), a crucial regulator of ribosomal biogenesis and protein synthesis. This disruption led to reduced expression of ribosome-related genes, severely impairing protein synthesis and fungal growth. The study highlights linalool's strong antifungal activity, primarily by targeting ribosome biogenesis. Future research should investigate its effects and safety in field applications, offering potential strategies for managing diseases in medicinal plants such as P. notoginseng.
Collapse
Affiliation(s)
- You Li
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Tian-Tian Li
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xue-Jie Qin
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yao Zhu
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Shi-Wei Zhou
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Fu-Rong Xu
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xiao-Yun Liu
- Jianghan University, Yunnan University of Chinese Medicine, Kunming, China
| | - Xian Dong
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Tan N, Zhao M, Luo Z, Li Z, Zhang X, Xu J, Gu X, Wang Q, Ding S, Ying M, Xu Y. Linalool as a key component in strawberry volatile organic compounds (VOCs) modulates gut microbiota, systemic inflammation, and glucolipid metabolism. Food Chem 2024; 460:140361. [PMID: 39098193 DOI: 10.1016/j.foodchem.2024.140361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
Strawberries are rich in volatile organic compounds (VOCs), which are increasingly recognized as potential health-promoting factors. This study explored the health effects of intaking strawberry VOC extract and its dominant terpene, linalool. The results indicated that linalool and strawberry VOC extract significantly increased the abundance of beneficial bacteria like Lactobacillus, Bacillus, and Alistipes in mice. Moreover, mice treated with linalool and strawberry VOC extract exhibited notable reductions in serum pro-inflammatory cytokines; interleukin IL-6 decreased by 14.5% and 21.8%, respectively, while IL-1β levels decreased by 9.6% and 13.4%, respectively. Triglyceride levels in the treated groups were reduced by 38.3% and 58.1%, respectively. Spearman's correlation analysis revealed that Bacillus negatively correlated with glucolipid indices, and Bifidobacterium and Dubosiella negatively correlated with inflammatory factors, indicating that alterations in glucolipid metabolism might be associated with the regulation of gut microbiota and systemic inflammation.
Collapse
Affiliation(s)
- Nanfeng Tan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Zhenbiao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xuenan Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiayi Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinya Gu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Qingqing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Shenghua Ding
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Miaomiao Ying
- College of Landscape and Hydraulic Engineering, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, 02138, USA.
| |
Collapse
|
3
|
Elizarraraz-Martínez IJ, Rojas-Raya MA, Feregrino-Pérez AA, Partida-Martínez LP, Heil M. Immunity priming and biostimulation by airborne nonanal increase yield of field-grown common bean plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1451864. [PMID: 39568456 PMCID: PMC11577088 DOI: 10.3389/fpls.2024.1451864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/13/2024] [Indexed: 11/22/2024]
Abstract
Introduction Stress-induced volatile organic compounds (VOCs) that induce plant immunity bear potential for biocontrol. Here, we explore the potential of nonanal to enhance the seed yield of common bean (Phaseolus vulgaris) under open field conditions that are realistic for smallholder farmers. Methods and results Using plastic cups with a nonanal-containing lanolin paste as low-cost dispensers, we observed that exposure of Flor de Junio Marcela (FJM) plants over 48h to airborne nonanal was followed by a 3-fold higher expression of pathogenesis-related (PR) genes PR1 and PR4. Both genes further increased their expression in response to subsequent challenge with the fungal pathogen Colletotrichum lindemuthianum. Therefore, we conclude that nonanal causes resistance gene priming. This effect was associated with ca. 2.5-fold lower infection rates and a 2-fold higher seed yield. Offspring of nonanal-exposed FJM plants exhibited a 10% higher emergence rate and a priming of PR1- and PR4-expression, which was associated with decreased infection by C. lindemuthianum and, ultimately, a ca. 3-fold increase in seed yield by anthracnose-infected offspring of nonanal-exposed plants. Seeds of nonanal-exposed and of challenged plants contained significantly more phenolic compounds (increase by ca 40%) and increased antioxidant and radical scavenging activity. Comparative studies including five widely used bean cultivars revealed 2-fold to 3-fold higher seed yield for nonanal-exposed plants. Finally, a cost-benefit analysis indicated a potential economic net profit of nonanal exposure for some, but not all cultivars. Outlook We consider nonanal as a promising candidate for an affordable tool that allows low-income smallholder farmers to increase the yield of an important staple-crop without using pesticides.
Collapse
Affiliation(s)
- Iris J Elizarraraz-Martínez
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico
| | - Mariana A Rojas-Raya
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico
| | | | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Laboratorio de Interacciones Microbianas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)- Unidad Irapuato, Irapuato, Mexico
| | - Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
4
|
Zhang Y, Li B, Fu M, Wang Z, Chen K, Du M, Zalán Z, Hegyi F, Kan J. Antifungal mechanisms of binary combinations of volatile organic compounds produced by lactic acid bacteria strains against Aspergillusflavus. Toxicon 2024; 243:107749. [PMID: 38710308 DOI: 10.1016/j.toxicon.2024.107749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Aspergillus flavus(A. flavus), a common humic fungus known for its ability to infect agricultural products, served as the subject of investigation in this study. The primary objective was to assess the antifungal efficacy and underlying mechanisms of binary combinations of five volatile organic compounds (VOCs) produced by lactic acid bacteria, specifically in their inhibition of A. flavus. This assessment was conducted through a comprehensive analysis, involving biochemical characterization and transcriptomic scrutiny. The results showed that VOCs induce notable morphological abnormalities in A. flavus conidia and hyphae. Furthermore, they disrupt the integrity of the fungal cell membrane and cell wall, resulting in the leakage of intracellular contents and an increase in extracellular electrical conductivity. In terms of cellular components, VOC exposure led to an elevation in malondialdehyde content while concurrently inhibiting the levels of total lipids, ergosterol, soluble proteins, and reducing sugars. Additionally, the impact of VOCs on A. flavus energy metabolism was evident, with significant inhibition observed in the activities of key enzymes, such as Na+/K+-ATPase, malate dehydrogenase, succinate dehydrogenase, and chitinase. And they were able to inhibit aflatoxin B1 synthesis. The transcriptomic analysis offered further insights, highlighting that differentially expressed genes (DEGs) were predominantly associated with membrane functionality and enriched in pathways about carbohydrate and amino acid metabolism. Notably, DEGs linked to cellular components and energy-related mechanisms exhibited down-regulation, thereby corroborating the findings from the biochemical analyses. In summary, these results elucidate the principal antifungal mechanisms of VOCs, which encompass the disruption of cell membrane integrity and interference with carbohydrate and amino acid metabolism in A. flavus.
Collapse
Affiliation(s)
- Yi Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Bin Li
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Mingze Fu
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Zhirong Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Kewei Chen
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Zsolt Zalán
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Budapest, 1022, Hungary
| | - Ferenc Hegyi
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Budapest, 1022, Hungary
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China.
| |
Collapse
|
5
|
Contreras-Avilés W, Heuvelink E, Marcelis LFM, Kappers IF. Ménage à trois: light, terpenoids, and quality of plants. TRENDS IN PLANT SCIENCE 2024; 29:572-588. [PMID: 38494370 DOI: 10.1016/j.tplants.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
In controlled environment agriculture (CEA), light is used to impact terpenoid production and improve plant quality. In this review we discuss various aspects of light as important regulators of terpenoid production in different plant organs. Spectral quality primarily modifies terpenoid profiles, while intensity and photoperiod influence abundances. The central regulator of light signal transduction elongated hypocotyl 5 (HY5) controls transcriptional regulation of terpenoids under UV, red (R), and blue (B) light. The larger the fraction of R and green (G) light, the more beneficial the effect on monoterpenoid and sesquiterpenoid biosynthesis, and such an effect may depend on the presence of B light. A large fraction of R light is mostly detrimental to tetraterpenoid production. We conclude that light is a promising tool to steer terpenoid production and potentially tailor the quality of plants.
Collapse
Affiliation(s)
- Willy Contreras-Avilés
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands; Plant Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Iris F Kappers
- Plant Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Plett JM, Wojtalewicz D, Plett KL, Collin S, Kohler A, Jacob C, Martin F. Sesquiterpenes of the ectomycorrhizal fungus Pisolithus microcarpus alter root growth and promote host colonization. MYCORRHIZA 2024; 34:69-84. [PMID: 38441669 PMCID: PMC10998793 DOI: 10.1007/s00572-024-01137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/01/2024] [Indexed: 04/07/2024]
Abstract
Trees form symbioses with ectomycorrhizal (ECM) fungi, maintained in part through mutual benefit to both organisms. Our understanding of the signaling events leading to the successful interaction between the two partners requires further study. This is especially true for understanding the role of volatile signals produced by ECM fungi. Terpenoids are a predominant class of volatiles produced by ECM fungi. While several ECM genomes are enriched in the enzymes responsible for the production of these volatiles (i.e., terpene synthases (TPSs)) when compared to other fungi, we have limited understanding of the biochemical products associated with each enzyme and the physiological impact of specific terpenes on plant growth. Using a combination of phylogenetic analyses, RNA sequencing, and functional characterization of five TPSs from two distantly related ECM fungi (Laccaria bicolor and Pisolithus microcarpus), we investigated the role of these secondary metabolites during the establishment of symbiosis. We found that despite phylogenetic divergence, these TPSs produced very similar terpene profiles. We focused on the role of P. microcarpus terpenes and found that the fungus expressed a diverse array of mono-, di-, and sesquiterpenes prior to contact with the host. However, these metabolites were repressed following physical contact with the host Eucalyptus grandis. Exposure of E. grandis to heterologously produced terpenes (enriched primarily in γ -cadinene) led to a reduction in the root growth rate and an increase in P. microcarpus-colonized root tips. These results support a very early putative role of fungal-produced terpenes in the establishment of symbiosis between mycorrhizal fungi and their hosts.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.
| | - Dominika Wojtalewicz
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia
| | - Sabrina Collin
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| | | | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| |
Collapse
|
7
|
Duan WY, Zhu XM, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat. Int J Food Microbiol 2024; 410:110514. [PMID: 38070224 DOI: 10.1016/j.ijfoodmicro.2023.110514] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Plant volatile organic compounds (VOCs) with antimicrobial activity could potentially be extremely useful fumigants to prevent and control the fungal decay of agricultural products postharvest. In this study, antifungal effects of volatile compounds in essential oils extracted from Origanum vulgare L. against Aspergillus flavus growth were investigated using transcriptomic and biochemical analyses. Carvacrol was identified as the major volatile constituent of the Origanum vulgare L. essential oil, accounting for 66.01 % of the total content. The minimum inhibitory concentrations of carvacrol were 0.071 and 0.18 μL/mL in gas-phase fumigation and liquid contact, respectively. Fumigation with 0.60 μL/mL of carvacrol could completely inhibit A. flavus proliferation in wheat grains with 20 % moisture, showing its potential as a biofumigant. Scanning electron microscopy revealed that carvacrol treatment caused morphological deformation of A. flavus mycelia, and the resulting increased electrolyte leakage indicates damage to the plasma membrane. Confocal laser scanning microscopy confirmed that the carvacrol treatment caused a decrease in mitochondrial membrane potential, reactive oxygen species accumulation, and DNA damage. Transcriptome analysis revealed that differentially expressed genes were mainly associated with fatty acid degradation, autophagy, peroxisomes, the tricarboxylic acid cycle, oxidative phosphorylation, and DNA replication in A. flavus mycelia exposed to carvacrol. Biochemical analyses of hydrogen peroxide and superoxide anion content, and catalase, superoxide dismutase, and glutathione S-transferase activities showed that carvacrol induced oxidative stress in A. flavus, which agreed with the transcriptome results. In summary, this study provides an experimental basis for the use of carvacrol as a promising biofumigant for the prevention of A. flavus contamination during postharvest grain storage.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Xi-Man Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
8
|
Zhang X, Li D, Luo Z, Xu Y. (E)-2-hexenal fumigation control the gray mold on fruits via consuming glutathione of Botrytis cinerea. Food Chem 2024; 432:137146. [PMID: 37639888 DOI: 10.1016/j.foodchem.2023.137146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
(E)-2-hexenal fumigation inhibits the growth of Botrytis. cinerea, but the direct target and its effect on postharvest strawberry have not yet been discovered. In the present study, we applied increasing level of (E)-2-hexenal fumigation from 0.524 μM to 1048 μM to B. cinerea on strawberry and medium. Results showed that (E)-2-hexenal fumigation inhibited lesion diameter on strawberry by 13.96 %, 20.41 % and 100 % with the dosage increasing. On medium, (E)-2-hexenal fumigation increased both the ROS and mitochondria membrane potential level of B. cinerea. LC-MS/MS and FTIR results demonstrate a 1:1 Michael addition reaction between (E)-2-hexenal and glutathione with the product GSH-H in B. cinerea under (E)-2-hexenal fumigation. Furthermore, the consumption of glutathione and glutathione disulfide along with the production of GSH-H during fumigation in B. cinerea caused by (E)-2-hexenal were both concentration- and time-dependent. This study locates the direct target and discovered the functional model of (E)-2-hexenal to B. cinerea.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Dong Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China; Zhejiang University, Ningbo Innovation Center, Ningbo 315100, People's Republic of China
| | - Yanqun Xu
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China; Zhejiang University, Ningbo Innovation Center, Ningbo 315100, People's Republic of China.
| |
Collapse
|
9
|
Li D, Liu L, Li X, Wei G, Cai Y, Sun X, Fan H. DoAP2/ERF89 activated the terpene synthase gene DoPAES in Dendrobium officinale and participated in the synthesis of β-patchoulene. PeerJ 2024; 12:e16760. [PMID: 38250724 PMCID: PMC10800100 DOI: 10.7717/peerj.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Dendrobium officinale Kimura et Migo is a tonic plant that has both ornamental and medicinal properties. Terpenoids are significant and diverse secondary metabolites in plants, and are one of the important natural active ingredients in D. officinale. The AP2/ERF gene family plays a major role in primary and secondary metabolism. However, the AP2/ERF transcription factor family has not been identified in D. officinale, and it is unclear if it is involved in the regulation of terpenoid biosynthesis. This study identified a sesquiterpene synthetase-β-patchoulene synthase (DoPAES) using transcriptome and terpenic metabolic profile analyses. A total of 111 members of the AP2/ERF family were identified through the whole genome of D. officinale. The tissue-specific expression and gene co-expression pattern of the DoAP2/ERF family members were analyzed. The results showed that the expression of DoPAES was highly correlated with the expression of DoAP2/ERF89 and DoAP2/ERF47. The yeast one-hybrid (Y1H) assays and dual-luciferase experiments demonstrated that DoAP2/ERF89 and DoAP2/ERF47 could regulate the expression of DoPAES. The transcriptional regulatory effects were examined using homologous transient expression of DoAP2/ERF89 in protocorms of D. officinale. DoAP2/ERF89 positively regulated the biosynthesis of β-patchoulene. This study showed that DoAP2/ERF89 can bind to the promoter region of DoPAES to control its expression and further regulate the biosynthesis of β-patchoulene in D. officinale. These results provide new insights on the regulation of terpenoid biosynthesis.
Collapse
Affiliation(s)
- Decong Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Lin Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaohong Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Xu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Honghong Fan
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
10
|
Sun S, Tang N, Han K, Wang Q, Xu Q. Effects of 2-Phenylethanol on Controlling the Development of Fusarium graminearum in Wheat. Microorganisms 2023; 11:2954. [PMID: 38138097 PMCID: PMC10745961 DOI: 10.3390/microorganisms11122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Applying plant-derived fungicides is a safe and sustainable way to control wheat scab. In this study, volatile organic compounds (VOCs) of wheat cultivars with and without the resistance gene Fhb1 were analyzed by GC-MS, and 2-phenylethanol was screened out. The biocontrol function of 2-phenylethanol on Fusarium graminearum was evaluated in vitro and in vivo. Metabolomics analysis indicated that 2-phenylethanol altered the amino acid pathways of F. graminearum, affecting its normal life activities. Under SEM and TEM observation, the mycelial morphology changed, and the integrity of the cell membrane was destroyed. Furthermore, 2-phenylethanol could inhibit the production of mycotoxins (DON, 3-ADON, 15-ADON) by F. graminearum and reduce grain contamination. This research provides new ideas for green prevention and control of wheat FHB in the field.
Collapse
Affiliation(s)
- Shufang Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| | - Nawen Tang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| | - Kun Han
- Departmen of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Qunqing Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
- Departmen of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| |
Collapse
|
11
|
Pei MS, Liu HN, Wei TL, Guo DL. Proteome-Wide Identification of Non-histone Lysine Methylation during Grape Berry Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12140-12152. [PMID: 37503871 DOI: 10.1021/acs.jafc.3c03144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
To gain a comprehensive understanding of non-histone methylation during berry ripening in grape (Vitis vinifera L.), the methylation of non-histone lysine residues was studied using a 4D label-free quantitative proteomics approach. In total, 822 methylation sites in 416 methylated proteins were identified, with xxExxx_K_xxxxxx as the conserved motif. Functional annotation of non-histone proteins with methylated lysine residues indicated that these proteins were mostly associated with "ripening and senescence", "energy metabolism", "oxidation-reduction process", and "stimulus response". Most of the genes encoding proteins subjected to methylation during grape berry ripening showed a significant increase in expression during maturation at least at one developmental stage. The correlation of methylated proteins with QTLs, SNPs, and selective regions associated with fruit quality and development was also investigated. This study reports the first proteomic analysis of non-histone lysine methylation in grape berry and indicates that non-histone methylation plays an important role in grape berry ripening.
Collapse
Affiliation(s)
- Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| |
Collapse
|
12
|
Ding N, Qin M, Sun Y, Qi S, Dong X, Niazi S, Zhang Y, Wang Z. Universal Near-Infrared Fluorescent Nanoprobes for Detection and Real-Time Imaging of ATP in Real Food Samples, Living Cells, and Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12070-12079. [PMID: 37497565 DOI: 10.1021/acs.jafc.3c03963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adenosine triphosphate (ATP), an essential metabolite for active microorganisms to maintain life activities, has been widely regarded as a marker of cell activity and an indicator of microbial contamination. Herein, we designed two near-infrared (NIR) fluorescent nanoprobes named CYA@ZIF-90 and CYQ@ZIF-90 by encapsulating the NIR dye CYA/CYQ in ZIF-90 for the rapid detection of ATP. Between them, nanoprobe CYA@ZIF-90 can achieve higher NIR emission (702 nm) and rapid detection (2 min). Based on the superior spatiotemporal resolution imaging of ATP fluctuations in living cells, the applicability of CYA@ZIF-90 for imaging and detection of ATP in living bacteria was explored for the first time. The nanoprobe indirectly realizes the quantitative detection of bacteria, and the detection limit can be as low as 74 CFU mL-1. Therefore, the prepared nanoprobe is expected to become a universal ATP sensing detection tool, which can be further applied to evaluate cell apoptosis, cell proliferation, and food-harmful microbial control.
Collapse
Affiliation(s)
- Ning Ding
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingwei Qin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuhan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Chen J, Wang H, Chen Y, Zhu Q, Wan J. Inhibitive effect and mechanism of cinnamaldehyde on growth and OTA production of Aspergillus niger in vitro and in dried red chilies. Food Res Int 2023; 168:112794. [PMID: 37120239 DOI: 10.1016/j.foodres.2023.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023]
Abstract
Mould and mycotoxin contamination is an ongoing issue in agriculture and food industry. Production by Aspergillus niger DTZ-12 in Guizhou dried red chilies was found, leading to significant economic losses. In this study, the inhibitive efficacy (Effective Concentration, EC) of cinnamaldehyde (CIN), eugenol (EUG), carvacrol (CAR), and linalool (LIN) against A. niger DTZ-12 were evaluated. CIN with the best antifungal capacity was then investigated for the comprehensive inhibitory activity against A. niger DTZ-12 including mycelia, spores, and physiological activities. Results showed that CIN can effectively retard mycelial growth, spore germination, and OTA production of A. niger DTZ-12 in vitro and in dried red chilies during storage. At physiological level, CIN can increase cell membrane permeability by reducing the ergosterol, decrease ATP content and ATPase activity, and promote the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in cell. These results suggested that CIN displayed a great potential to be employed as a natural and effective alternative preservative during dried red chili storage.
Collapse
Affiliation(s)
- Jiang Chen
- College of Life Sciences, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Hua Wang
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Yuanshan Chen
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Qiujin Zhu
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Jing Wan
- College of Life Sciences, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China; Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
14
|
Nasiou E, Giannakou IO. Nematicidal Potential of Thymol against Meloidogyne javanica (Treub) Chitwood. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091851. [PMID: 37176908 PMCID: PMC10181045 DOI: 10.3390/plants12091851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Root-knot nematodes (RKN; Meloidogyne spp.) are obligatory endoparasites with worldwide distribution which cause severe damage to agricultural crops. The present study aimed to define the nematicidal activity of thymol on different life stages of the root-knot nematode Meloidogyne javanica (Treub) Chitwood, at concentrations of 37.5-1000 μL/L. This study is the first to report the effect of thymol on egg differentiation and also its vapor and sublethal concentration activities. A mortality of greater than 90% of M. javanica second-stage juveniles (J2s) occurred after 96 h of exposure at a concentration of 500 μL/L. At this concentration, thymol inhibited 59.7% of nematode hatching. In addition, the use of thymol at sublethal concentrations reduced the number of females per gram in tomato roots in a pot test, as well as inhibiting egg differentiation. On the contrary, no nematostatic effects were observed in paralysis bioassays. The results presented here indicate that the use of thymol may show its potential as a source of a new sustainable nematicidal product.
Collapse
Affiliation(s)
- Eleni Nasiou
- Laboratory of Agricultural Zoology and Entomology, Department of Science of Crop Production, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Ioannis O Giannakou
- Laboratory of Agricultural Zoology and Entomology, Department of Science of Crop Production, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
15
|
Duan WY, Zhang SB, Lei JD, Qin YL, Li YN, Lv YY, Zhai HC, Cai JP, Hu YS. Protection of postharvest grains from fungal spoilage by biogenic volatiles. Appl Microbiol Biotechnol 2023; 107:3375-3390. [PMID: 37115251 DOI: 10.1007/s00253-023-12536-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Fungal spoilage of postharvest grains poses serious problems with respect to food safety, human health, and the economic value of grains. The protection of cereal grains from deleterious fungi is a critical aim in postharvest grain management. Considering the bulk volume of grain piles in warehouses or bins and food safety, fumigation with natural gaseous fungicides is a promising strategy to control fungal contamination on postharvest grains. Increasing research has focused on the antifungal properties of biogenic volatiles. This review summarizes the literature related to the effects of biogenic volatiles from microbes and plants on spoilage fungi on postharvest grains and highlights the underlying antifungal mechanisms. Key areas for additional research on fumigation with biogenic volatiles in postharvest grains are noted. The research described in this review supports the protective effects of biogenic volatiles against grain spoilage by fungi, providing a basis for their expanded application in the management of postharvest grains.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Jun-Dong Lei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu-Liang Qin
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yan-Nan Li
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jing-Ping Cai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
16
|
Nawrocka J, Szymczak K, Skwarek-Fadecka M, Małolepsza U. Toward the Analysis of Volatile Organic Compounds from Tomato Plants ( Solanum lycopersicum L.) Treated with Trichoderma virens or/and Botrytis cinerea. Cells 2023; 12:cells12091271. [PMID: 37174671 PMCID: PMC10177525 DOI: 10.3390/cells12091271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Gray mold caused by Botrytis cinerea causes significant losses in tomato crops. B. cinerea infection may be halted by volatile organic compounds (VOCs), which may exhibit fungistatic activity or enhance the defense responses of plants against the pathogen. The enhanced VOC generation was observed in tomato (Solanum lycopersicum L.), with the soil-applied biocontrol agent Trichoderma virens (106 spores/1 g soil), which decreased the gray mold disease index in plant leaves at 72 hpi with B. cinerea suspension (1 × 106 spores/mL). The tomato leaves were found to emit 100 VOCs, annotated and putatively annotated, assigned to six classes by the headspace GCxGC TOF-MS method. In Trichoderma-treated plants with a decreased grey mold disease index, the increased emission or appearance of 2-hexenal, (2E,4E)-2,4-hexadienal, 2-hexyn-1-ol, 3,6,6-trimethyl-2-cyclohexen-1-one, 1-octen-3-ol, 1,5-octadien-3-ol, 2-octenal, octanal, 2-penten-1-ol, (Z)-6-nonenal, prenol, and acetophenone, and 2-hydroxyacetophenone, β-phellandrene, β-myrcene, 2-carene, δ-elemene, and isocaryophyllene, and β-ionone, 2-methyltetrahydrofuran, and 2-ethyl-, and 2-pentylfuran, ethyl, butyl, and hexyl acetate were most noticeable. This is the first report of the VOCs that were released by tomato plants treated with Trichoderma, which may be used in practice against B. cinerea, although this requires further analysis, including the complete identification of VOCs and determination of their potential as agents that are capable of the direct and indirect control of pathogens.
Collapse
Affiliation(s)
- Justyna Nawrocka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Kamil Szymczak
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Monika Skwarek-Fadecka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Urszula Małolepsza
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
17
|
Ferrocino I, Rantsiou K, McClure R, Kostic T, de Souza RSC, Lange L, FitzGerald J, Kriaa A, Cotter P, Maguin E, Schelkle B, Schloter M, Berg G, Sessitsch A, Cocolin L. The need for an integrated multi-OMICs approach in microbiome science in the food system. Compr Rev Food Sci Food Saf 2023; 22:1082-1103. [PMID: 36636774 DOI: 10.1111/1541-4337.13103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023]
Abstract
Microbiome science as an interdisciplinary research field has evolved rapidly over the past two decades, becoming a popular topic not only in the scientific community and among the general public, but also in the food industry due to the growing demand for microbiome-based technologies that provide added-value solutions. Microbiome research has expanded in the context of food systems, strongly driven by methodological advances in different -omics fields that leverage our understanding of microbial diversity and function. However, managing and integrating different complex -omics layers are still challenging. Within the Coordinated Support Action MicrobiomeSupport (https://www.microbiomesupport.eu/), a project supported by the European Commission, the workshop "Metagenomics, Metaproteomics and Metabolomics: the need for data integration in microbiome research" gathered 70 participants from different microbiome research fields relevant to food systems, to discuss challenges in microbiome research and to promote a switch from microbiome-based descriptive studies to functional studies, elucidating the biology and interactive roles of microbiomes in food systems. A combination of technologies is proposed. This will reduce the biases resulting from each individual technology and result in a more comprehensive view of the biological system as a whole. Although combinations of different datasets are still rare, advanced bioinformatics tools and artificial intelligence approaches can contribute to understanding, prediction, and management of the microbiome, thereby providing the basis for the improvement of food quality and safety.
Collapse
Affiliation(s)
- Ilario Ferrocino
- Department of Agriculture, Forest and Food Science, University of Turin, Grugliasco, Italy
| | - Kalliopi Rantsiou
- Department of Agriculture, Forest and Food Science, University of Turin, Grugliasco, Italy
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tanja Kostic
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Tulln, Austria
| | - Rafael Soares Correa de Souza
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lene Lange
- BioEconomy, Research & Advisory, Valby, Denmark
| | - Jamie FitzGerald
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Aicha Kriaa
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Paul Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Emmanuelle Maguin
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Tulln, Austria
| | - Luca Cocolin
- Department of Agriculture, Forest and Food Science, University of Turin, Grugliasco, Italy
| | | |
Collapse
|
18
|
Antifungal mechanisms of volatile organic compounds produced by Pseudomonas fluorescens ZX as biological fumigants against Botrytis cinerea. Microbiol Res 2023; 267:127253. [PMID: 36455309 DOI: 10.1016/j.micres.2022.127253] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022]
Abstract
To explore the antifungal mechanisms of volatile organic compounds (VOCs) produced by Pseudomonas fluorescens ZX against Botrytis cinerea, biochemical analyses and transcriptomic techniques were employed in this work. The results showed that P. fluorescens ZX-producing VOCs can increase the cell membrane permeability of B. cinerea and disrupt cell membrane integrity, resulting in leakage of the pathogen's cellular contents, inhibition of ergosterol biosynthesis (about 76%), and an increase in malondialdehyde (MDA) content. Additionally, for B. cinerea respiration, P. fluorescens ZX-producing VOCs (1 × 109 CFU /mL) significantly inhibited the activities of ATPase (55.7%), malate dehydrogenase (MDH) (33.1%), and succinate dehydrogenase (SDH) (57.9%), seriously interfering with energy metabolism and causing accumulation of reactive oxygen species (ROS). Furthermore, transcriptome analysis of B. cinerea following exposure to VOCs revealed 4590 differentially expressed genes (DEGs) (1388 upregulated, 3202 downregulated). Through GO analysis, these DEGs were determined to be enriched in intrinsic components of membrane, integral components of membrane, and membrane parts, while KEGG analysis indicated that they were enriched in many amino acid metabolism pathways. Significantly, the DEGs related to ergosterol biosynthesis, ATPase, mitochondrial respiratory chain, malate dehydrogenase, and cell membrane showed down-regulation, corroborating the biochemical analyses. Taken together, these results suggest that the antifungal activity of P. fluorescens ZX-producing VOCs against B. cinerea occurs primary mechanisms: causing significant damage to the cell membrane, negatively affecting respiration, and interfering with amino acid metabolism.
Collapse
|
19
|
Li X, Wang Q, Li H, Wang X, Zhang R, Yang X, Jiang Q, Shi Q. Revealing the Mechanisms for Linalool Antifungal Activity against Fusarium oxysporum and Its Efficient Control of Fusarium Wilt in Tomato Plants. Int J Mol Sci 2022; 24:ijms24010458. [PMID: 36613902 PMCID: PMC9820380 DOI: 10.3390/ijms24010458] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Fusarium oxysporum f. sp. radicis-lycopersici (Forl) is a destructive soil-borne phytopathogenic fungus that causes Fusarium crown and root rot (FCRR) of tomato, leading to considerable field yield losses. In this study, we explored the antifungal capability of linalool, a natural plant volatile organic component, against Forl and its role in controlling FCRR symptoms in tomatoes. Our results showed that Forl mycelial growth was inhibited by the linalool treatment and that the linalool treatment damaged cell membrane integrity, enhanced reactive oxygen species levels, depleted glutathione, and reduced the activities of many antioxidant enzymes in Forl. Transcriptomic and proteomic analyses demonstrated that linalool also downregulated metabolic biosynthetic pathways at the transcript and protein levels, including redox, transporter activity, and carbohydrate metabolism in Forl. Moreover, linalool significantly decreased the expression of many Forl pathogenic genes, such as cell wall degrading enzymes (CWDEs) and G proteins, which is likely how a Forl infection was prevented. Importantly, exogenously applied linalool activated the salicylic acid (SA) and jasmonic acid (JA) defensive pathways to improve disease resistance and relieved the negative effects of Forl on plant growth. Taken together, we report that linalool is an effective fungicide against Forl and will be a promising green chemical agent for controlling FCRR.
Collapse
|
20
|
Zhou AA, Li RY, Mo FX, Ding Y, Li RT, Guo X, Hu K, Li M. Natural Product Citronellal can Significantly Disturb Chitin Synthesis and Cell Wall Integrity in Magnaporthe oryzae. J Fungi (Basel) 2022; 8:jof8121310. [PMID: 36547643 PMCID: PMC9784034 DOI: 10.3390/jof8121310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Natural products are often favored in the study of crop pests and diseases. Previous studies have shown that citronellal has a strong inhibition effect on Magnaporthe oryzae. The objective of this study was to clarify its mechanism of action against M. oryzae. RESULTS Firstly, the biological activity of citronellal against M. oryzae was determined by direct and indirect methods, and the results show that citronellal had a strong inhibition effect on M. oryzae with EC50 values of 134.00 mg/L and 70.48 μL/L air, respectively. Additionally, a preliminary study on its mechanism of action was studied. After citronellal treatment, electron microscopy revealed that the mycelium became thin and broken; scanning electron microscopy revealed that the mycelium was wrinkled and distorted; and transmission electron microscopy revealed that the mycelium cell wall was invaginated, the mass wall of mycelium was separated, and the organelles were blurred. The mycelium was further stained with CFW, and the nodes were blurred, while the mycelium was almost non-fluorescent after PI staining, and there was no significant difference in the relative conductivity of mycelium. In addition, chitinase was significantly enhanced, and the expression of chitin synthesis-related genes was 17.47-fold upregulated. Finally, we found that the efficacy of citronellal against the rice blast was as high as 82.14% according to indoor efficacy tests. CONCLUSION These results indicate that citronellal can affect the synthesis of chitin in M. oryzae and damage its cell wall, thereby inhibiting the growth of mycelium and effectively protecting rice from rice blasts.
Collapse
Affiliation(s)
- Ai-Ai Zhou
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Rong-Yu Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
- Correspondence: ; Tel.: +86-151-8514-8063
| | - Fei-Xu Mo
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yi Ding
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Ruo-Tong Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xue Guo
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Ke Hu
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Ming Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
| |
Collapse
|
21
|
Biocontrol potential of 1-pentanal emitted from lactic acid bacteria strains against Aspergillus flavus in red pepper (Capsicum annuum L.). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Zou X, Wei Y, Jiang S, Xu F, Wang H, Zhan P, Shao X. ROS Stress and Cell Membrane Disruption are the Main Antifungal Mechanisms of 2-Phenylethanol against Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14468-14479. [PMID: 36322824 DOI: 10.1021/acs.jafc.2c06187] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
2-Phenylethanol (2-PE), a common compound found in plants and microorganisms, exhibits broad-spectrum antifungal activity. Using Botrytis cinerea, we demonstrated that 2-PE suppressed mycelium growth in vitro and in strawberry fruit and reduced natural disease without adverse effects to fruit quality. 2-PE caused structural damage to mycelia, as shown by scanning and transmission electron microscopy. From RNA sequencing analysis we found significantly upregulated genes for enzymatic and nonenzymatic reactive oxygen species (ROS) scavenging systems including sulfur metabolism and glutathione metabolism, indicating that ROS stress was induced by 2-PE. This was consistent with results from assays demonstrating an increase ROS and hydrogen peroxide levels, antioxidant enzyme activities, and malondialdehyde content in treated cells. The upregulation of ATP-binding cassette transporter genes, the downregulation of major facilitator superfamily transporters genes, and the downregulation of ergosterol biosynthesis genes indicated a severe disruption of cell membrane structure and function. This was consistent with results from assays demonstrating compromised membrane integrity and lipid peroxidation. To summarize, 2-PE exposure suppressed B. cinerea growth through ROS stress and cell membrane disruption.
Collapse
Affiliation(s)
- Xiurong Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan 512005, China
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hongfei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Pingping Zhan
- the Bio-ultrastructure Analysis Laboratory of the Key Laboratory of Applied Marine Biotechnology of the Ministry of Education, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
23
|
The association between the susceptibility to Botrytis cinerea and the levels of volatile and non-volatile metabolites in red ripe strawberry genotypes. Food Chem 2022; 393:133252. [DOI: 10.1016/j.foodchem.2022.133252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022]
|
24
|
Gao Y, Ren H, He S, Duan S, Xing S, Li X, Huang Q. Antifungal activity of the volatile organic compounds produced by Ceratocystis fimbriata strains WSJK-1 and Mby. Front Microbiol 2022; 13:1034939. [PMID: 36338050 PMCID: PMC9631480 DOI: 10.3389/fmicb.2022.1034939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 10/29/2023] Open
Abstract
Microorganism-produced volatile organic compounds (VOCs) are considered promising environmental-safety fumigants in food preservation. In this study, the VOCs from fungal Ceratocystis fimbriata strains (WSJK-1, Mby) were tested against postharvest fungi Monilinia laxa, Fusarium oxysporum, Monilinia fructicola, Botrytis cinerea, Alternaria solani, and Aspergillus flavus in vitro. The mycelial growth was significantly inhibited, in particular M. fructicola and B. cinerea (76.95, 76.00%), respectively. VOCs were identified by headspace solid-phase microextraction coupled with Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS); 40 compounds were identified. The antifungal activity of 21 compounds was tested by the minimum inhibitory concentrations (MIC) value. Benzaldehyde, 2-Phenylethanol, and 1-Octen-3-ol showed strong antifungal activity with the MIC in vitro ranging from 0.094 to 0.284 ml L-1 depending on the pathogen tested. The optical microscope showed serious morphological damage, including cell deformation, curling, collapse, and deficiency in mycelial or conidia cell structures treated with C. fimbriata VOCs and pure compounds. In vivo tests, C. fimbriata VOCs decreased brown rot severity in peaches, and compounds Benzaldehyde and 2-Phenylethanol could reduce peach brown rot in peaches at 60 μl L-1. The VOCs produced by C. fimbriata strain have good antifungal effects; low concentration fumigation could control peach brown rot. Its fragrance is fresh, safe, and harmless, and it is possible to replace chemical fumigants. It could be used as a potential biofumigant to control fruit postharvest transportation, storage, and food preservation. To the best of our knowledge, this is the first report on the antifungal activity and biocontrol mechanism of VOCs produced by C. fimbriata.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiong Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
25
|
Electrospun functional polymeric nanofibers for active food packaging: A review. Food Chem 2022; 391:133239. [DOI: 10.1016/j.foodchem.2022.133239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 12/13/2022]
|
26
|
Li YN, Zhang SB, Lv YY, Zhai HC, Cai JP, Hu YS. Mechanisms underlying the inhibitory effects of linalool on Aspergillus flavus spore germination. Appl Microbiol Biotechnol 2022; 106:6625-6640. [PMID: 36097174 DOI: 10.1007/s00253-022-12172-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Biogenic volatile organic compounds hold remarkable potential for controlling fungal decay in agro- and food products. Recently, we reported that linalool, the major volatile component of the Zanthoxylum schinifolium pericarp, showed great potential as a biofumigant to control Aspergillus flavus growth in postharvest grains. In this study, the inhibitory effects of linalool on A. flavus growth in stored grains and its underlying mechanism were investigated through transcriptomic and biochemical analyses. Linalool vapor at 800 μL/L can effectively prevent A. flavus growth in 22% moisture wheat grains. Linalool at 2 μL/mL completely inhibited the germination of A. flavus spores, and 10 μL/mL caused spore death. Scanning electron microscopy revealed that linalool treatment caused wrinkling and spore breakage. Transcriptomics showed that 3806 genes were significantly differentially expressed in A. flavus spores exposed to 2 μL/mL linalool, predominantly showing enrichment regarding the ribosome, DNA replication, glutathione metabolism, peroxisome, and MAPK signaling pathways. Flow cytometry showed that linalool treatment caused hyperpolarization of mitochondrial membrane potential. 4,6-Diamidino-2-phenylindole staining indicated that linalool caused DNA fragmentation in A. flavus spores, and monodansylcadaverine staining confirmed that linalool induced autophagy in A. flavus spores. We thus propose that linalool can damage the plasma membrane, cause mitochondrial dysfunction and DNA damage, and induce autophagy in A. flavus spores. These findings considerably improve our understanding of the mechanisms underlying the inhibitory effects of linalool on A. flavus, which is crucial regarding the development of applications to prevent postharvest grain spoilage due to A. flavus infestations. KEY POINTS: • The inhibitory potency of linalool on A. flavus spore germination was determined. • Transcriptomic analyses were performed to identify differentially expressed genes of A. flavus exposed to linalool. • A functional mechanism underlying the inhibitory effects of linalool on A. flavus spore germination is proposed.
Collapse
Affiliation(s)
- Yan-Nan Li
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Jing-Ping Cai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
27
|
Chen C, Peng X, Wan C, Zhang Y, Gan Z, Zeng J, Kai W, Chen J. Lignin Biosynthesis Pathway and Redox Balance Act Synergistically in Conferring Resistance against Penicillium italicum Infection in 7-Demethoxytylophorine-Treated Navel Orange. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8111-8123. [PMID: 35730981 DOI: 10.1021/acs.jafc.2c02348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
7-Demethoxytylophorine (DEM), a natural water-soluble phenanthroindolizidine alkaloid, has a great potential for in vitro suppression of Penicillium italicum growth. In the present study, we investigated the ability of DEM to confer resistance against P. italicum in harvested "Newhall" navel orange and the underlying mechanism. Results from the in vivo experiment showed that DEM treatment delayed blue mold development. The water-soaked lesion diameter in 40 mg L-1 DEM-treated fruit was 35.2% lower than that in the control after 96 h. Moreover, the decrease in peel firmness loss and increase in electrolyte leakage, superoxide anion (O2•-) production, and malondialdehyde (MDA) content were significantly inhibited by DEM treatment. Hydrogen peroxide (H2O2) burst in DEM-treated fruit at the early stage of P. italicum infection contributed to the conferred resistance by increasing the activities of lignin biosynthesis-related enzymes, along with the expressions of their encoding genes, resulting in lignin accumulation. The DEM-treated fruit maintained an elevated antioxidant capacity, as evidenced by high levels of ascorbic acid and glutathione content, and enhanced or upregulated the activities and gene expression levels of APX, GR, MDHAR, DHAR, GPX, and GST, thereby maintaining ROS homeostasis and reducing postharvest blue mold. Collectively, the results in the present study revealed a control mechanism in which DEM treatment conferred the resistance against P. italicum infection in harvested "Newhall" navel orange fruit by activating lignin biosynthesis and maintaining the redox balance.
Collapse
Affiliation(s)
- Chuying Chen
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuan Peng
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Chunpeng Wan
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanan Zhang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zengyu Gan
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiaoke Zeng
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenbin Kai
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| |
Collapse
|
28
|
Antimicrobial mechanism of linalool against Brochothrix thermosphacta and its application on chilled beef. Food Res Int 2022; 157:111407. [PMID: 35761661 DOI: 10.1016/j.foodres.2022.111407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
Abstract
This work aimed to explore the antibacterial ability and potential mechanism of linalool against Brochothrix thermosphacta (B. thermosphacta), providing knowledge of the preservation of chilled beef with linalool. The results found that linalool had an encouraging inhibitory effect on B. thermosphacta with a minimum inhibitory concentration (MIC) of 1.5 mL/L. Results of FESEM and zeta potential combined with probe labeling confirmed that linalool destroyed the cell structure thereby causing the leakage of intracellular components (AKP, protein, nucleic acid and ion). In addition, linalool caused respiratory disturbance by measuring the key enzyme activities including PK, SDH, MDH and ATPase. Energy limitation also appeared under linalool stress as seen from changes in ATP content (decreased by 56.06% and 69.24% in MIC and 2MIC groups, respectively). The respiratory inhibition rate of linalool to B. thermosphacta was 23.58% and the superposing rate with malonic acid was minimal (35.52%), suggesting that respiratory depression was mainly caused by the TCA cycle. Furthermore, accumulation of ROS and increase in MDA content (increased by 71.17% and 78.03% in MIC and 2MIC groups, respectively) accompanied by decreased activities of detoxification enzymes CAT and POD suggested that oxidative stress contributed to the bactericidal mechanism. Finally, linalool has been shown to effectively inhibit quality deterioration of chilled beef during storage by measuring pH, TVB-N and TVC without affecting sensory acceptability. All these highlight the great promise of using linalool as natural preservative for food industry.
Collapse
|
29
|
Li YN, Zhang SB, Lv YY, Zhai HC, Cai JP, Hu YS. Linalool, the main volatile constituent from Zanthoxylum schinifolium pericarp, prevents growth of Aspergillus flavus in post-harvest grains. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Zhang DY, Yang JX, Liu EJ, Hu RZ, Yao XH, Chen T, Zhao WG, Liu L, Fu YJ. Soft and elastic silver nanoparticle-cellulose sponge as fresh-keeping packaging to protect strawberries from physical damage and microbial invasion. Int J Biol Macromol 2022; 211:470-480. [PMID: 35577198 DOI: 10.1016/j.ijbiomac.2022.05.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022]
Abstract
Strawberry is a nutritious food that is susceptible to mechanical injury and microbiological infection. Traditional coatings for strawberry packaging provide resistance against microbial infection but not against mechanical damage. In this study, a soft and elastic cellulose sponge modified with silver nanoparticles (AgNPs@CS-1:1) was prepared as strawberry packaging material, and it provided effective protection against mechanical damage. In addition, after 1000 cyclic compression, AgNPs@CS-1:1 presented only 16.80% unrecoverable deformation and still had elasticity, suggesting its fatigue resistance and durable protection for strawberry against damage caused by repeated vibrations during transportation. In addition, AgNPs@CS-1:1 had good antibacterial (E. coli and S. aureus) and antifungal (Rhizopus stolonifer) abilities. The storage time of strawberries packaged by AgNPs@CS-1:1 was extended to 12 days without microbial invasion. Thus, AgNPs@CS-1:1 provided dual protection at the physical and microbial levels. This study proposes a new method for the preservation of strawberries based on the utilization of cellulose.
Collapse
Affiliation(s)
- Dong-Yang Zhang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China.
| | - Jia-Xin Yang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - En-Jiang Liu
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Run-Ze Hu
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Xiao-Hui Yao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Tao Chen
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Wei-Guo Zhao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Li Liu
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, No.35, Tsinghua East Road, Haidian District, Beijing, 100083, PR China
| |
Collapse
|
31
|
Merlino M, Arena E, Cincotta F, Condurso C, Brighina S, Grasso A, Fallico B, Verzera A. Fat type and baking conditions for cookies recipe: a sensomic approach. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maria Merlino
- Department of Veterinary Sciences University of Messina Viale G. Palatucci, 98168 Messina Italy
| | - Elena Arena
- Di3A Department University of Catania Via Santa Sofia 98, 95123 Catania Italy
| | - Fabrizio Cincotta
- Department of Veterinary Sciences University of Messina Viale G. Palatucci, 98168 Messina Italy
| | - Concetta Condurso
- Department of Veterinary Sciences University of Messina Viale G. Palatucci, 98168 Messina Italy
| | - Selina Brighina
- Di3A Department University of Catania Via Santa Sofia 98, 95123 Catania Italy
| | - Antonia Grasso
- Di3A Department University of Catania Via Santa Sofia 98, 95123 Catania Italy
| | - Biagio Fallico
- Di3A Department University of Catania Via Santa Sofia 98, 95123 Catania Italy
| | - Antonella Verzera
- Department of Veterinary Sciences University of Messina Viale G. Palatucci, 98168 Messina Italy
| |
Collapse
|
32
|
Ferrocino I, Rantsiou K, Cocolin L. Microbiome and -omics application in food industry. Int J Food Microbiol 2022; 377:109781. [DOI: 10.1016/j.ijfoodmicro.2022.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
|
33
|
Valková V, Ďúranová H, Vukovic NL, Vukic M, Kluz M, Kačániová M. Assessment of Chemical Composition and Anti-Penicillium Activity of Vapours of Essential Oils from Abies Alba and Two Melaleuca Species in Food Model Systems. Molecules 2022; 27:molecules27103101. [PMID: 35630578 PMCID: PMC9145176 DOI: 10.3390/molecules27103101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
The possibilities of the practical utilization of essential oils (EOs) from various plant species in the food industry have attracted the attention of the scientific community. Following our previous studies, the antifungal activities of three further commercial EOs, Melaleuca armillaris subsp. armillaris (rosalina; REO), Melaleuca quinquenervia (niaouli; NEO), and Abies alba (fir; FEO), were evaluated in the present research in respect to their chemical profiles, over four different concentrations, 62.5 μL/L, 125 μL/L, 250 μL/L, and 500 μL/L. The findings revealed that the major compounds of REO, NEO, and FEO were linalool (47.5%), 1,8-cineole (40.8%), and α-pinene (25.2%), respectively. In vitro antifungal determinations showed that the inhibition zones of a Penicillium spp. mycelial growth ranged from no inhibitory effectiveness (00.00 ± 00.00 mm) to 16.00 ± 1.00 mm, indicating a very strong antifungal activity which was detected against P. citrinum after the highest REO concentration exposure. Furthermore, the in situ antifungal efficacy of all EOs investigated was shown to be dose-dependent. In this sense, we have found that the highest concentration (500 µL/L) of REO, NEO, and FEO significantly reduced (p < 0.05) the growth of all Penicillium strains inoculated on the bread, carrot, and potato models. These results indicate that the investigated EOs may be promising innovative agents in order to extend the shelf life of different types of food products, such as bread, carrot and potato.
Collapse
Affiliation(s)
- Veronika Valková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Milena Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Maciej Kluz
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza Str., 35-601 Rzeszow, Poland;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza Str., 35-601 Rzeszow, Poland;
- Correspondence:
| |
Collapse
|
34
|
Ma D, Wang G, Zhu J, Mu W, Dou D, Liu F. Green Leaf Volatile Trans-2-Hexenal Inhibits the Growth of Fusarium graminearum by Inducing Membrane Damage, ROS Accumulation, and Cell Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5646-5657. [PMID: 35481379 DOI: 10.1021/acs.jafc.2c00942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium graminearum, the main agent of Fusarium head blight (FHB), can cause serious yield loss and secrete mycotoxins to contaminate grain. Here, the biological activity of trans-2-hexenal (T2H) against F. graminearum was determined and its mode of action (MOA) was investigated. Furthermore, surface plasmon resonance with liquid chromatography-tandem mass spectrometry (SPR-LC-MS/MS), bioinformatic analysis, and gene knockout technique were combined to identify the binding proteins of T2H in F. graminearum cells. T2H exhibited satisfactory inhibitory activity against F. graminearum in vitro. Good lipophilicity greatly enhanced the affinity of T2H to F. graminearum mycelia and further caused membrane damage. The FgTRR (thioredoxin reductase) gene negatively regulates the sensitivity of F. graminearum to T2H by reducing the generation of reactive oxygen species (ROS) induced by T2H. Two mutant strains with FgSLX1 (structure-specific endonuclease subunit) and FgCOPB (coatomer subunit β) genes knockout showed decreased sensitivity to T2H, suggesting that these two genes may be involved in the antimicrobial activity of T2H. Taken together, T2H can inhibit F. graminearum growth by multiple MOAs and can be used as a biofumigant to control the occurrence of FHB in the field.
Collapse
Affiliation(s)
- Dicheng Ma
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guoxian Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jiamei Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
35
|
Peng X, Zhang Y, Wan C, Gan Z, Chen C, Chen J. Antofine Triggers the Resistance Against Penicillium italicum in Ponkan Fruit by Driving AsA-GSH Cycle and ROS-Scavenging System. Front Microbiol 2022; 13:874430. [PMID: 35495682 PMCID: PMC9039625 DOI: 10.3389/fmicb.2022.874430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Postharvest fungal infection can accelerate the quality deterioration of Ponkan fruit and reduce its commodity value. Penicillium italicum is the causal pathogen of blue mold in harvested citrus fruits, not only causing huge fungal decay but also leading to quality deterioration. In our preliminary study, antofine (ATF) was found to have a great potential for significant in vitro suppression of P. italicum growth. However, the regulatory mechanism underpinning ATF-triggered resistance against P. italicum in citrus fruit remains unclear. Here, the protective effects of ATF treatment on blue mold development in harvested Ponkan fruit involving the enhancement of ROS-scavenging system were investigated. Results showed that ATF treatment delayed blue mold development and peel firmness loss. Moreover, the increase of electrolyte leakage, O2 •- production, and malonyldialdehyde accumulation was significantly inhibited by ATF treatment. The ATF-treated Ponkan fruit maintained an elevated antioxidant capacity, as evidenced by inducted the increase in glutathione (GSH) content, delayed the declines of ascorbic acid (AsA) content and GSH/oxidized GSH ratio, and enhanced the activities of superoxide dismutase, catalase, peroxidase, and six key AsA-GSH cycle-related enzymes, along with their encoding gene expressions, thereby maintaining ROS homeostasis and reducing postharvest blue mold in harvested Ponkan fruit. Collectively, the current study revealed a control mechanism based on ATF-triggered resistance and maintenance of a higher redox state by driving AsA-GSH cycle and ROS-scavenging system in P. italicum-infected Ponkan fruit.
Collapse
Affiliation(s)
| | | | | | | | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Preservation and Non-destruction Testing of Fruits and Vegetables, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | | |
Collapse
|
36
|
Solid- and vapour-phase antifungal activities of six essential oils and their applications in postharvest fungal control of peach (Prunus persica L. Batsch). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Bai Y, Liu H, Lyu H, Su L, Xiong J, Cheng ZM(M. Development of a single-cell atlas for woodland strawberry (Fragaria vesca) leaves during early Botrytis cinerea infection using single cell RNA-seq. HORTICULTURE RESEARCH 2022; 9:uhab055. [PMID: 35043166 PMCID: PMC8969069 DOI: 10.1093/hr/uhab055] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/12/2021] [Indexed: 05/31/2023]
Abstract
Pathogen invasion leads to fast, local-to-systemic signal transduction that initiates plant defense responses. Despite tremendous progress in past decades, aspects of this process remain unknown, such as which cell types respond first and how signals are transferred among cell types. Here, we used single-cell RNA-seq of more than 50 000 single cells to document the gene expression landscape in leaves of woodland strawberry during infection by Botrytis cinerea and identify major cell types. We constructed a single-cell atlas and characterized the distinct gene expression patterns of hydathode, epidermal, and mesophyll cells during the incubation period of B. cinerea infection. Pseudotime trajectory analysis revealed signals of the transition from normal functioning to defense response in epidermal and mesophyll cells upon B. cinerea infection. Genes related to disease resistance showed different expression patterns among cell types: disease resistance-related genes and gene encoding transcription factors were highly expressed in individual cell types and interacted to trigger plant systemic immunity to B. cinerea. This is the first report to document the of single-cell transcriptional landscape of the plant pathogenic invasion process, it provides new insights into the wholistic dynamics of host-pathogen interactions and can guide the identification of genes and the formulation of strategies for resistant cultivar development.
Collapse
Affiliation(s)
- Yibo Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haimeng Lyu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyao Su
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinsong Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | |
Collapse
|
38
|
Perumal AB, Huang L, Nambiar RB, He Y, Li X, Sellamuthu PS. Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chem 2021; 375:131810. [PMID: 34959137 DOI: 10.1016/j.foodchem.2021.131810] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/16/2021] [Accepted: 12/04/2021] [Indexed: 01/10/2023]
Abstract
Fruits and vegetables are highly perishable in nature. Several factors could affect the quality and shelf life of fruits and vegetables. Packaging materials (usually made up of polymers, proteins, lipids, polysaccharides, etc.,) are incorporated with essential oil (EO) which is high in antimicrobial and antioxidant compounds that can enhance the shelf life of fruits and vegetables without affecting their quality. However, the use of EO for postharvest preservation can alter the organoleptic properties of fresh produce. Exploiting synergistic interactions between several EOs, encapsulation of EO, or combining EO with non-thermal techniques such as irradiation, UV-C, cold plasma, ultrasound, etc., may help in preventing the spoilage of food products at lower concentrations without altering their organoleptic properties. This review aims to discuss the overview and current scenario of packaging film with EO for the preservation of fruit and vegetables. We have also discussed the spoilage mechanism of fruits and vegetables, mode of action of EOs, and the effect of EO with packaging film on antimicrobial and sensory properties of fruits and vegetables.
Collapse
Affiliation(s)
- Anand Babu Perumal
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Lingxia Huang
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Reshma B Nambiar
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Periyar Selvam Sellamuthu
- Department of Food Process Engineering, Postharvest Research Lab, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamilnadu, India.
| |
Collapse
|
39
|
Wang Y, Qiao Y, Zhang M, Ma Z, Xue Y, Mi Q, Wang A, Feng J. Potential value of small-molecule organic acids for the control of postharvest gray mold caused by Botrytis cinerea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104884. [PMID: 34301352 DOI: 10.1016/j.pestbp.2021.104884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
In the present study, a total of 21 natural or synthetic small-molecule organic acids were selected and determined for their activity against postharvest gray mold caused by B. cinerea. Overall, cuminic acid, which was extracted from the seed of Cuminum cyminum L, showed the most promising antifungal activity against B. cinerea both in vitro and in vivo. The study on action mechanism showed that cuminic acid could inhibit the development of sclerotia and the secretion of oxalic acid, destroy the cell membrane integrity, and down regulate the expression of several key genes involved in sclerotia development and pathogenicity of B. cinerea. Furthermore, cuminic acid could potentially reduce the degradation of TSS and TA content, while it had no significant effect on the weight loss, firmness, and VC content of apple and tomato. Importantly, cuminic acid could enhance the antioxidant enzyme activities of the fruits. All these results demonstrate the antifungal activity and highlight the great potential of cuminic acid as an alternative environmental-friendly agent for the control of postharvest gray mold both on fruits and vegetables.
Collapse
Affiliation(s)
- Yong Wang
- College of plant protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yonghui Qiao
- College of plant protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengwei Zhang
- College of plant protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhiqing Ma
- College of plant protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanji Xue
- College of plant protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qianqian Mi
- College of plant protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Aling Wang
- College of plant protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Juntao Feng
- College of plant protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
40
|
Xu Y, Tong Z, Zhang X, Zhang X, Luo Z, Shao W, Li L, Ma Q, Zheng X, Fang W. Plant volatile organic compound (E)-2-hexenal facilitates Botrytis cinerea infection of fruits by inducing sulfate assimilation. THE NEW PHYTOLOGIST 2021; 231:432-446. [PMID: 33792940 DOI: 10.1111/nph.17378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 05/14/2023]
Abstract
Investigation into plant-fungal pathogen interactions is one of the most interesting fields in plant sciences. However, the roles of plant volatile organic compounds in the arms race are still largely unknown. Based on precise quantification of plant volatiles, we discovered that the plant volatile organic compound (E)-2-hexenal, at concentrations that were similar to or lower than those in tissues of strawberry and tomato fruits, upregulates sulfate assimilation in spores and hyphae of the phytopathogenic fungus Botrytis cinerea. This upregulation is independent of the types of sulfur sources in the plant and can be achieved in the presence of inorganic sulfate and organic sulfur sources. Using the fungal deletion mutants, we further found that sulfate assimilation is involved in the infection of tomato and strawberry fruits by B. cinerea, and that the severity of the disease is proportional to the sulfate content in the fruits. Both before and during the infection, (E)-2-hexenal induced utilisation of plant sulfate by B. cinerea facilitates its pathogenesis through enhancing its tolerance to oxidative stress. This work provides novel insights into the role of plant volatiles in plant-fungal pathogen interaction and highlights the importance of sulfur levels in the host in the prevention of grey mould disease.
Collapse
Affiliation(s)
- Yanqun Xu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, 310058, China
| | - Zhichao Tong
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
| | - Xiaochen Zhang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, 310058, China
| | - Xing Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Zhejiang, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, 310058, China
- Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China
| | - Wenyong Shao
- Institute of Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, 310058, China
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, 310058, China
| | - Xiaodong Zheng
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, 315100, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Zhejiang, 310058, China
| |
Collapse
|
41
|
Delivering the goods: Fungal secretion modulates virulence during host–pathogen interactions. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Xiao L, Niu HJ, Qu TL, Zhang XF, Du FY. Streptomyces sp. FX13 inhibits fungicide-resistant Botrytis cinerea in vitro and in vivo by producing oligomycin A. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104834. [PMID: 33993959 DOI: 10.1016/j.pestbp.2021.104834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens which can cause gray mold diseases of numerous plant species, while the frequent applications of fungicides also result in the fungicide-resistances of B. cinerea. In this study, a new Streptomyces strain FX13 was obtained to show biocontrol potentials against fungicide-resistant B. cinerea B3-4. Its in vitro and in vivo antifungal mechanisms were further investigated. The results showed that the culture extract of strain FX13 could significantly inhibit the mycelia growth of B. cinerea B3-4 with the EC50 value of 5.40 mg L-1, which was greatly lower than those of pyrisoxazole, boscalid and azoxystrobin. Further bioassay-guided isolation of the extract had yielded the antifungal component SA1, which was elucidated as a 26-membered polyene macrolide of oligomycin A. SA1 could inhibit the mycelia growth, spore germination, germ tube elongation and sporogenesis of B. cinerea B3-4 in vitro, and also showed significant curative and protective effects against gray mold on grapes in vivo. Moreover, SA1 could result in the loss of membrane integrity and the leakage of cytoplasmic contents, which might be related to the accumulation of reactive oxygen species (ROS) and membrane lipid peroxidation. Besides, intracellular adenosine triphosphatase (ATPase) activity and adenosine triphosphate (ATP) content of B. cinerea B3-4 decreased after SA1-treatment. Overall, the oligomycin A-producing strain FX13 could inhibit fungicide-resistant B. cinerea B3-4 in vitro and in vivo, also highlighting its biocontrol potential against gray mold.
Collapse
Affiliation(s)
- Lin Xiao
- Institute of Green Pesticide Development, College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
| | - Hong-Jie Niu
- Institute of Green Pesticide Development, College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
| | - Tian-Li Qu
- Institute of Green Pesticide Development, College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiang-Fei Zhang
- Institute of Green Pesticide Development, College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
| | - Feng-Yu Du
- Institute of Green Pesticide Development, College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China; Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
43
|
OuYang Q, Liu Y, Oketch OR, Zhang M, Shao X, Tao N. Citronellal Exerts Its Antifungal Activity by Targeting Ergosterol Biosynthesis in Penicillium digitatum. J Fungi (Basel) 2021; 7:jof7060432. [PMID: 34072578 PMCID: PMC8229684 DOI: 10.3390/jof7060432] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022] Open
Abstract
Ergosterol (ERG) is a potential target for the development of antifungal agents against Penicillium digitatum, the pathogen of green mold in citrus fruits. This study examined the mechanism by which citronellal, a typical terpenoid of Cymbopogon nardus essential oil, acts on ergosterol to exhibit its antifungal activity against P. digitatum. We previously reported that citronellal inhibited the growth of P. digitatum with minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 1.36 and 2.72 mg/mL, respectively. In citronellal-treated cells, the membrane integrity and ergosterol contents significantly decreased, whereas lanosterol, which serves as a precursor for ergosterol biosynthesis, massively accumulated. Addition of 150 mg/L of exogenous ergosterol decreased the inhibitory rate of citronellal, restoring the ergosterol content and hence the membrane structure to normal levels, and triggered expression of nearly all ERG genes. Based on our findings, we deduce that citronellal damages the cell membrane integrity of P. digitatum by down-regulating the ERG genes responsible for conversion of lanosterol to ergosterol, the key downregulated gene being ERG3, due to the observed accumulation of ergosta-7,22-dienol.
Collapse
Affiliation(s)
- Qiuli OuYang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Q.O.); (Y.L.); (O.R.O.); (M.Z.)
| | - Yangmei Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Q.O.); (Y.L.); (O.R.O.); (M.Z.)
| | - Okwong Reymick Oketch
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Q.O.); (Y.L.); (O.R.O.); (M.Z.)
| | - Miaoling Zhang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Q.O.); (Y.L.); (O.R.O.); (M.Z.)
| | - Xingfeng Shao
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Q.O.); (Y.L.); (O.R.O.); (M.Z.)
- Correspondence: ; Tel.: +86-731-5829-2456; Fax: +86-731-5829-3549
| |
Collapse
|
44
|
Hu Z, Yuan K, Zhou Q, Lu C, Du L, Liu F. Mechanism of antifungal activity of Perilla frutescens essential oil against Aspergillus flavus by transcriptomic analysis. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107703] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Bartholomew HP, Bradshaw M, Jurick WM, Fonseca JM. The Good, the Bad, and the Ugly: Mycotoxin Production During Postharvest Decay and Their Influence on Tritrophic Host-Pathogen-Microbe Interactions. Front Microbiol 2021; 12:611881. [PMID: 33643240 PMCID: PMC7907610 DOI: 10.3389/fmicb.2021.611881] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Mycotoxins are a prevalent problem for stored fruits, grains, and vegetables. Alternariol, aflatoxin, and patulin, produced by Alternaria spp., Aspergillus spp., and Penicillium spp., are the major mycotoxins that negatively affect human and animal health and reduce fruit and produce quality. Control strategies for these toxins are varied, but one method that is increasing in interest is through host microbiome manipulation, mirroring a biocontrol approach. While the majority of mycotoxins and other secondary metabolites (SM) produced by fungi impact host–fungal interactions, there is also an interplay between the various organisms within the host microbiome. In addition to SMs, these interactions involve compounds such as signaling molecules, plant defense and growth hormones, and metabolites produced by both the plants and microbial community. Therefore, studies to understand the impact of the various toxins impacting the beneficial and harmful microorganisms that reside within the microbiome is warranted, and could lead to identification of safe analogs for antimicrobial activity to reduce fruit decay. Additionally, exploring the composition of the microbial carposphere of host plants is likely to shed light on developing a microbial consortium to maintain quality during storage and abate mycotoxin contamination.
Collapse
Affiliation(s)
- Holly P Bartholomew
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Michael Bradshaw
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Wayne M Jurick
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Jorge M Fonseca
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
46
|
Zhang Y, Li T, Xu M, Guo J, Zhang C, Feng Z, Peng X, Li Z, Xing K, Qin S. Antifungal effect of volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 on oxidative stress and mitochondrial dysfunction of Ceratocystis fimbriata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104777. [PMID: 33771256 DOI: 10.1016/j.pestbp.2021.104777] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 05/27/2023]
Abstract
Ceratocystis fimbriata is the pathogen of black rot disease, which widely exists in sweet potato producing areas all over the world. The antifungal activity of volatile organic compounds (VOCs) released by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 against C. fimbriata was reported in our previous study. In this study, we attempted to reveal the underlying antifungal mechanism of SPS-41 volatiles. Our results showed that the VOCs released by SPS-41 caused the morphological change of hyphae, destroyed the integrity of cell membrane, reduced the content of ergosterol, and induced massive accumulation of reactive oxygen species in C. fimbriata cells. Furthermore, SPS-41 fumigation decreased the mitochondrial membrane potential, acetyl-CoA and pyruvate content of C. fimbriata cells, as well as the mitochondrial dehydrogenases activity. In addition, the VOCs generated by SPS-41 reduced the intracellular ATP content and increased the extracellular ATP content of C. fimbriata. In summary, SPS-41 fumigation exerted its antifungal activity by inducing oxidative stress and mitochondrial dysfunction in C. fimbriata.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Tengjie Li
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Mingjie Xu
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Jianheng Guo
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Chunmei Zhang
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Zhaozhong Feng
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Xue Peng
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Zongyun Li
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Ke Xing
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China.
| | - Sheng Qin
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| |
Collapse
|
47
|
Liu G, Yang M, Yang X, Ma X, Fu J. Five TPSs are responsible for volatile terpenoid biosynthesis in Albizia julibrissin. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153358. [PMID: 33453433 DOI: 10.1016/j.jplph.2020.153358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Silk tree, Albizia julibrissin Duraz, is an old ornamental plant and extensively cultivated in Asia. Previous works have discovered that the terpenoids were the dominating compounds in the floral VOC of A. julibrissin, however the biosynthesis of these terpenoids was poorly understood so far. Here, 11 terpene synthase genes (TPSs) were identified by transcriptome sequencing that fell into TPS-a, TPS-b and TPS-g subfamilies. The enzymatic activity tests showed that five genes were functional: AjTPS2 was a sesquiterpene synthase and produced α-farnesene and (Z, E)-β-farnesene; AjTPS5 was able to catalyze the formation of five monoterpenes and nine sesquiterpenes; AjTPS7, AjTPS9 and AjTPS10 were dedicated monoterpene synthases, as AjTPS7 and AjTPS10 formed the single product β-ocimene and linalool, respectively, and AjTPS9 produced γ-terpinene with other three monoterpenes. More importantly, the main catalytic products of the characterized AjTPSs were consistent with the terpenoids observed in A. julibrissin volatiles. Combining terpene chemistry, TPSs biochemical activities and gene expression analysis, we demonstrate that AjTPS2, AjTPS5, AjTPS7, AjTPS9 and AjTPS10 are responsible for the volatile terpenoids biosynthesis in A. julibrissin.
Collapse
Affiliation(s)
- Guanhua Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, PR China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, PR China
| | - Xuemin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaoying Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, PR China.
| |
Collapse
|
48
|
Wang Z, Zhong T, Chen X, Yang B, Du M, Wang K, Zalán Z, Kan J. Potential of Volatile Organic Compounds Emitted by Pseudomonas fluorescens ZX as Biological Fumigants to Control Citrus Green Mold Decay at Postharvest. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2087-2098. [PMID: 33560120 DOI: 10.1021/acs.jafc.0c07375] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, volatile organic compounds (VOCs) were generated by Pseudomonas fluorescens ZX with incubation in nutrient broth (NB), on NA (NB with agar), and on healthy orange fruits, and pure individual components of VOCs were used to manage citrus green mold infected by Penicillium digitatum. At a concentration of 1 × 1010 cfu/mL, the VOCs from antagonist-containing NA plates inhibited P. digitatum conidial germination and mycelial growth by about 60%, while the VOCs from bacterial fluid exhibited approximately 75% inhibitory effect. Biofumigation by VOCs significantly reduced the disease index, with a higher biocontrol efficacy by VOCs from bacterial fluid (about 51%) than from antagonist-containing NA plates (around 40%) or from antagonist-infested fruit (approximately 24%). Exposure to VOCs led to morphological abnormalities of P. digitatum conidia and hyphae. However, VOCs exhibited poor preventative and curative action against P. digitatum. The storage test showed that biofumigation had no negative effects on fruit quality. Antifungal assays suggested that dimethyl disulfide and dimethyl trisulfide exhibited the highest inhibitory effects, which afforded complete inhibition at the lowest concentrations. In addition, organic acids were also promising in controlling green mold, but only at suitable low concentrations to avoid eliciting fruit's physiological diseases.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Tao Zhong
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Xuhui Chen
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Bing Yang
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Kaituo Wang
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
- College of Life Science and Engineering, Chongqing Three Gorges University, Chongqing 404000, PR China
| | - Zsolt Zalán
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
- Food Science Research Institute of National Agricultural Research and Innovation Center, Budapest H-1022, Hungary
| | - Jianquan Kan
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| |
Collapse
|
49
|
Yan YF, Yang CJ, Shang XF, Zhao ZM, Liu YQ, Zhou R, Liu H, Wu TL, Zhao WB, Wang YL, Hu GF, Qin F, He YH, Li HX, Du SS. Bioassay-guided isolation of two antifungal compounds from Magnolia officinalis, and the mechanism of action of honokiol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104705. [PMID: 32980068 DOI: 10.1016/j.pestbp.2020.104705] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Magnolia officinalis, as a well-known herb worldwide, has been widely used to treat multiple diseases for a long time. In this study, the petroleum ether extract from M. officinalis showed effective antifungal activity against seven plant pathogens (particularly against R. solani with an inhibition rate of 100.00% at 250 μg/mL). Honokiol and magnolol, isolated by the bioassay-guided method, exhibited greater antifungal activity than tebuconazole (EC50 = 3.07 μg/mL, p ≤ 0.001) against R. solani, which EC50 values were 2.18 μg/mL and 3.48 μg/mL, respectively. We used transcriptomics to explore the mechanism of action of honokiol against R. solani. Results indicated that honokiol may exert antifungal effects by blocking the oxidative phosphorylation metabolic pathway. Further studies indicated that honokiol induced ROS overproduction, disrupted the mitochondrial function, affected respiration, and blocked the TCA cycle, which eventually inhibited ATP production. Besides, honokiol also damaged cell membranes and caused morphological changes. This study demonstrated that the lignans isolated from M. officinalis possess the potential to be developed as botanical fungicides.
Collapse
Affiliation(s)
- Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhong-Min Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Rui Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hua Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Tian-Lin Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yu-Ling Wang
- Gansu Academy of Agricultural Sciences, Lanzhou 730000, People's Republic of China
| | - Guan-Fang Hu
- Gansu Academy of Agricultural Sciences, Lanzhou 730000, People's Republic of China
| | - Fang Qin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hai-Xin Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Sha-Sha Du
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
50
|
Zhou Y, Deng R, Xu X, Yang Z. Enzyme Catalytic Efficiencies and Relative Gene Expression Levels of ( R)-Linalool Synthase and ( S)-Linalool Synthase Determine the Proportion of Linalool Enantiomers in Camellia sinensis var. sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10109-10117. [PMID: 32829629 DOI: 10.1021/acs.jafc.0c04381] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Linalool is abundant in tea leaves and contributes greatly to tea aroma. The two isomers of linalool, (R)-linalool and (S)-linalool, exist in tea leaves. Our study found that (R)-linalool was the minor isomer in nine of Camellia sinensis var. sinensis cultivars. The (R)-linalool synthase of tea plant CsRLIS was identified subsequently. It is a chloroplast-located protein and specifically catalyzes the formation of (R)-linalool in vitro and in vivo. CsRLIS was observed to be a stress-responsive gene and caused the accumulation of internal (R)-linalool during oolong tea manufacture, mechanical wounding, and insect attack. Further study demonstrated that the catalytic efficiency of CsRLIS was much lower than that of (S)-linalool synthase CsSLIS, which might explain the lower (R)-linalool proportion in C. sinensis var. sinensis cultivars. The relative expression levels of CsRLIS and CsSLIS may also affect the (R)-linalool proportions among C. sinensis var. sinensis cultivars. This information will help us understand differential distributions of chiral aroma compounds in tea.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Rufang Deng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Xinlan Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|