1
|
Liu L, Shi M, Wu Y, Hao J, Guo J, Li S, Dai P, Gao J. Protective effects of resveratrol on honeybee health: Mitigating pesticide-induced oxidative stress and enhancing detoxification. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106403. [PMID: 40262860 DOI: 10.1016/j.pestbp.2025.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
The widespread use of pesticides poses a significant threat to honeybee health by impacting their survival, behavior, immune function, and detoxification capacity. While phytochemicals such as resveratrol (RSV) have shown potential in mitigating oxidative stress and enhancing antioxidant defenses, their role in improving honeybee tolerance to pesticide exposure remains underexplored. In this study, we investigated the effects of RSV supplementation on honeybees exposed to three pesticides: dinotefuran (DIN), tebuconazole (TEB), and deltamethrin (DEL). The results showed that RSV supplementation significantly improved survival, feed intake, mobility, and gustatory sensitivity, indicating its protective effects against pesticide toxicity. Furthermore, RSV helped normalize impaired detoxification enzyme activities, including SOD, POD, catalase, and glutathione reductase, and reduced ROS levels and lipid peroxidation. Gene expression analysis revealed that RSV modulates Toll pathway-related genes like defensin and apidaecin, alleviating immune suppression caused by pesticides. Additionally, RSV influenced the insulin/insulin-like growth factor signaling (IIS) pathway by reducing ilp1 and inr1 expression, potentially mitigating metabolic stress. These findings demonstrate that protective effects of RSV may be linked to its ability to counter oxidative stress, restore mitochondrial function, and enhance energy metabolism. Furthermore, RSV is widely available, cost-effective, and easily incorporated into bee feed, making it feasible for large-scale application. This study highlights the protective role of RSV in pesticide detoxification in honeybees, offering new perspectives for honeybee health management and environmental toxicology research. By reducing the adverse effects of pesticides on honeybees, the application of RSV not only contributes to maintaining ecological balance but also supports sustainable agricultural practices. Future research should focus on optimizing its dosage, evaluating long-term effects, and investigating its impact on colony dynamics to facilitate its practical implementation in apiculture.
Collapse
Affiliation(s)
- Linlin Liu
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiali Hao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junxiu Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 100096, China
| | - Shanshan Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang Y, Liu J, Shi J, Wu B, He Z, Wu X. The interaction and response of gut microbes to exposure to chiral ethiprole in honeybees (Apis mellifera). JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137112. [PMID: 39756327 DOI: 10.1016/j.jhazmat.2025.137112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Widespread pesticide use is believed to be a major factor contributing to the decline of bee populations. Previous studies have shown that enantiomers of chiral pesticides may have different toxicities on bee, but the effects of pesticide enantiomers on honeybees and their gut microbiota are still unknown. In this study, we assessed the gut microbial and their host toxicities of ethiprole enantiomers at a concentration of 15 μg/L in honeybees. Compared to the sucrose control and R-ethiprole, S-ethiprole exposure significantly reduced bee survival. Notably, bees exposed to ethiprole and its enantiomers affected sucrose consumption and body weight, and developed a small gut with thinning and degeneration. 16S rRNA gene amplicon sequencing of the bee gut revealed that ethiprole and its enantiomers significantly disrupted the microbial communities. In contrast, S-ethiprole exposure markedly reduced community size and diversity and exhibited a lower niche width. In addition, the expression of immune detoxification genes (Defensin1,Defensin2,GST3) was upregulated by R-ethiprole in bees and S-ethiprole downregulated the mRNA levels of CYP6AS14 in bees. The expression of immune response-related genes was negatively correlated with core bacteria.This study offers comprehensive insights the effect of chiral ethiprole on the health of bees, particularly the risk of S-ethiprole in bees. Moreover, it provides a reference for exploring the interactions between host and microbiota systems under exogenous stress.
Collapse
Affiliation(s)
- Yonghong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jingliang Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Baohui Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zetian He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China.
| |
Collapse
|
3
|
Zhang Y, Li H, Chen L, Zhang F, Cao W, Ouyang H, Zeng D, Li X. Non-contact exposure to dinotefuran disrupts honey bee homing by altering MagR and Cry2 gene expression. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136710. [PMID: 39642735 DOI: 10.1016/j.jhazmat.2024.136710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Dinotefuran is known to negatively affect honeybee (Apis mellifera) behavior, but the underlying mechanism remains unclear. The magnetoreceptor (MagR, which responds to magnetic fields) and cryptochrome (Cry2, which is sensitive to light) genes are considered to play important roles in honey bees' homing and localization behaviors. Our study found that dinotefuran, even without direct contact, can act like a magnet, significantly altering MagR expression in honeybees. This non-contact exposure reduced the bees' homing rate. In further experiments, we exposed foragers to light and magnetic fields, the MagR gene responded to magnetic fields only in the presence of light, with Cry2 playing a key switching role in the magnetic field receptor mechanism (MagR-Cry2). Yeast two-hybrid and BiFc assays confirmed an interaction of these two genes. Moreover, the bees' homing rate was significantly reduced when the expression of these genes was decreased using RNAi. These findings suggest that changes in MagR and Cry2 expression are critical to the reduction in homing ability caused by non-contact dinotefuran exposure. This study reveals the potential navigation mechanisms of honey bees during homing and foraging and shows that the impact of dinotefuran on honey bee populations is more extensive than previously understood.
Collapse
Affiliation(s)
- Yongheng Zhang
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Honghong Li
- Guangxi vocational university of agriculture, Nanning, Guangxi 530004, China.
| | - Lichao Chen
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Fu Zhang
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenjing Cao
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Huili Ouyang
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Dongqiang Zeng
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuesheng Li
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
4
|
Sun J, Wu J, Zhang X, Wei Q, Kang W, Wang F, Liu F, Zhao M, Xu S, Han B. Enantioselective toxicity of the neonicotinoid dinotefuran on honeybee (Apis mellifera) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:174014. [PMID: 38880156 DOI: 10.1016/j.scitotenv.2024.174014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The threat of neonicotinoids to insect pollinators, particularly honeybees (Apis mellifera), is a global concern, but the risk of chiral neonicotinoids to insect larvae remains poorly understood. In the current study, we evaluated the acute and chronic toxicity of dinotefuran enantiomers to honeybee larvae in vitro and explored the mechanism of toxicity. The results showed that the acute median lethal dose (LD50) of S-dinotefuran to honeybee larvae was 30.0 μg/larva after oral exposure for 72 h, which was more toxic than rac-dinotefuran (92.7 μg/larva) and R-dinotefuran (183.6 μg/larva). Although the acute toxicity of the three forms of dinotefuran to larvae was lower than that to adults, chronic exposure significantly reduced larval survival, larval weight, and weight of newly emerged adults. Analysis of gene expression and hormone titer indicated that dinotefuran affects larval growth and development by interfering with nutrient digestion and absorption and the molting system. Analysis of hemolymph metabolome further revealed that disturbances in the neuroactive ligand-receptor interaction pathway and energy metabolism are the key mechanisms of dinotefuran toxicity to bee larvae. In addition, melatonin and vitellogenin are used by larvae to cope with dinotefuran-induced oxidative stress. Our results contribute to a comprehensive understanding of dinotefuran damage to bees and provide new insights into the mechanism of enantioselective toxicity of insecticides to insect larvae.
Collapse
Affiliation(s)
- Jiajing Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Modern Agricultural College, Yibin Vocational and Technical College, Yibin 644100, China
| | - Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xufeng Zhang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weipeng Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Wang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Fengying Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meijiao Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
He ZC, Zhang T, Peng W, Mei Q, Wang QZ, Ding F. Exploring the neurotoxicity of chiral dinotefuran towards nicotinic acetylcholine receptors: Enantioselective insights into species selectivity. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134020. [PMID: 38521037 DOI: 10.1016/j.jhazmat.2024.134020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Dinotefuran is a chiral neonicotinoid that is widely distributed in environmental matrices, but its health risks to different organisms are poorly understood. This study investigated the neurotoxic responses of honeybee/cotton aphid nicotinic acetylcholine receptors (nAChRs) to chiral dinotefuran at the enantiomeric scale and demonstrated the microscopic mechanism of species selectivity in nAChR-mediated enantioselective neurotoxicity. The findings indicated that (S)-dinotefuran had a higher affinity for honeybee nAChR than (R)-dinotefuran whereas both enantiomers exhibited similar bioactivity toward cotton aphid nAChR. The results of dynamic neurotoxic processes indicated the association of conformational changes induced by chiral dinotefuran with its macroscopic neurotoxicity, and (R)-dinotefuran, which exhibit low toxicity to honeybee, was found to induce significant conformational changes in the enantioselective neurotoxic reaction, as supported by the average root-mean-square fluctuation (0.35 nm). Energy decomposition results indicated that electrostatic contribution (ΔGele) is the critical energy term that leads to substantial enantioselectivity, and both Trp-51 (-2.57 kcal mol-1) and Arg-75 (-4.86 kcal mol-1), which form a hydrogen-bond network, are crucial residues in mediating the species selectivity for enantioselective neurotoxic responses. Clearly, this study provides experimental evidence for a comprehensive assessment of the health hazards of chiral dinotefuran.
Collapse
Affiliation(s)
- Zhi-Cong He
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tao Zhang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Wei Peng
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qiong Mei
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; School of Land Engineering, Chang'an University, Xi'an 710054, China
| | - Qi-Zhao Wang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Fei Ding
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
6
|
Zhu J, Tao Q, Du G, Huang L, Li M, Wang M, Wang Q. Mitochondrial dynamics disruption: Unraveling Dinotefuran's impact on cardiotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123238. [PMID: 38159629 DOI: 10.1016/j.envpol.2023.123238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Exposure to pesticides has been associated with several cardiovascular complications in animal models. Neonicotinoids are now the most widely used insecticide globally, while the impact of neonicotinoids on cardiovascular function and the role of mitochondrial dynamics in neonicotinoids-induced cardiotoxicity is unclear. In the present study, Xenopus laevis tadpoles were exposed to environmental related concentrations (0, 5, and 50 μg/L) of typical neonicotinoid dinotefuran, with two enantiomers, for 21 days. We evaluated the changes in heart rate and cardiomyocyte apoptosis in exposed tadpoles. Then, we performed the transcriptome, metabolomics, transmission electron microscopy (TEM), and protein immunoblot to investigate the potential adverse impact of two enantiomers of dinotefuran on cardiotoxicity associated with mitochondrial dynamics. We observed changes in heart rate and increased cardiomyocyte apoptosis in exposed tadpoles, indicating that dinotefuran had a cardiotoxic effect. We further found that the cardiac contractile function pathway was significantly enriched, while the glucose metabolism-related pathways were also disturbed significantly. TEM observation revealed that the mitochondrial morphology of cardiomyocytes in exposed tadpoles was swollen, and mitophagy was increased. Mitochondria fusion was excessively manifested in the enhanced mitochondrial fusion protein. The mitochondrial respiratory chain was also disturbed, which led to an increase in ROS production and a decrease in ATP content. Therefore, our results suggested that dinotefuran exposure can induce cardiac disease associated mitochondrial disorders by interfering with the functionality and dynamics of mitochondria. In addition, both two enantiomers of dinotefuran have certain toxicity to tadpole cardiomyocytes, while R-dinotefuran exhibited higher toxicity than S-enantiomer, which may be attributed to disparities in the activation capacities of the respiratory chain.
Collapse
Affiliation(s)
- Jiaping Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Gaoyi Du
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Lei Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Okeke ES, Olisah C, Malloum A, Adegoke KA, Ighalo JO, Conradie J, Ohoro CR, Amaku JF, Oyedotun KO, Maxakato NW, Akpomie KG. Ecotoxicological impact of dinotefuran insecticide and its metabolites on non-targets in agroecosystem: Harnessing nanotechnology- and bio-based management strategies to reduce its impact on non-target ecosystems. ENVIRONMENTAL RESEARCH 2024; 243:117870. [PMID: 38072111 DOI: 10.1016/j.envres.2023.117870] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/26/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The class of insecticides known as neonicotinoid insecticides has gained extensive application worldwide. Two characteristics of neonicotinoid pesticides are excellent insecticidal activity and a wide insecticidal spectrum for problematic insects. Neonicotinoid pesticides can also successfully manage pest insects that have developed resistance to other insecticide classes. Due to its powerful insecticidal properties and rapid plant absorption and translocation, dinotefuran, the most recent generation of neonicotinoid insecticides, has been widely used against biting and sucking insects. Dinotefuran has a wide range of potential applications and is often used globally. However, there is growing evidence that they negatively impact the biodiversity of organisms in agricultural settings as well as non-target organisms. The objective of this review is to present an updated summary of current understanding regarding the non-target effects of dinotefuran; we also enumerated nano- and bio-based mitigation and management strategies to reduce the impact of dinotefuran on non-target organisms and to pinpoint knowledge gaps. Finally, future study directions are suggested based on the limitations of the existing studies, with the goal of providing a scientific basis for risk assessment and the prudent use of these insecticides.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00, Brno, Czech Republic
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria; Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11, Hoffman St, Potchefstroom, 2520, South Africa
| | - James F Amaku
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Kabir O Oyedotun
- College of Science, Engineering and Technology (CSET), University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Nobanathi W Maxakato
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
8
|
Paloschi CL, Tavares MHF, Berte EA, Model K, Rosa KM, Conceição FGD, Domanski FR, de Souza Vismara E, Montanher PF, Maciel RMA, Ribeiro LDS, Ramos Mertz N, Sampaio SC, Costa FM, Lozano ER, Potrich M. Imidacloprid: Impact on Africanized Apis mellifera L. (Hymenoptera: Apidae) workers and honey contamination. CHEMOSPHERE 2023; 338:139591. [PMID: 37478982 DOI: 10.1016/j.chemosphere.2023.139591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
Apis mellifera L. (Hymenoptera: Apidae) is fundamental in the production chain, ensuring food diversity through the ecosystem service of pollination. The aim of this work was to evaluate the impact of imidacloprid, orally, topically, and by contact, on A. mellifera workers and to verify the presence of this active ingredient in honey. Toxicity levels were verified by bioassays. In bioassay 1, the levels correspond to the percentages of 100, 10, 1, 0.1, and 0.01% of the recommended concentration for field application of the commercial product Nortox® (active ingredient imidacloprid), with which we obtained the mean lethal concentration (LC50) in 48 h for A. mellifera, determining the concentration ranges to be used in the subsequent bioassays. Bioassays 2 and 3 followed the guidelines of the Organization for Economic Cooperation and Development, which specify the LC50 (48 h). In bioassay 4, the LC50 (48 h) and the survival rate of bees for a period of 120 h were determined by contact with a surface contaminated with imidacloprid, and in bioassay 5, the interference of the insecticide with the flight behavior of bees was evaluated. Honey samples were collected in agroecological and conventional georeferenced apiaries and traces of the imidacloprid were detected by means of high-performance liquid chromatography (HPLC-UV) with extraction by SPE C18. Bee survival was directly affected by the concentration and exposure time, as well behavioral performance, demonstrating the residual effect of imidacloprid on A. mellifera workers. Honey samples from a conventional apiary showed detection above the maximum residue limits (MRL) allowed by the European Union (0.05 μg mL-1), but samples from other apiaries showed no traces of this insecticide. Imidacloprid affects the survival rate and behavior of Africanized A. mellifera and honey quality.
Collapse
Affiliation(s)
| | | | | | - Kathleen Model
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | - Michele Potrich
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná, Brazil.
| |
Collapse
|
9
|
Lu Q, Xu S, Hao Z, Li Y, Huang Y, Ying S, Jing W, Zou S, Xu Y, Wang H. Dinotefuran exposure induces autophagy and apoptosis through oxidative stress in Bombyx mori. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131997. [PMID: 37423129 DOI: 10.1016/j.jhazmat.2023.131997] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
As a third-generation neonicotinoid insecticide, dinotefuran is extensively used in agriculture, and its residue in the environment has potential effects on nontarget organisms. However, the toxic effects of dinotefuran exposure on nontarget organism remain largely unknown. This study explored the toxic effects of sublethal dose of dinotefuran on Bombyx mori. Dinotefuran upregulated reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the midgut and fat body of B. mori. Transcriptional analysis revealed that the expression levels of many autophagy and apoptosis-associated genes were significantly altered after dinotefuran exposure, consistent with ultrastructural changes. Moreover, the expression levels of autophagy-related proteins (ATG8-PE and ATG6) and apoptosis-related proteins (BmDredd and BmICE) were increased, whereas the expression level of an autophagic key protein (sequestosome 1) was decreased in the dinotefuran-exposed group. These results indicate that dinotefuran exposure leads to oxidative stress, autophagy, and apoptosis in B. mori. In addition, its effect on the fat body was apparently greater than that on the midgut. In contrast, pretreatment with an autophagy inhibitor effectively downregulated the expression levels of ATG6 and BmDredd, but induced the expression of sequestosome 1, suggesting that dinotefuran-induced autophagy may promote apoptosis. This study reveals that ROS generation regulates the impact of dinotefuran on the crosstalk between autophagy and apoptosis, laying the foundation for studying cell death processes such as autophagy and apoptosis induced by pesticides. Furthermore, this study provides a comprehensive insight into the toxicity of dinotefuran on silkworm and contributes to the ecological risk assessment of dinotefuran in nontarget organisms.
Collapse
Affiliation(s)
- Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiliang Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuye Ying
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenhui Jing
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Zou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Tong Z, Shen Y, Meng D, Yi X, Sun M, Dong X, Chu Y, Duan J. Ecological threat caused by malathion and its chiral metabolite in a honey bee-rape system: Stereoselective exposure risk and the mechanism revealed by proteome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162585. [PMID: 36870510 DOI: 10.1016/j.scitotenv.2023.162585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Honey bees play an important role in the ecological environment. Regrettably, a decline in honey bee colonies caused by chemical insecticides has occurred throughout the world. Potential stereoselective toxicity of chiral insecticides may be a hidden source of danger to bee colonies. In this study, the stereoselective exposure risk and mechanism of malathion and its chiral metabolite malaoxon were investigated. The absolute configurations were identified using an electron circular dichroism (ECD) model. Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for chiral separation. In pollen, the initial residues of malathion and malaoxon enantiomers were 3571-3619 and 397-402 μg/kg, respectively, and R-malathion degraded relatively slowly. The oral LD50 values of R-malathion and S-malathion were 0.187 and 0.912 μg/bee with 5 times difference, respectively, and the malaoxon values were 0.633 and 0.766 μg/bee. The Pollen Hazard Quotient (PHQ) was used to evaluate exposure risk. R-malathion showed a higher risk. An analysis of the proteome, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and subcellular localization, indicated that energy metabolism and neurotransmitter transport were the main affected pathways. Our results provide a new scheme for the evaluation of the stereoselective exposure risk of chiral pesticides to honey bees.
Collapse
Affiliation(s)
- Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Yan Shen
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - DanDan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - XiaoTong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - MingNa Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - JinSheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China.
| |
Collapse
|
11
|
Zhang Y, Tan Z, Qin K, Liu C. Effect of Cd/Cu on the toxicity and stereoselective environmental behavior of dinotefuran in earthworms Eisenia foetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115022. [PMID: 37207576 DOI: 10.1016/j.ecoenv.2023.115022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Pesticides and heavy metals commonly coexist in soil. In this study, the influence of Cd and Cu on the toxicity of rac-dinotefuran and the enantioselective behavior of dinotefuran enantiomers in soil-earthworm microcosms were investigated. The acute toxic tests showed that S-dinotefuran has higher toxic than that of R-dinotefuran. The rac-dinotefuran and Cd has an antagonistic effect on earthworms, and the Cu and rac-dinotefuran has a synergistic effect. Earthworms maybe promoted the enantioselective behavior of dinotefuran in soil. Co-exposure to Cd or Cu inhibited the dissipation of dinotefuran enantiomers (S-dinotefuran and R-enantiomers), and slightly reduced the enantioselectivity in soil. The earthworms were found to be preferentially enriched with S-dinotefuran. However, Cd or Cu attenuated the accumulation of dinotefuran enantiomers in earthworms and decreased the enantioselectivity. The effect of Cd and Cu on the environmental behaviors of dinotefuran enantiomers were correlated positively with the dose of Cd/Cu. These results showed that Cd and Cu alter the environmental behaviors and the toxicity of dinotefuran enantiomers in soil-earthworm microcosms. Thus, the influence of coexistent heavy metals on the ecological risk assessment of chiral pesticides should be considered.
Collapse
Affiliation(s)
- Yirong Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Zhenchao Tan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
12
|
Elmquist J, Biddinger D, Phan NT, Moural TW, Zhu F, Hoover K. Potential risk to pollinators from neonicotinoid applications to host trees for management of spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:368-378. [PMID: 36881675 DOI: 10.1093/jee/toad032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/06/2023] [Accepted: 02/07/2023] [Indexed: 05/30/2023]
Abstract
Neonicotinoid insecticides are used to manage spotted lanternfly (Lycorma delicatula (White); hereafter SLF), a recently introduced pest in the United States. Neonicotinoids can harm nontargets, such as pollinators potentially exposed via floral resources of treated plants. We quantified neonicotinoid residues in whole flowers of two SLF host plant species, red maple (Acer rubrum L. [Sapindales: Sapindaceae]) and tree-of-heaven (Ailanthus altissima (Mill.) [Sapindales: Simaroubaceae]), treated with post-bloom imidacloprid or dinotefuran applications that differed in timing and method of application. In red maple flowers, dinotefuran residues from fall applications were significantly higher than summer applications, while imidacloprid residues from fall applications were significantly lower than summer applications. Residues did not differ between application methods or sites. In tree-of-heaven flowers, dinotefuran residues were only detected in one of 28 samples at a very low concentration. To assess acute mortality risk to bees from oral exposure to residues in these flowers, we calculated risk quotients (RQ) using mean and 95% prediction interval residue concentrations from treatments in this study and lethal concentrations obtained from acute oral bioassays for Apis mellifera (L. (Hymenoptera: Apidae)) and Osmia cornifrons (Radoszkowski (Hymenoptera: Megachilidae)), then compared these RQs to a level of concern. For A. mellifera, only one treatment group, applied at 2X maximum label rate, had an RQ that exceeded this level. However, several RQs for O. cornifrons exceeded the level of concern, suggesting potential acute risk to solitary bees. Further studies are recommended for more comprehensive risk assessments to nontargets from neonicotinoid use for SLF management.
Collapse
Affiliation(s)
- Jonathan Elmquist
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - David Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
- Fruit Research and Extension Center, Pennsylvania State University, Biglerville, PA 17307, USA
| | - Ngoc T Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Liu H, Fu R, Zhang Y, Mao L, Zhu L, Zhang L, Liu X, Jiang H. Integrate transcriptomic and metabolomic analysis reveals the underlying mechanisms of behavioral disorders in zebrafish (Danio rerio) induced by imidacloprid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161541. [PMID: 36731560 DOI: 10.1016/j.scitotenv.2023.161541] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Imidacloprid, a widely used neonicotinoid insecticide, poses a significant threat to aquatic ecosystems. Behavior is a functional indicator of the net sensory, motor, and integrative processes of the nervous system and is presumed to be more sensitive in detecting toxicity. In the present study, we investigated the behavioral effects of imidacloprid at the level of environmental concentrations (1, 10 and 100 μg/L) for a constant exposure to zebrafish adults, and performed the integrated transcriptomic and metabolomic analysis to analyze the molecular mechanism underlying behavioral effects of imidacloprid. Our results show that imidacloprid exposure significantly induce behavioral disruptions characterized by anxiety, depression, and reduced physiological function including exploratory, decision, social interaction and locomotor activity. Integrated transcriptomic and metabolomic analysis indicate that the disruption of circadian rhythm, metabolic imbalance of arginine and proline, and neurotransmitter disorder are the underlying molecular mechanisms of behavioral impairment induced by imidacloprid. The "gene-metabolite-disease" network consisted by 11 metabolites and 15 genes is associated human disease Alzheimer's disease (AD) and schizophrenia. Our results confirm the behavioral impairment induced by imidacloprid at environmental concentrations for constant exposure. The identified genes and metabolites can be used not only to illustrate the underlying mechanisms, but also can be developed as biomarkers in determining the ecological risk of imidacloprid to aquatic organisms even Homo sapiens.
Collapse
Affiliation(s)
- Hongli Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiqiang Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Yin J, Liu T, Fang J, Fang K, Zheng L, Wang X. The fate, acute, and subchronic risks of dinotefuran in the water-sediment system: A systematic analysis at the enantiomer level. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130279. [PMID: 36327829 DOI: 10.1016/j.jhazmat.2022.130279] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Environmental risks associated with neonicotinoid insecticides have attracted considerable attention. This study systematically investigated the stereoselective behavior of dinotefuran in a water-sediment system. The results showed that S-dinotefuran accumulated more easily in sediment and zebrafish. Although dinotefuran enantiomers and metabolites present a low risk to aquatic organisms, the risk of dinotefuran enantiomers to sediment organisms should be considered. Additionally, S-dinotefuran induced more remarkable oxidative damage in zebrafish than that of R-dinotefuran. Nevertheless, R-dinotefuran remarkably activated antioxidant and detoxifying enzymes. Multi-omics analyses revealed that S-dinotefuran induced more differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in zebrafish. In particular, S-dinotefuran inhibited the expression of ribosome- and proteasome-related genes and proteins, affecting the synthesis and degradation of proteins in zebrafish. R-dinotefuran remarkably activated peroxisome-related genes and proteins, thereby enhancing antioxidant and detoxification abilities of zebrafish. The stereoselective interactions between dinotefuran enantiomers and key DEPs were elucidated using AlphaFold2 modeling and molecular docking techniques, which may serve as the main reason for stereoselective subchronic toxicity. The present study is beneficial for the correct use of dinotefuran and provides an effective means for elucidating the mechanism of the stereoselective behavior of chiral compounds.
Collapse
Affiliation(s)
- Jijie Yin
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China; College of Land Science and Technology, China Agricultural University (CAU), Beijing 100083, China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Jianwei Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Lei Zheng
- State Environmental Protection Key laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Center for Environmental Protection, Beijing 100029, China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
15
|
Zhang Y, Chen D, Xu Y, Ma L, Du M, Li P, Yin Z, Xu H, Wu X. Stereoselective toxicity mechanism of neonicotinoid dinotefuran in honeybees: New perspective from a spatial metabolomics study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151116. [PMID: 34688756 DOI: 10.1016/j.scitotenv.2021.151116] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Development of stereoisomeric neonicotinoid pesticides with lower toxicity is key to preventing global population declines of honeybees, whereas little is known about the in situ metabolic regulation of honeybees in response to stereoisomeric pesticides. Herein, we demonstrate an integrated mass spectrometry imaging (MSI) and untargeted metabolomics method to disclose disturbed metabolic expression levels and spatial differentiation in honeybees (Apis cerana) associated with stereoisomeric dinotefuran. This method affords a metabolic network mapping capability regarding a wide range of metabolites involved in multiple metabolic pathways in honeybees. Metabolomics results indicate more metabolic pathways of honeybees can be significantly affected by S-(+)-dinotefuran than R-(-)-dinotefuran, such as tricarboxylic acid (TCA) cycle, glyoxylate and dicarboxylate metabolism, and various amino acid metabolisms. MSI results demonstrate the cross-regulation and spatial differentiation of crucial metabolites involved in the TCA cycle, purine, glycolysis, and amino acid metabolisms within honeybees. Taken together, the integrated MSI and metabolomics results indicated the higher toxicity of S-(+)-dinotefuran arises from metabolic pathway disturbance and its inhibitory role in the energy metabolism, resulting in significantly reduced degradation rates of detoxification mechanisms. From the view of spatial metabolomics, our findings provide novel perspectives for the development and applications of pure chiral agrochemicals.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Dong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yizhu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Lianlian Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Mingyi Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Xinzhou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Zhang Q, Fu L, Cang T, Tang T, Guo M, Zhou B, Zhu G, Zhao M. Toxicological Effect and Molecular Mechanism of the Chiral Neonicotinoid Dinotefuran in Honeybees. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1104-1112. [PMID: 34967206 DOI: 10.1021/acs.est.1c05692] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the increasing demand for pollinating services, the wellness of honeybees has received widespread attention. Recent evidence indicated honeybee health might be posed a potential threat by widely used neonicotinoids worldwide. However, little is known about the molecular mechanism of these insecticides in honeybees especially at an enantiomeric level. In this study, we selected two species of bees, Apis mellifera (A. mellifera) and Apis cerana (A. cerana), to assess the toxicity and molecular mechanism of neonicotinoid dinotefuran and its enantiomers. The results showed that S-dinotefuran was more toxic than rac-dinotefuran and R-dinotefuran to honeybees by oral and contact exposures as much as 114 times. A. cerana was more susceptible to highly toxic enantiomer S-dinotefuran. S-dinotefuran induced the immune system response in A. cerana after 48 h exposure and significant changes were observed in the neuronal signaling of A. mellifera under three forms of dinotefuran exposure. Moreover, molecular docking also revealed that S-dinotefuran formed more hydrogen bonds than R-dinotefuran with nicotinic acetylcholine receptor, indicating the higher toxicity of S-dinotefuran. Data provided here show that R-dinotefuran may be a safer alternative to control pests and protect pollinators than rac-dinotefuran.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Lili Fu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Tao Cang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Tao Tang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Mingcheng Guo
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Bingbing Zhou
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, Zhejiang 310015, China
| | - Guohua Zhu
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, Zhejiang 310015, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| |
Collapse
|
17
|
Zhang Y, Du Y, Ma W, Liu J, Jiang Y. The Transcriptomic Landscape of Molecular Effects after Sublethal Exposure to Dinotefuran on Apis mellifera. INSECTS 2021; 12:insects12100898. [PMID: 34680667 PMCID: PMC8537135 DOI: 10.3390/insects12100898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Apis mellifera is one of the most important pollinator communities in nature. Insecticide residues in pollen and nectar, due to their wide use, may harm bees. Thus, it is crucial to provide novel insights into the effects of neonicotinoid insecticides on pollinators for protecting bees and maintaining a long-term stable ecological environment. The aim of our study was to investigate the effect and the mechanisms underlying bees impaired by dinotefuran. In the present study, for the first time, we found the mRNA expression profile of bees changes after treatment with sublethal doses of dinotefuran. Overall, our findings enhance understanding of the molecular mechanisms that underly physiological and behavioural damage for bees after dinotefuran exposure. Abstract The decreasing number of bees is a global ecological problem. With the advancement of agricultural modernisation, the large-scale use of neonicotinoid insecticides is one of the main factors leading to the decline of bees. The aim of the present study was to investigate the effect and the mechanisms underlying bees impaired by dinotefuran. Acute (48 h) oral toxicity tests showed that a 5% lethal concentration (LC5) was 0.220 mg/L, and a 20% lethal concentration (LC20) was 0.458 mg/L. The gene expression profile shows that when compared with the control group, the LC5 group induced 206 significantly upregulated, differentially expressed genes (DEGs) and 363 significantly downregulated DEGs, while the LC20 group induced 180 significantly upregulated DEGs and 419 significantly downregulated DEGs. Significantly, transcriptomic analysis revealed DEGs involved in immunity, detoxification, and the nervous system, such as antimicrobial peptides, vitellogenin, synaptotagmin-10, AChE-2, and nAChRa9. Furthermore, Gene Ontology (GO) annotation and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis revealed that DEGs were enriched in amino acid and fatty acid biosynthesis and metabolism pathways. Collectively, our findings will help clarify the deleterious physiological and behavioural impacts of dinotefuran on bees and provide a basis for future research on the mechanisms underlying bees impaired by dinotefuran.
Collapse
|
18
|
Siviter H, Richman SK, Muth F. Field-realistic neonicotinoid exposure has sub-lethal effects on non-Apis bees: A meta-analysis. Ecol Lett 2021; 24:2586-2597. [PMID: 34488245 DOI: 10.1111/ele.13873] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/08/2021] [Accepted: 08/18/2021] [Indexed: 01/20/2023]
Abstract
Neonicotinoid insecticides can have sub-lethal effects on bees which has led to calls from conservationists for a global ban. In contrast, agrochemical companies argue that neonicotinoids do not harm honeybees at field-realistic levels. However, the focus on honeybees neglects the potential impact on other bee species. We conducted a meta-analysis to assess whether field-realistic neonicotinoid exposure has sub-lethal effects on non-Apis bees. We extracted data from 53 papers (212 effects sizes) and found that it largely consisted of two genera: bumblebees (Bombus) and mason bees (Osmia), highlighting a substantial taxonomic knowledge gap. Neonicotinoid exposure negatively affected reproductive output across all bees and impaired bumblebee colony growth and foraging. Neonicotinoids also reduced Bombus, but not Osmia, individual development (growth and body size). Our results suggest that restrictions on neonicotinoids should benefit bee populations and highlight that the current regulatory process does not safeguard pollinators from the unwanted consequences of insecticide use.
Collapse
Affiliation(s)
- Harry Siviter
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Sarah K Richman
- Department of Biology, University of Nevada, Reno, Reno, Nevada, USA
| | - Felicity Muth
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
19
|
Huang M, Dong J, Guo H, Xiao M, Wang D. Identification of long noncoding RNAs reveals the effects of dinotefuran on the brain in Apis mellifera (Hymenopptera: Apidae). BMC Genomics 2021; 22:502. [PMID: 34217210 PMCID: PMC8254963 DOI: 10.1186/s12864-021-07811-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Background Dinotefuran (CAS No. 165252–70-0), a neonicotinoid insecticide, has been used to protect various crops against invertebrate pests and has been associated with numerous negative sublethal effects on honey bees. Long noncoding RNAs (lncRNAs) play important roles in mediating various biological and pathological processes, involving transcriptional and gene regulation. The effects of dinotefuran on lncRNA expression and lncRNA function in the honey bee brain are still obscure. Results Through RNA sequencing, a comprehensive analysis of lncRNAs and mRNAs was performed following exposure to 0.01 mg/L dinotefuran for 1, 5, and 10 d. In total, 312 lncRNAs and 1341 mRNAs, 347 lncRNAs and 1458 mRNAs, and 345 lncRNAs and 1155 mRNAs were found to be differentially expressed (DE) on days 1, 5 and 10, respectively. Gene set enrichment analysis (GSEA) indicated that the dinotefuran-treated group showed enrichment in carbohydrate and protein metabolism and immune-inflammatory responses such as glycine, serine and threonine metabolism, pentose and glucuronate interconversion, and Hippo and transforming growth factor-β (TGF-β) signaling pathways. Moreover, the DE lncRNA TCONS_00086519 was shown by fluorescence in situ hybridization (FISH) to be distributed mainly in the cytoplasm, suggesting that it may serve as a competing endogenous RNA and a regulatory factor in the immune response to dinotefuran. Conclusion This study characterized the expression profile of lncRNAs upon exposure to neonicotinoid insecticides in young adult honey bees and provided a framework for further study of the role of lncRNAs in honey bee growth and the immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07811-y.
Collapse
Affiliation(s)
- Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haikun Guo
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Minghui Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
20
|
Abati R, Sampaio AR, Maciel RMA, Colombo FC, Libardoni G, Battisti L, Lozano ER, Ghisi NDC, Costa-Maia FM, Potrich M. Bees and pesticides: the research impact and scientometrics relations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14224-7. [PMID: 33961189 DOI: 10.1007/s11356-021-14224-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Bees are fundamental insects in agroecosystems, mainly due to pollination. However, its decline has been observed in recent years, and the contamination by pesticides is suspected to be responsible. This relationship is the objective of our research, which is the first scientometric study on this subject. The data were obtained from the Web of Science database (1231) and were analyzed using Microsoft Office Excel and CiteSpace. The results point to a significant increase in pesticide and bee reseach in the last 15 years in the most influential scientific journals. The USA and France have the largest number of publications and a moderade relationship between this trait and GDP (gross domestic product) was observed (r = 0.80; r2 = 0.60). There is no correlation between the use of pesticides and studies of the effects on pollinators and the use of pesticides and the countries' GDP. In general, studies have shown the negative effects of the contamination by pesticides on bees; however, most publications are with bees of the Apis genus, and therefore it is necessary to explore the action of pesticides on bumble bees and wild bees, as well furthur as studies are needed regarding the sublethal effects of these products on bees as the number of molecules used in the management of agricultural crops is vast.
Collapse
Affiliation(s)
- Raiza Abati
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04 CEP, 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Amanda Roberta Sampaio
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04 CEP, 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Rodrigo Mendes Antunes Maciel
- Programa de Pós-Graduação em Entomologia, Universidade Federal do Paraná, Avenida Coronel Francisco Heráclito dos Santos, 100, Centro Politécnico - Jardim das Américas, Cx, 1903, CEP 81531-980, Curitiba, Paraná, Brasil
| | - Fernanda Caroline Colombo
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Câmpus Universitário Cx, 10.011, CEP 86.057-970, Londrina, Paraná, Brasil
| | - Gabriela Libardoni
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Câmpus Universitário Cx, 10.011, CEP 86.057-970, Londrina, Paraná, Brasil
| | - Lucas Battisti
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Câmpus Universitário Cx, 10.011, CEP 86.057-970, Londrina, Paraná, Brasil
| | - Everton Ricardi Lozano
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04 CEP, 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Nédia de Castilhos Ghisi
- Programa de Pós-Graduação em Biotecnologia, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04, CEP 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Fabiana Martins Costa-Maia
- Programa de Pós-Graduação em Zootecnia, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04, CEP 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Michele Potrich
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04 CEP, 85660-000, Dois Vizinhos, Paraná, Brasil.
| |
Collapse
|
21
|
Liu S, Deng X, Bai L. Developmental toxicity and transcriptome analysis of zebrafish (Danio rerio) embryos following exposure to chiral herbicide safener benoxacor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143273. [PMID: 33190894 DOI: 10.1016/j.scitotenv.2020.143273] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Benoxacor, a chiral herbicide safener for S-metolachlor, has been detected in streams. However, the potential risk this poses to aquatic ecosystems is not clear. This study used zebrafish (Danio rerio) embryos as a model to assess the enantioselective toxicity of benoxacor and its effects on biological activity and development from 2 h to 96 h post-fertilization (hpf). Results showed that benoxacor had negative effects on hatchability, malformations, and mortality. Compared to either individual enantiomer, embryos exposed to Rac-benoxacor had higher acute and developmental toxicities, glutathione S-transferase (GST) and glutathione peroxidase (GPx) enzyme activities, and nrf 2 expression levels. They also had lower superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) enzyme activity and krt 17, tbx 16, osx, cat, bcl 2, bax, and ifn expression levels. High-throughput RNA sequencing revealed that Rac-benoxacor had a greater effect on gene regulation than either enantiomer. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that changes in oxidoreductase activity, cellular lipid metabolic process, and catalytic activity related genes may be due to the enantioselective effects of benoxacor isomers. These results suggest that the ecotoxicology data and safety knowledge about the effects of chiral benoxacor on zebrafish should be considered in future environmental risk evaluation.
Collapse
Affiliation(s)
- Sihong Liu
- Key Laboratory for Biology and Control of Weeds, Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Xile Deng
- Key Laboratory for Biology and Control of Weeds, Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Lianyang Bai
- Key Laboratory for Biology and Control of Weeds, Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China.
| |
Collapse
|
22
|
Wu X, Zhang Y, Qin R, Li P, Wen Y, Yin Z, Zhang Z, Xu H. Discrimination of isomeric monosaccharide derivatives using collision-induced fingerprinting coupled to ion mobility mass spectrometry. Talanta 2021; 224:121901. [PMID: 33379106 DOI: 10.1016/j.talanta.2020.121901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 10/23/2022]
Abstract
Because of the isomeric heterogeneity that is ubiquitous in analytical science, a formidable analytical challenge is to fully discriminate multiple isomers, especially those candidate isomers with various biological functions. Ion mobility mass spectrometry (IM-MS) has gained impressive advances for gaining molecular conformations, whereas coexisting structurally similar isomers often make unambiguous discrimination impossible due to the limited IM resolution of commercially available instruments. Herein, we demonstrate an energy-resolved collision-induced fingerprint (CIF) method to fully discriminate isomeric monosaccharide derivatives that differ in terms of composition, connectivity and configuration without complex instrument modifications. By simply increasing the collisional energy in the trap cell, the full width at half maximum (FWHM) of IM peaks can be markedly narrowed by at least 2-fold. Given the excellent reproducibility of CIF measurements, the full discrimination of isomers can benefit from their unique feature values and root-mean square deviation (RMSD) in CIF spectra. Moreover, rapid discrimination of each monosaccharide derivate isomer from binary mixtures is demonstrated. This strategy will expand the horizons of IM-MS platform in the rapid differentiation of a wider range of isomers more than monosaccharide derivatives in complex systems, which facilitates the identification and evaluation of innovative isomer candidates with unexplored functions.
Collapse
Affiliation(s)
- Xinzhou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Run Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yingjie Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
23
|
Pang S, Lin Z, Zhang W, Mishra S, Bhatt P, Chen S. Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids. Front Microbiol 2020; 11:868. [PMID: 32508767 PMCID: PMC7248232 DOI: 10.3389/fmicb.2020.00868] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Neonicotinoids are derivatives of synthetic nicotinoids with better insecticidal capabilities, including imidacloprid, nitenpyram, acetamiprid, thiacloprid, thiamethoxam, clothianidin, and dinotefuran. These are mainly used to control harmful insects and pests to protect crops. Their main targets are nicotinic acetylcholine receptors. In the past two decades, the environmental residues of neonicotinoids have enormously increased due to large-scale applications. More and more neonicotinoids remain in the environment and pose severe toxicity to humans and animals. An increase in toxicological and hazardous pollution due to the introduction of neonicotinoids into the environment causes problems; thus, the systematic remediation of neonicotinoids is essential and in demand. Various technologies have been developed to remove insecticidal residues from soil and water environments. Compared with non-bioremediation methods, bioremediation is a cost-effective and eco-friendly approach for the treatment of pesticide-polluted environments. Certain neonicotinoid-degrading microorganisms, including Bacillus, Mycobacterium, Pseudoxanthomonas, Rhizobium, Rhodococcus, Actinomycetes, and Stenotrophomonas, have been isolated and characterized. These microbes can degrade neonicotinoids under laboratory and field conditions. The microbial degradation pathways of neonicotinoids and the fate of several metabolites have been investigated in the literature. In addition, the neonicotinoid-degrading enzymes and the correlated genes in organisms have been explored. However, few reviews have focused on the neonicotinoid-degrading microorganisms along with metabolic pathways and degradation mechanisms. Therefore, this review aimed to summarize the microbial degradation and biochemical mechanisms of neonicotinoids. The potentials of neonicotinoid-degrading microbes for the bioremediation of contaminated sites were also discussed.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|