1
|
Ranjbar M, Fallah M, Djafarian K, Mohammadi H, Mohammadi Farsani G, Shab-Bidar S. The effects of protein supplementation on body composition after bariatric surgery: a systematic review and meta-analysis of randomized controlled trials. Obesity (Silver Spring) 2025. [PMID: 40312971 DOI: 10.1002/oby.24283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVE We aimed to explore the effect of protein supplementation on anthropometric measures and body composition in patients after metabolic bariatric surgery (MBS). METHODS We performed a systematic search up to January 2024 including randomized controlled trials investigating the effects of protein or amino acid supplementation on the body composition of patients who underwent MBS. The overall effect was presented as the weighted mean difference (WMD) at a 95% CI. RESULTS Ten trials were included in this meta-analysis. Our results indicate that there was a statistically greater change in weight (WMD, -1.31 kg, 95% CI: -1.93 to -0.69, p < 0.001; Grading of Recommendations Assessment, Development, and Evaluation [GRADE] = moderate), muscle mass (WMD, 1.33 kg, 95% CI: 0.1 to 2.57, p = 0.035; GRADE = low), fat-free mass (WMD, 1.74 kg, 95% CI: 0.46 to 3.01, p = 0.01; GRADE = low), and fat mass (WMD, -3.91 kg, 95% CI: -4.10 to -0.59, p = 0.01; GRADE = low) in the protein group compared to the control group. However, protein supplementation did not significantly change BMI and lean body mass. CONCLUSIONS Based on moderate- to low-certainty evidence, our findings suggest that although protein supplementation may improve weight and some body composition metrics, it does not influence overall BMI and lean body mass. More research is needed to recommend protein supplementation after MBS.
Collapse
Affiliation(s)
- Mahsa Ranjbar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Fallah
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Mohammadi Farsani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kondo Y, Aoki H, Masuda M, Nishi H, Noda Y, Hakuno F, Takahashi SI, Chiba T, Ishigami A. Moderate protein intake percentage in mice for maintaining metabolic health during approach to old age. GeroScience 2023; 45:2707-2726. [PMID: 37118349 PMCID: PMC10651611 DOI: 10.1007/s11357-023-00797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Nutritional requirements for maintaining metabolic health may vary with each life stage, such as young, middle, and old age. To investigate the appropriate ratio of nutrients, particularly proteins, for maintaining metabolic health while approaching old age, young (6-month-old) and middle-aged (16-month-old) mice were fed isocaloric diets with varying protein percentages (5%, 15%, 25%, 35%, and 45% by calorie ratio) for two months. The low-protein diet developed mild fatty liver, with middle-aged mice showing more lipids than young mice, whereas the moderate-protein diet suppressed lipid contents and lowered the levels of blood glucose and lipids. Self-organizing map (SOM) analysis revealed that plasma amino acid profiles differed depending on age and difference in protein diet and were associated with hepatic triglyceride and cholesterol levels. Results indicate that the moderate protein intake percentages (25% and 35%) are required for maintaining metabolic health in middle-aged mice, which is similar to that in young mice.
Collapse
Affiliation(s)
- Yoshitaka Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Hitoshi Aoki
- Research and Development Division, Nichirei Foods Inc, Chiba, 261-0002, Japan
| | - Masato Masuda
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroki Nishi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Noda
- Department of Animal Facility, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
3
|
What Is the Impact of Energy Expenditure on Energy Intake? Nutrients 2021; 13:nu13103508. [PMID: 34684509 PMCID: PMC8539813 DOI: 10.3390/nu13103508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023] Open
Abstract
Coupling energy intake (EI) to increases in energy expenditure (EE) may be adaptively, compensatorily, or maladaptively leading to weight gain. This narrative review examines if functioning of the homeostatic responses depends on the type of physiological perturbations in EE (e.g., due to exercise, sleep, temperature, or growth), or if it is influenced by protein intake, or the extent, duration, timing, and frequency of EE. As different measures to increase EE could convey discrepant neuronal or humoral signals that help to control food intake, the coupling of EI to EE could be tight or loose, which implies that some ways to increase EE may have advantages for body weight regulation. Exercise, physical activity, heat exposure, and a high protein intake favor weight loss, whereas an increase in EE due to cold exposure or sleep loss likely contributes to an overcompensation of EI, especially in vulnerable thrifty phenotypes, as well as under obesogenic environmental conditions, such as energy dense high fat—high carbohydrate diets. Irrespective of the type of EE, transient elevations in the metabolic rate seem to be general risk factors for weight gain, because a subsequent decrease in energy requirement is not compensated by an adequate adaptation of appetite and EI.
Collapse
|
4
|
Mittermeier-Kleßinger VK, Hofmann T, Dawid C. Mitigating Off-Flavors of Plant-Based Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9202-9207. [PMID: 34342446 DOI: 10.1021/acs.jafc.1c03398] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteins and, in particular, plant-based proteins are becoming more and more important in the face of future challenges, resulting from continuous population growth, the imbalance between malnutrition and overweight/obesity, and environmental changes. Recent developments open new avenues for improving the quality and sustainable production of plant proteins. Increasing knowledge on the key drivers of the off-flavor of plant proteins, which currently limit their use, supports new strategies to reach full flavor experience, thus enhancing consumer acceptance. Current limitations and future directions for improving the flavor profiles of plant-based proteins are discussed in this perspective.
Collapse
Affiliation(s)
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, D-85354 Freising, Germany
| |
Collapse
|
5
|
Gehring J, Azzout-Marniche D, Chaumontet C, Piedcoq J, Gaudichon C, Even PC. Rats Self-Select a Constant Protein-to-Carbohydrate Ratio Rather Than a Constant Protein-to-Energy Ratio and Have Low Plasma FGF21 Concentrations. J Nutr 2021; 151:1921-1936. [PMID: 33830241 DOI: 10.1093/jn/nxab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Under dietary self-selection (DSS), rats ingest 25-30% of energy as protein. This high level appears to be explained by metabolic benefits related to reduced carbohydrate dependence and associated pathologies. However, the mechanisms underlying these choices remain largely misunderstood. OBJECTIVES The aim was to test the hypothesis that in a DSS model, rats select a protein-to-energy (PE) ratio to maintain the protein-to-carbohydrate (PC) ratio constant and that fibroblast growth factor 21 (FGF21) is involved in this response. METHODS Adult male Wistar rats were used in 3 experiments. The first was to determine whether the PE ratio was influenced by changes in carbohydrate content. The second was to test whether the PE ratio was defended with a modified DSS model. The third was to determine whether the selected PE ratio was of metabolic interest compared with a standard 15% protein diet. Food intake, body weight, and energy expenditure were measured. After 3 wk, plasma was sampled and rats were killed to determine body composition and gene expression. Statistical analyses were mainly done by ANOVA tests and correlation tests. RESULTS The selected PE ratio increased from 20% to 35% when the carbohydrate content of the protein-free diet increased from 30% to 75% (R2 = 0.56; P < 10-6). Consequently, the PC ratio was constant (70%) in all groups (P = 0.18). In self-selecting rats, plasma FGF21 concentrations were 3 times lower than in rats fed the 5% protein diet (P < 10-4) and similar to those in rats fed a 30% diet. CONCLUSIONS This study showed that self-selecting rats established PE ratios larger than those considered sufficient to achieve optimal growth in adult rats (10-15%), and the ratios were highly dependent on carbohydrates, apparently with the aim of maintaining a constant and high PC ratio. This was associated with a minimization of plasma FGF21.
Collapse
Affiliation(s)
- Josephine Gehring
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | | | | | - Julien Piedcoq
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Patrick C Even
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
6
|
Moro J, Chaumontet C, Even PC, Blais A, Piedcoq J, Gaudichon C, Tomé D, Azzout-Marniche D. Severe protein deficiency induces hepatic expression and systemic level of FGF21 but inhibits its hypothalamic expression in growing rats. Sci Rep 2021; 11:12436. [PMID: 34127689 PMCID: PMC8203610 DOI: 10.1038/s41598-021-91274-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
To study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.
Collapse
Affiliation(s)
- Joanna Moro
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Catherine Chaumontet
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Patrick C. Even
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Anne Blais
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Julien Piedcoq
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Claire Gaudichon
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Daniel Tomé
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Dalila Azzout-Marniche
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| |
Collapse
|
7
|
Even PC, Gehring J, Tomé D. What does self-selection of dietary proteins in rats tell us about protein requirements and body weight control? Obes Rev 2021; 22:e13194. [PMID: 33403737 DOI: 10.1111/obr.13194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
Omnivores are able to correctly select adequate amounts of macronutrients from natural foods as well as purified macronutrients. In the rat model, the selected protein levels are often well above the requirements estimated from the nitrogen balance. These high intake levels were initially interpreted as reflecting poor control of protein intake, but the selected levels were later found to be precisely controlled for changes in dietary protein quality and adjusted for cold, exercise, pregnancy, lactation, age, etc. and therefore met physiological requirements. Several authors have also suggested that instead of a given level of protein intake, rodents regulate a ratio of protein to dietary carbohydrates in order to achieve metabolic benefits such as reduced insulin levels, improved blood glucose control, and, in the long term, reduced weight and fat gain. The objective of this review was to analyze the most significant results of studies carried out on rats and mice since the beginning of the 20th century, to consider what these results can bring us to interpret the current causes of the obesity pandemic and to anticipate the possible consequences of policies aimed at reducing the contribution of animal proteins in the human diet.
Collapse
Affiliation(s)
- Patrick C Even
- AgroParisTech, INRAE, UMR PNCA, Université Paris-Saclay, Paris, France
| | - Joséphine Gehring
- AgroParisTech, INRAE, UMR PNCA, Université Paris-Saclay, Paris, France
| | - Daniel Tomé
- AgroParisTech, INRAE, UMR PNCA, Université Paris-Saclay, Paris, France
| |
Collapse
|
8
|
A Low-Protein High-Fat Diet Leads to Loss of Body Weight and White Adipose Tissue Weight via Enhancing Energy Expenditure in Mice. Metabolites 2021; 11:metabo11050301. [PMID: 34064590 PMCID: PMC8150844 DOI: 10.3390/metabo11050301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
Obesity has become a worldwide health problem over the past three decades. During obesity, metabolic dysfunction of white adipose tissue (WAT) is a key factor increasing the risk of type 2 diabetes. A variety of diet approaches have been proposed for the prevention and treatment of obesity. The low-protein high-fat diet (LPHF) is a special kind of high-fat diet, characterized by the intake of a low amount of protein, while compared to typical high-fat diet, may induce weight loss and browning of WAT. Physical activity is another effective intervention to treat obesity by reducing WAT mass, inducing browning of WAT. In order to determine whether an LPHF, along with exercise enhanced body weight loss and body fat loss as well as the synergistic effect of an LPHF and exercise on energy expenditure in a mice model, we combined a 10-week LPHF with an 8-week forced treadmill training. Meanwhile, a traditional high-fat diet (HPHF) containing the same fat and relatively more protein was introduced as a comparison. In the current study, we further analyzed energy metabolism-related gene expression, plasma biomarkers, and related physiological changes. When comparing to HPHF, which induced a dramatic increase in body weight and WAT weight, the LPHF led to considerable loss of body weight and WAT, without muscle mass and strength decline, while it exhibited a risk of liver and pancreas damage. The mechanism underlying the LPHF-induced loss of body weight and WAT may be attributed to the synergistically upregulated expression of Ucp1 in WAT and Fgf21 in the liver, which may enhance energy expenditure. The 8-week training did not further enhance weight loss and increased plasma biomarkers of muscle damage when combined with LPHF. Furthermore, LPHF reduced the expression of fatty acid oxidation-related genes in adipose tissues, muscle tissues, and liver. Our results indicated that an LPHF has potential for obesity treatment, while the physiological condition should be monitored during application.
Collapse
|
9
|
Protein metabolism and related body function: mechanistic approaches and health consequences. Proc Nutr Soc 2020; 80:243-251. [PMID: 33050961 DOI: 10.1017/s0029665120007880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development and maintenance of body composition and functions require an adequate protein intake with a continuous supply of amino acids (AA) to tissues. Body pool and AA cellular concentrations are tightly controlled and maintained through AA supply (dietary intake, recycled from proteolysis and de novo synthesis), AA disposal (protein synthesis and other AA-derived molecules) and AA losses (deamination and oxidation). Different molecular regulatory pathways are involved in the control of AA sufficiency including the mechanistic target of rapamycin complex 1, the general control non-derepressible 2/activating transcription factor 4 system or the fibroblast growth factor 21. There is a tight control of protein intake, and human subjects and animals appear capable of detecting and adapting food and protein intake and metabolism in face of foods or diets with different protein contents. A severely protein deficient diet induces lean body mass losses and ingestion of sufficient dietary energy and protein is a prerequisite for body protein synthesis and maintenance of muscle, bone and other lean tissues and functions. Maintaining adequate protein intake with age may help preserve muscle mass and strength but there is an ongoing debate as to the optimal protein intake in older adults. The protein synthesis response to protein intake can also be enhanced by prior completion of resistance exercise but this effect could be somewhat reduced in older compared to young individuals and gain in muscle mass and function due to exercise require regular training over an extended period.
Collapse
|
10
|
Yang KP, Wong CP, Khanna SK, Bray TM. Supplementation of Ocean-Based Advance Protein Powder (APP) for Restoration of Body Growth, Bone Development and Immune Functions in Protein Malnourished Mice: Implications for Preventing Child Malnutrition. Ecol Food Nutr 2020; 59:552-574. [PMID: 32364411 DOI: 10.1080/03670244.2020.1754811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Child malnutrition is a global public health challenge. A protein malnutrition (PM) model in young mice was established in this study. The efficacy of an ocean-based protein (APP) extracted from by-catch fish as compared to casein and soy on restoring body weight, bone growth, and immunity of PM mice was evaluated. Results show that supplementation of APP increases body weight, lean muscle mass, bone area, mineral content and density. APP supplementation increases spleen, thymus weight, and interlukin-6 production. In conclusion, APP is an alternative source of protein to effectively restore body weight, bone growth and immune function of PM mice.
Collapse
Affiliation(s)
- Kristen P Yang
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon, USA
| | - Carmen P Wong
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon, USA
| | - Sunil K Khanna
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon, USA.,Center for Global Health, Oregon State University , Corvallis, Oregon, USA
| | - Tammy M Bray
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon, USA.,Center for Global Health, Oregon State University , Corvallis, Oregon, USA
| |
Collapse
|