1
|
Gradl K, Richter P, Somoza V. Bitter peptides formed during in-vitro gastric digestion induce mechanisms of gastric acid secretion and release satiating serotonin via bitter taste receptors TAS2R4 and TAS2R43 in human parietal cells in culture. Food Chem 2025; 482:144174. [PMID: 40184744 DOI: 10.1016/j.foodchem.2025.144174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/02/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
A key barrier in transitioning to plant-based, more satiating diets, is the bitter taste of plant proteins. We hypothesize that both, a more bitter tasting (MBT) and a less bitter tasting (LBT) pea protein hydrolysate (PPH) can be digested in the stomach into bitter tasting peptides that stimulate proton secretion (PS) and serotonin release, as two of the key gastric satiety signals, via the functional involvement of bitter taste receptors (TAS2Rs). Using a sensory-guided LC-MS approach, we identified six bitter peptides that were released from LBT-PPH and MBT-PPH during gastric digestion in vitro. TAS2R4 and TAS2R43 involvement in PS and serotonin release was confirmed via CRISPR-Cas9 knockout experiments. Our hypothesis was proven with all six peptides equally stimulating PS in immortalized human gastric HGT-1 cells, and LBT-PPH-derived peptides eliciting a higher serotonin release in HGT-1 cells than MBT-PPH peptides, indicating a satiating potential of less bitter tasting protein hydrolysates.
Collapse
Affiliation(s)
- Katrin Gradl
- TUM School of Life Sciences, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Phil Richter
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany; Chair of Nutritional Systems Biology, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Huang P, Wang Z, Cheng Y, Gao W, Cui C. Integrated virtual screening coupled with sensory evaluation identifies N-succinyl-L-tryptophan as a novel compound with multiple taste enhancement properties. Food Chem 2024; 457:140131. [PMID: 38917565 DOI: 10.1016/j.foodchem.2024.140131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
N-Succinyl amino acids (N-Suc-AAs) are garnering attention for their potential as taste-active compounds. The intricate variety of N-Suc-AAs presented considerable challenges in identifying those with taste-active properties. Consequently, we employed structure-based virtual screening to pinpoint taste-active N-Suc-AAs, revealing N-succinyl-L-tryptophan (ST) as a compound with high affinity for different taste receptors. Following this discovery, ST was synthesized through an enzymatic process, achieving a yield of 40.2%, with its structure verified via NMR spectroscopy. Sensory evaluation alongside electronic tongue assessments indicated that ST at a concentration of 1 mg/L significantly enhances umami, kokumi, and saltiness intensities, while concurrently mitigating bitterness from various bitter compounds, whilst itself remaining tasteless. Additionally, time-intensity (TI) results elucidated a marked augmentation in umami duration and a notable diminution in bitterness duration for solutions imbued with 1 mg/L ST. Molecular docking study suggested ST interacted with diverse taste receptors as an agonist or antagonist, primarily through hydrogen bonds and hydrophobic interactions. This study marked the inaugural report on the enzymatic synthesis of ST and its efficacy in improving taste characteristics, underscoring the importance of ST in improving sensory qualities of food products and fostering innovation within the seasoning industry.
Collapse
Affiliation(s)
- Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Zhirong Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yuqing Cheng
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Wenxiang Gao
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Cai L, Li L, Zhao X, Wang L, Cheng Y, Gao W, Cui C. Molecular simulation screening and sensory evaluation unearth a novel kokumi compound with bitter-masking effect: N-lauroyl-L-tryptophan. Food Chem 2024; 454:139718. [PMID: 38795620 DOI: 10.1016/j.foodchem.2024.139718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
N-lauroyl-L-tryptophan (LT), which has the strongest potential flavor-presenting activity, was skillfully screened from numerous N-Lau-AAs docked to different taste receptors by molecular simulation techniques. Subsequently, LT was synthesized employing food-grade commercial enzymes and structurally characterized, the optimized yields of LT could reach 69.08%, 76.16%, and 50.40%, respectively. Sensory and E-tongue evaluations showed that LT at 1 mg/L significantly benefited the performance of different taste sensations and exhibited different bitter taste masking effects: L-Ile (68.42%), L-Trp (68.18%), D-salicylic acid (48.48%) and quinine (35.00%). The molecular docking results illustrated that LT had a high affinity for various taste receptors, dominated by hydrogen bonding and hydrophobic interactions. This work provided a rare systematic elucidation of the potential and mechanism of enzymatically synthesized LT in enhancing taste properties. It provides novel insights into the directions and strategies for the excavation and innovation of flavor enhancers and food flavors.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Liyu Li
- Jiangxi Synergy Pharmaceutical Co., Ltd, Yichun 330700, Jiangxi, China
| | - Xu Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Lu Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yuqin Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Wenxiang Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
4
|
Sterneder S, Seitz J, Kiefl J, Rottmann E, Liebig M, Blings M, Seilwind S, Zhou Y, Wei J, Guan H, Zhu Q, Kreißl J, Lamottke K, Ley JP, Somoza V. Identification of 4'-Demethyl-3,9-dihydroeucomin as a Bitter-Masking Compound from the Resin of Daemonorops draco. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20991-20999. [PMID: 39277814 PMCID: PMC11440488 DOI: 10.1021/acs.jafc.4c04583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Masking the bitter taste of foods is one of the key strategies to improve their taste and palatability, particularly in the context of clean labeling, where natural compounds are preferred. Despite the demand, the availability of natural bitter-masking compounds remains limited. Here, we identified the bitter-masking compound 4'-demethyl-3,9-dihydroeucomin (DMDHE) isolated from the resin of Daemonorops draco by means of an activity-guided in vivo (sensory bitterness rating of quinine) and in vitro (cell-based bitter response assays) approach. First, a mean bitter-masking effect of -29.6 ± 6.30% on the bitterness perceived from quinine [10 ppm] was demonstrated for an organic solvent extract of the resin of D. draco (= DD [500 ppm]) in a sensory trial. The results were verified in a cell-based bitter assay in which the bitter taste receptor (TAS2R)-dependent proton secretion serves as an outcome measure of the cellular bitter response in parietal HGT-1 cells. By means of preparative RP-18 high-performance liquid chromatography (HPLC) analysis combined with activity-guided sensory evaluations, the most potent bitter-masking fractions were identified. Subsequent quantitative liquid chromatography/high-resolution mass spectrometry/charged aerosol detection/ultraviolet (LC-HRMS/CAD/UV), NMR analysis, followed by gram-scale synthesis, led to the characterization of DMDHE as bitter-masking homoisoflavanone. DMDHE decreased the sensory bitterness of quinine by 14.8 ± 5.00%. Functional involvement of TAS2R14 was demonstrated by means of a CRISPR-Cas9 approach, which revealed a reduction of the DMDHE-evoked bitter-masking effect by 40.4 ± 9.32% in HGT-1 TAS2R14ko versus HGT-1 wt cells.
Collapse
Affiliation(s)
- Sonja Sterneder
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Joachim Seitz
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | | - Yijun Zhou
- Bicoll Biotechnology (Shanghai) Co., Ltd., 201203 Pudong, China
| | - Jianbing Wei
- Bicoll Biotechnology (Shanghai) Co., Ltd., 201203 Pudong, China
| | - Haifeng Guan
- Bicoll Biotechnology (Shanghai) Co., Ltd., 201203 Pudong, China
| | - Qianjin Zhu
- Bicoll Biotechnology (Shanghai) Co., Ltd., 201203 Pudong, China
| | - Johanna Kreißl
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Kai Lamottke
- Bicoll Biotechnology (Shanghai) Co., Ltd., 201203 Pudong, China
- Bicoll GmbH, 82152 Planegg/Martinsried, Germany
| | | | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
- Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
5
|
Walser C, Spaccasassi A, Gradl K, Stark TD, Sterneder S, Wolter FP, Achatz F, Frank O, Somoza V, Hofmann T, Dawid C. Human Sensory, Taste Receptor, and Quantitation Studies on Kaempferol Glycosides Derived from Rapeseed/Canola Protein Isolates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14830-14843. [PMID: 38888424 PMCID: PMC11228994 DOI: 10.1021/acs.jafc.4c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Beyond the key bitter compound kaempferol 3-O-(2‴-O-sinapoyl-β-d-sophoroside) previously described in the literature (1), eight further bitter and astringent-tasting kaempferol glucosides (2-9) have been identified in rapeseed protein isolates (Brassica napus L.). The bitterness and astringency of these taste-active substances have been described with taste threshold concentrations ranging from 3.3 to 531.7 and 0.3 to 66.4 μmol/L, respectively, as determined by human sensory experiments. In this study, the impact of 1 and kaempferol 3-O-β-d-glucopyranoside (8) on TAS2R-linked proton secretion by HGT-1 cells was analyzed by quantification of the intracellular proton index. mRNA levels of bitter receptors TAS2R3, 4, 5, 13, 30, 31, 39, 40, 43, 45, 46, 50 and TAS2R8 were increased after treatment with compounds 1 and 8. Using quantitative UHPLC-MS/MSMRM measurements, the concentrations of 1-9 were determined in rapeseed/canola seeds and their corresponding protein isolates. Depending on the sample material, compounds 1, 3, and 5-9 exceeded dose over threshold (DoT) factors above one for both bitterness and astringency in selected protein isolates. In addition, an increase in the key bitter compound 1 during industrial protein production (apart from enrichment) was observed, allowing the identification of the potential precursor of 1 to be kaempferol 3-O-(2‴-O-sinapoyl-β-d-sophoroside)-7-O-β-d-glucopyranoside (3). These results may contribute to the production of less bitter and astringent rapeseed protein isolates through the optimization of breeding and postharvest downstream processing.
Collapse
Affiliation(s)
- Christoph Walser
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Andrea Spaccasassi
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Katrin Gradl
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- TUM School of Life Sciences, Technical University of Munich, Alte Akademie 8a, 85354 Freising, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Sonja Sterneder
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Vienna Doctoral School in Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | | | - Felicia Achatz
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Veronika Somoza
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
- Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
- Professorship for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
6
|
Morini G. The taste for health: the role of taste receptors and their ligands in the complex food/health relationship. Front Nutr 2024; 11:1396393. [PMID: 38873558 PMCID: PMC11169839 DOI: 10.3389/fnut.2024.1396393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
Taste, food, and health are terms that have since always accompanied the act of eating, but the association was simple: taste serves to classify a food as good or bad and therefore influences food choices, which determine the nutritional status and therefore health. The identification of taste receptors, particularly, the G protein-coupled receptors that mediate sweet, umami, and bitter tastes, in the gastrointestinal tract has assigned them much more relevant tasks, from nutrient sensing and hormone release to microbiota composition and immune response and finally to a rationale for the gut-brain axis. Particularly interesting are bitter taste receptors since most of the times they do not mediate macronutrients (energy). The relevant roles of bitter taste receptors in the gut indicate that they could become new drug targets and their ligands new medications or components in nutraceutical formulations. Traditional knowledge from different cultures reported that bitterness intensity was an indicator for distinguishing plants used as food from those used as medicine, and many non-cultivated plants were used to control glucose level and treat diabetes, modulate hunger, and heal gastrointestinal disorders caused by pathogens and parasites. This concept represents a means for the scientific integration of ancient wisdom with advanced medicine, constituting a possible boost for more sustainable food and functional food innovation and design.
Collapse
|
7
|
Richter P, Andersen G, Kahlenberg K, Mueller AU, Pirkwieser P, Boger V, Somoza V. Sodium-Permeable Ion Channels TRPM4 and TRPM5 are Functional in Human Gastric Parietal Cells in Culture and Modulate the Cellular Response to Bitter-Tasting Food Constituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4906-4917. [PMID: 38378185 PMCID: PMC10921469 DOI: 10.1021/acs.jafc.3c09085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Gastric parietal cells secrete chloride ions and protons to form hydrochloric acid. Besides endogenous stimulants, e.g., acetylcholine, bitter-tasting food constituents, e.g., caffeine, induce proton secretion via interaction with bitter taste receptors (TAS2Rs), leading to increased cytosolic Ca2+ and cAMP concentrations. We hypothesized TAS2R activation by bitter tastants to result in proton secretion via cellular Na+ influx mediated by transient receptor potential channels (TRP) M4 and M5 in immortalized human parietal HGT-1 cells. Using the food-derived TAS2R agonists caffeine and l-arginine, we demonstrate both bitter compounds to induce a TRPM4/M5-mediated Na+ influx, with EC50 values of 0.65 and 10.38 mM, respectively, that stimulates cellular proton secretion. Functional involvement of TAS2Rs in the caffeine-evoked effect was demonstrated by means of the TAS2R antagonist homoeriodictyol, and stably CRISPR-Cas9-edited TAS2R43ko cells. Building on previous results, these data further support the suitability of HGT-1 cells as a surrogate cell model for taste cells. In addition, TRPM4/M5 mediated a Na+ influx after stimulating HGT-1 cells with the acetylcholine analogue carbachol, indicating an interaction of the digestion-associated cholinergic pathway with a taste-signaling pathway in parietal cells.
Collapse
Affiliation(s)
- Phil Richter
- TUM
School of Life Sciences Weihenstephan, Technical
University of Munich, Alte Akademie 8, Freising 85354, Germany
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
| | - Gaby Andersen
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
| | - Kristin Kahlenberg
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
| | - Alina Ulrike Mueller
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
| | - Philip Pirkwieser
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
| | - Valerie Boger
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
| | - Veronika Somoza
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
- Chair
of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, Freising 85354, Germany
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), Vienna 1090, Austria
| |
Collapse
|
8
|
Gonçalves L, Jesus M, Brandão E, Magalhães P, Mateus N, de Freitas V, Soares S. Interactions between Beer Compounds and Human Salivary Proteins: Insights toward Astringency and Bitterness Perception. Molecules 2023; 28:molecules28062522. [PMID: 36985492 PMCID: PMC10053927 DOI: 10.3390/molecules28062522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Beer is one of the most consumed beverages worldwide with unique organoleptic properties. Bitterness and astringency are well-known key features and, when perceived with high intensity, could lead to beer rejection. Most studies on beer astringency and bitterness use sensory assays and fail to study the molecular events that occur inside the oral cavity responsible for those perceptions. This work focused on deepening this knowledge based on the interaction of salivary proteins (SP) and beer phenolic compounds (PCs) and their effect toward these two sensory attributes. The astringency and bitterness of four different beers were assessed by a sensory panel and were coupled to the study of the SP changes and PC profile characterization of beers. The human SP content was measured before (basal) and after each beer intake using HPLC analysis. The beers’ PC content and profile were determined using Folin–Ciocalteu and LC-MS spectrometry, respectively. The results revealed a positive correlation between PCs and astringency and bitterness and a negative correlation between SP changes and these taste modalities. Overall, the results revealed that beers with higher PC content (AAL and IPA) are more astringent and bitter than beers with a lower PC content (HL and SBO). The correlation results suggested that an increase in whole SP content, under stimulation, should decrease astringency and bitterness perception. No correlation was found between the changes in specific families of SP and astringency and bitterness perception.
Collapse
Affiliation(s)
- Leonor Gonçalves
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal
| | - Mónica Jesus
- REQUIMTE/LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal
| | - Elsa Brandão
- REQUIMTE/LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal
| | - Paulo Magalhães
- Super Bock Group, S.A., Via Norte, 4465-764 Leça do Balio, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal
| | - Victor de Freitas
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal
- REQUIMTE/LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal
- Correspondence: (V.d.F.); (S.S.); Tel.: +351-936756874 (S.S.)
| | - Susana Soares
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal
- REQUIMTE/LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal
- Correspondence: (V.d.F.); (S.S.); Tel.: +351-936756874 (S.S.)
| |
Collapse
|
9
|
Mistlberger-Reiner A, Sterneder S, Reipert S, Wolske S, Somoza V. Extracellular Vesicles and Particles Modulate Proton Secretion in a Model of Human Parietal Cells. ACS OMEGA 2023; 8:2213-2226. [PMID: 36687051 PMCID: PMC9850724 DOI: 10.1021/acsomega.2c06442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The secretion of extracellular vesicles and particles (EVPs) is an important mechanism of cellular communication. In this work, we demonstrate a functional role of EVPs in mechanisms regulating gastric acid secretion. HGT-1 cells were used as a model system to assess proton secretion. First, in order to prove EVP secretion by HGT-1 cells, EVPs were isolated by size exclusion chromatography and characterized by nanoparticle tracking analysis, Western blot, and cryo transmission electron microscopy. For examination of the potential role of EVPs in proton secretion, HGT-1 cells were treated with pharmacological EV-inhibitors, resulting in a reduction of histamine-induced proton secretion. To demonstrate the functional role of EVPs in the mechanism of proton secretion, EVP-conditioned supernatant was collected after stimulation of HGT-1 cells with histamine, fractionated, and subjected to an activity screening. The results revealed constituents of the HGT-1-derived secretome with an MW of >100 kDa (including EVPs) to modulate proton secretion, while smaller constituents had no effect. Finally, a dose-dependent modulatory effect on proton secretion of HGT-1 cells was demonstrated by isolated HGT-1-derived EVPs. Hence, this study presents first results on the potential function of EVPs as a previously undiscovered mechanism of regulation of gastric acid secretion by parietal cells.
Collapse
Affiliation(s)
- Agnes Mistlberger-Reiner
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Sonja Sterneder
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Siegfried Reipert
- Core
Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna 1030, Austria
| | - Sara Wolske
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Veronika Somoza
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Freising 85354, Germany
- Nutritional
Systems Biology, Technical University of
Munich, Freising 85354, Germany
| |
Collapse
|
10
|
Richter P, Sebald K, Fischer K, Behrens M, Schnieke A, Somoza V. Bitter Peptides YFYPEL, VAPFPEVF, and YQEPVLGPVRGPFPIIV, Released during Gastric Digestion of Casein, Stimulate Mechanisms of Gastric Acid Secretion via Bitter Taste Receptors TAS2R16 and TAS2R38. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11591-11602. [PMID: 36054030 PMCID: PMC9501810 DOI: 10.1021/acs.jafc.2c05228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 05/22/2023]
Abstract
Eating satiating, protein-rich foods is one of the key aspects of modern diet, although a bitter off-taste often limits the application of some proteins and protein hydrolysates, especially in processed foods. Previous studies of our group demonstrated that bitter-tasting food constituents, such as caffeine, stimulate mechanisms of gastric acid secretion as a signal of gastric satiation and a key process of gastric protein digestion via activation of bitter taste receptors (TAS2Rs). Here, we tried to elucidate whether dietary non-bitter-tasting casein is intra-gastrically degraded into bitter peptides that stimulate mechanisms of gastric acid secretion in physiologically achievable concentrations. An in vitro model of gastric digestion was verified by casein-fed pigs, and the peptides resulting from gastric digestion were identified by liquid chromatography-time-of-flight-mass spectrometry. The bitterness of five selected casein-derived peptides was validated by sensory analyses and by an in vitro screening approach based on human gastric parietal cells (HGT-1). For three of these peptides (YFYPEL, VAPFPEVF, and YQEPVLGPVRGPFPIIV), an upregulation of gene expression of TAS2R16 and TAS2R38 was observed. The functional involvement of these TAS2Rs was verified by siRNA knock-down (kd) experiments in HGT-1 cells. This resulted in a reduction of the mean proton secretion promoted by the peptides by up to 86.3 ± 9.9% for TAS2R16kd (p < 0.0001) cells and by up to 62.8 ± 7.0% for TAS2R38kd (p < 0.0001) cells compared with mock-transfected cells.
Collapse
Affiliation(s)
- Phil Richter
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-M eitner-Straße
34, 85354Freising, Germany
| | - Karin Sebald
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-M eitner-Straße
34, 85354Freising, Germany
| | - Konrad Fischer
- Chair
of Livestock Biotechnology, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354Freising, Germany
| | - Maik Behrens
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-M eitner-Straße
34, 85354Freising, Germany
| | - Angelika Schnieke
- Chair
of Livestock Biotechnology, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354Freising, Germany
| | - Veronika Somoza
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-M eitner-Straße
34, 85354Freising, Germany
- Chair
of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, 85354Freising, Germany
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090Wien, Austria
- . Phone +49-8161-71-2700
| |
Collapse
|
11
|
Aryal B, Dhakal S, Shrestha B, Lee Y. Molecular and neuronal mechanisms for amino acid taste perception in the Drosophila labellum. Curr Biol 2022; 32:1376-1386.e4. [PMID: 35176225 DOI: 10.1016/j.cub.2022.01.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022]
Abstract
Amino acids are essential nutrients that act as building blocks for protein synthesis. Recent studies in Drosophila have demonstrated that glycine, phenylalanine, and threonine elicit attraction, whereas tryptophan elicits aversion at ecologically relevant concentrations. Here, we demonstrated that eight amino acids, including arginine, glycine, alanine, serine, phenylalanine, threonine, cysteine, and proline, differentially stimulate feeding behavior by activating sweet-sensing gustatory receptor neurons (GRNs) in L-type and S-type sensilla. In turn, this process is mediated by three GRs (GR5a, GR61a, and GR64f), as well as two broadly required ionotropic receptors (IRs), IR25a and IR76b. However, GR5a, GR61a, and GR64f are only required for sensing amino acids in the sweet-sensing GRNs of L-type sensilla. This suggests that amino acid sensing in different type sensilla occurs through dual mechanisms. Furthermore, our findings indicated that ecologically relevant high concentrations of arginine, lysine, proline, valine, tryptophan, isoleucine, and leucine elicit aversive responses via bitter-sensing GRNs, which are mediated by three IRs (IR25a, IR51b, and IR76b). More importantly, our results demonstrate that arginine, lysine, and proline induce biphasic responses in a concentration-dependent manner. Therefore, amino acid detection in Drosophila occurs through two classes of receptors that activate two sets of sensory neurons in physiologically distinct pathways, which ultimately mediates attraction or aversion behaviors.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Subash Dhakal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea; Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
12
|
Effect of immersion time of dried scallop on amino acids, antioxidant and ACE inhibitory activities in Japanese traditional Dashi. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Effects of Soaking Tempe in Vinegar on Metabolome and Sensory Profiles. Metabolites 2022; 12:metabo12010030. [PMID: 35050152 PMCID: PMC8781261 DOI: 10.3390/metabo12010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
Tempe is a fermented soybean food that is globally renowned for its high protein content. Methods of preparing tempe vary worldwide, and include soaking in vinegar before fermentation. This study aimed to determine the effects of soaking in vinegar by metabolome analysis, gas chromatography/mass spectrometry, and sensory attribute evaluation. Vinegar affected metabolism during tempe fermentation, which led to altered metabolite profiles in the final product. We validated the metabolite profiles of two types of tempe using triangle tests and rate-all-that-apply (RATA) tests, which revealed that the sensory attributes of a golden-brown color, ammonia smell, pleasant smell, salty flavor, and acceptance significantly differed (p < 0.05) between the two types of tempe. A high concentration of specific amino acids in the control tempe explained a strong ammonia smell, saltiness, and darker golden-brown sensory attributes. Tempe soaked in vinegar contained high concentrations of metabolites associated with a roasted aroma and cooked meat. In conclusion, most RATA panelists who were being introduced to tempe preferred that soaked in vinegar to the control that was not.
Collapse
|
14
|
Holik AK, Schweiger K, Stoeger V, Lieder B, Reiner A, Zopun M, Hoi JK, Kretschy N, Somoza MM, Kriwanek S, Pignitter M, Somoza V. Gastric Serotonin Biosynthesis and Its Functional Role in L-Arginine-Induced Gastric Proton Secretion. Int J Mol Sci 2021; 22:5881. [PMID: 34070942 PMCID: PMC8199169 DOI: 10.3390/ijms22115881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Among mammals, serotonin is predominantly found in the gastrointestinal tract, where it has been shown to participate in pathway-regulating satiation. For the stomach, vascular serotonin release induced by gastric distension is thought to chiefly contribute to satiation after food intake. However, little information is available on the capability of gastric cells to synthesize, release and respond to serotonin by functional changes of mechanisms regulating gastric acid secretion. We investigated whether human gastric cells are capable of serotonin synthesis and release. First, HGT-1 cells, derived from a human adenocarcinoma of the stomach, and human stomach specimens were immunostained positive for serotonin. In HGT-1 cells, incubation with the tryptophan hydroxylase inhibitor p-chlorophenylalanine reduced the mean serotonin-induced fluorescence signal intensity by 27%. Serotonin release of 147 ± 18%, compared to control HGT-1 cells (set to 100%) was demonstrated after treatment with 30 mM of the satiating amino acid L-Arg. Granisetron, a 5-HT3 receptor antagonist, reduced this L-Arg-induced serotonin release, as well as L-Arg-induced proton secretion. Similarly to the in vitro experiment, human antrum samples released serotonin upon incubation with 10 mM L-Arg. Overall, our data suggest that human parietal cells in culture, as well as from the gastric antrum, synthesize serotonin and release it after treatment with L-Arg via an HTR3-related mechanism. Moreover, we suggest not only gastric distension but also gastric acid secretion to result in peripheral serotonin release.
Collapse
Affiliation(s)
- Ann-Katrin Holik
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (A.-K.H.); (K.S.); (B.L.); (M.Z.); (M.P.)
| | - Kerstin Schweiger
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (A.-K.H.); (K.S.); (B.L.); (M.Z.); (M.P.)
| | - Verena Stoeger
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (V.S.); (J.K.H.)
| | - Barbara Lieder
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (A.-K.H.); (K.S.); (B.L.); (M.Z.); (M.P.)
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (V.S.); (J.K.H.)
| | - Angelika Reiner
- Pathologisch-Bakteriologisches Institut, Sozialmedizinisches Zentrum Ost- Donauspital, Langobardenstraße 122, 1220 Vienna, Austria;
| | - Muhammet Zopun
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (A.-K.H.); (K.S.); (B.L.); (M.Z.); (M.P.)
| | - Julia K. Hoi
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (V.S.); (J.K.H.)
| | - Nicole Kretschy
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (N.K.); (M.M.S.)
| | - Mark M. Somoza
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (N.K.); (M.M.S.)
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85345 Freising, Germany
| | - Stephan Kriwanek
- Chirurgische Abteilung, Sozialmedizinisches Zentrum Ost- Donauspital, Langobardenstraße 122, 1220 Vienna, Austria;
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (A.-K.H.); (K.S.); (B.L.); (M.Z.); (M.P.)
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (A.-K.H.); (K.S.); (B.L.); (M.Z.); (M.P.)
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (V.S.); (J.K.H.)
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85345 Freising, Germany
- Nutritional Systems Biology, School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85345 Freising, Germany
| |
Collapse
|
15
|
Wei TB, Dong HQ, Ma XQ, Yang QY, Wang ZH, Guan WL, Zhang YF, Zhang YM, Yao H, Lin Q. A novel photochemical sensor based on quinoline-functionalized phenazine derivatives for multiple substrate detection. NEW J CHEM 2021. [DOI: 10.1039/d0nj06175a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel photochemical sensor based on quinoline-functionalized phenazine derivatives for highly sensitive detection of multiple substrates (l-Arg, CO2, and pH) was designed and synthesized.
Collapse
|
16
|
Di Pizio A, Nicoli A. In Silico Molecular Study of Tryptophan Bitterness. Molecules 2020; 25:molecules25204623. [PMID: 33050648 PMCID: PMC7587216 DOI: 10.3390/molecules25204623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Tryptophan is an essential amino acid, required for the production of serotonin. It is the most bitter amino acid and its bitterness was found to be mediated by the bitter taste receptor TAS2R4. Di-tryptophan has a different selectivity profile and was found to activate three bitter taste receptors, whereas tri-tryptophan activated five TAS2Rs. In this work, the selectivity/promiscuity profiles of the mono-to-tri-tryptophans were explored using molecular modeling simulations to provide new insights into the molecular recognition of the bitter tryptophan. Tryptophan epitopes were found in all five peptide-sensitive TAS2Rs and the best tryptophan epitope was identified and characterized at the core of the orthosteric binding site of TAS2R4.
Collapse
|
17
|
Structure-Function Analyses of Human Bitter Taste Receptors-Where Do We Stand? Molecules 2020; 25:molecules25194423. [PMID: 32993119 PMCID: PMC7582848 DOI: 10.3390/molecules25194423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The finding that bitter taste receptors are expressed in numerous tissues outside the oral cavity and fulfill important roles in metabolic regulation, innate immunity and respiratory control, have made these receptors important targets for drug discovery. Efficient drug discovery depends heavily on detailed knowledge on structure-function-relationships of the target receptors. Unfortunately, experimental structures of bitter taste receptors are still lacking, and hence, the field relies mostly on structures obtained by molecular modeling combined with functional experiments and point mutageneses. The present article summarizes the current knowledge on the structure–function relationships of human bitter taste receptors. Although these receptors are difficult to express in heterologous systems and their homology with other G protein-coupled receptors is very low, detailed information are available at least for some of these receptors.
Collapse
|