1
|
Chen Z, Jin G, Zhi Z, Guo Y, Liu Y, Fan B, Zhu GP, Zhang M, Zhang S. Genome-wide identification and expression analysis of ACS and ACO gene family in Ziziphus jujuba mill during fruit ripening. Sci Rep 2025; 15:18106. [PMID: 40413254 PMCID: PMC12103539 DOI: 10.1038/s41598-025-03014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
The jujube (Ziziphus jujuba Mill.) cultivar 'Dongzao' is globally popular as a fresh fruit but faces challenges with shelf life, which is positively associated with ethylene production. The two key enzymes involved in ethylene biosynthesis, 1-Aminocyclopropane-1-Carboxylic acid Synthase (ACS) and 1-Aminocyclopropane-1-Carboxylic acid Oxidase (ACO), are encoded by ACS and ACO gene families, respectively. This study identified 7 ZjACS genes and 36 ZjACO genes in 'Dongzao' and revealed extensive evolutionary divergence between 'Dongzao' and Arabidopsis thaliana. Phylogenetic relationships were more apparent when analyzing genes with similar structures, motifs and subcellular localization predictions. Transcriptome profiling showed that a substantial number of the ZjACS and ZjACO genes displayed stage-specific expression tendency during fruit development. Co-expression analysis showed that 4 ZjACS and 9 ZjACO genes were linked to transcription factors (TFs) involved in fruit ripening. The diverse regulatory factors, including ERF, NAC and WRKY TFs and cis-acting regulatory elements, likely contribute to the complex roles of the ZjACSs and ZjACOs during ripening of jujube fruits. This study sheds light on the genetic regulation of ethylene biosynthesis in 'Dongzao' jujube ripening, providing insights for postharvest research in this economically important species.
Collapse
Affiliation(s)
- Zhuo Chen
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Gang Jin
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Zhaokun Zhi
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanmeng Guo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yiteng Liu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Bingxin Fan
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Gao-Pu Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Mengmeng Zhang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
| | - Shulin Zhang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
2
|
He X, Qin W, He Q, Liu Y, Wang Y, Wang R, Shi H. Optimization of the optimal hormone formula for kiwifruit and analysis of its storage characteristics. FRONTIERS IN PLANT SCIENCE 2025; 16:1567183. [PMID: 40416082 PMCID: PMC12099451 DOI: 10.3389/fpls.2025.1567183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/19/2025] [Indexed: 05/27/2025]
Abstract
Introduction Kiwifruit is susceptible to ripening and senescence during postharvest storage, leading to fruit softening, rotting, and nutrient loss, affecting commercial and economic values. Hormones delay senescence by regulating fruit physiology and metabolism, but their specific effects and mechanisms must be further investigated. Methods To extend the postharvest storage duration of kiwifruit, we conducted a study using 'Yan Nong 3' kiwifruit as our test material. The fruits were treated with varying concentrations of Brassinolide (BRs), melatonin (MT), methyl jasmonate (MeJA) and salicylic acid (SA), respectively. Subsequently, on the basis of a one-way test, an orthogonal experiment was designed with fruit hardness as an indicator (7 days of storage at room temperature) to obtain the optimal process formulation for phytohormone synergistic treatment (PEHC): 10 μmol·L-1 for BRs, 200 μmol·L-1 for MT, 300 μmol·L-1 for MeJA, and 2 mmol·L-1 for SA. Results The results showed that after 60 days of storage at 4°C, PEHC was found to increase the good fruit rate and the hardness of kiwifruit by 5.97% and 67.42%, respectively, compared to the control. PEHC reduced weight loss rate and disease index, slowed the decrease in titratable acid content (TAC) and vitamin C (VC) content, maintained color, and delayed the accumulation of SSC. At 80 days of storage, the hardness, good fruit rate, VC content, and TAC of PEHC increased by 68.38%, 28.87%, 32.76 mg·100 g-1, and 20.00%, respectively, compared to the control. Whereas, the difference in SSC of PEHC compared to control was nosignificant. The PEHC reduced the content of 1-Aminocyclopropane-1-carboxylate (ACC). Transcriptomics revealed that PEHC inhibited the gene expression levels of Acc08469 in s-adenosylmethionine synthetase (MetK), as well as Acc20538, Acc24995, and Acc17490 in 1-aminocyclopropane-1-carboxylic acid oxidase. Using metabolomics, PEHC increased the relative contents of acids and amino acids and decreased the relative contents of aroma, pigments or phenolics, and soluble sugars compared with the control, of which the trends of changes in acids and soluble sugars were consistently associated with the changes in fruit quality. Discussion The PEHC had a favorable effect on maintaining kiwifruit quality and delayed the decline in postharvest storage quality.
Collapse
Affiliation(s)
- Xiaoe He
- College of Agriculture and Forestry Science and Technology, Hunan University of Applied Technology, Changde, Hunan, China
| | - Wei Qin
- College of Agriculture and Forestry Science and Technology, Hunan University of Applied Technology, Changde, Hunan, China
| | - Qi He
- College of Agriculture and Forestry Science and Technology, Hunan University of Applied Technology, Changde, Hunan, China
| | - Yunxiang Liu
- College of Agriculture and Forestry Science and Technology, Hunan University of Applied Technology, Changde, Hunan, China
| | - Yan Wang
- Institute of Economics and Business, Hunan Biological Electromechanical Vocational Technical College, Changsha, Hunan, China
| | - Rencai Wang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Hao Shi
- College of Agriculture and Forestry Science and Technology, Hunan University of Applied Technology, Changde, Hunan, China
- College of Life and Environmental Sciences, Hunan University of Arts and Sciences, Changde, Hunan, China
| |
Collapse
|
3
|
Dai J, Zhu J, Cheng X, Xu Z, Kang T, Xu Y, Lu Z, Ma K, Wang X, Hu Y, Zhao C. NAC transcription factor PpNAP4 positively regulates the synthesis of carotenoid and abscisic acid (ABA) during peach ripening. Int J Biol Macromol 2025; 306:141647. [PMID: 40032094 DOI: 10.1016/j.ijbiomac.2025.141647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Yellow-fleshed peaches (Prunus persica (L.) Batsch) are recognized as an excellent dietary source of carotenoids. The metabolic process of carotenoids in plants has been extensively characterized; however, the molecular mechanisms controlling carotenoid accumulation in peaches, particularly the transcriptional regulators upstream this process, remain poorly understood. Here, we initially determined the expression profiles of carotenogenic genes, observing a predominant up-regulation during ripening phase in both yellow- and white-fleshed peaches. This finding, in conjunction with prior research, suggested a conserved biosynthetic pathway for carotenoid synthesis during peach ripening, irrespective of flesh colour. NAC transcription factor, PpNAP4, previously established as a central regulator in peach ripening, is implicated as a potential modulator of carotenoid synthesis. Overexpression assays in peach and tomato nor mutant demonstrated a significant up-regulation of multiple carotenoid components by PpNAP4. Subsequent biochemical experiments revealed that PpNAP4 directly targeted the promoters of carotenogenic genes, thereby activating their expression. Next, PpNAP4 was found to be involved in the synthesis of abscisic acid (ABA) through transcriptional activation of PpNCED2/3. Additionally, we discovered that PpNAP4 acts synergistically with PpNAP6 to jointly regulate carotenoid accumulation and ABA biosynthesis. Collectively, our findings highlight PpNAP4's regulatory function in carotenoids and ABA synthesis during peach fruit ripening.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Jingwen Zhu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Xi Cheng
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Ze Xu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, PR China
| | - Tongyang Kang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Yuting Xu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Zhanling Lu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Kaisheng Ma
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Xiaoyu Wang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Yanan Hu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling 712100, PR China.
| |
Collapse
|
4
|
Mu T, Luo S, Li L, Zhang R, Wang P, Zhang G. A review of the interaction mechanisms between jasmonic acid (JA) and various plant hormones, as well as the core regulatory role of MYC2. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112407. [PMID: 39894056 DOI: 10.1016/j.plantsci.2025.112407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/12/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Jasmonic acid (JA), as a defensive plant hormone, can synergistically or antagonistically interact with common hormones such as gibberellin (GA), abscisic acid (ABA), indole-3-acetic hormone acid (IAA), and ethylene (ETH) during the plant growth process, as well as interact with hormones such as melatonin (MT), brassinolide (BR), and resveratrol to regulate plant growth and development processes such as metabolite synthesis, pest and disease defense, and organ growth. The core regulatory factor MYC2 of JA mainly mediates the signal transduction pathways of these hormone interactions by interacting with other genes or regulating transcription. This article reviews the mechanism of cross-talk between JA and hormones such as ABA, GA, and salicylic acid (SA), and discusses the role of MYC2 in hormone interactions.
Collapse
Affiliation(s)
- Tingting Mu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Long Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Rongrong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou 730070, China.
| |
Collapse
|
5
|
Rafiq M, Guo M, Shoaib A, Yang J, Fan S, Xiao H, Chen K, Xie Z, Cheng C. Unraveling the Hormonal and Molecular Mechanisms Shaping Fruit Morphology in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:974. [PMID: 40265904 PMCID: PMC11944449 DOI: 10.3390/plants14060974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
The importance of fruit shape studies extends beyond fundamental plant biology, as it holds significant implications for breeding. Understanding the genetic and hormonal regulation of fruit morphology can facilitate targeted breeding strategies to enhance yield, quality, and stress resistance, ultimately contributing to sustainable farming and nutrition security. The diversity in fruit shapes is the result of complex hormone regulation and molecular pathways that affect key traits, including carpel number, fruit length, and weight. Fruit shape is a quality attribute that directly influences consumer preference, marketability and the ease of post-harvest processing. This article focuses on investigations carried out on molecular, genetic and hormonal regulation mechanisms of fruit shape, color, maturation in fruit plants and key genetic pathways such as CLV-WUS and OVATE, as well as their roles in shaping non-climacteric fruits such as strawberries, grapes and raspberries. Plant hormones, especially abscisic acid (ABA) and indole-3-acetic acid (IAA), play a crucial role in enhancing desirable traits such as color and taste, while regulating anthocyanin synthesis and growth time. In addition, the dynamic interactions between auxin, gibberellin, and ethylene are crucial for the ripening process. Jasmonate enhances stress response, brassinosteroids promote ripening and cytokinins promote early fruit development. In addition, this review also studied the fruit morphology of species such as tomatoes and cucumbers, emphasizing the importance of the CLV-WUS pathway, which regulates the number of carpels through genes such as WUSCHEL (WUS), FRUITFULL1 (FUL1), and auxin response factor 14 (ARF14). The weight of fresh fruit is affected by microRNAs such as miRNA156, which emphasizes the importance of post transcriptional regulation. The involvement of transcription factors such as SISHN1, CaOvate, and CISUN25-26-27a further emphasizes the complexity of hormone regulation. Understanding these regulatory mechanisms can enhance our understanding of fruit development and have a profound impact on agricultural practices and crop improvement strategies aimed at meeting the growing global demand for high-quality agricultural products.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Min Guo
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Amna Shoaib
- Department of Plant Pathology, Faculty of Agriculture, University of the Punjab, Lahore 54590, Pakistan
| | - Jiaxin Yang
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Siqing Fan
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Haijing Xiao
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Kai Chen
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Zhaoqi Xie
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Chunsong Cheng
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| |
Collapse
|
6
|
Dai J, Xu Z, Zhang X, Fang Z, Zhu J, Kang T, Xu Y, Hu Y, Cao L, Zhao C. PpNAP4 and ethylene act in a regulatory loop to modulate peach fruit ripening and softening. Int J Biol Macromol 2025; 291:138791. [PMID: 39706437 DOI: 10.1016/j.ijbiomac.2024.138791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Ripening significantly influences fruit quality and commercial value. Peaches (Prunus persica), a climacteric fruit, exhibit increased ethylene biosynthesis and decreased fruit firmness during ripening. NAC-like proteins activated by AP3/P1 (NAP) proteins are a subfamily of NAC transcription factors, and certain NAPs have been shown to intervene in fruit ripening. Here, we revealed that one NAP member PpNAP4, along with ethylene, positively regulated peach ripening and softening. Positive regulation of fruit ripening by PpNAP4 was demonstrated by overexpressing PpNAP4 in both peaches and tomatoes, resulting in enhanced fruit ripening through targeted modulation of specific ethylene biosynthesis and cell wall degradation-related genes. Further investigation revealed that PpNAP4 targets and upregulates key ethylene biosynthesis genes PpACS1, PpACO1 and PpEIN2, which is the core component of ethylene signaling. PpNAP4 positively modulates fruit softening by binding to and activating the promoters of cell wall degradation-related genes PpPL1 and PpPL15. Additionally, expression of PpPL1 and PpPL15 was directly affected by ethylene, with further investigation revealing that their promoters were clearly induced by ethylene. Our findings demonstrated a synergistic role played by the interaction between PpNAP4 and PpNAP6, enhancing the expression of PpACS1, PpACO1, PpPL1, PpPL15 and PpEIN2, thereby contributing to fruit ripening and softening. Overall, our study revealed the intricate mechanisms responsible for PpNAP4, PpNAP6, and ethylene roles during peach fruit ripening, highlighting a regulatory loop in which PpNAP4 and ethylene mutually enhance each other during the ripening process. These enhancements further contribute to peach fruit softening by upregulating specific cell wall degradation-related genes.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Ze Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Xingzhen Zhang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Zhouheng Fang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Jingwen Zhu
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Tongyang Kang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Yuting Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Yanan Hu
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Lijun Cao
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA.
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
7
|
Zhu L, Huang T, Liu J, Xu X, Zhang Z. Transcriptome analysis reveals the potential mechanism of methyl jasmonate alleviated ripening disorder in mango fruit at low temperature. Food Chem 2025; 463:141093. [PMID: 39236393 DOI: 10.1016/j.foodchem.2024.141093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
High susceptibility of mangoes to low temperature leads to ripening failure that restricts the marketability of products. This study investigated the effect of methyl jasmonate (MeJA) on ripening disorder and mechanism involved in mangoes during refrigeration. Results showed that 50 μM MeJA ameliorated ripening disorder, as indicated by accelerated advancement of ripening-related parameters. Transcriptome analysis revealed that 17,414 significantly differentially expressed genes were mainly enriched in ethylene synthesis, cell wall degradation, starch degradation and sugar transport. Moreover, 8 AP2/ERF transcription factors and 12 ripening-related genes were characterized via qRT-PCR. Afterwards, through the analysis of transcription factor binding sites and cis-acting elements, a regulatory network of ERFs mediated alleviation of ripening disorder conferred by MeJA was constructed. Finally, the interactions between MiERFs and the promoters of target genes were verified by yeast one-hybrid assay. Our findings provide a theoretical basis for improving cold tolerance via counteracting ripening disorder in mangoes.
Collapse
Affiliation(s)
- Lisha Zhu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ting Huang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jialiang Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xiangbin Xu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China.
| |
Collapse
|
8
|
Zhao C, Cheng L, Guo Y, Hui W, Niu J, Song S. An integrated quality, physiological and transcriptomic analysis reveals mechanisms of kiwifruit response to postharvest transport vibrational stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109285. [PMID: 39550990 DOI: 10.1016/j.plaphy.2024.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
The 'Xuxiang' kiwifruit, a leading cultivar in China known for its high quality and yield, experiences quality degradation due to vibration stress during postharvest transportation. This study simulated the postharvest transportation vibrations of 'Xuxiang' kiwifruits to investigate the effects on the fruit quality and physiology. Different vibration intensities (0.26, 0.79, and 1.5 m s-2) and durations (0, 24, 48, 72, and 96 h) were applied to analyze the quality, physiological and transcriptomic changes of fruits after vibration stress, as well as the association between quality deterioration, gene networks, and key genes. Results indicated that vibration stress significantly accelerated the deterioration of fruit quality and induced physiological changes. As vibration intensity and duration increased, there was a rapid decrease in fruit firmness and an increase in weight loss, soluble solid content, relative conductivity, ethylene production, respiratory rate, and malondialdehyde levels. The most severe deterioration in fruit quality occurred at a vibration intensity of 1.5 m s-2. Transcriptome sequencing analysis was conducted on samples from different durations of exposure to the 1.5 m s-2 vibration intensity. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses identified key genes associated with ethylene metabolism and softening. Weighted Gene Co-Expression Network Analysis (WGCNA) and correlation analysis further determined that 24 of these genes were regulated by vibrational stress, impacting ethylene metabolism and cell wall degradation. Vibration stress induced changes in genes related to ethylene metabolism and cell wall degradation, promoting lipid peroxidation and respiratory changes, which compromise cell membrane integrity and lead to quality deterioration. Compared with untreated fruits, vibration stress caused the quality deterioration, physiological changes and transcriptional regulation of kiwifruits, indicating that kiwifruits respond to vibration stress through multiple aspects. It proposes a fresh outlook on the understanding of the mechanism of transport vibration stress and further illustrates the importance of monitoring vibration intensity and duration as well as reducing vibration.
Collapse
Affiliation(s)
- Chenxu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China
| | - Linlin Cheng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China
| | - Wei Hui
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Junpeng Niu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Shujie Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China.
| |
Collapse
|
9
|
Fu C, Han C, Yu Z, Liu D, Wei Y, Han Y. Ethylene induced AcNAC3 and AcNAC4 take part in ethylene synthesis through mediating AcACO1 during kiwifruit (Actinidia chinensis) ripening. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7367-7374. [PMID: 38661291 DOI: 10.1002/jsfa.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Ethylene plays a vital role in the ripening process of kiwifruit. A terrific amount of transcription factors (TFs) have been shown to regulate ethylene synthesis in various fruits. RESULTS In this research, two new NAC TFs, named AcNAC3 and AcNAC4, were isolated from kiwifruit, which belonged to NAM subfamily. Bioinformatics analysis showed that both AcNAC3 and AcNAC4 were hydrophilic proteins with similar three-dimensional structures. The expression levels of AcNAC3, AcNAC4 and AcACO1 increased during kiwifruit ripening, as well as were induced by ethylene and repressed by 1-methylcyclopropene (1-MCP). Correlation analysis exhibited that ethylene production was positively correlated with the expression levels of AcNAC3, AcNAC4 and AcACO1. Moreover, both AcNAC3 and AcNAC4 acted as transcriptional activators and could bind to and activate AcACO1 promoter. CONCLUSION All results unveiled that the ethylene-induced AcNAC3 and AcNAC4 were transcriptional activators, and might participate in kiwifruit ripening and ethylene biosynthesis through activating AcACO1, providing a new insight of ethylene synthetic regulation during kiwifruit ripening. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Changchun Fu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Zuolong Yu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Yunxiao Wei
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Yanchao Han
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| |
Collapse
|
10
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
11
|
Chen Y, Su WY, Ren CJ, Lin YL, Wang WQ, Zhang HQ, Yin XR, Liu XF. Restricted responses of AcMYB68 and AcERF74/75 enhanced waterlogging tolerance in kiwifruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1059-1072. [PMID: 38761127 DOI: 10.1111/tpj.16816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Most of kiwifruit cultivars (e.g. Actinidia chinensis cv. Donghong, "DH") were sensitive to waterlogging, thus, waterlogging resistant rootstocks (e.g. Actinidia valvata Dunn, "Dunn") were widely used for kiwifruit industry. Those different species provided ideal materials to understand the waterlogging responses in kiwifruit. Compared to the weaken growth and root activities in "DH", "Dunn" maintained the relative high root activities under the prolonged waterlogging. Based on comparative analysis, transcript levels of pyruvate decarboxylase (PDCs) and alcohol dehydrogenase (ADHs) showed significantly difference between these two species. Both PDCs and ADHs had been significantly increased by waterlogging in "DH", while they were only limitedly triggered by 2 days stress and subsided during the prolonged waterlogging in "Dunn". Thus, 19 differentially expressed transcript factors (DETFs) had been isolated using weighted gene co-expression network analysis combined with transcriptomics and transcript levels of PDCs and ADHs in waterlogged "DH". Among these DETFs, dual luciferase and electrophoretic mobility shift assays indicated AcMYB68 could bind to and trigger the activity of AcPDC2 promoter. The stable over-expression of AcMYB68 significantly up-regulated the transcript levels of PDCs but inhibited the plant growth, especially the roots. Moreover, the enzyme activities of PDC in 35S::AcMYB68 were significantly enhanced during the waterlogging response than that in wild type plants. Most interestingly, comparative analysis indicated that the expression patterns of AcMYB68 and the previously characterized AcERF74/75 (the direct regulator on ADHs) either showed no responses (AcMYB68 and AcERF74) or very limited response (AcERF75) in "Dunn". Taken together, the restricted responses of AcMYB68 and AcERF74/75 in "Dunn" endow its waterlogging tolerance.
Collapse
Affiliation(s)
- Yue Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
| | - Wen-Yue Su
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
| | - Chun-Jiang Ren
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
| | - Yi-Lai Lin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
| | - Wen-Qiu Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
| | - Hui-Qin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P.R. China
| | - Xue-Ren Yin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiao-Fen Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
12
|
Fu C, Han C, Wei Y, Liu D, Han Y. Two NAC transcription factors regulated fruit softening through activating xyloglucan endotransglucosylase/hydrolase genes during kiwifruit ripening. Int J Biol Macromol 2024; 263:130678. [PMID: 38458276 DOI: 10.1016/j.ijbiomac.2024.130678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Kiwifruit is a climacteric fruit that is prone to ripening and softening. Understanding molecular regulatory mechanism of kiwifruit softening, is helpful to ensure long-term storage of fruit. In the study, two NAC TFs and two XTH genes were isolated from kiwifruit. Phylogenetic tree showed that both AcNAC1 and AcNAC2 belonged to NAP subfamily, AcXTH1 belong to I subfamily, and AcXTH2 belong to III subfamily. Bioinformatics analysis predicted that AcNAC1 and AcNAC2 possessed similar three-dimensional structural, and belonged to hydrophilic proteins. AcXTH1 and AcXTH2 were hydrophilic proteins and contained signal peptides. AcXTH1 had a transmembrane structure, but AcXTH2 did not. qRT-PCR results showed that AcNAC1, AcNAC2, AcXTH1 and AcXTH2 were increased during kiwifruit ripening. Correlation analysis showed that kiwifruit softening was closely related to endotransglucosylase/hydrolase genes and NAC TFs, as well as there was also a close relationship between AcXTHs and AcNACs. Moreover, both AcNAC1 and AcNAC2 were transcriptional activators located in nucleus, which bound to and activated the promoters of AcXTH1 and AcXTH2. In shortly, we proved that the roles of NAC TFs in mediating fruit softening during kiwifruit ripening. Altogether, our results clarified that AcNAC1 and AcNAC2 were transcriptional activators, and took part in kiwifruit ripening and softening through activating endotransglucosylase/hydrolase genes, providing a new insight of fruit softening network in kiwifruit ripening.
Collapse
Affiliation(s)
- Changchun Fu
- Key laboratory of Pollution Exposure and Health Intervention of Zhejiang province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Chao Han
- Key laboratory of Pollution Exposure and Health Intervention of Zhejiang province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Yunxiao Wei
- Key laboratory of Pollution Exposure and Health Intervention of Zhejiang province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Dan Liu
- Key laboratory of Pollution Exposure and Health Intervention of Zhejiang province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Yanchao Han
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
13
|
Cao X, Li X, Su Y, Zhang C, Wei C, Chen K, Grierson D, Zhang B. Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. PLANT PHYSIOLOGY 2024; 194:2049-2068. [PMID: 37992120 DOI: 10.1093/plphys/kiad627] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Fruit ripening is accompanied by dramatic changes in color, texture, and flavor and is regulated by transcription factors (TFs) and epigenetic factors. However, the detailed regulatory mechanism remains unclear. Gene expression patterns suggest that PpNAC1 (NAM/ATAF1/2/CUC) TF plays a major role in peach (Prunus persica) fruit ripening. DNA affinity purification (DAP)-seq combined with transactivation tests demonstrated that PpNAC1 can directly activate the expression of multiple ripening-related genes, including ACC synthase1 (PpACS1) and ACC oxidase1 (PpACO1) involved in ethylene biosynthesis, pectinesterase1 (PpPME1), pectate lyase1 (PpPL1), and polygalacturonase1 (PpPG1) related to cell wall modification, and lipase1 (PpLIP1), fatty acid desaturase (PpFAD3-1), and alcohol acyltransferase1 (PpAAT1) involved in volatiles synthesis. Overexpression of PpNAC1 in the tomato (Solanum lycopersicum) nor (nonripening) mutant restored fruit ripening, and its transient overexpression in peach fruit induced target gene expression, supporting a positive role of PpNAC1 in fruit ripening. The enhanced transcript levels of PpNAC1 and its target genes were associated with decreases in their promoter mCG methylation during ripening. Declining DNA methylation was negatively associated with increased transcripts of DNA demethylase1 (PpDML1), whose promoter is recognized and activated by PpNAC1. We propose that decreased methylation of the promoter region of PpNAC1 leads to a subsequent decrease in DNA methylation levels and enhanced transcription of ripening-related genes. These results indicate that positive feedback between PpNAC1 and PpDML1 plays an important role in directly regulating expression of multiple genes required for peach ripening and quality formation.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinzhao Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yike Su
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chi Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Hangzhou, Zhejiang Province 310021, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
14
|
Wang Z, Asghari M, Zahedipour-Sheshglani P, Mohammadzadeh K. Impact of 24-epibrassinoliode and methyl jasmonate on quality of Red Delicious apples. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1621-1629. [PMID: 37827991 DOI: 10.1002/jsfa.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Changes in apple fruit quality indices in response to foliar spray with 24-epibrassinolide (EBL) at 0 and 1 μmol L-1 and methyl jasmonate (MeJA) at 0 and 0.5 μmol L-1 , as well as the combination of these phytohormones, were investigated at harvest and during cold storage. RESULTS Both phytohormones synergistically enhanced the fruit firmness, specific weight, size, fresh weight, water content, total antioxidant activity, total phenolics, ascorbic acid, total anthocyanins, total soluble solids/titratable acidity ratio and precocity. In addition, the fruit abscission pattern was changed in response to different treatments. Treated fruit exhibited lower weight loss and internal breakdown symptoms and higher total soluble solids index, firmness and phytochemicals during cold storage. A negative correlation was seen between fruit mass, firmness, specific weight, antioxidant activity, total phenolics and vitamin C content with internal breakdown occurrence and weight loss. CONCLUSION Foliar spray with EBL and MeJA during the growth season is a good environmental friendly and safe method for enhancing the apple fruit different quality parameters, marketability and postharvest life. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- ZhaoDan Wang
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Mohammadreza Asghari
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Kamal Mohammadzadeh
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
15
|
Wei W, Yang YY, Wu CJ, Kuang JF, Chen JY, Lu WJ, Shan W. MaMADS1-MaNAC083 transcriptional regulatory cascade regulates ethylene biosynthesis during banana fruit ripening. HORTICULTURE RESEARCH 2023; 10:uhad177. [PMID: 37868621 PMCID: PMC10585711 DOI: 10.1093/hr/uhad177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
The hormone ethylene is crucial in the regulation of ripening in climacteric fruit, such as bananas. The transcriptional regulation of ethylene biosynthesis throughout banana fruit ripening has received much study, but the cascaded transcriptional machinery of upstream transcriptional regulators implicated in the ethylene biosynthesis pathway is still poorly understood. Here we report that ethylene biosynthesis genes, including MaACS1, MaACO1, MaACO4, MaACO5, and MaACO8, were upregulated in ripening bananas. NAC (NAM, ATAF, CUC) transcription factor, MaNAC083, a ripening and ethylene-inhibited gene, was discovered as a potential binding protein to the MaACS1 promoter by yeast one-hybrid screening. Further in vitro and in vivo experiments indicated that MaNAC083 bound directly to promoters of the five ethylene biosynthesis genes, thereby transcriptionally repressing their expression, which was further verified by transient overexpression experiments, where ethylene production was inhibited through MaNAC083-modulated transcriptional repression of ethylene biosynthesis genes in banana fruits. Strikingly, MaMADS1, a ripening-induced MADS (MCM1, AGAMOUS, DEFICIENS, SRF4) transcription factor, was found to directly repress the expression of MaNAC083, inhibiting trans-repression of MaNAC083 to ethylene biosynthesis genes, thereby attenuating MaNAC083-repressed ethylene production in bananas. These findings collectively illustrated the mechanistic basis of a MaMADS1-MaNAC083-MaACS1/MaACOs regulatory cascade controlling ethylene biosynthesis during banana fruit ripening. These findings increase our knowledge of the transcriptional regulatory mechanisms of ethylene biosynthesis at the transcriptional level and are expected to help develop molecular approaches to control ripening and improve fruit storability.
Collapse
Affiliation(s)
- Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-ying Yang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chao-jie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Zou SC, Zhuo MG, Abbas F, Hu GB, Wang HC, Huang XM. Transcription factor LcNAC002 coregulates chlorophyll degradation and anthocyanin biosynthesis in litchi. PLANT PHYSIOLOGY 2023; 192:1913-1927. [PMID: 36843134 PMCID: PMC10315271 DOI: 10.1093/plphys/kiad118] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Chlorophyll degradation and anthocyanin biosynthesis, which often occur almost synchronously during fruit ripening, are crucial for vibrant coloration of fruits. However, the interlink point between their regulatory pathways remains largely unknown. Here, 2 litchi (Litchi chinensis Sonn.) cultivars with distinctively different coloration patterns during ripening, i.e. slow-reddening/stay-green "Feizixiao" (FZX) vs rapid-reddening/degreening "Nuomici" (NMC), were selected as the materials to study the key factors determining coloration. Litchi chinensis STAY-GREEN (LcSGR) was confirmed as the critical gene in pericarp chlorophyll loss and chloroplast breakdown during fruit ripening, as LcSGR directly interacted with pheophorbide a oxygenase (PAO), a key enzyme in chlorophyll degradation via the PAO pathway. Litchi chinensis no apical meristem (NAM), Arabidopsis transcription activation factor 1/2, and cup-shaped cotyledon 2 (LcNAC002) was identified as a positive regulator in the coloration of litchi pericarp. The expression of LcNAC002 was significantly higher in NMC than in FZX. Virus-induced gene silencing of LcNAC002 significantly decreased the expression of LcSGR as well as L. chinensis MYELOBLASTOSIS1 (LcMYB1), and inhibited chlorophyll loss and anthocyanin accumulation. A dual-luciferase reporter assay revealed that LcNAC002 significantly activates the expression of both LcSGR and LcMYB1. Furthermore, yeast-one-hybrid and electrophoretic mobility shift assay results showed that LcNAC002 directly binds to the promoters of LcSGR and LcMYB1. These findings suggest that LcNAC002 is an important ripening-related transcription factor that interlinks chlorophyll degradation and anthocyanin biosynthesis by coactivating the expression of both LcSGR and LcMYB1.
Collapse
Affiliation(s)
- Shi-Cheng Zou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Mao-Gen Zhuo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Gui-Bing Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Hui-Cong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Department of Life Sciences and Technology, Yangtze Normal University, 16, Juxian Street, Fuling 408100, China
| | - Xu-Ming Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| |
Collapse
|
17
|
He H, Li Q, Fang L, Yang W, Xu F, Yan Y, Mao R. Comprehensive analysis of NAC transcription factors in Scutellaria baicalensis and their response to exogenous ABA and GA 3. Int J Biol Macromol 2023:125290. [PMID: 37302633 DOI: 10.1016/j.ijbiomac.2023.125290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
The NAC is a plant-specific family of transcription factor that plays important roles in various biological processes. Scutellaria baicalensis Georgi, belongs to the Lamiaceae family and has been widely used as a traditional herb with a wide range of pharmacological activities, including antitumor, heat-clearing, and detoxifying functions. However, no study on the NAC family in S. baicalensis has been conducted to date. In the present study, we identified 56 SbNAC genes using genomic and transcriptome analyses. These 56 SbNACs were unevenly distributed across nine chromosomes and were phylogenetically divided into six clusters. Cis-element analysis identified plant growth and development-, phytohormone-, light-, and stress-responsive elements were present in SbNAC genes promoter regions. Protein-protein interaction analysis was performed using Arabidopsis homologous proteins. Potential transcription factors, including bHLH, ERF, MYB, WRKY, and bZIP, were identified and constructed a regulatory network with SbNAC genes. The expression of 12 flavonoid biosynthetic genes was significantly upregulated with abscisic acid (ABA) and gibberellin (GA3) treatments. Eight SbNAC genes (SbNAC9/32/33/40/42/43/48/50) also exhibited notable variation with two phytohormone treatments, among which SbNAC9 and SbNAC43 showed the most significant variation and deserved further study. Additionally, SbNAC44 displayed a positive correlation with C4H3, PAL5, OMT3, and OMT6, while SbNAC25 had negatively correlated with OMT2, CHI, F6H2, and FNSII-2. This study constitutes the first analysis of SbNAC genes and lays the basis foundation for further functional studies of SbNAC genes family members, while it may also facilitate the genetic improvement of plants and breeding of elite S. baicalensis varieties.
Collapse
Affiliation(s)
- Huan He
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Qiuyue Li
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Liang Fang
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Wen Yang
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Feican Xu
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Yan Yan
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Key Laboratory of Chinese Jujube, Yan'an 716000, Shaanxi, China
| | - Renjun Mao
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Key Laboratory of Chinese Jujube, Yan'an 716000, Shaanxi, China.
| |
Collapse
|
18
|
Liu J, Qiao Y, Li C, Hou B. The NAC transcription factors play core roles in flowering and ripening fundamental to fruit yield and quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1095967. [PMID: 36909440 PMCID: PMC9996081 DOI: 10.3389/fpls.2023.1095967] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Fruits are derived from flowers and play an important role in human food, nutrition, and health. In general, flowers determine the crop yield, and ripening affects the fruit quality. Although transcription factors (TFs) only account for a small part of plant transcriptomes, they control the global gene expression and regulation. The plant-specific NAC (NAM, ATAF, and CUC) TFs constitute a large family evolving concurrently with the transition of both aquatic-to-terrestrial plants and vegetative-to-reproductive growth. Thus, NACs play an important role in fruit yield and quality by determining shoot apical meristem (SAM) inflorescence and controlling ripening. The present review focuses on the various properties of NACs together with their function and regulation in flower formation and fruit ripening. Hitherto, we have a better understanding of the molecular mechanisms of NACs in ripening through abscisic acid (ABA) and ethylene (ETH), but how NACs regulate the expression of the inflorescence formation-related genes is largely unknown. In the future, we should focus on the analysis of NAC redundancy and identify the pivotal regulators of flowering and ripening. NACs are potentially vital manipulation targets for improving fruit quantity and quality.
Collapse
Affiliation(s)
- Jianfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuyuan Qiao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cui Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingzhu Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Identification of the NAC Transcription Factors and Their Function in ABA and Salinity Response in Nelumbo nucifera. Int J Mol Sci 2022; 23:ijms232012394. [PMID: 36293250 PMCID: PMC9604248 DOI: 10.3390/ijms232012394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Nelumbo nucifera Gaertn. is an important perennial aquatic herb that has high ornamental, edible, medicinal, and economic value, being widely distributed and used in China. The NAC superfamily (NAM, ATAF1/2, CUC2) plays critical roles in plant growth, development, and response to abiotic and biotic stresses. Though there have been a few reports about NAC genes in lotus, systematic analysis is still relatively lacking. The present study aimed to characterize all the NAC genes in the lotus and obtain better insights on the NnNACs in response to salt stress by depending on ABA signaling. Here, 97 NAC genes were identified by searching the whole lotus genome based on the raw HMM models of the conserved NAM domain and NAC domain. They were characterized by bioinformatics analysis and divided into 18 subgroups based on the phylogenetic tree. Cis-element analysis demonstrated that NAC genes are responsive to biotic and abiotic stresses, light, low temperature, and plant hormones. Meanwhile, NAC genes had tissue expression specificity. qRT-PCR analysis indicated that NAC genes could be upregulated or downregulated by NaCl treatment, ABA, and fluoridone. In addition, NAC016, NAC025, and NAC070, whose encoding genes were significantly induced by NaCl and ABA, were located in the nucleus. Further analysis showed the three NAC proteins had transcriptional activation capabilities. The co-expression network analysis reflected that NAC proteins may form complexes with other proteins to play a role together. Our study provides a theoretical basis for further research to be conducted on the regulatory mechanisms of salinity resistance in the lotus.
Collapse
|
20
|
Dong Y, Tang M, Huang Z, Song J, Xu J, Ahammed GJ, Yu J, Zhou Y. The miR164a-NAM3 module confers cold tolerance by inducing ethylene production in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:440-456. [PMID: 35569132 DOI: 10.1111/tpj.15807] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Because of a high sensitivity to cold, both the yield and quality of tomato (Solanum lycopersicum L.) are severely restricted by cold stress. The NAC transcription factor (TF) family has been characterized as an important player in plant growth, development, and the stress response, but the role of NAC TFs in cold stress and their interaction with other post-transcriptional regulators such as microRNAs in cold tolerance remains elusive. Here, we demonstrated that SlNAM3, the predicted target of Sl-miR164a/b-5p, improved cold tolerance as indicated by a higher maximum quantum efficiency of photosystem II (Fv/Fm), lower relative electrolyte leakage, and less wilting in SlNAM3-overexpression plants compared to wild-type. Further genetic and molecular confirmation revealed that Sl-miR164a/b-5p functioned upstream of SlNAM3 by inhibiting the expression of the latter, thus playing a negative role in cold tolerance. Interestingly, this role is partially mediated by an ethylene-dependent pathway because either Sl-miR164a/b-5p silencing or SlNAM3 overexpression improved cold tolerance in the transgenic lines by promoting ethylene production. Moreover, silencing of the ethylene synthesis genes, SlACS1A, SlACS1B, SlACO1, and SlACO4, resulted in a significant decrease in cold tolerance. Further experiments demonstrated that NAM3 activates SlACS1A, SlACS1B, SlACO1, and SlACO4 transcription by directly binding to their promoters. Taken together, the present study identified the miR164a-NAM3 module conferring cold tolerance in tomato plants via the direct regulation of SlACS1A, SlACS1B, SlACO1, and SlACO4 expression to induce ethylene synthesis.
Collapse
Affiliation(s)
- Yufei Dong
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zelan Huang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jianing Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jin Xu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| |
Collapse
|
21
|
Zhou H, Zhu W, Wang X, Bian Y, Jiang Y, Li J, Wang L, Yin P, Deng XW, Xu D. A missense mutation in WRKY32 converts its function from a positive regulator to a repressor of photomorphogenesis. THE NEW PHYTOLOGIST 2022; 233:373-389. [PMID: 34935148 DOI: 10.1111/nph.17618] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/05/2021] [Indexed: 05/21/2023]
Abstract
CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) mediates various cellular and physiological processes in plants by targeting a large number of substrates for ubiquitination and degradation. In this study, we reveal that a substitution of Pro for Leu at amino acid position 409 in WRKY32 largely suppresses the short hypocotyls and expanded cotyledon phenotypes of cop1-6. WRKY32P409L promotes hypocotyl growth and inhibits the opening of cotyledons in Arabidopsis. Loss of WRKY32 function mutant seedlings display elongated hypocotyls, whereas overexpression of WRKY32 leads to shortened hypocotyls. WRKY32 directly associates with the promoter regions of HY5 to activate its transcription. COP1 interacts with and targets WRKY32 for ubiquitination and degradation in darkness. WRKY32P409L exhibits enhanced DNA binding ability and affects the expression of more genes compared with WRKY32 in Arabidopsis. Our results not only reveal the basic role for WRKY32 in promoting photomorphogenesis, but also provide insights into manipulating plant growth by engineering key components of light signaling.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Jiang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lixia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
22
|
Li Q, Liu C, Huang C, Wang M, Long T, Liu J, Shi J, Shi J, Li L, He Y, Xu DL. Transcriptome and Metabonomics Analysis Revealed the Molecular Mechanism of Differential Metabolite Production of Dendrobium nobile Under Different Epiphytic Patterns. FRONTIERS IN PLANT SCIENCE 2022; 13:868472. [PMID: 35656012 PMCID: PMC9152433 DOI: 10.3389/fpls.2022.868472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
The cultivation medium of Dendrobium nobile has an effect on the contents of its main medicinal components, but the specific mechanism is still unclear. In this study, the callus, seedlings, rhizomes, and leaves of D. nobile were sequenced for the PacBio SMRT. The 2-year-old stems were selected for the Illumina sequencing and metabolome sequencing to analyze the genetic mechanism of metabolic differences under different epiphytic patterns. As a result, a total of 387 differential genes were obtained, corresponding to 66 differential metabolites. Different epiphytic patterns can induce a series of metabolic changes at the metabolome and transcriptome levels of D. nobile, including flavonoid metabolism, purine metabolism, terpenoid backbone biosynthesis, amino acid metabolism, and alpha-linolenic acid metabolic, and related regulatory genes include ALDH2B7, ADC, EPSPS-1, SHKA, DHAPS-1, GES, ACS1, SAHH, ACS2, CHLP, LOX2, LOX2.3, and CYP74B2. The results showed that the genetic mechanism of D. nobile under various epiphytic patterns was different. In theory, the content of metabolites under the epiphytic patterns of Danxia stone is higher, which is more suitable for field cultivation.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Chaobo Liu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Ceyin Huang
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Mufei Wang
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Teng Long
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Jingyi Liu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Junhua Shi
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junli Shi
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Li
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Medicine, Zunyi Medical University, Zunyi, China
| | - De-Lin Xu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
23
|
Wang J, Liu XF, Zhang HQ, Allan AC, Wang WQ, Yin XR. Transcriptional and post-transcriptional regulation of ethylene biosynthesis by exogenous acetylsalicylic acid in kiwifruit. HORTICULTURE RESEARCH 2022; 9:uhac116. [PMID: 35937863 PMCID: PMC9347011 DOI: 10.1093/hr/uhac116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Levels of ethylene, implicated in the induction of fruit ripening in a diverse array of plants, are influenced by genetic and environmental factors, such as other plant hormones. Among these, salicylic acid (SA) and its derivative, acetylsalicylic acid (ASA), have been demonstrated to inhibit ethylene biosynthesis in fruit, yet the underlying regulatory mechanisms remain elusive. Here, we showed that treatment with exogenous ASA dramatically reduced ethylene production, as well as activities of ACC synthase (ACS) and ACC oxidase (ACO), in kiwifruit tissues. Comparative transcriptome analysis indicated the differential expression of ethylene biosynthetic genes (AdACS1/2 and AdACO5). A screen of transcription factors indicated that AdERF105L and AdWRKY29 were ASA-responsive regulators of AdACS1/2 and AdACO5, respectively. In addition to these genes, AdACS3 and AdACO3 were abundantly expressed in both ASA-treated and control tissues. AdACS3 protein was phosphorylated and stabilized by AdMPK16, a mitogen-activated protein kinase, while AdACO3 activity was enhanced by AdAP, an aspartic peptidase. Exogenous ASA downregulated AdMPK16 and AdAP, thereby influencing ethylene biosynthesis at a post-transcriptional level. These findings led us to propose a multidimensional system for inhibition of ethylene biosynthesis by ASA, inducing differential expression of some ethylene biosynthesis genes, as well as differential effects on protein activity on other targets.
Collapse
Affiliation(s)
- Jian Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou Zhejiang, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou Zhejiang, 310058, China
| | - Xiao-fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou Zhejiang, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou Zhejiang, 310058, China
| | - Hui-qin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou Zhejiang, 310021, China
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | - Xue-ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou Zhejiang, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou Zhejiang, 310058, China
| |
Collapse
|
24
|
Liu GS, Li HL, Grierson D, Fu DQ. NAC Transcription Factor Family Regulation of Fruit Ripening and Quality: A Review. Cells 2022; 11:cells11030525. [PMID: 35159333 PMCID: PMC8834055 DOI: 10.3390/cells11030525] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/18/2023] Open
Abstract
The NAC transcription factor (TF) family is one of the largest plant-specific TF families and its members are involved in the regulation of many vital biological processes during plant growth and development. Recent studies have found that NAC TFs play important roles during the ripening of fleshy fruits and the development of quality attributes. This review focuses on the advances in our understanding of the function of NAC TFs in different fruits and their involvement in the biosynthesis and signal transduction of plant hormones, fruit textural changes, color transformation, accumulation of flavor compounds, seed development and fruit senescence. We discuss the theoretical basis and potential regulatory models for NAC TFs action and provide a comprehensive view of their multiple roles in modulating different aspects of fruit ripening and quality.
Collapse
Affiliation(s)
- Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
| | - Hong-Li Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
| | - Donald Grierson
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Plant Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
- Correspondence:
| |
Collapse
|
25
|
Liu J, Chen Y, Wang WQ, Liu JH, Zhu CQ, Zhong YP, Zhang HQ, Liu XF, Yin XR. Transcription factors AcERF74/75 respond to waterlogging stress and trigger alcoholic fermentation-related genes in kiwifruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111115. [PMID: 34895544 DOI: 10.1016/j.plantsci.2021.111115] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Kiwifruit plants have a fleshy, shallow root system which is sensitive to waterlogging stress, which results in a decrease in crop yield or even plants death. Although the waterlogging stress responses in kiwifruit have attracted much attention, the underlying molecular mechanism remains unclear. In this study, waterlogging led to drastic inhibition of root growth of 'Donghong' kiwifruit (Actinidia chinensis) plants grown in vitro, which was accompanied by significant elevation of endogenous acetaldehyde and ethanol contents. RNA-seq of roots of plants waterlogged for 0, 1 and 2 days revealed that a total of 149 genes were up- or down-regulated, including seven biosynthetic genes related to the glycolysis/gluconeogenesis pathway and 10 transcription factors. Analyses with real-time PCR, dual-luciferase assays and EMSA demonstrated that AcERF74 and AcERF75, two members of the ERF-VII subfamily, directly upregulated AcADH1 (alcohol dehydrogenase). Moreover, the overexpression of AcERF74/75 in transgenic calli resulted in dramatic increase of endogenous ethanol contents through the triggering of AcADH1 and AcADH2 expression. Although the AcPDC2 (pyruvate decarboxylase) expression was also enhanced in transgenic lines, the endogenous acetaldehyde contents showed no significant changes. These results illustrated that AcERF74/75 are two transcriptional activators on alcoholic fermentation related genes and are responsive to waterlogging stress in kiwifruit.
Collapse
Affiliation(s)
- Jiao Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Yue Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Chang-Qing Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Yun-Peng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China
| | - Hui-Qin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Xiao-Fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China.
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| |
Collapse
|
26
|
Liu Y, Lv G, Chai J, Yang Y, Ma F, Liu Z. The Effect of 1-MCP on the Expression of Carotenoid, Chlorophyll Degradation, and Ethylene Response Factors in 'Qihong' Kiwifruit. Foods 2021; 10:foods10123017. [PMID: 34945569 PMCID: PMC8701096 DOI: 10.3390/foods10123017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The development of yellow color is an important aspect of fruit quality in yellow fleshed kiwifruit during fruit ripening, and it has a large influence on consumer preference. The yellow color is determined by carotenoid accumulation and chlorophyll degradation and is likely affected by ethylene production. This study investigates the expression of carotenoid, chlorophyll degradation, and ethylene response factors in ‘Qihong’ fruit, which had reached the near ripening stage (firmness ≈ 20 N) and were either left untreated (controls) or treated with 0.5 μL L−1 of 1-MCP for 12 h. Both the accumulation of β-carotene (not lutein) and degradation of chlorophyll a and b increased in response to the 1-MCP treatment, resulting in more yellow colored flesh in the 1-MCP treated fruit with higher carotenoid and lower chlorophyll contents. 1-MCP up-regulated AcLCY-β, AcSGR1, and AcPAO2, but reduced the expression of AcCCD1. These four genes were correlated with the concentrations of β-carotene and the chlorophylls. The expression of three ethylene response factors, including Acc29730, Acc25620, and Acc23763 were delayed and down-regulated in 1-MCP treated fruit, showing the highest correlation with the expression of AcLCY-β, AcSGR1, AcPAO2, and AcCCD1. Dual-Luciferase assays showed that 1-MCP treatment not only eliminated the inhibition of Acc23763 on the promoters of both AcPAO2 and AcLCY-β, but also reduced the activation of Acc29730 and Acc25620 on the AcCCD1 promoter. Our findings indicate that Acc29730, Acc25620, and Acc23763 may play an important role in the response to 1-MCP treatment during the fruit eating ripe stage, which likely altered the promoter activities of carotenoid and chlorophyll-related genes (AcPAO2, AcLCY-β and AcCCD1) to regulate their transcripts, resulting in more yellow color in the fruit flesh of ‘Qihong’.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
- College of Life Science, Northwest A&F University, Xianyang 712100, China
| | - Guowen Lv
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Jiaxin Chai
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Yaqi Yang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
- Correspondence:
| |
Collapse
|
27
|
Fu BL, Wang WQ, Liu XF, Duan XW, Allan AC, Grierson D, Yin XR. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. THE NEW PHYTOLOGIST 2021; 232:237-251. [PMID: 34137052 DOI: 10.1111/nph.17560] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Ethylene plays an important role in regulating fruit ripening by triggering dynamic changes in expression of ripening-associated genes, but the functions of many of these genes are still unknown. Here, a methionine sulfoxide reductase gene (AdMsrB1) was identified by transcriptomics-based analysis as the gene most responsive to ethylene treatment in ripening kiwifruit. The AdMsrB1 protein exhibits a stereospecific activity toward the oxidative stress-induced R enantiomer of methionine sulfoxide (MetSO), reducing it to methionine (Met). Stable overexpression of AdMsrB1 in kiwifruit significantly increased the content of free Met and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, and increased ethylene production. Dual-luciferase assays indicated that the AdMsrB1 promoter was not directly upregulated by ethylene treatment but was modulated by two ethylene-inducible NAM/ATAF/CUC transcription factors (AdNAC2 and AdNAC72) that bind directly to the AdMsrB1 promoter. Overexpression of AdNAC72 in kiwifruit not only enhanced AdMsrB1 expression, but also increased free Met and ACC content and ethylene production rates. This finding establishes an unexpected regulatory loop that enhances ethylene production and the concentration of its biosynthetic intermediates.
Collapse
Affiliation(s)
- Bei-Ling Fu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiao-Fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xue-Wu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
28
|
Nieuwenhuizen NJ, Chen X, Pellan M, Zhang L, Guo L, Laing WA, Schaffer RJ, Atkinson RG, Allan AC. Regulation of wound ethylene biosynthesis by NAC transcription factors in kiwifruit. BMC PLANT BIOLOGY 2021; 21:411. [PMID: 34496770 PMCID: PMC8425125 DOI: 10.1186/s12870-021-03154-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The phytohormone ethylene controls many processes in plant development and acts as a key signaling molecule in response to biotic and abiotic stresses: it is rapidly induced by flooding, wounding, drought, and pathogen attack as well as during abscission and fruit ripening. In kiwifruit (Actinidia spp.), fruit ripening is characterized by two distinct phases: an early phase of system-1 ethylene biosynthesis characterized by absence of autocatalytic ethylene, followed by a late burst of autocatalytic (system-2) ethylene accompanied by aroma production and further ripening. Progress has been made in understanding the transcriptional regulation of kiwifruit fruit ripening but the regulation of system-1 ethylene biosynthesis remains largely unknown. The aim of this work is to better understand the transcriptional regulation of both systems of ethylene biosynthesis in contrasting kiwifruit organs: fruit and leaves. RESULTS A detailed molecular study in kiwifruit (A. chinensis) revealed that ethylene biosynthesis was regulated differently between leaf and fruit after mechanical wounding. In fruit, wound ethylene biosynthesis was accompanied by transcriptional increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO) and members of the NAC class of transcription factors (TFs). However, in kiwifruit leaves, wound-specific transcriptional increases were largely absent, despite a more rapid induction of ethylene production compared to fruit, suggesting that post-transcriptional control mechanisms in kiwifruit leaves are more important. One ACS member, AcACS1, appears to fulfil a dominant double role; controlling both fruit wound (system-1) and autocatalytic ripening (system-2) ethylene biosynthesis. In kiwifruit, transcriptional regulation of both system-1 and -2 ethylene in fruit appears to be controlled by temporal up-regulation of four NAC (NAM, ATAF1/2, CUC2) TFs (AcNAC1-4) that induce AcACS1 expression by directly binding to the AcACS1 promoter as shown using gel-shift (EMSA) and by activation of the AcACS1 promoter in planta as shown by gene activation assays combined with promoter deletion analysis. CONCLUSIONS Our results indicate that in kiwifruit the NAC TFs AcNAC2-4 regulate both system-1 and -2 ethylene biosynthesis in fruit during wounding and ripening through control of AcACS1 expression levels but not in leaves where post-transcriptional/translational regulatory mechanisms may prevail.
Collapse
Affiliation(s)
- Niels J. Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Xiuyin Chen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Mickaël Pellan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Lei Zhang
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Lindy Guo
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | | | - Robert J. Schaffer
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
- PFR, 55 Old Mill Road, RD 3, Motueka, 7198 New Zealand
| | - Ross G. Atkinson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| |
Collapse
|
29
|
Liu N, Chen Y, Yang C, Zhang P, Xie G. Ripening and ethylene production affected by 1-MCP in different parts of kiwifruit during postharvest storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1953071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Na Liu
- Food and Pharmaceutical Engineering Institute, Guizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| | - Yao Chen
- Food and Pharmaceutical Engineering Institute, Guizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| | - Chen Yang
- Food and Pharmaceutical Engineering Institute, Guizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| | - Ping Zhang
- Food and Pharmaceutical Engineering Institute, Guizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| | - Guofang Xie
- Food and Pharmaceutical Engineering Institute, Guizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| |
Collapse
|
30
|
Li S, Chen K, Grierson D. Molecular and Hormonal Mechanisms Regulating Fleshy Fruit Ripening. Cells 2021; 10:1136. [PMID: 34066675 PMCID: PMC8151651 DOI: 10.3390/cells10051136] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
This article focuses on the molecular and hormonal mechanisms underlying the control of fleshy fruit ripening and quality. Recent research on tomato shows that ethylene, acting through transcription factors, is responsible for the initiation of tomato ripening. Several other hormones, including abscisic acid (ABA), jasmonic acid (JA) and brassinosteroids (BR), promote ripening by upregulating ethylene biosynthesis genes in different fruits. Changes to histone marks and DNA methylation are associated with the activation of ripening genes and are necessary for ripening initiation. Light, detected by different photoreceptors and operating through ELONGATED HYPOCOTYL 5(HY5), also modulates ripening. Re-evaluation of the roles of 'master regulators' indicates that MADS-RIN, NAC-NOR, Nor-like1 and other MADS and NAC genes, together with ethylene, promote the full expression of genes required for further ethylene synthesis and change in colour, flavour, texture and progression of ripening. Several different types of non-coding RNAs are involved in regulating expression of ripening genes, but further clarification of their diverse mechanisms of action is required. We discuss a model that integrates the main hormonal and genetic regulatory interactions governing the ripening of tomato fruit and consider variations in ripening regulatory circuits that operate in other fruits.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
31
|
Li L, He Y, Zhang Z, Shi Y, Zhang X, Xu X, Wu JL, Tang S. OsNAC109 regulates senescence, growth and development by altering the expression of senescence- and phytohormone-associated genes in rice. PLANT MOLECULAR BIOLOGY 2021; 105:637-654. [PMID: 33543390 PMCID: PMC7985107 DOI: 10.1007/s11103-021-01118-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/13/2021] [Indexed: 05/11/2023]
Abstract
We demonstrate that OsNAC109 regulates senescence, growth and development via binding to the cis-element CNTCSSNNSCAVG and altering the expression of multiple senescence- and hormone-associated genes in rice. The NAC family is one of the largest transcripton factor families in plants and plays an essential role in plant development, leaf senescence and responses to biotic/abiotic stresses through modulating the expression of numerous genes. Here, we isolated and characterized a novel yellow leaf 3 (yl3) mutant exhibiting arrested-growth, increased accumulation of reactive oxygen species (ROS), decreased level of soluble proteins, increased level of malondialdehyde (MDA), reduced activities of ROS scavenging enzymes, altered expression of photosynthesis and senescence/hormone-associated genes. The yellow leaf and arrested-growth trait was controlled by a single recessive gene located to chromosome 9. A single nucleotide substitution was detected in the mutant allele leading to premature termination of its coding protein. Genetic complementation could rescue the mutant phenotype while the YL3 knockout lines displayed similar phenotype to WT. YL3 was expressed in all tissues tested and predicted to encode a transcriptional factor OsNAC109 which localizes to the nucleus. It was confirmed that OsNAC109 could directly regulate the expression of OsNAP, OsNYC3, OsEATB, OsAMTR1, OsZFP185, OsMPS and OsGA2ox3 by targeting to the highly conserved cis-element CNTCSSNNSCAVG except OsSAMS1. Our results demonstrated that OsNAC109 is essential to rice leaf senescence, growth and development through regulating the expression of senescence- and phytohormone-associated genes in rice.
Collapse
Affiliation(s)
- Liangjian Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Yan He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Zhihong Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Yongfeng Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Xiaobo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Xia Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Jian-Li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China.
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China.
| |
Collapse
|
32
|
Wang SY, Shi XC, Liu FQ, Laborda P. Effects of exogenous methyl jasmonate on quality and preservation of postharvest fruits: A review. Food Chem 2021; 353:129482. [PMID: 33725541 DOI: 10.1016/j.foodchem.2021.129482] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Methyl jasmonate (MeJA) is a volatile hormone involved in a number of plant processes, acting as a signal in response to external stresses and modulating the biosynthesis of other phytohormones. Here, we are reviewing for the first time all reports related to the effects of exogenous MeJA on postharvest fruits. Application of MeJA during preharvest and postharvest stages has been demonstrated to enhance fruit antioxidant capacity and phenolics content, which in turn extended fruit shelf-life, enhanced fruit quality and reduced chilling injury. The postharvest application of MeJA has been reported to alter volatiles pattern and to enhance the innate disease resistance of postharvest fruits against pathogenic fungi. The results obtained using different treatment conditions, such as temperature, storage time and concentration, have been highlighted and compared along the manuscript in order to provide new insights on the applicability of MeJA for enhancing postharvest fruit quality and preservation.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Feng-Quan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 226019, People's Republic of China.
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China.
| |
Collapse
|
33
|
Pattyn J, Vaughan‐Hirsch J, Van de Poel B. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. THE NEW PHYTOLOGIST 2021; 229:770-782. [PMID: 32790878 PMCID: PMC7820975 DOI: 10.1111/nph.16873] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
The gaseous plant hormone ethylene is produced by a fairly simple two-step biosynthesis route. Despite this pathway's simplicity, recent molecular and genetic studies have revealed that the regulation of ethylene biosynthesis is far more complex and occurs at different layers. Ethylene production is intimately linked with the homeostasis of its general precursor S-adenosyl-l-methionine (SAM), which experiences transcriptional and posttranslational control of its synthesising enzymes (SAM synthetase), as well as the metabolic flux through the adjacent Yang cycle. Ethylene biosynthesis continues from SAM by two dedicated enzymes: 1-aminocyclopropane-1-carboxylic (ACC) synthase (ACS) and ACC oxidase (ACO). Although the transcriptional dynamics of ACS and ACO have been well documented, the first transcription factors that control ACS and ACO expression have only recently been discovered. Both ACS and ACO display a type-specific posttranslational regulation that controls protein stability and activity. The nonproteinogenic amino acid ACC also shows a tight level of control through conjugation and translocation. Different players in ACC conjugation and transport have been identified over the years, however their molecular regulation and biological significance is unclear, yet relevant, as ACC can also signal independently of ethylene. In this review, we bring together historical reports and the latest findings on the complex regulation of the ethylene biosynthesis pathway in plants.
Collapse
Affiliation(s)
- Jolien Pattyn
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - John Vaughan‐Hirsch
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| |
Collapse
|
34
|
Çetinbaş-Genç A, Vardar F. Effect of methyl jasmonate on in-vitro pollen germination and tube elongation of Pinus nigra. PROTOPLASMA 2020; 257:1655-1665. [PMID: 32734410 DOI: 10.1007/s00709-020-01539-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The purpose of the main research was to investigate the effects of methyl jasmonate (MeJA) (0.05, 0.25, 0.5, and 2.5 mM) on the pollen germination and tube elongation of Pinus nigra. Total pollen germination rate increased after MeJA treatments while the most enhancement was observed at 0.05-mM MeJA. No germination was observed at 2.5-mM MeJA. Although the unipolar and bipolar germination were observed in all groups, no significant changes were observed in unipolar and bipolar pollen germination rates after MeJA treatments. Tube length increased only at 0.05-mM MeJA. Although branched tubes were observed in all groups, branched tube rate increased only at 0.05-mM MeJA. Although two branched, three branched, and consecutive branched tubes were observed in all groups, the most common branching type was two branched type in all groups. Although anisotropy of actin filaments in the shank and apex of unbranched tubes decreased after MeJA treatments, the most decrease was observed at 0.05-mM MeJA. Also, anisotropy of actin filaments in the shank and in pre-branching region of branched tubes decreased only at 0.25-mM MeJA. Anisotropy of both two apexes of a branched tube changed only at 0.25- and 0.5-mM MeJA. Callose accumulation in the apex of unbranched and branched tubes increased in parallel with the increase in MeJA concentration. However, more callose is accumulated in one apex than the other apex of a branched tube. In conclusion, MeJA affected the actin organization, changed the callose distribution, and altered the pollen tube growth of Pinus nigra.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, Kadıköy, 34722, Istanbul, Turkey.
| | - Filiz Vardar
- Department of Biology, Marmara University, Göztepe Campus, Kadıköy, 34722, Istanbul, Turkey
| |
Collapse
|
35
|
Min D, Li Z, Ai W, Li J, Zhou J, Zhang X, Mu D, Li F, Li X, Guo Y. The Co-regulation of Ethylene Biosynthesis and Ascorbate-Glutathione Cycle by Methy Jasmonate Contributes to Aroma Formation of Tomato Fruit during Postharvest Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10822-10832. [PMID: 32866003 DOI: 10.1021/acs.jafc.0c04519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Currently, many fruits are always harvested at the early ripening stage to reduce postharvest losses followed by 1-methylcyclopropene (1-MCP) or ethephon treatment. However, harvesting at the early ripening stage adversely affects fruit quality, especially for the aroma. Methyl jasmonate (MeJA) treatment could induce the biosynthesis of bioactive compounds and maintain postharvest fruit quality. In the present work, the contributions of MeJA to tomato fruit quality during postharvest ripening were studied. The results showed that MeJA treatment significantly promoted the accumulation of volatile organic components (VOCs) by inducing the activities of enzymes related to lipoxygenase pathway and ethylene biosynthesis, whereas 1-MCP treatment largely inhibited the accumulation of VOCs by inhibiting activities of those enzymes. Although the application of ethephon also induced activities of the above enzymes in comparison with control, no significant differences were observed between the VOCs contents of the control and ethephon-treated fruit. Further study revealed that the ethephon treatment resulted in the enhancement of electrical conductivity and malondialdehyde content. Conversely, MeJA treatment inhibited the superoxide anion radical and hydrogen peroxide by regulating the ascorbate-glutathione cycle and further inhibited the enhancement of electrical conductivity and malondialdehyde content, which might be one of the most important reasons why the VOCs contents in fruit treated with ethephon were lower than those in MeJA-treated fruit. Thus, it is considered that MeJA treatment may be an effective and promising strategy to regulate postharvest tomato fruit quality, especially for the aroma, by regulating the ascorbate-glutathione cycle and ethylene biosynthesis.
Collapse
Affiliation(s)
- Dedong Min
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, P.R. China
| | - Zilong Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, P.R. China
| | - Wen Ai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, P.R. China
| | - Jiaozhuo Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, P.R. China
| | - Jingxiang Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, P.R. China
| | - Xinhua Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, P.R. China
| | - Dan Mu
- Zibo Institute for Food and Drug Control, Zibo, 255049, Shandong, P.R. China
| | - Fujun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, P.R. China
| | - Xiaoan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, P.R. China
| | - Yanyin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, P.R. China
| |
Collapse
|